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Introduction

MISSION STATEMENT

GWRI strives to improve the science and practice of water resources planning and management in ways that
balance quality of life, environmental sustainability, and economic growth. GWRI pursues this mission
through its education, research, information dissemination, and technology/knowledge transfer programs at
the state, national, and international levels.

Organizational Structure: The GWRI organizational structure includes a Director, Associate Director,
Assistant Director, Advisory Board, and technical support staff. The technical support staff comprises several
Ph.D. graduate students who work on GWRI projects while carrying out doctoral research, and information
technology support staff. The Advisory Board includes representatives from major state and federal water
agencies as well as environmental and citizen groups. At Georgia Tech, GWRI reports to the Senior
Vice-Provost for Research under the Office of the Provost.

Research Program Sponsorship and Administration: GWRI activities are sponsored by (i) the Department of
the Interior/USGS as part of the state and national research programs, and (ii) other national and international
funding agencies and organizations supporting research in water related areas. Through its annual state and
national competitive programs, GWRI provides research awards to Georgia Universities. The award process
includes submission of technical proposals, technical peer reviews, and reviews for relevance to Georgia
needs by the State Environmental Protection Division (Georgia EPD).

Other External Funding: In addition to the 104B and 104G programs, GWRI generates additional funding
through participation in competitive national and international research programs. Recent funding has been
provided by the California Energy Commission, the California Department of Water Resources, NOAA, and
the ACF Stakeholders. GWRI involvement in national and international research activities is crucial to
maintaining the expert capacity and funding portfolio necessary to provide quality services to the state of
Georgia and all other sponsors.

FY2016 RESEARCH PROJECTS THROUGH 104B PROGRAM

(1) Phosphorus and Metal Speciation Dynamics during Thermal Treatment of Sewage Sludges; Tang, Y.;
Georgia Institute of Technology.

(2) Geostatistical Models for Optimizing Groundwater Monitoring Network in the Lower
Apalachicola‐Chattahoochee‐Flint (ACF) River basin; Luo, J.; Georgia Institute of Technology.

(3) Fecal bacteria source tracking, nutrient analysis, and modeling of an urban TMDL watershed; Radcliffe,
D. and Habteselassie, M.; University of Georgia.

(4) Comparison of Oconee and Ocmulgee river basins for sustainable ecosystem and economic development
of Middle Georgia; Tollner, E. and Rasmussen, T.; University of Georgia.

OTHER RESEARCH PROJECTS AND ACCOMPLISHMENTS

Climate Change Assessment and Adaptation Planning for River Basins with Estuarine Resources, Aris
Georgakakos PI, Georgia Institute of Technology, sponsored by NOAA.
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Integrated Forecast and Reservoir Management (INFORM) for Northern California, Airs Georgakakos PI,
Georgia Institute of Technology (Project Partners: Hydrologic Research Center), sponsored by California
Department of Water Resources.

RECENT PUBLICATIONS

Dettinger, M., B. Udall, and A.P. Georgakakos, 2015: Western Water and Climate Change. Ecological
Applications, 25(8), pp. 2069–2093 (Ecol. Soc. of America Centennial Paper).

Sharif, H.E., J. Wang, and A.P. Georgakakos, 2015: Modeling Regional Crop Yield and Irrigation Demand
Using SMAP Type of Soil Moisture Data. Journal of Hydrometeorology, 16, pp. 904–916. Available at
http://journals.ametsoc.org/doi/pdf/10.1175/JHM-D-14-0034.1.

Kistenmacher, M., and A.P. Georgakakos, 2015: Assessment of Reservoir System Variable Forecasts, Water
Resources Research, 51, pp. 3437–3458 (doi:10.1002/2014WR016564).

Chen, C.-J., and A.P. Georgakakos, 2015: Seasonal Prediction of East African Rainfall. International Journal
of Climatology, 35, pp. 2698–2723 (doi:10.1002/joc.4165).

Georgakakos, A.P., P. Fleming, M. Dettinger, C. Peters-Lidard, T.C. Richmond, K. Reckhow, K. White, and
D. Yates: Water Resources Chapter, 2014 National Climate Assessment Draft,
http://ncadac.globalchange.gov, 2014.

Georgakakos, A.P., H. Yao, and K.P. Georgakakos, “Ensemble streamflow prediction adjustment for
upstream water use and regulation”, Journal of Hydrology, doi: 10.1016/j.jhydrol.2014.06.044, 2014.

Kim, D.H., and A.P. Georgakakos, “Hydrologic River Routing using Nonlinear Cascaded Reservoirs,” Water
Resources Research, doi: 10.1002/2014WR015662, 2014.

Chen, C-J., and A.P. Georgakakos, “Seasonal Prediction of East African Rainfall,” International Journal of
Climatology, doi: 10.1002/joc.4165, 2014. Climate of the Southeast United States: Variability, Change,
Impacts, and Vulnerability, co-author of Chapter 10, “Impacts of Climate Change and Variability on Water
Resources in the Southeast USA,” Island Press, Washington DC, 341p, 2013.

Chen, C-J., and A.P. Georgakakos, “Hydro-Climatic Forecasting Using Sea Surface
Temperatures—Methodology and Application for the Southeast U.S.,” Journal of Climate Dynamics,
doi:10.1007/s00382-013-1908-4, 2013.

RECENT REPORTS

Georgakakos, A.P., and M. Kistenmacher (2015): Water Management Scenario Assessments for the ACF
River Basin. Technical Report, Georgia Water Resources Institute, Georgia Institute of Technology, Atlanta,
Georgia, 41p.

Georgakakos, A.P., and M. Kistenmacher (2015): Value of Drought Prediction for the Management of the
ACF River Basin. Technical Report, Georgia Water Resources Institute, Georgia Institute of Technology,
Atlanta, Georgia, 34p.

Georgakakos, A.P., and M. Kistenmacher (2012): Unimpaired Flow Assessment for the Apalachicola
Chattahoochee-Flint River Basin. Technical Report, Georgia Water Resources Institute, Georgia Institute of
Technology, Atlanta, Georgia, 211p.
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RECENT CONFERENCE PRESENTATIONS

Georgakakos, A.P., “Integrated Water, Energy, and Environmental Planning in the Rufiji River and Lake
Rukwa Basins, Tanzania”, 2016 AGU Fall Meeting, San Francisco, December 15, 2016.

Dettinger, M., B.H. Udall, A.P. Georgakakos, “Western Water and Climate Change--An Overview”, 2016
AGU Fall Meeting, San Francisco, December 12, 2016.

Kistenmacher, M. and A.P. Georgakakos, “Value of Adaptive Drought Forecasting and Management for the
ACF River Basin in the Southeast U.S”, 2016 AGU Fall Meeting (Poster), San Francisco, December 13,
2016.

DiVittorio, C. and A.P. Georgakakos, “A Satellite Based Method for Wetland Inundation Mapping”, 2016
AGU Fall Meeting, San Francisco, December 15, 2016.

Kistenmacher, M., and A.P. Georgakakos, “Development of a sustainable water management plan for the
ACF River Basin”, 2016 UCOWR/NIWR Annual Water Resources Conference, Pensacola Beach, June
21-23, 2016.

Kistenmacher, M., and A.P. Georgakakos, “Value of adaptive drought management for the ACF river basin”,
2016 UCOWR/NIWR Annual Water Resources Conference, Pensacola Beach, June 21-23, 2016.
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Research Program Introduction

Four research projects were funded through the 104B Program (each at $18,000) in FY2016:

(1) Phosphorus and Metal Speciation Dynamics during Thermal Treatment of Sewage Sludges; Tang, Y.;
Georgia Institute of Technology.

(2) Geostatistical Models for Optimizing Groundwater Monitoring Network in the Lower
Apalachicola‐Chattahoochee‐Flint (ACF) River basin; Luo, J.; Georgia Institute of Technology.

(3) Fecal bacteria source tracking, nutrient analysis, and modeling of an urban TMDL watershed; Radcliffe,
D. and Habteselassie, M.; University of Georgia.

(4) Comparison of Oconee and Ocmulgee river basins for sustainable ecosystem and economic development
of Middle Georgia; Tollner, E. and Rasmussen, T.; University of Georgia.

The Georgia Water Resources Institute asked for and received permission to extend the deadline of project (3)
into FY2016 to allow the PIs to make field measurements that could not have been completed by the original
project deadline.

Research Program Introduction
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Phosphorus and Metal Speciation Dynamics during Thermal
Treatment of Sewage Sludges

Basic Information

Title: Phosphorus and Metal Speciation Dynamics during Thermal Treatment of SewageSludges
Project Number: 2016GA364B

Start Date: 3/1/2016
End Date: 2/28/2017

Funding Source: 104B
Congressional

District: United States: 5th

Research Category: Engineering
Focus Category: Nutrients, Wastewater, Geochemical Processes

Descriptors: None
Principal

Investigators: Yuanzhi Tang

Publications

There are no publications.

Phosphorus and Metal Speciation Dynamics during Thermal Treatment of Sewage Sludges
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Georgia Water Resources Institute Project 2016 Annual Report 

 

Phosphorus and Metal Speciation Dynamics during Thermal Treatment of Sewage Sludges 

 

PI: Yuanzhi Tang 

School of Earth and Atmospheric Sciences 

Georgia Institute of Technology 

Atlanta, GA 30332-0340 

 

1. Research Background and Objectives 

Tremendous amounts of sewage sludges are being produced as the byproducts of 

wastewater treatment processes, bringing a daunting task for the water industry. In addition to the 

intrinsic high water content and large volume, sludges often contain a wide range of organic and 

inorganic contaminants, such as heavy metals, pesticides, herbicides, microorganisms, and 

pharmaceuticals and personal care products (PPCPs). On the other hand, sludge also consists of a 

wide range of nutrients and valuable metals at relatively high concentrations, and is increasingly 

recognized and treated as a resource for the recycling of critical nutrients such as phosphorus (P). 

In fact, a significant portion of P consumed by human activities is ultimately converged into 

wastewater treatment plants, making the sludges a great resource for P recycling and reclamation.  

In recent years, thermal (e.g. pyrolysis) and hydrothermal treatments (e.g. hydrothermal 

carbonization; HTC) of sewage sludge have emerged as sustainable treatment techniques, because 

they can significantly decompose organic pollutants, reduce waste volume, and generate valuable 

by-products (e.g. chars). During the production of chars, nutrients such as P mostly remain in the 

solid phase, making it a char-P composite with many potential applications, e.g. P recycling using 

acid extraction. (Bio)chars produced from thermal treatments have also been recognized as good 

soil amendments to adjust soil physical and chemical properties and improve soil qualities. With 

the significant decomposition of organic contaminants during thermal treatment processes, direct 

soil application of such char-P composite might also be an excellent alternative P recycling and 

fertilization practice with all the added benefits from chars.  

It is well known that the speciation of an element determines its mobility, transport, fate, 

and bioavailability. Thus, one critical knowledge gap for the abovementioned or any other P 

recycling/reclamation approaches from thermal treatment derived sludge products is the evolution 

of P and metal speciation during the thermal treatments, as this relates to the selection of further P 

recycling techniques as well as the toxicity and bioavailability of metals.  

The overall goal of this project is to systematically characterized the speciation of P and 

metals (Cu and Zn) in raw sludges as well as the pyro- and hydrochars derived from pyrolysis and 

hydrothermal carbonization treatments of the sludges under varied treatment conditions.  

 

2. Research Approach 

2.1. Materials and treatments 

 Two types of sewage sludges (activated sludge and anaerobic sludge) were collected from 

F. Wayne Hill Water Resources Center (Gwinnett County, Atlanta, Georgia). The activated sludge 

represents sludge in its most unprocessed form, while the anaerobic sludge represents sludge that 

has experienced common processing (e.g. mixing of sludges from different units, dewatering, and 

anaerobic digestion) and has relatively higher metal contents than the activated sludge. Pyrolysis 

and HTC were conducted on both the activated and anaerobic sludges. Pyrolysis was conducted in 
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a tube furnace under N2 flow (~1 mL/sec) at a range of temperatures (250 to 600 °C), with a heating 

and cooling rate of 200 °C/h and a soaking duration of 4 h. For each treatment condition, 1.0 g of 

freeze-dried activated sludge was added into a crucible and inserted into the glass tube. All samples 

were processed in duplicates. The produced solid chars are hereafter referred to as pyrochar. For 

HTC treatment, wet sludge equivalent to ~ 1.8 g dry mass was weighted into a 20 mL Teflon lined 

stainless steel hydrothermal reactor. Deionized water was then added to achieve a total weight of 

12 g. The reactor was sealed and heated in an oven at 225 °C for 4 or 16 h, then allowed to naturally 

cool down to 50 °C in an oven. The produced solids (hereafter referred to as hydrochar) and the 

processed water were separated by centrifugation, and the hydrochar was freeze-dried. The total 

mass recovery, processed water volume, and dried hydrochar mass were recorded.     

 

2.2. Sequential extraction 

Sequential extraction of P in the raw sludges and their derived chars were conducted 

following the Hedley's method [1]. Specifically, 150 mg raw sludge or char was added to a 50 mL 

polypropylene centrifuge tube and sequential extracted by 20 mL extraction solutions. The reaction 

tubes were constantly agitated by end-to-end shaking. The samples were first extracted with 

deionized water for 8 h, followed by 0.5 M NaHCO3, 0.1 M NaOH, and 1.0 M HCl solutions, each 

lasting 16 h. Replicate set of experiments were conducted. At the end of each extraction step, one 

set of reaction was sacrificially taken down, and the solid and aqueous phases separated by 

filtration (0.45 µm). The solid residue was freeze-dried for P content and X-ray absorption near 

edge structure (XANES) analysis, and the filtrate analyzed for P content.  

Sequential extraction of Zn and Cu in the raw sludges and their thermal derived chars 

followed the three-step BCR procedure.[2] Briefly, 250 mg of dried solids were weighted into 50 

mL polypropylene centrifuge tubes, and sequentially extracted with the following steps: (1) 

soluble/exchangeable fraction: 20 mL acetic acid (0.11 M) for 16 h, (2) reducible fraction 20 mL 

hydroxylamine hydrochloride (0.1 M, pH 2.0) for 16 h, and (3) oxidiziable fraction: 4 mL H2O2 

(30%), air dried, then 20 mL ammonium acetate (1 M, pH 2.0). The extracted liquids were mixed 

with certain amount of scandium solution (served as internal standard) and digested by a mixture 

of concentrated H2O2 and HNO3 (v/v = 1:1) on a heating plate (100 °C), then diluted for final 

analysis. The untreated solids and extracted solid residues were ashed in an oven at 550 °C, 

followed by digestion with aqua regia and further dilution for concentration analysis. Metal 

contents in the extracted liquid, solid residues, and the untreated solids were determined by ICP-

MS. The extractions were conducted in triplicates.   

 

2.3. X-ray absorption spectroscopy (XAS) analysis 

P K-edge X-ray absorption near edge spectroscopy (XANES) data were collected at 

Beamline 14-3 at the Stanford Synchrotron Radiation Lightsource (SSRL), Menlo Park, CA. The 

raw sludges and their derived chars were ground into fine powders and brushed evenly onto P-free 

Kapton tapes. Excess powders were blown off to achieve a homogeneous and thin filmThe sample 

chamber was maintained under He atmosphere at room temperature, and XANES data were 

collected in fluorescence mode using a PIPS detector. Energy calibration used AlPO4 by setting 

the edge position (peak maxima of the first derivative) to be 2152.8 eV. XANES spectra were 

collected at 2100–2485 eV. Multiple scans were collected for each sample and averaged for further 

analysis. Reference compounds included: (1) FePO4·2H2O and phosphate sorption on ferrihydrite, 

representing Fe-associated P; (2) AlPO4 and phosphate sorption on -alumina, representing Al-
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associated P; (3) octacalcium phosphate and hydroxylapatite, representing Ca-associated P; (4) 

phytic acid, representing P associated with organic functional groups.  

Cu and Zn K-edge XAS analysis of sludge samples and reference compounds were 

collected at Beamlines 5-BM-D and 12-BM-B at Advanced Photo Source (APS; Argonne National 

Laboratory, Lemont, IL), as well as Beamline 4-1 at SSRL. Energy calibration used the 

corresponding metal foils. Freeze dried raw sludges, pyrochars, or oven dried hydrochars were 

ground into fine powders and packed into a Teflon sample holder covered with Kapton tape. Both 

XANES and extended X-ray absorption fine structure (EXAFS) data were collected in 

fluorescence mode at room temperature. XAS data were also collected on a range of reference 

compounds. Cu reference compounds include Cu(I) and Cu(II) sulfides (Cu2S and CuS), Cu-Fe-

sulfides (chalcopyrite CuFeS2 and cubanite CuFe2S3), and Cu-humic complex. Zn reference 

compounds include Zn-cysteine complex, pure ZnS, two ZnS polymorphs with Fe impurity 

(sphalerite and wurtzite), Zn-doped ferrihydrite, and hopeite [Zn3(PO4)2·4H2O].  

XAS data processing and analysis used the softwares SIXpack and Ifeffit. Multiple scans 

were energy calibrated and averaged for further analysis. Principal component analysis (PCA) was 

conducted to determine the number of components needed for obtaining reasonable fits. Using the 

corresponding reference compound spectra library, target transformation was conducted to 

determine appropriate candidate compounds. Linear combination fitting (LCF) was conducted on 

XANES and/or EXAFS regions.  

 
Table 1. Pyrolysis and HTC treatment conditions, sample label, and solid characteristics of the sludges.  

Sludge type Treatment Condition 
Sample 

label 

Solid 
recovery 

(%) 

Solid P 
content 

(%) 

P 
recovery 

(%) 

Activated 
sludge 

Raw Freeze dried Sludge N/A 4.1±0.1 N/A 

Pyrolysis 250 °C, 4 h S250 69.1±5.5 5.7±0.1 95.8 

Pyrolysis 450 °C, 4 h S450 45.6±1.1 8.9±0.1 98.2 

HTC 225 °C, 4h SHTC4h 55.2±4.1 7.6±0.1 101.3 

HTC 225 °C, 16h SHTC16h 48.5±0.9 8.1±0.1 89.3 

Anaerobically 
digested 
sludge 

Raw Freeze dried Ana N/A 3.3±0.1 N/A 

Pyrolysis 250 °C, 4 h A250 72.2±4.2 4.7±0.1 103.1 

Pyrolysis 450 °C, 4 h A450 47.2±6.0 7.2±0.2 103.2 

HTC 225 °C, 4h AHTC4h 55.6±5.0 4.9±0.1 81.7 

HTC 225 °C, 16h AHTC16h 49.8±4.5 6.1±0.1 95.5 

 

3. Research Outcome: P speciation 

3.1. P speciation in raw sludges 

 Overall characteristics of the raw sludges and their derived chars, (hydro)thermal treatment 

parameters, and sample labels are presented in Table 1. In general, the physicochemical properties 

(e.g., elemental composition, physical states, and stability) of sewage sludges are dependent on 

many factors, such as sludge source, treatment techniques at the waste water treatment plant, as 

well as sludge collection and processing steps. Activated sludge directly from the biological 

treatment unit generally consists of active granules (e.g. microbial cells and other 

organic/inorganic components) and P can present in different forms (in terms of both molecular 

entity and complexation form) and distribute heterogeneously, depending on the treatment 

techniques. Anaerobic sludge receives both activated sludge and sludges from other units, and 

could have experienced extensive mechanical and thermal dewatering/drying and digestion 

processes. LCF of P XANES spectra showed significant difference of P speciation between the 
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activated and anaerobic sludges (Figure 1 and 2). If only considering species with > 5% abundance, 

phytic acid (42%), AlPO4 (34%), and alumina-adsorbed phosphate (15%) are the three main 

species identified in the activated sludge, while AlPO4 (40%), phytic acid (20%), ferrihydrite-

adsorbed phosphate (13%), octacalcium phosphate (OctaCa; 16%), and alumina-adsorbed 

phosphate (11%) were the main species identified in the anaerobic sludge. The P XANES results 

showed overall less organic P and more Fe/Ca-associated P species in the anaerobic sludge than 

activated sludge. This is most likely resulted from: 1) the release of intracellular or cell-bound P 

during the processing of activated sludge, which subsequently interacted with metals such as Fe 

and Ca, 2) higher metal contents in anaerobic sludge than in activated sludge.  
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Figure 1. Linear combination fittings of P XANES spectra of activated sludge, anaerobic sludge, and their 

pyrochars and hydrochars. Fitted components include AlPO4, phosphate sorption on -alumina (P-Alumina), 
FePO4, phosphate sorption on ferrihydrite (P-ferrihy), hydroxyapatite (HydAp), octacalcium phosphate 
(OctaCa), and phytic acid (PhyAc). 
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Figure 2. Relative abundance of different P species in activated sludge (Sludge), anaerobically digested 
sludge (Ana), and their derived pyrochars and hydrochars, as quantified by linear combination fitting of their 
P XANES spectra.  

 

3.2. P speciation changes during pyrolysis 

 After the pyrolysis of activated sludge, the most significant changes based on P XANES 

LCF results are the decrease of phytic acid (42%, 30%, and 20% for raw sludge, S250, and S450, 

respectively), as well as the increase of Al- and Ca-associated P (Figure 1 and 2). Al-associate P 

included contributions from both AlPO4 and phosphate sorption on alumina. Ca-associated P 

included contributions from both OctaCa and hydroxylapatite (HydAP). The relative abundance 

of OctaCa (and total Ca-associated P) increased from ~2% (6.5%) for raw sludge to 9.6% (9.6%) 

and 12% (15.3%) for S250 and S450 pyrochars, respectively. The relative abundance of AlPO4 

(and total Al associated P) increased from 34% (49%) to 55% (59%) and 50% (65%) for sludge, 

S250, and S450, respectively.   

 After the pyrolysis of anaerobic sludge, the relative abundance of phytic acid also 

significantly decreased to 15% (sample A250) and 0% (sample A450), as compared to 20% in the 

raw anaerobic sludge (sample Ana). The relative abundance of Ca- and Al-associated P also 

increased after pyrolysis, although not monotonically. The relative abundance of OctaCa (and total 

Ca-associated P) was 16% (16%), 1.2% (12.4%), and 21% (21%) for Ana, A250, and A450, 

respectively. The relative abundance of AlPO4 (and total Al-associated P) increased from 40% 

(52%) in the raw anaerobic sludge (Ana) to 48% (65%) and 59% (65%) for A250 and A450, 

respectively. Pyrolysis seemed to have little effects on the relative abundance of Fe-associated P.  

 Overall, these results suggested that pyrolysis can significantly alter the complexation 

states of P, and the effects were dependent on pyrolysis temperature and feedstock characteristics 

(e.g. initial P speciation and metal composition). The decrease of phytic acid (or organics bound 

P) and increase of metal complexed P (mainly with Ca and Al) are most likely caused by two 

processes during pyrolysis: 1) the stripping of organic functional groups from the phosphate 

moiety and the subsequent complexation of phosphate with metals, which appeared to be more 

significant at higher temperature, and 2) in the case of activated sludge, the breakdown of 
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polyphosphate into shorter chained polyphosphate, pyrophosphate, and orthophosphate that 

created additional P-O bonds available for metal complexation.  

 

3.3. P speciation changes during hydrothermal carbonization 

 Our previous work demonstrated that the main P entity in hydrochars from HTC treatment 

was orthophosphate, regardless of the feedstock type (activated sludge vs. anaerobic sludge) [3]. 

Therefore, for HTC treatment, we only need to focus on examining the complexation states of 

orthophosphate after HTC treatment.  

 Based on P XANES LCF results, HTC significantly altered the P speciation in both 

activated and anaerobic sludges, with similarities and differences discussed below (Figure 1 and 

2). For activated sludge, the relative abundance of Fe-associated P (all as ferrihydrite adsorbed 

phosphate) increased after HTC, from 2.3% in raw activated sludge to 13% and 4.4% in its HTC4h 

and HTC16h hydrochars, respectively. Similar to the effects of pyrolysis, the relative abundance 

of phytic acid decreased, from 42% in raw sludge to 22% and 13% in SHTC4h and SHTC16h, 

respectively. The relative abundance of Ca-associated P also increased, with the abundance of 

OctaCa (and total Ca-associated P) increasing from 2.2% (6.6%) for raw sludge to 11.5% (21.6%) 

and 27% (32%) for SHTC4h and SHTC16h, respectively. In contrast to the increase of total Al-

associated P (and AlPO4) after pyrolysis, the abundance of total Al-associated P remained 

unchanged after HTC (49%, 43%, and 50% for raw sludge, SHTC4h, and SHTC16h, respectively), 

although there were slight increases in AlPO4 (34%, 43%, and 45% for raw sludge, respectively). 

For anaerobic sludge, all the Fe-associated P existed as ferrihydrite adsorbed phosphate, 

and their relative abundance increased after HTC from 13% for raw anaerobic sludge (sample Ana) 

to 27 and 25% for AHTC4h and AHTC16h, respectively. The abundance of total Al-associated P 

(and AlPO4) decreased from 52% (40%) for Ana to 38% (19%) and 30% (7%) for AHTC4h and 

AHTC16h, respectively, while that of alumina adsorbed P increased from 11% for Ana to 20% 

and 24%, for AHTC4h and AHTC16h, respectively. Contrary to that of activated sludge and the 

effects of pyrolysis, there was a slightly increase in the relative abundance of phytic acid in the 

hydrochars of anaerobic sludge (21% and 29% for AHTC4h and AHTC16h, respectively, 

compared to 20% for Ana). The relative abundance of OctaCa remained constant (13% and 16% 

for AHTC4h and AHTC16h, respectively, compared to 16% for Ana).   

The P speciation changes during HTC may be collectively controlled by the composition 

and states of metals with high affinity to phosphate and the thermochemical reactions occurred 

during HTC. First of all, reactions occurred during HTC may homogenize phosphates and expose 

them to various metals and minerals, especially for activated sludge. During HTC, reactions such 

as hydrolysis, decarboxylation, and polymerization were found to be involved in the 

transformation of biomass. These reactions were responsible for the hydrolysis of polyphosphate 

into orthophosphate for activated sludge and exposed the intracellular and organic-bound P to 

metals such as Ca and Fe, to certain extent similar to the effects of anaerobic digestion. This 

explains the decrease of phytic acid and increasing abundance of Ca- and Fe-associated P after 

HTC of activated sludge, as well as their similarity to P speciation in Ana. For HTC of anaerobic 

sludge, since P in the raw sludge has been relatively homogenized, the magnitude of alterations 

was much smaller than that for activated sludge (more changes in Fe- and Al-associated P). 

Secondly, metals such as Fe, Ca, and Al have higher affinity to phosphate than metals such as Na, 

K, and Mg, and are more abundant than metals such as Cu and Zn, thus phosphate are more likely 

associated with them. Moreover, the relative abundance and forms of these metals determine the 

P association stoichiometry and capacity (e.g., Fe mostly present as hydroxide minerals and bound 
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P as surface adsorbed form, while Ca formed Ca-phosphate minerals in competition with its 

carbonate and sulfate mineral phases). Since there was a much higher Fe content in anaerobic 

sludge (~9%) than in activated sludge (~3.6%), higher Fe association with P was found in 

anaerobic sludge and its hydrochars.  
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Figure 3. Distribution of P in sequential extracts of sludges and their derived pyrochars and hydrochars. 
Total sums did not equal to 100%, due to the remaining P in the residue and analytical errors.  

 

3.4. Chemical fractionation by sequential extraction 

 Sequential extraction showed different P fractionation behaviors between the two sludges 

and after their pyrolysis and HTC treatments (Figure 3). For activated sludge, a significant amount 

of P partitioned in the H2O (26%) and NaHCO3 (17%) fractions, and these two fractions became 

negligible after pyrolysis and HTC processing (<2%). After pyrolysis at 450 °C, the NaOH and 

HCl fractions increased respectively to 40% and 49%, compared to 31% and 7% for raw sludge, 

respectively. Although HTC increased P partitioning in both NaOH and HCl fractions, the 

enhancement was more significant for the NaOH fraction (~71% and 81% for SHTC4h and 

SHTC16h, respectively) than for the HCl fraction (~28% and 24% for SHTC4h and SHTC16h, 

respectively). For anaerobic sludge, the relatively mobile H2O (6%) and NaHCO3 (8%) fractions 

were much smaller compared to those of activated sludge, and both decreased significantly after 

pyrolysis and HTC treatment. After pyrolysis at 450 °C, the NaOH fraction decreased from 62% 

to 49% and the HCl fraction increased from 21% to 47%. The significant enhancement in the HCl 

fraction also similarly occurred during the pyrolysis of activated sludge. HTC did not significantly 

increase the NaOH fraction in the hydrochars of anaerobic sludge (65% and 41% for AHTC4h and 

AHTC16h, respectively, compared to 62% for the raw anaerobic sludge). However, HTC greatly 

enhanced the HCl fraction (47% and 57% for AHTC4h and AHTC16h, respectively, compared to 

21% for the raw anaerobic sludge).  

These results suggested that both pyrolysis and HTC substantially stabilized P during the 

treatment processes, with the stabilization mechanism being different and feedstock-dependent. 

To further elucidate the stabilization mechanism and the chemical nature of acid/base partitioning 
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of different P species, we conducted P XANES and LCF analysis on the solid residues after each 

extraction step (Figure 4). The obtained P speciation information was also compared to the 

speciation fractions assuming no loss during extraction to evaluate the relative extraction extent of 

each P species. 

During H2O extraction, AlPO4 was the main P species being preferentially extracted for 

activated sludge, if neglecting the small contribution from ferrihydrite adsorbed P and HydAP (2.3% 

and 4.3%, respectively). AlPO4, alumina adsorbed phosphate, and OctaCa were all preferentially 

extracted for anaerobic sludge. During NaHCO3 extraction, AlPO4, OctaCa, and phytic acid were 

the main P species preferentially extracted from activated sludge. OctaCa and phytic acid were the 

main species extracted from anaerobic sludge. Since H2O and NaHCO3 did not extract significant 

amounts of P from the pyrochars and hydrochars, data of the solid residues were not presented. 

AlPO4, alumina adsorbed P, ferrihydrite adsorbed P, and phytic acid were extracted during NaOH 

extraction of the two raw sludges.  
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Figure 4. Relative abundance of different P species in sludges and their chars, as well as the solid residuals 
after each sequential extraction step of the sludges and chars, as quantified by linear combination fitting of 
their P XANES spectra.  

 

For the char samples (i.e. pyrochars from pyrolysis and hydrochars from HTC), the changes 

following H2O-NaHCO3-NaOH extraction were not always consistent for all the samples. For all 

the char samples produced by pyrolysis and HTC, the relative abundance of ferrihydrite adsorbed 

PO4 significantly decreased or completely disappeared after NaOH extraction, especially for the 

hydrochar samples (Figure 4). AlPO4 (except for AHTC16h), OctaCa, and phytic acid were all 

extracted during NaOH extraction for all the char samples, with varied degrees of extraction. 

Although the alumina adsorbed P species in the hydrochar of anaerobic sludge was extracted by 

NaOH, that in all pyrochars and hydrochars of activated sludge was not extracted (or even 

enhanced). Compared to the raw sludges, whose AlPO4, alumina adsorbed phosphate, OctaCa, and 

phytic acid could be extracted to different degrees by H2O or NaHCO3, these species in the chars 

were relatively more stablized and can only be extracted by NaOH or HCl, suggesting that physical 

constraints (e.g. embedment of P species into the char structure) may also play a role in P 

stabilization.  
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 In general, ferrihydrite-adsorbed P and Al-associated P was preferentially extracted during 

the NaOH step, which was chemically sound and consistent with previous results for soil samples 
[4]. Phytic acid was also mostly extracted only during the NaOH step. Ca-associated P remained 

throughout the H2O-NaHCO3-NaOH steps, which was also chemically sound and consistent with 

the general low solubility of Ca-P minerals (e.g. apatite). One interesting observation was that, 

although HydAP was not identified (or only constituted a very small fraction) in the raw sludge 

and char samples, it was present abundantly and disproportionally in the residues after NaOH 

extraction. Amorphous and more crystalline Ca phosphates differ in the relative intensity of the 

post-edge shoulder and second peak [5], thus it was possible that OctaCa (and less crystalline Ca 

phosphate) transformed into HydAP during the sequential extraction process. This was also in 

agreement with the fact that HydAP is more stable than OctaCa, and only dissolves in HCl, instead 

of NaOH.  

 

4. Research Outcome: Metal Speciation 

4.1. Cu and Zn speciation in raw sludges 
Cu exists predominantly as sulfide phases with a small amount of organic complex (fitted 

as Cu-humic complex). The two sludges differ mainly in the relative abundance of Cu2S and CuS 

(activated sludge consists of more Cu2S than CuS, while anaerobically digested sludge is the 

opposite), and have similar abundance of the Cu-Fe-sulfide phase cubanite (~30%). The abundance 

of organic complex (Cu-humic) in both samples was similarly low (<11% in both sludges). 

Regarding the speciation of Zn, characteristic differences between the two raw sludges were 

observable. Similar to Cu, a significant fraction of Zn existed as sulfide minerals (~40% in 

activated sludge and ~80% in anaerobic sludge). In addition to sulfide minerals, Zn-phosphate 

phases (fitted as hopeite) and Zn-associated with Fe oxides (fitted as Zn-doped ferrihydrite) were 

also present in the raw sludges. These two species similarly accounted for ~30% in activated sludge, 

while present in less amount in anaerobic sludge (<15%).  

Regarding the difference between activated sludge and anaerobic sludge, little alteration 

occurred for Cu after anaerobic digestion, since most of the Cu already exists as (relatively stable 

and barely soluble) sulfide phases in activated sludge. For Zn, however, there are more sulfides 

and less Zn-phosphate and Zn-doped ferrihydrite in anaerobic sludge than in activated sludge, 

possibly due to P utilization and Fe reduction by microbes and subsequent dissolution and 

transformation of these phases under anaerobic condition. However, without systematic tracking 

of the flow and speciation of these elements during sewage collection and wastewater treatment 

processes, it is challenging to reveal the exact mechanisms controlling the relative abundance of 

difference species in these sludges. 

Sequential extraction results showed that in both activated and anaerobic sludges, Cu 

similarly presents mostly in the oxidizable fraction (~50%), followed by the residual fraction (20-

30%) and reducible fraction (~15%). This is consistent with LCF results of XAS showing that 

sulfides and Cu-HA complex are the main Cu species. Compared to Cu, Zn partitions mostly in 

the soluble/exchangeable and reducible fractions (~35% each), and less in the oxidizable fraction 

and the residual fraction is negligible.  

 

4.2. Effects of pyrolysis on Cu and Zn speciation 

Pyrolysis significantly modified Cu and Zn speciation, as can be determined from Cu and 

Zn XANES and EXAFS analysis. Two main features in the Cu XANES spectra distinguish the 

raw activated sludge and its pyrochars: the intensity at ~8986 eV decreased and intensity at 8998 
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eV increased after pyrolysis. The magnitude of change increased as pyrolysis temperature 

increased. For Cu speciation, pyrochars from activated sludge seem to have experienced the most 

significant changes, with increasing fraction of Cu-organic complex (e.g. Cu-HA) and decreasing 

fraction of Fe sulfide species after pyrolysis. The changes during pyrolysis of anaerobic sludge are 

less significant, only with changes in the relative abundance of different sulfide phases. Regarding 

Zn speciation, the primary change is the decrease of Zn sulfide and the increase of Zn-doped 

ferrihydrite after pyrolysis. After pyrolysis, the abundance of wurtzite in both sludges significantly 

decreased (from ~40% to ~10% and ~80% to ~40%, for activated and anaerobically digested 

sludges, respectively). Zn-doped ferrihydrite increased to ~50%, compared to ~30% in the raw 

activated sludge. It was likely that the Zn sulfide phases transformed into Zn-doped ferrihydrite 

under the pyrolysis conditions. Spectromicroscopy analysis showed that the sizes of Cu and Zn 

hot spots did not change after pyrolysis, while the speciation change was consistent with the bulk 

speciation evolution. Pyrolysis was shown to significantly alter the mobility of Cu and Zn, in terms 

of their partition in sequential extracts. After pyrolysis, Cu in all three extractable fractions 

significantly decreased and migrated into the residual fraction (~80%), and the change was more 

significant at higher pyrolysis temperature. Similar to Cu, the partition of Zn in the 

soluble/exchangeable fraction is also reduced (from ~35% to ~10%) and the residual fraction 

slightly increased. The oxidizable fraction increased significantly, from ~10% in raw sludges to 

~35 to 60% in the pyrochars (as compared to decrease of this fraction for Cu).  

 

4.3. Effects of HTC on Cu and Zn speciation 

Despite the difference in initial composition and complex reactions under hydrothermal 

conditions, Cu XAS spectra of hydrochars from different feedstocks and treatment temperatures 

are very similar and significantly different from those of pyrochars. LCA results showed the 

dominance of cubanite and chalcopyrite in the hydrochars, with an abundance of more than 80%, 

compared to less than 40% in the raw sludges. No CuS or Cu2S were identified in the hydrochars. 

Both cubanite and chalcopyrite are important Cu minerals that typically form under hydrothermal 

conditions and intergrowth of these two minerals was commonly found. Considering the presence 

of abundant Fe and S in the samples and the nature of hydrothermal conditions, the formation of 

these minerals during HTC treatment is chemically sound. Regarding the effects of HTC on Zn, 

the changes following HTC are less significant than those for Cu. The most significant changes 

are observed for HTC of anaerobic sludge at 225 °C, with the abundance of Zn sulfides (wurtzite) 

increased from ~80% in the raw sludge to ~95% in the char.  

Following HTC treatment, the soluble/exchangeable and reducible Cu fractions became 

negligible (< 3% and 6%, repectively), and the residual fraction was greatly enhanced, similar to 

the effect of pyrolysis. Although the absolute metal content in the oxidizable fraction remained 

mostly unchanged, the relative abundance actually decreased fowling HTC (from ~50% in 

feedstock to ~30 to 40% in hydrochars). The effect was similar for both activated and anaerobic 

sludge. XAS fitting showed Cu exits predominantly as Cu-Fe-sulfide, obviously it partitions into 

both the oxidizable and residual fractions. The transformation of pure sulfides to Cu-Fe-sulfides 

is possibly responsible for the stabilization (with Zn-Fe-sulfide being more difficult to be oxidized). 

Regarding Zn, the soluble/exchangeable and reducible fractions decreased and the oxidizable 

fraction increased after HTC treatment. The residual fraction also increased, and was more 

significant for hydrochars of activated sludge than those of anaerobic sludge.  

In summary, HTC also stabilizes heavy metals in the sewage sludge, although not as 

effective as that of pyrolysis treatment.  
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5. Research Products 
Peer reviewed journal articles 

 Rixiang Huang, Yuanzhi Tang. Evolution of phosphorus complexation and mineralogy during 

(hydro)thermal treatments of activated and anaerobically digested sludge: Insights from sequential 

fractionation and P K-edge XANES. Water Research. 2016, 439-447. 

 Rixiang Huang, Bei Zhang, Emily Saad, Yuanzhi Tang. Evolution of heavy metal 

speciation during (hydro)thermal treatments of sewage sludges. Environmental Science & 

Technology. In revision. 

 Rixiang Huang, Ci Fang, Xiaowei Lu, Rongfeng Jiang, Yuanzhi Tang. Transformation of 

phosphorus during (hydro)thermal treatments of solid biowastes:  Reaction mechanisms 

and implications for phosphorus reclamation and recycling. Submitted. 

 

Conference Presentations 

 Rixiang Huang, Yuanzhi Tang. Transformation of nitrogen and phosphorus during 

(hydro)thermal treatments of biosolids. American Chemical Society (ACS) Conference. 

Philadelphia, PA (2016/08) 

 Rixiang Huang, Yuanzhi Tang. Speciation dynamics of metals and phosphorus during 

(hydro)thermal treatments of sewage sludge. American Chemical Society (ACS) 

Conference. San Diego, CA (2016/03). 
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Abstract:  

Groundwater is the vital water source in the lower Apalachicola-Chattahoochee-Flint (ACF) 

River basin in southwestern Georgia. The main objective of this study is to enhance the accuracy 

of the kriging estimates by separating random fields and performing kriging using multiple 

correlation structures that are prevail in the measurements of groundwater usage and levels in the 

ACF River Basin. It was found that the estimates using constituent random fields gives much 

more accurate kriging predictions compared to using single mixed random field. The novel 

cutting edge technique based on the variogram deviation was developed to identify and separate 

the different correlation structures in a potential mixture of fields. The two stage technique 

involves obtaining the initial cluster from random sampling followed by least variogram 

deviation algorithm for the assignment of the remaining points. Given the initial pure cluster, the 

second stage of the method performed excellently with highly accuracy of classification. 

However, the first stage of getting the initial clusters through random sampling is not very 

reliable and need further improvement. The proposed clustering technique with further 

improvement can lead to a significant improvement in the studies of optimizing the pumping 

well monitoring network and estimating the groundwater withdrawals for irrigation in the ACF 

River Basin.  
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1. Introduction:  

Groundwater is the major source of water in the lower Apalachicola-Chattahoochee-Flint (ACF) 

River basin in south-western part of Georgia [Albertson and Torak, 2002; Leeth et al., 2005; 

Fanning, 1997, 2003; Mosner, 2004; Warner and Stephen, 2005]. With the large scale 

withdrawals of groundwater for the irrigation in the region, it becomes very important to 

continuously monitor the pumping from the wells to get the clear and accurate estimate of 

amount and pattern of water extracted. These estimates lead to the evaluations of hydrologic 

aquifer stress, which is crucial factor to consider in long term sustainable water resource 

management plans. Following a State Legislature in June 2003, Georgia Soil and Water 

Conservation Commission (GSWCC) installed more than 10,000 annually read water meters and 

around 200 daily reporting telemetry sites on irrigation systems primarily in southern Georgia 

(2004 to 2010) in order in monitor agricultural withdrawals [Torak and Painter, 2011].  However 

due to budget constraints and large number of pumping wells in the study area, it is not possible 

to install meter at every well. Further due to budget cuts, it is getting difficult to operate and 

maintain even the existing monitoring network. Thus, there is a pressing need for optimizing the 

existing monitoring network to maximize the useful information with minimum monitoring 

efforts. In addition to monitoring the extraction at selected wells, there is a need for the 

comprehensive and robust procedure to estimate the groundwater usage over the whole study 

region, necessitating the efforts to develop indirect method for irrigation withdrawal estimate 

using the data from the metered sites.  With the objective of providing water resource managers 

and policy makers a comprehensive information about water consumptions, losses and transfers, 

U.S. Geological Survey (USGS) established the National Water Census authorized by section 

9508 of the secure water action of 2009 [Painter et al., 2015].  
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Figure 1: Standard deviation distribution of Getis Ord Gi statistic resulting from hot-spot 

analysis of annually reported irrigation water-meter data for (A) groundwater and (B) surface 

water, and corresponding telemetry networks for the middle and lower Chattahoochee and Flint 

River basins, 2007 [Torak and Painter, 2011] 

Painter et al. (2015) evaluated the estimation techniques using nationally available data-sets, 

described herein – the crop-demand method, geostatistical technique, and image analysis, for the 

estimate of total irrigation withdrawal in ACF river basin focus area. They found that none of 

these technique prove to be a turnkey method to estimate irrigation withdrawals. The crop-

demand method requires data parameterization of soil, crop and meteorological data which 

undermines the site-specific conditions and affect the estimations. Painter et al. (2015) suggested 

that geostatistical technique can potentially produce most dependable and consistent estimates 

requiring minimal parameterization. However, accuracy of geostatistical estimates is largely 

dependent on accurate meter reading of irrigated volumes and associated irrigated acres. Crop-

demand model and geostatistical technique, both suffer from the inconsistencies and inaccuracies 

in the estimation of the irrigated acres, which turns out to be the most critical parameter for the 

accurate estimate of the irrigation withdrawals. Image analysis, which is primarily aimed at 

getting monthly estimates of the irrigated areas prove to be inadequate due to inconsistent 

satellite imagery caused by atmospheric interferences [Painter et al., 2015].  

Geostatistical technique turns out to be a very attractive and viable method as it requires minimal 

parameters (data driven) and it has higher considerations for the site specific conditions 
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compared to other techniques evaluated by Painter et al. (2015). Favoring it further, a huge 

amount of resources is being invested in the metering program which provides necessary data set 

for geostatistical analysis. Torak and Painter (2011) used geostatistical techniques which include 

variogram analysis, kriging and cross-validation, of the annually reported meter data. The 

objective was to evaluate the spatial correlation structure and employing it to revise the telemetry 

meter distribution, thus reducing the estimation errors associated with using telemetry network to 

represent the annually reported meter data. They suggested that careful selection of the distance 

class to obtain experimental variogram yielded strong spatial correlation of the water meter data 

with distance. The exponential variogram model fitted by them to the experimental variogram 

showed a very good fit with the R-squared value equal to 0.998. However, it is important to note 

that fitting a variogram model to the experimental variogram is not same as fitting the estimation 

model to the originally known data. A parameters yielded from a good agreement between the 

model to the experimental variogram does not imply good estimations of data points. It is the 

residuals of the estimation that are important to evaluate the adequacy and accuracy of the 

model, making it imperative to use residual statistics as a criterion to select or reject the 

variogram model. Moreover, it is important to recognize the non-homogeneity of the data, since 

data has a clear trend from north-west to south-east in the region of interest as seen in Fig 1. This 

trend was not considered in the analysis. Also there is a possibility that data points from all the 

meter locations in the study region may not represent a single correlation structure but rather can 

be explained better by using multiple correlation structures, which may be existing due to 

different aquifer layers in which the wells are screened, the crop type and other regional factors. 

In such cases, using the whole dataset to obtain single variogram model, which when used for 

kriging estimates, can lead to significantly high errors compared to deploying multiple 

correlation structures for kriging. Therefore, there is a need for the technique to identify and 

separate the random fields from the mixed field. The random fields with significantly different 

constant means or fields which are spatially isolated can be separated using K-means clustering. 

However, we do not have this prior information and also when the means of the random fields 

are not much different and there is an overlap in the range of data values, the fields become 

indistinguishable for the conventional techniques, suggesting a need for a more robust technique 

that can separate field for a variety of differences in the correlation structures.  
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In this study we attempt to develop a novel technique to identify and separate potential multiple 

correlation structures in the dataset. The developed technique will be tested over a wide range of 

scenarios using the synthetically developed mixed random fields. The effectiveness of the 

technique is evaluated using the purity of the clustered fields with respect to the original fields.  

2. Scope and Objectives: 

Scope of this study is limited to the mixture of two fields with equal contribution from both the 

fields. However, it will be extended to more than two fields and other complexities in the future. 

The main objective of this research is to develop the tools to enhance the kriging estimates by 

separating the potentially mixed field. The main steps involved in the study are: 

1) Perform numerical experiments to study the effect of mixing fields on variograms and 

kriging residuals 

2) Propose new approaches to separate the mixed fields 

3) Test and compare the proposed approaches  

3. Experiment under consideration: 

A rectangular study area in considered with the dimensions 100 units by 50 units. 3000 random 

locations were selected for data points, 1500 for each of two random fields. The data locations 

are populated with data values using unconditional simulations governed by two different 

variogram models. An example of the same is presented in Figure 2 showing pixelated data field, 

Figure 3 showing the experimental variograms of the original fields and the mixed field and 

Figure 4 showing the histogram of the data. Our aim is to obtain the original fields with good 

accuracy to enhance the kriging estimates over using the whole mixed field.  
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Figure 2: Pixelated data values of original fields and the mixed field. Field 1: Exponential 

variogram with mean 11, sill 0.50 and range 10.  Field 2: Exponential variogram with mean 10.5, 

sill 20 and range 10.  

 

 

Figure 3: Experiment variogram of the original constituent fields and mixed field 
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Figure 4: Histogram of the mixed field 

 

4. Need for separating the field: 

Since, our final objective is to get kriging estimates with good accuracy using the spatial 

correlation structure of the given dataset, it is important to justify the efforts we put in to identify 

and separate the correlation structures. We consider the case described in Sec. 3. We first 

consider the whole field, plot a single experimental variogram, fit variogram model and then 

perform 100-fold cross-validation (CV) to get kriging residual errors. We then repeat the 

mentioned steps using the original two fields and obtain the kriging residual errors. The fitted 

model parameters are presented in Table 1, and experimental and fitted variograms are shown in 

Figure 5 and Figure 6. The CV errors are presented in the form of Mean Absolute Error (MAE) 

and Root Mean Square Error (RMSE) in Table 2. 

Table 1: The variogram model parameters of mixed and individual fields 

 Nugget Type Sill Range 

Mixed field 0.21 Exponential 0.36 11.15 

Original field 1 - Exponential 0.42 7.90 

Original field 2 - Exponential 0.15 11.59 
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Figure 5: Experimental variogram and fitted variogram model taking all the data points together 

as single mixed field.  

 

 

Figure 6: Experimental variogram and fitted variogram model by considering the constituent 

fields separately 
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Table 2: The residual error after 100-fold Cross Validation 

MAE % MAE RMSE % RMSE 

Original 2 Fields 0.1384 - 0.1834 - 

Mixed Single Field 0.4473 223% 0.5407 194% 

 

As we can see from the CV results, using the whole field to perform variogram analysis and 

kriging leads to significant loss in the accuracy of kriging estimates compared to using the 

original fields. Therefore, there is a strong incentive in separating the constituent random fields 

from the mixed field to get accurate kriging predictions. However, given the information we 

would have is only the mixed field dataset, the task of separating the constituent fields is really 

challenging. We have got some good leads in our efforts in this direction, which are discussed in 

the following sections.  

5. Random fields and variogram behavior 

Field which are spatially isolated or having no overlap in the range of their values can be 

separated using the conventional techniques like K-means. However, fields with the overlapping 

areal domain and range of values pose a great challenge for the identification and separation of 

constituent fields. Difference in such fields can be different correlation length (range) or sill 

(variance). Therefore, variogram based classification/clustering approach is needed for such 

cases.  

The central idea behind our approach is the different deviations occur in variograms when points 

from different fields are added. In this section, we analyze the behavior of variograms under 

different scenarios of field mixing which can be used as clues about field, the added point might 

be belonging.  
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5.1 Variogram shifting when the points from different fields are added 

The considered random fields and their experimental variograms are presented in Figure 7 and 8. 

                       

Figure 7: Two fields are merged to form the mixed field. Field 1: Exponential variogram with 

mean 10, sill 0.50 and range 10.  Field 2: Exponential variogram with mean 10, sill 0.25 and 

range 20.  

 

 

Figure 8: Experimental variograms of the original fields and mixed fields 
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We started with the sample of 500 randomly selected points from each fields which we would 

call as pure initial clusters. We made these clusters increasingly impure by adding one point at 

time from other field, and we observed the movement of the variograms with the increasing 

impurity. We compared this with the case where we continuously added points to these pure 

initial clusters from the field they belong. As we can see in Figure 9 and 10, variograms after 

50th, 250th, 400th and 500th point is added to the initial cluster, the variogram moves closer to 

each other as points from the other field are added. Eventually when both the clusters have equal 

number of points from both the fields (50% purity), the variograms tend to be identical. 

Therefore, it would not be wrong to say, more distant the variograms are, more pure they are.  

 

Figure 9: Variograms after 50th (a), 250th (b), 400th (c) and 500th (d) point from the same field 

are added to the initial pure clusters, maintaining the purity equal to 100% 

 

 

(a) (b) 

(c) (d) 
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Figure 10: Variograms after 50th (a), 250th (b), 400th (c) and 500th (d) point from the other field 

are added to the initial pure clusters, continuously decreasing the purity from 100% to 50% 

5.2 Range of variogram deviation 

As we saw in the previous section, the deviations in the variograms are different on adding 

points from different field. It is expected that if the added point is from the same field, the 

variogram will tend remain unchanged, and if the added point is from the different field, there 

would be a significant deviation in the variogram. Therefore, to get the range of these deviations 

we try to obtain the band of variograms deviation by adding with replacement, points from the 

same field and other field to the initial pure clusters. We consider two cases, one with different 

sills and another with different ranges, keeping means same in both the cases.  

Case 1: Different sill 

The two fields with different sills i.e. 0.15 and 0.50, while keeping mean as 10 and range as 10 

for both the fields are considered. Figure 11 (a) shows their pixelated values Figure 11 (b) their 

experimental variograms. We begin with we take pure samples of 400 points from each field. 

(a) (b) 

(c) (d) 
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Variograms corresponding to these initial pure clusters are shown in Figure 12. We added one 

randomly selected point from field 1 to both the clusters to obtain updated variograms. We 

repeated this 100 times, with every time removing the previously added point before adding the 

new point, to get a band of variograms. We got similar band of variograms by adding points 

form field two.  

 

 

Figure 11: Random fields with different sill but same mean and range (a) pixelated z values in 

space; (b) experimental variograms of the field 

(a) 

(b) 
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Figure 12: Varigorams of initial pure clusters with 400 points each 

 

Figure 13: Band of variogram deviations when points from: (a) Field 1 were added; (b) Field 2 

were added 

Case 2: Different Range 

The two fields with different ranges as i.e. 5 and 25, while keeping mean as 10 and psill as 0.25 

for both the fields are considered. Figure 14 (a) shows their pixelated values Figure 14 (b) their 

experimental variograms.   

(a) (b) 
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Figure 14: Random fields with different range but same mean and range (a) pixelated z values in 

space; (b) experimental variograms of the field 
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Figure 15: Variograms of initial pure clusters with 400 points each 

 

Figure 16: Band of variogram deviations when points from: (a) Field 1 were added; (b) Field 2 

were added 

 

As we can see in Figure 13 and 16, the band of variogram deviation is thicker if the added points 

come from the different correlation structure compared to if the added points belong to the same 

correlation structure. This property can play a crucial role in clustering of the data points based 

on variogram. Based on this we developed a novel technique, least variogram deviation 

(a) (b) 
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algorithm, to assign the points to the cluster representing the correlation structure they come 

from. However, this algorithm works with the condition that we have initial cluster with good 

purity to start assigning the remaining points. However, getting these initial clusters in dealt 

separately in Sec 7. In the next section, we present the results and sensitivities of the least 

variogram deviation algorithm. 

6. Least Variogram Deviation Algorithm  

To evaluate the performance of the developed least variogram deviation algorithm with the given 

initial pure clusters, we consider the mixture of the following fields: Field 1: “Exponential”; 

Mean= 10; Sill=0.25; Range= 20; Field 2: “Exponential”; Mean= 10; Sill=0.50; Range= 10. We 

have 3000 data point in total, 1500 from each field (Section 5.1).  

To apply least variogram deviation algorithm, we consider 600 points from both the field as 

perfect initial clusters (100% percent). After assigning the remaining 1800 points to clusters 

using the proposed variogram based clustering algorithm, the purity of the final clusters 

excluding the initial pure clusters was found to be 80%. Figure 17 shows the excellent match 

between the spatial correlation structures represented by the clustered fields and original 

constituent fields of the dataset.  

 

Figure 17: Comparison of experimental variograms of final clusters and original fields; 600 

points in initial clusters 

However, it is crucial to remember that we used pure initial cluster as seed to the algorithm. 

Therefore it is important to assess the sensitivity of the effectiveness of the algorithm to the size 

of the initial cluster. Table 3 presents the purity of the final clusters (excluding the initial pure 
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clusters) for different sizes of the initial clusters. To put in perspective, if we have initial clusters 

of size 100 points each, the remaining 2800 points can be assigned to the clustered with the 

accuracy of 72%. It is also important to note that, as we decrease the size of the initial clusters 

from 600 to 100 with decrements of 100 points, the first significant drop in the final cluster 

purity was observed at 300 size i.e., size equal to the 10% of the total dataset size. Figure 18 

shows the comparison of variograms of final clusters (72% purity) obtained using least 

variogram deviation technique with 100 points each in initial clusters. Figure 18 compares the 

experimental variograms of the final clusters.  

Table 3: Sensitivity of the least variogram deviation algorithm results to the initial cluster size. 

Initial Cluster Size Final Clusters Purity 

(600,600) 80% 

(500,500) 79% 

(400,400) 80% 

(300,300) 76% 

(200,200) 74% 

(100,100) 72% 

 

 

Figure 18: Comparison of experimental variograms of final clusters and original fields; 100 

points in initial clusters  

We also assessed the sensitivity of the algorithm to the difference in variogram model parameters 

of original constituent fields. Taking 400 points in each initial pure cluster, we assigned the 
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remaining 2200 points using least variogram deviation algorithm. Because of the stochastic 

nature of the experiments, we repeated each experiment 4 time. Table 4 and Table 5 presents the 

final cluster purities for different sill differences and range differences, respectively.  

 

Table 4: Sensitivity of algorithm performance to sill difference of original constituent fields with 

range as 10 and mean as 10 for both fields 

Sills Final Clusters Purity 

(0.40, 0.50) 69% 80% 71% 73% 

(0.25, 0.50) 79% 77% 72% 78% 

(0.10, 0.50) 72% 74% 75% 72% 

 

Table 5: Sensitivity of algorithm performance to range difference of original constituent fields 

with sill as 0.5 and mean as 10 for both fields 

Ranges Final Clusters Purity 

(5, 10) 71% 65% 72% 72% 

(5, 20) 72% 75% 75% 77% 

(5, 30) 76% 72% 74% 71% 

 

As we can see from the Table 4 and 5, as far as the variograms are significantly different, there is 

no significant improvement in the performance with increasing difference in the variogram 

model parameters. In the next section, we attempt to get initial clusters. 

We analyzed the misclassified points and found that these points are statistically same for spatial 

correlation structures represented by both clusters and hence they effect both the variograms 

similarly. We performed numerical experiments similar to Sec. 5.2. Since, we know the original 

fields of the misclassified points, we add these points to the pure variogram of original fields and 

assess the difference it makes. As we can see in Figure 19, these points satisfy both correlation 
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structures equally well. Since, these points do not distort the correlation structure of original 

fields, their misclassification is not expected to affect the kriging results.   

 

  

Figure 19: Variogram deviation band obtained by adding miss-classified points to the pure 

variograms  

7. Initial clusters 

The least variogram deviation algorithm requires initial clusters to assign the remaining points. 

However, our analysis in the previous section is based on using pure initial clusters from the 

known original fields. In this section, we suggest a way to get the initial clusters from the dataset 

representing the mixed field.  

As discussed in Sec. 5.1, with the increasing impurity of the two clusters, the variograms move 

closer and become less and less different. Based on this idea, we randomly pick 5 to 10 mutually 

exclusive samples from the dataset and plot their experimental variograms. We retain the most 

apart variograms. We pick new samples and retain the most apart variograms. The distance 

between variogram pair of this sample is compared with previously retained pair and, the 

variogram pair with higher distance is retained. This process is repeated for 1000 times and 

finally we get initial clusters.  

We again consider the case of same mean but different variogram model parameters, as 

considered in Sec. 5.1 and presented in Figure 7 and 8. Figure 20 presents a quick look at the 
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variograms of picked 5 random samples. As expected, the variograms of samples look very 

similar to the variogram of the mixed field (Figure 21), as the random sample tend to have equal 

proportion from both the constituent fields. This method relies on the fact that, when the 

sampling is repeated 1000 times, there is a chance that biased sample will be picked having 

significantly higher proportion of points from one field than other which will be retained by our 

set criteria based on variogram distance. The purity of initial clusters for difference sample sizes 

and number of samples are presented in Table 6. The smaller sample size results in better initial 

clusters as there is higher chances of getting a biased sample for small size of sample. Sample 

size of 50 resulted in 71% purity of the initial clusters obtained. However, as we already seen in 

Table 3, smaller initial clusters results in lesser purity of final cluster obtained using least 

variogram deviation algorithm. Largest sample size, 300, yielded lowest initial cluster purity 

which also hampers the results of least variogram deviation technique.  

 

Figure 20: Variograms of random samples from the dataset  
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Figure 21: Variograms of the mixed field 

 

Table 6: Initial cluster purities for different sample size and number of samples 

(Sample Size, No. of samples) No. of iterations Purity of Initial cluster

(100,5) 1000 66% 

(300,10) 1000 59%, 

(200,10) 1000 60% 

(100,10) 1000 65% 

 

8. Summary and Conclusion 

It is very common in geohydrology of to perform variogram analysis considering single random 

field for the whole dataset. In the previous studies performed for optimizing the groundwater 

pumping monitoring network and estimation of groundwater withdrawals for the irrigation in the 

Apalachicola-Chattahoochee-Flint River Basin, single variogram model was used to represent 

the correlation structure of the whole dataset. However, there is no clear evidence provided 

regarding why using the single correlation structure is a suitable for such studies. On the other 
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hand, the quite apparent trend in the data, existence of three different aquifer layers and other 

heterogeneities strongly incentivize the need to examine the existence of multiple correlation 

structures governing the pumping values in the dataset. In this study also, we showed using 

synthetic data that in the case of existence of multiple fields, the variogram analysis and kriging 

assuming single field can lead to higher prediction errors. In this study we proposed novel 

variogram based techniques to identify different correlation structures and clusters the data 

points according to them.  

Fields which are spatially distinct or which have no overlap in the range of data values can be 

separated using K-means clustering. However, challenging cases are where the random fields 

have overlapping spatial domain and also have same means or significant overlap in the ranges 

of data values. Separating such fields requires spatial correlation based technique. In this study 

we proposed a two-step method of getting initial clusters followed by least variogram deviation 

algorithm to assign the remaining points. Obtaining initial clusters through random sampling is 

based on the chance of getting a biased sample and can work for small size of sample only (~ 

100 to 200 points).  However, stochastic nature of this technique makes it unreliable and there is 

a need for more theory based robust technique to get initial clusters. The second stage clustering 

which assigns the remaining points performed well and clustering the unassigned points with the 

accuracy of 80% with the pure initial clusters. The misclassified points were found to be 

statistically similar and would have similar effects on variogram when added to either of the 

field. Hence, their misclassification would not any significant negative effect on the kriging 

estimates.   

9. Future work 

This study exposed the huge potential of clustering based kriging and also revealed that even the 

overlapping random fields with same mean can be separated by using suitable variogram based 

clustering technique. The major immediate advancement planned for this study includes: 

1) More robust technique to obtain initial clusters; 

2) Addressing the case of different proportion of data points from the constituent random fields; 

3) Applying the proposed technique to groundwater head or pumping datasets in the ACF River 

Basin; 
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4) Addressing the possibility of separating the mixed field constituted by more than two random 

fields. 
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Motivation 

 With increasing population in Middle Georgia, water demand and wastewater 
generation are dramatically increasing. This requires refining water management strategies to 
meet future demands and support economic development of the region. The Oconee River 
and Ocmulgee River are adjacent basins and major tributaries that join to form the Altamaha 
River. River flow in these rivers is affected by Wallace Dam and Lloyd Shoals Dam that are 
located near Oconee Lake and Jackson Lake, respectively. Our study examines the ecological 
effects of alternative water management practices in both the Oconee and Ocmulgee river 
basins. These rivers harbor high aquatic biodiversity, and protecting these species is of high 
priority for the region. Thus, we simulate alternative environmental flow regimes and 
examine trade-offs in water management between ecological impacts and economic 
development. Our analysis of how reservoir operation can influence local hydrology and fish 
habitat can provide information for sustainable ecosystems and economic development along 
the Oconee and Ocmulgee river basins. This type of study supports development of 
environmental flow regulations in the Oconee and Ocmulgee river basins and contributes to 
the improvement of local water management and planning. This will contribute to economic 
development of the region as a support of the UGA-Archway Partnership for the Ocmulgee 
River Water Trail National Park Initiative.    

Introduction 

 Freshwater ecosystems, a foundational component of our human society, culture, and 
economy, are becoming increasingly compromised [1]. Humans currently capture more than 
50% of available freshwater runoff and have fragmented rivers systems with upwards of 
1,000,000 dams installed globally [2]. A wide range of human activities has led to rivers 
being deemed the earth’s most damaged ecosystem, losing species at a greater rate than 
terrain and marine ecosystems [3]. It is imperative that rivers are managed in a more natural, 
sustainable way that balances the needs of both the aquatic ecosystems and the human 
livelihoods that rely on them. Environmental flow regimes are offered as at least a partial 
solution to some of the freshwater challenges that are currently in our midst. Previous 
research shows a relationship between flow and fish biomass based on a study of Austrian 
rivers [4]. 

According to the Middle Ocmulgee Regional Water Plan, the population in the region 
is projected to double by 2050 which will involve water demand increase by 38% and 
wastewater generation by 62% by 2050 [5]. Therefore, it is important to examine trade-offs in 
water management to support a sustainable ecosystem of the region. In Georgia, trade-offs 
study for water management strategies along the Oconee River has been conducted by S. K. 
McKay, 2014 [6]. In his study, S. K. McKay examined environmental flow and constructed a 
decision-making framework for the Middle Oconee River near Athens, Georgia [7]. 
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Furthermore, C. A. Gibson et al., 2005 conducted a study of two river basins (Cle Elum 
River, Washington and Chattahoochee-Apalachicola River Basin, Georgia and Florida) to 
investigate the impact of future climate scenarios on river ecosystem. They demonstrated 
significant changes in flow regimes and aquatic habitat under various climate scenarios [8].  

Additionally, a comparison study of two rivers in Northern Michigan (Carp Lake 
River and Little Black River) was conducted by J. Dillon to examine ecological effects of 
agricultural development on stream habitat and nutrient input [9]. In Alabama, Swinson 
(2014) studied the Tulotoma snail habitat along the Coosa River. The main focus of his study 
was contour generation using HEC-RAS software based on geo-referenced bathymetry of 
Coosa River [10]. Moreover, Yao and Georgakakos, 2001 introduced a concept of adaptive 
water resources management in their study of Folsom Lake, California. The adaptive system 
demonstrated reliable forecasts for better reservoir performance when compared to traditional 
one [11, 12]. Also, A. Chen et al., 2015 addressed trade-offs for better water management of 
Jordan River in the Middle East and Colorado River in the western United States [13]. They 
addressed similarities and differences of the two river basins by considering various factors, 
such as increasing water demand and supply and environmental flow demand.  

Freeman et al., 1997 developed habitat suitability criteria for nine fish species by 
including depth, velocity, substrata type and cover [14]. For Eastern warm water US rivers, 
researchers suggest that it is not practical to collect habitat data due to a high number of the 
present species [15]. Therefore, researchers used more generalized criteria for habitat analysis 
rather than species-specific criteria [16]. 

Tuning of the input parameters is usually required to reduce the error between 
observed and predicted values. This process is often called as calibration in engineering field 
which is fundamentally equivalent to solving the inverse problem for deterministic computer 
simulator in statistics. We implement Gaussian process (GP) model which is a stochastic 
approximation of the output of deterministic computer simulator. GP model is very 
inexpensive when compared to evaluation of deterministic simulator [17]. R package GPfit 
uses a multi-start gradient-based search algorithm for likelihood optimization (using a 
maximum likelihood approach). Ranjan et al. (2008) proposed a novel expected improvement 
(EI) criterion for estimating a prespecified contour from an expensive deterministic simulator 
which gives scalar outputs [18]. They have further investigated this problem in Ranjan 2013, 
and Bingham et al. 2014 [19, 20]. 

  
Methods  

We alter historical flow data for the river using a hydrologic model with a goal of 
relating changes in river discharge to changes in river depth and velocity, both of which are 
key criteria of habitat suitability. We then use generalized habitat suitability criteria to 
analyze how habitat distribution and degradation change with increasing water withdrawal 
rates. Additionally, we study how available habitat changes across a range of different flow 
regimes.  Four scenarios of municipal water withdrawal and environmental flow requirements 
are simulated: 

1. Unaltered: A reference condition without withdrawal defined the best attainable 
ecological condition and served as a point of relative comparison for other scenarios. 

2. Annual minimum flow (AMF): This method assigns a single, year-round flow 
threshold below which water may not be withdrawn.  The minimum flow threshold 
was varied from 0 to 1,000 cfs by 10 cfs increments to assess the influence of 
minimum flow magnitude on ecological conditions. 
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3. Monthly minimum flow (MMF): This method assigns a monthly-varied flow 
threshold below which water may not be withdrawn, which incorporates elements of 
flow timing not captured in annual minimum flows.  Flow thresholds were varied in 
101 intervals from the minimum observed monthly-averaged flow to the maximum 
observed monthly-averaged flow for the 60-year record for each of the 12 months. 

4. Percent of flow (POF): This method withdraws a specified percentage of the unaltered 
discharge, which was varied from 0 to 50% by 0.5%. 
 
We use R statistical software to simulate hydrologic alteration associated with 

different flow regime scenarios. We use the USACE Hydrologic Engineering Center’s River 
Analysis System (HEC-RAS) to model river hydraulics and create a set of hydraulic variables 
(mainly depth and velocity), which are often more ecologically relevant. We then calculate 
suitability for each habitat type using a Python script. Furthermore, we spatially visualize 
outputs of hydraulic and habitat models using ArcGIS®. A dynamic computer model is 
becoming very common and is one of the most popular sources of big data. For model 
calibration in case of complex dynamic physics models, we take Bayesian approach (history 
matching algorithm) to solve the inverse problem. This algorithm is Gaussian process based 
algorithm, and it is efficient especially when deterministic model runs/experiments are 
computationally or financially expensive. The inverse problem is often used for calibrating 
the computer model in the history matching context, modelling bias between the model and 
the true underlying physical process, and achieving the target process value.  
 
Gaussian Process for solving inverse problem using History Matching Algorithm 

Constructing emulator and solving the inverse problems help us to gain more insights 
into the system. Therefore, History Matching algorithm can be used to match the data points 
(observed) with the deterministic model to integrate the deterministic and probabilistic 
approaches. In this modeling approach, we implement Bayesian techniques to capture bias of 
a deterministic model.  To consider the model uncertainty, we emulate, calibrate and validate 
the model using R package SAVE. SAVE package will help us to overcome challenges of 
computationally expensive models.  

Figure 1 shows an illustrative example where the simulator g(∙) takes an input x = (x1, 
x2) ϵ [0,1]2 and generates a time-series response marked as gray dashed curves wherein the 
true field data given as a solid red curve. Figure 1 indicates the presence of a systematic shift 
(called bias) between the simulator runs and the field data. For this illustrative example, we 
used �(��) + ��(�) to obtain the field data. Our objective is to find x ϵ [0,1]2 such that 
�(�)  ≅ �(��). 

We used a naive algorithm and history matching algorithm for solving this inverse 
problem and compare their performance. We found the common solution of the inverse 
problem for both algorithms to be very close to the true input values of x1 = 0.5 and x2 = 0.5. 
Figure 2 shows the comparison between solutions of the two methods. We can see the 
intersection of solutions 1, 2 and 3 to be close to the true values for both methods. Though the 
final solutions are similar in both methods, the total number of simulator evaluations are 
different (150 simulator runs for the naive approach vs. 71 simulator runs for history 
matching approach).  
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Figure 1.  Simulated Computer Model Output 

 
Figure 2.  Inverse problem solution using naive approach (plot on the left) and history matching 

algorithm (plot on the right) 

To include the bias term ��(�) introduced in Figure 1 and address the uncertainty of 
the model, we used R package SAVE developed by Palomo et al. (2015) [21]. Please note 
that we ran into error messages corresponding to the Cholesky Decomposition. To overcome 
this difficulty, we used the technique of data thinning. Thus, we divided the time range into 
20 equal intervals and chose one point in each interval using Latin Hypercube sampling. 
SAVE function allowed us to construct the emulator using thinned data; bayesfit function was 
utilized to find estimates of the bias function; validate function was used to estimate the bias 
of the model. Figure 3 shows the original field data with the bias term, computer outputs, bias 
corrected prediction with uncertainty bounds and uncorrected prediction.  
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Figure 3. Illustrated example with the bias corrected prediction 

 
Bathymetry Data Collection 

To build an accurate hydrologic model of the Middle Oconee and the Middle 
Ocmulgee river, we collected extensive topographic and bathymetric data.  

The Middle Ocmulgee River. To collect bathymetry cross-sectional data for the 
Middle Ocmulgee river reach, we used kayak-mounted sonar-based GPS mapping system 
(Figure 4). Detailed description of the system can be found in the study of Swinson 2012 
[22]. With the obtained data, we created a triangulated irregular network (TIN) that closely 
resembles the main channel, bank slopes, and flood plain surface of our study reach.  

 
Figure 4. Bathymetry data collection: (a) kayak-mounted sonar-based GPS Mapping system, (b) aerial 

view of cross-sectional bathymetry data 
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The Middle Oconee River. LiDAR data from the Athens-Clarke County Planning 
Department were retrieved from the Middle Oconee River and the surrounding banks and 
floodplain areas. A real-time kinematic (RTK) unit was utilized to set up control on the 
eastern bank of the river within Ben Burton Park. The total station was then placed within a 
sightline of the cross-sectional bathymetric points and on land topographic points to be 
collected near the upstream portion of the reach. A Carlson data logger was connected to the 
total station and used to perform a “resection” on the control points (Figure 5).  

 
Figure 5. Bathymetry data collection at the study site near the Middle Oconee River 

 

Hydraulic Modeling 

While hydrologic alteration is a common surrogate for ecological integrity [6], habitat 
analyses require that hydrologic change be converted into hydraulic variables (e.g., velocity 
and depth), which are often more ecologically relevant.  Here, the USACE Hydrologic 
Engineering Center’s River Analysis System (HEC-RAS version 4.1.0) is applied to assess 
channel hydraulics along with the accompanying HEC-GeoRAS (Version 10.1), which 
facilitates geospatially explicit analyses in ArcGIS® [23]. In addition to terrain, HEC-RAS 
requires user-inputs related to flow paths, channel roughness, and channel slope. Flow paths 
were demarcated using HEC-GeoRAS. Following standard convention, floodplain flow paths 
were estimated as the center of mass between the top of the bank and the extent of the 
floodplain (roughly 1/3 of the distance from the banks and 2/3 from the floodplain extent).  
Channel roughness (i.e., Manning’s n) was estimated through an iterative, pseudo-calibration 
process.  Manning’s n was predicted from standard tabulated values for the channel and 
floodplain environments (i.e., Tables 5-5 and 5-6 in Chow 1959) [24].  
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This process resulted in four distinct values of Manning’s n: 0.065 for the open, 
moderately vegetated left floodplain, 0.070 for the more densely vegetated right floodplain, 
0.025 for sandy portions of the channel, and 0.040 for rocky or “shoaly” portions of the 
channel. To estimate channel slope, thalweg measurements in each cross-section (i.e., the 
deepest point) were coupled with longitudinal distance downstream. These inputs provided a 
close representation of the pseudo-calibration observations. Figures 6 and 7 represent HEC-
RAS models of the Middle Oconee and the Middle Ocmulgee Rivers, respectively. 
 

 
 Figure 6. HEC-RAS Model for the Middle Oconee River. 

 

 Figure 7. HEC-RAS Model for the Middle Ocmulgee River. 
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Suitability Habitat Model development  

In our study, we included three types of the key habitat: shallow-fast, deep-fast and shallow-
slow. Table 2 represents example taxa and suitability criteria in hydraulic terms such as river 
depth and flow velocity for each habitat type [16]. We analyzed different flow regimes and 
their impact on fish habitat by calculating the wetted usable area for each key habitat under 
each flow regime scenario. 

Table 2. Habitat suitability criteria and representative taxa  
Key Habitat River Depth Flow Velocity Representative Taxa 

1. Shallow – Fast  ≤ 35 cm (≤ 1.15 ft) ≥ 55 cm/s (≥ 1.8 ft/s) Nocomis leptocephalus 
(bluehead chub) 
Notropis hudsonius 
(spottail shiner) 

2. Deep – Fast ≥ 35 cm (≥ 1.15 ft) > 45 cm/s (> 1.48 ft/s) Micropterus Salmoides 
(largemouth bass)  

3. Shallow – Slow < 35 cm (< 1.15 ft) < 35 cm/s (< 1.15 ft/s) Lepomis  
(bluegill and sunfish) 

 
For each discharge, HEC-RAS was executed under steady-state conditions, and spatially 
explicit velocity and depth distributions were generated. A Python script was then applied in 
ArcGIS to calculate wetted usable area (i.e., total available habitat) and suitability for each 
habitat type for each of the discharge simulations (example for the Middle Oconee River 
shown in Figure 8).   

 
Figure 8.  Example of spatially explicit outputs for hydraulic and habitat models for the Middle Oconee 

River at 400 cfs: (A) velocity, (B) depth, and (c) deep-fast habitat suitability. 

 
Hydraulic and habitat simulations provided a mechanism to construct habitat rating curves for 
each of the four types of habitat assessed here (total, shallow-fast, deep-fast, and shallow-
slow; Figure 9).  As expected, total habitat increases with increasing discharge.  However, the 
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distribution of habitat types changes dramatically over the range of discharges simulated.  

 
Figure 9.  Cumulative habitat rating curves over the range of discharges observed in the Middle Oconee 

River. 

Environmental Flow Alternatives 
  

The simulations provide a mechanism to assess trade-offs between municipal water 
supply and habitat provision under the three environmental flow schemes (AMF, MMF, 
POF).  The three environmental flow alternatives are compared on an equal withdrawal basis 
to find the most efficient alternative. Key differences emerge in the findings based on average 
annual discharge (Figure 10 top) or a magnitude-frequency analysis (Figure 10 bottom).  
First, total habitat is consistently over-predicted by the average discharge method.  This is an 
expected outcome given that flow frequency distributions are often highly skewed, which 
leads to a mean discharge much greater than the median discharge (e.g., 521 cfs vs. 350 cfs 
for the Middle Oconee River).  This skewed distribution is accounted for when incorporating 
the frequency of flows via effectiveness analysis, while average discharges can indicate a 
false sense of the quantity of habitat available.  Second, only tracking average discharge can 
mask nuanced effects associated with alternative environmental flow regimes.  For instance, 
the shallow-fast habitat assessments with magnitude-frequency analysis show a non-
monotonic response, potentially due to changes in low flows as well as central tendencies.   
Third, the relative ranking of environmental flow alternatives shifts depending on whether 
average or frequency-weighted conditions are used.   

To consider the impact of development on the environment, it is essential to study 
flow regimes and trade-offs involved in water management.  Here, a new coupling of 
analytical techniques is presented, which helps incorporate natural variability into 
environmental flow studies.  In doing so, we demonstrate the importance of hydrologic 
variability, not only relative to ecological outcomes, but relative to water management 
decision making. 
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Figure 10.  Comparison of environmental flow alternatives across total habitat and three distinct habitat 
types in the Middle Oconee River.  (top) Habitat computed only at average discharge.  (bottom) Habitat 

computed as a frequency-weighted quantity using effectiveness analysis. 
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Publications and Presentations 

 N. V. Bhattacharjee, J. R. Willis, S. K. McKay and E. W. Tollner, "Habitat provision 
associated with environmental flows", under review for USACE (U.S. Army Corps of 
Engineers) publication.  

 N. V. Bhattacharjee, P. Ranjan, A. Mandal and E. W. Tollner, "Inverse Modeling and 
Sensitivity Analysis for Rainfall-Runoff Computer Model using History Matching", to be 
submitted to Journal of Environmental Management. 

 N. V. Bhattacharjee, J. R. Willis, K. W. Swinson and E.W. Tollner, "Water management 
and habitat suitability study along the Ocmulgee river", 17th Annual Meeting of the 
American Ecological Engineering Society (AEES), 23-25 May 2017, Athens, Georgia, 
USA. 

 N. V. Bhattacharjee, J. R. Willis, S. K. McKay and E.W. Tollner, "Habitat provision 
associated with environmental flows", 21st Century Watershed Technology Conference 
and Workshop, 3-9 December 2016, Quito, Ecuador.  

 N. V. Bhattacharjee and E.W. Tollner, "Improving management of windrow composting 
systems by modeling runoff water quality dynamics using recurrent neural network", 
Ecological Modeling 339 (2016): 68-76. 

 N. V. Shim, E. W. Tollner, J. R. Willis and S. K. McKay, "Comparison of Oconee and 
Ocmulgee river basins for water management improvement", 2016 American Society of 
Agricultural and Biological Engineers (ASABE) Annual International Meeting, 17-20 
July 2016, Orlando, Florida, USA.  

 N. V. Shim and E. W. Tollner, "Developing tools for modeling selected ecological 
changes induced by upstream reservoir management along a small river using HEC-RAS, 
HEC-EFM and additional spatial statistical tools", 2015 American Society of Agricultural 
and Biological Engineers (ASABE) Annual International Meeting, 26-29 July 2015, New 
Orleans, Louisiana, USA.  

 N. Shim and M. Elliott, "Ride it, Paddle it or Hike it: All Trails are Money Makers", 2015 
Georgia Trail Summit, 4 - 6 June 2015, Athens, GA, USA  
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