USGS Groundwater Information: Hydrogeophysics Branch
ATTENTION:
As part of improvements to the USGS Water Resources Mission Area web presence to better serve you, this site is being sunset.
As some content is migrated to new locations, users will be redirected automatically.
In the interim, these pages are not being updated.
If you have questions, please contact the Hydrogeophysics Branch at hgb_help@usgs.gov
[an error occurred while processing this directive]
Internal USGS users should bookmark our new HGB internal home page: https://water.usgs.gov/usgs/espd/hgb/
Rory D. Henderson, U.S. Geological Survey, Storrs, CT and University of Connecticut, Storrs, CT
Frederick D. Day-Lewis, U.S. Geological Survey, Storrs, CT
John W. Lane, Jr., U.S. Geological Survey, Storrs, CT
Charles F. Harvey, Massachusetts Institute of Technology, Cambridge, MA
Lanbo Liu, University of Connecticut, Storrs, CT
Submarine ground-water discharge (SGD) contributes important solute fluxes to coastal waters. Pollutants are transported to coastal ecosystems by SGD at spatially and temporally variable rates. New approaches are needed to characterize the effects of storm-event, tidal, and seasonal forcing on SGD. Here, we evaluate the utility of two geophysical methods–fiber-optic distributed temperature sensing (FO-DTS) and marine electrical resistivity (MER) for observing the spatial and temporal variations in SGD and the configuration of the freshwater/saltwater interface within submarine sediments. FO-DTS and MER cables were permanently installed into the estuary floor on a transect extending 50 meters offshore under Waquoit Bay, Massachusetts, at the Waquoit Bay National Estuarine Research Reserve, and nearly continuous data were collected for 4 weeks in summer 2007.
Initial results indicate that the methods are extremely useful for monitoring changes in the complex estuarine environment. The FO-DTS produced time-series data at approximately 1-meter increments along the length of the fiber at approximately 29-second intervals. The temperature time-series data show that the temperature at near-shore locations appears to be dominated by a semi-diurnal (tidal) signal, whereas the temperature at off-shore locations is dominated by a diurnal signal (day/night heating and cooling). Dipole-dipole MER surveys were completed about every 50 minutes, allowing for production of high-resolution time-lapse tomograms, which provide insight into the variations of the subsurface freshwater/saltwater interface. Preliminary results from the MER data show a high-resistivity zone near the shore at low tide, indicative of SGD, and consistent with the FO-DTS results.
Download complete paper (550KB PDF).
Note: Download free Adobe Acrobat Reader to view PDF files at the Adobe web site.
Visit http://access.adobe.com for free tools that allow visually impaired users to read PDF files.
Final copy as submitted to SAGEEP for publication as: Henderson, R.D., Day-Lewis, F.D., Lane, J.W., Jr., Harvey, C.F., and Liu, L., 2008, Characterizing submarine ground-water discharge using fiber-optic distributed temperature sensing and marine electrical resistivity, in Symposium on the Application of Geophysics to Engineering and Environmental Problems, April 6-10, 2008, Philadelphia, Pennsylvania, Proceedings: Denver, Colorado, Environmental and Engineering Geophysical Society, 11p.