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Introduction

The Arkansas Water Resources Center (AWRC or Center) is part of the network of 54 water institutes
established by the Water Resources Research Act of 1964 and is located at the University of Arkansas in
Fayetteville. Since its formation, the AWRC in cooperation with the US Geological Survey and the National
Institutes for Water Resources has focused on helping local, state and federal agencies understand, manage
and protect water resources within Arkansas.

The Center has contributed substantially to the State’s understanding of its water resources through scientific
research and volunteer monitoring efforts. Additionally, the training of students — the future generations of
scientists and engineers — is a top priority for the Center. The AWRC directs its research funding priorities
toward providing local, state and federal agencies with scientific data necessary to make informed decisions
that enhance their ability to protect and manage water resources throughout the State. AWRC helps to fund
and coordinate research to ensure good water quality and adequate quantity to meet the needs of Arkansas
today and into the future.

Another priority mission of the Center is the transfer of water resources information to stakeholders within
Arkansas and around the country. The AWRC holds an annual water conference to address current water
issues and solutions. The Center also publishes numerous types of publications including technical reports,
peer-reviewed journal articles, and monthly electronic water newsletters. The use of social media has allowed
the Center to reach more people, with a growing number of interested individuals from state agencies, water
organizations, and the greater public.

The AWRC continues to enhance its activities to successfully implement its core missions — to generate
competent research, train future water scientists and engineers, and actively disseminate information to water
stakeholders throughout Arkansas. This report details these activities of the Center during the past project year
(March 1, 2015-February 29, 2016).
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Research Program Introduction

Since its formation, the Arkansas Water Resources Center (AWRC or Center) has focused on helping local,
state and federal agencies manage and protect Arkansas’ water resources. The Center has contributed
substantially to the State’s understanding of its water resources through scientific research and volunteer
monitoring efforts. Additionally, the training of students — the future generations of scientists and engineers —
is a top priority for the Center.

Scientific Research

Each year, several researchers across the state submit proposal applications for research grants from the
AWRC through the USGS 104B program. The AWRC directs its research funding priorities toward providing
local, state and federal agencies with scientific data necessary to make informed decisions that enhance their
ability to protect and manage water resources throughout the State. During this past year, the AWRC research
program successfully promoted the dissemination and application of research results to stakeholders through
publications, conferences and workshops. The research program also emphasized the training of future
scientists and engineers who are focused on water resources and watershed management, and supported
undergraduate, Masters and Ph.D. levels. The “seed” grants provided to research faculty through this program
have led to the development of larger research proposals submitted to other funding agencies and also have
provided research opportunities to new faculty and more senior faculty investigating new areas in water
resources.

When soliciting research proposals for funding through the USGS 104B program, the Center emphasized the
following objectives:

* Arrange for applied research that addresses water supply and water quality problems
* Train the next generation of water scientists and engineers

* Support early career faculty in water research and preliminary data

* Support faculty changing focus or addressing emerging water issues

* Transfer research results to stakeholders and the public

* Publish 104B funded research in peer-reviewed scientific literature

* Cooperate with other colleges, universities and organizations in Arkansas to create a coordinated statewide
effort to address state and regional water problems.

Center projects generally focus on topics concerned with the quality and quantity of surface water and ground
water, especially regarding non-point source pollution, land use and climate change, agriculture in the delta
region, and sensitive ecosystems. To formulate a research program relevant to current water issues in
Arkansas, the Center worked closely with state and federal agencies and academic institutions. The following
water research topics are currently important to Arkansas:

* Physical, chemical and biological characteristics of streams, reservoirs and aquifers, and how these influence
nutrient transport and water quality

* The trends in water quality over time and how things change in response to watershed management
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* Source water protection related to drinking water quality and availability

» Non-point source impacts on water quality

* Point-source impacts on water quality, especially from effluent discharges

* Contaminant transport through streams and other aquatic ecosystems

» Water quality and availability, especially in eastern Arkansas

* The biological response to nutrient gradients in lentic and lotic ecosystems

* Development of mechanisms for improving the quality and quantity of water supplies

Each of the proposals selected for funding this past year addressed one or more of the priority research topics
and or objectives of the Center. The Center also encourages research proposals that support the USGS
national water mission in one of its broad areas, including:

* Increase knowledge of water quality and quantity

* Improve understanding of water availability

* Evaluate how climate, hydrology and landscape changes influence water resources
* Create and deliver decision-making tools that support water management

* Improve the country’s response to water-related emergencies

The AWRC has a Technical Advisory Committee (TAC) composed of representatives of state and federal
water resources agencies, academia, industry and private groups. A subset of the TAC reviewed and ranked
proposals submitted to the AWRC - USGS 104B Program for funding, which helped ensure that funds
addressed a variety of current and regional water resource issues.

In FY2015, the AWRC, with the guidance of the TAC, funded 3 faculty research proposals totaling $60,000
and 6 student research proposals with a faculty advisor totaling $28,000. Faculty projects that were funded
include: 1) “REWARD: Rice Evapotranspiration and Water Use in the Arkansas Delta”, Benjamin Runkle,
University of Arkansas, Department of Biological and Agricultural Engineering; 2) “Runoff Water Quality
from Managed Grassland Amended with a Mixed Coal Combustion Byproduct”, David Miller, University of
Arkansas, Department of Crop, Soil and Environmental Sciences (CSES); and 3) “Characterization of
Phosphorus Stores in Soils and Sediments and the Potential for Phosphorus Release to Water, Related to Land
Use and Landscape Position within a Watershed”, Andrew Sharpley, University of Arkansas, Department of
CSES. Student projects with a faculty advisor that were funded include: 1) “Optical Water Quality Dynamics
During Receding Flow in Five Northwest Arkansas Recreation Rivers”, Thad Scott and Amie West,
University of Arkansas, Department of CSES and Environmental Dynamics, respectively; 2) “Continuation of
analysis for host-specific viruses in water samples collected from select 303(d) listed streams in the Illinois
River Watershed”, Kristen Gibson and Jay Jackson, University of Arkansas, Department of Food Science; 3)
“Creating an Annual Hydrologic Dataset in Forested Ozark Streams”, Michelle Evans-White and Allyn Fuell,
University of Arkansas, Department of Biological Sciences; 4) “Relationship Between Nutrients,
Macrograzers Abundance (Central Stonerollers and Crayfish), and Algae in Ozark Streams”, Michelle
Evans-White and Kayla Sayre, University of Arkansas, Department of Biological Sciences; 5) “Elucidation of
a Novel Reaction Pathway for N-Nitrosamine Formation”, Julian Fairey and David Meints, University of
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Arkansas, Department of Civil Engineering; and 6) “Does Environmental Context Mediate Stream Biological
Response to Anthropogenic Impacts?”, Sally Entrekin and Lucy Baker, University of Central Arkansas,
Department of Biological Sciences.

Once these scientists were funded, the Center coordinated and administered the grants, allowing the
researchers to concentrate on providing a quality project. Support was provided to researchers in the form of
accounting, reporting and water sample analysis (through the AWRC Water Quality Laboratory).

Volunteer Water Quality Monitoring

The Center supported and worked closely with Ozarks Water Watch, a non-profit water resources
organization. AWRC provided guidance and support to StreamSmart, a program of Ozarks Water Watch.
AWRC personnel conducted a formal training workshop related to sample collection and site assessment to
volunteers. The Center also supported this program by funding the laboratory analysis of water samples
collected by volunteer citizen scientists. AWRC supported another program of Ozarks Water Watch called
Beaver LakeSmart by participating on the advisory board and providing guidance to the program director.

Student Training

In addition to funding research proposals that emphasized the training of students, the Center provided several
training opportunities directly. This direct student support included:

* The AWRC participated in the Research Experience for Undergraduates (REU) program by advising
students through the scientific research process.

* The AWRC helped train undergraduate students by mentoring them through their freshman engineering
research projects at the University of Arkansas.

* The Center supported paid student work where the student gained experience in the water quality laboratory
and in data organization and analysis.

* The AWRC continued with its second annual paid summer internship for high school students. The student
intern was expertly trained in geographical information systems (GIS) and successfully completed several GIS

products associated with a variety of Center-related research projects.

During this past year, 23 students and postdoctoral researchers were trained through participation in research
projects and through the AWRC directly.
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Arkansas Water Resources Center 104B Program — March 2014 through February 2016

Project Title: Is persistence of plasmids in antibiotic resistant E. coli isolated from stream water
impacted by integrons, conjugation or mobilization genes?

Project Team: Mary C. Savin, Department of Crop, Soil, and Environmental Sciences (CSES), Cell &
Molecular Biology (CEMB), University of Arkansas, Fayetteville, AR 72701
Suhartono, Cell & Molecular Biology (CEMB), Department of Crop, Soil, and
Environmental Sciences (CSES), University of Arkansas, Fayetteville, AR 72701

Executive Summary:

Persistence of antibiotic resistant bacteria may be facilitated by the presence of conjugation and
mobilization (mob) and integron (intl) genes associated with bacterial plasmids. Plasmids extracted from
139 antibiotic resistant E. coli isolated from treated effluent and receiving stream water were used to
detect and characterize mob genes and class 1 and 2 integrase genes using PCR amplifications. Plasmid
persistence was determined using mesocosm incubations for a total of 76 E. coli in which the antibiotic
resistant determinants for trimethoprim and sulfamethoxazole were confirmed. E. coli were grown in
the presence of sub-inhibitory concentrations of trimethoprim or sulfamethoxazole, and the density of
bacteria (log CFU/mL) was determined during an 11-day experiment. This investigation confirmed the
occurrence of class 1 and 2 integrons and indicated the positive relationship of the presence of the
integron with the increasing number of phenotypic multiple antibiotic resistances (MAR). The mobr;;
gene was most frequently detected, and the co-occurrence of two or three mob genes, which often was
mobe;; in combination with either mobps; or mobq,, resulted in a higher proportion of increased MAR in
the resistant E. coli population. Over an 11-day experiment, isolates persisted at concentrations greater
than log 8.99 CFU mL? in the presence of sub-inhibitory sulfamethoxazole regardless of integron and
mobilization gene designation. In the presence of sub-inhibitory trimethoprim, isolates harboring
plasmids mob*intl* were less persistent compared to isolates without either or with a gene from either
group individually. Overall, resistance in plasmids remained relatively stable during the experiment.

Introduction:

Antibiotic resistant bacteria (ARB) are a major public problem, with concern increasing about their
persistence in the environment. Despite different disinfection protocols in different WWTPs and
reductions in culturable Escherichia coli, E. coli and broad-host-range (BHR) plasmids (Akiyama et al.,
2010) and antibiotic resistance genes (ARG) (MacLeod and Savin, 2013) remain in discharged WWTP
effluents, which lead to inputs of corresponding plasmids into receiving streams. Persistence in stream
water may be facilitated by the presence of mob genes and integrons associated with bacterial plasmids.
The research objectives were to determine the presence of integrase and mobilization genes and the
relationship with multiple antibiotic resistance (MAR) number in antibiotic resistance bacteria, and to
determine the influence of those genes towards the persistence of antibiotic resistant E. coli plasmids
that were originally isolated from treated wastewater effluent and receiving stream water.

Methods:

Previous investigations recovered a number of E. coli possessing ARG (Akiyama and Savin, 2010) and
plasmids (Akiyama et al., 2010) from one site upstream (20 m upstream, M1), wastewater treatment
plant (WWTP) effluent discharge (ME), and two sites downstream (640 m (M2) and 2000 m (M3)) of the
pipe discharging water from the Fayetteville, Arkansas WWTP into Mud Creek. Plasmid extractions from
antibiotic resistant E. coli were carried out using the Wizard® Plus SV Minipreps DNA Purification System
(Promega, Madison, WI, USA) according to the manufacturer’s instruction. Plasmids were then used as



templates to detect and characterize mob and intl genes and confirm the presence of sulfamethoxazole
and trimethoprim resistance genes.

Genes related to resistance to sulfamethoxazole (sull, sul2, and sul3 gene), trimethoprim (dfrA1,
dfrA8, dfrA12, dfrA14, dfrA17, and dfrB3 gene), integrons (int/l1 and int2), and mobilization (mobP11,
mobP14, mobP51, mobF11, mobF12, mobQ11, and mobQu) were determined using PCR amplifications
(Pei et al., 2009; Seputiené et al., 2010; Mazel et al., 2000; Alvarado et al., 2012). All PCR amplifications
were performed in 20 plL reactions containing 1x PCR buffer, 2.5 mM MgCl,, 200 uM dNTPs, 400 ng/uL
bovine serum albumin (Merck KGaA, Darmstadt, Germany), 0.5 uM of each primer, 1 uL of template
DNA, and 0.5 U of GoTag DNA polymerase (Promega, Madison, WI, USA). DEPC-treated water (EMD
Millipore, Darmstadt, Germany) was used as no template control (NTC) run in parallel with samples. The
PCR reactions were carried out using a PTC-200 thermocycler (MJ Research, Waltham, MA) under
conditions as follows: initial denaturation at 94°C for 5 min, followed by 30 cycles of 94°C for 30 s,
annealing (55.9°C for sull and sul2; 60.8°C for sul3; 46°C for dfrAl; 56.3°C for dfrA8; 52°C for dfrA12;
44°C for dfrA14; 44°C for dfrA17; 56°C for dfrB3; 62°C for Int/1; 50°C for Int2; 60°C for mobp11; 50°C for
mobp14; 58°C for mobp52; 53°C for mobf11; 55°C for mobf12; 50°C for mobq12; 64°C for mobqu) for 30
s, and 72°C for 60 s, with a final extension at 72°C for 8 min. PCR products were analyzed on 1.5 % (w/v)
agarose gels with ethidium bromide at 100V for 50 min in Tris-borate-EDTA (TBE) buffer and
documented using Kodak EDAS 290 gel documentation and analysis system (Eastman Kodak Co.,
Rochester, NY) to assess bands of the expected size. Additional confirmation of the PCR products was
performed through DNA sequencing (Eurofin Genomics, Kansas City, Kansas, USA).

The influence of plasmid-mediated mob and intl genes on persistence of E. coli isolates over time
was tested in 500-mL sterile Erlenmeyer flasks containing 200 mL synthetic wastewater made from
components as described by McKinney (1962) supplied with antibiotics (either 0.19 pg L trimethoprim
or 0.5 pg L sulfamethoxazole). A total of 76 Isolates resistant to both sulfamethoxazole (80 pg mL™) and
trimethoprim (4 pg mL?') were placed into one of four groups according to intl and mob gene
presence/absence combinations: group | (mob*intl*), group Il (mob'intl*), group lll (mob*intl’), or group
IV (mobintl’). The flasks were maintained at 23 °C for 11 days, with 3 mL removed from each flask after
1, 3,5, 7,9 and 11 days of incubation. The colony forming unit (CFU) number on day 1, 7, 9, and 11 was
determined using plate count assay on selective tryptic soy agar media supplemented with either
sulfamethoxazole (80 mg L) or trimethoprim (4 mg L?).

A statistical analysis was performed to evaluate the effects of occurrence of mob and intl genes
towards the multiple antibiotic resistance (MAR) number with 95% confidence intervals using GLIMMIX
procedure on SAS 9.4 (Cary, North Carolina, USA). The data were analyzed based on a multinomial logit
model with a cumulative logit link function and the results were back-transformed to the proportion
scale for presentation of the results. Following the preliminary overall test for treatment effects,
contrasts were used to compare individual pairs of treatments (P < 0.05) on the cumulative logit scale.
Additionally, an analysis of variance (ANOVA) was performed to evaluate the effects of mobilization
and/or integron presence or absence, days of incubation, and the combination of gene
presence/absence and time on bacterial concentration in the presence of each antibiotic. When
appropriate, means were separated by Fisher’s least significant difference (LSD) at a = 0.05. Analysis was
performed using GLM procedure with 95% confidence intervals on SAS 9.4 (Cary, NC).

Results:
There was a statistically significant difference (P = 0.0014) in mob gene distribution among
plasmids of isolates across MAR number (Figure 1a). A total of 65 (46%) isolates conferred transmissible
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Figure 1. Relationship of estimated proportion of (a) mob genes (P = 0.0014) and (b) int/ genes (P < 0.0001) among multiple
antibiotic resistant E. coli isolated from Mud Creek in Fayetteville, Arkansas (N = 139). Designations with the same letter at the
bottom of gene combinations are not significantly different using an overall test for equality of distributions on the cumulative

logit scale contrasts procedure (P < 0.05). Numbers at the top represent the sum of occurrences by column.

plasmids indicated by the presence of mob genes. A mob gene, mobri,, was most prevalently detected
on plasmids from 54 (39%) of total 139 isolates or 83% of the total transmissible plasmids. The co-
occurrence of two or three mob genes, which often was mobr;; in combination with either mobes; or
mobq, resulted in a higher proportion of increased MAR in the resistant E. coli population. The mobP11,
mobP14, and mobQ11 genes were not detected. Similar to the mob genes, there was also a significant
difference (P < 0.0001) in distribution of intl genes among plasmids of isolates across MAR number
(Figure 1b). The occurrence of integrons, particularly class 1 integrons, alone or in combination, shifted
the distribution proportion of E. coli isolates such that more of the population possessed larger MAR
numbers (MAR 3 to MAR 5 or 6) (Figure 1b).

Sulfamethoxazole and trimethoprim resistance genes were confirmed in plasmids of 76 isolates. In
terms of persistence, there was significant effect of incubation time (P = 0.0062) on bacterial
concentration when grown in the presence of sub-inhibitory concentration of sulfamethoxazole
regardless the mob-integron designation (data not shown). Despite its significant decrease on day 11,
isolates persisted during incubation such that concentrations remained at almost 1 billion CFU per mL. In
the presence of trimethoprim, there was a significant interaction of integrase by mobilization gene
presence or absence with incubation time (P = 0.0365) affecting bacterial growth (Table 1). Bacterial
concentration harboring plasmids with both integron and mobilization genes decreasing over time;
however, after 11 days, bacterial concentrations in all treatments remained over 1 billion CFU per mL.
Isolates harboring plasmids absent in either or both integron and mobilization genes did not significantly
decrease in concentration during the experiment.

Conclusions:

Having two or more mob, or one or two intl, contributed to significantly increasing the proportion of
the E. coli population exhibiting larger multiple phenotypic antibiotic resistances. In the presence of sub-
inhibitory concentrations of sulfamethoxazole, isolates persisted regardless of integron and mobilization
gene designation, whereas in the presence of trimethoprim, isolates harboring plasmids with both
integron and mobilization genes decreased in concentration during an 11-day experiment. However,
there was little significant differentiation in persistence among the four groups designating presence
and absence of integron and mobilization genes. Overall, these findings indicate that treated effluent




Table 1. Means of cell density (log CFU mL) grown on trimethoprim based on presence or absence of integron and
mobilization (mob) genes, and time of incubation (N = 76).

Time of incubation Integron Mob
(day) Absent Present

1 Absent 9.32a 9.18bcd
Present 9.15cdef 9.26ab

7 Absent 9.23abcd 9.25abc
Present 9.24abcd 9.15def

9 Absent 9.16cde 9.14def
Present 9.19bcd 9.08ef

11 Absent 9.19bcd 9.17bcde
Present 9.25abc 9.06f

*Means followed by a similar letter are not significantly different (P < 0.05).

containing multiple antibiotic resistant bacteria may be an important source of integrase and
mobilization genes. Resistant plasmid persistence appear to have potential for stability in the
environment. Sulfamethoxazole- trimethoprim resistant bacteria may have a high degree of genetic
redundancy and diversity conferring resistance to each antibiotic which may lead to persistence of the
bacteria in the stream environment, although the role integrase and mobilization genes towards
persistence is unclear.
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Arkansas Water Resources Center 104B Program — March 2014 through February 2016

Project Title: Improved ensemble forecast model for drought conditions in Arkansas using residual re-
sampling method
Project Team: Yeonsang Hwang, College of Engineering, Arkansas State University

Executive Summary:

Successful prediction of drought stages in Arkansas is essential for sustainable use of water
resources in Arkansas. Stochastic ensemble forecast model utilizes flexible historical residual resampling
technique to provide a short term monthly (1 to 3-month lead) forecast of drought condition in climate
divisions in Arkansas. The short-term monthly simulation showed varying forecast skills in different lead-
time and years. Long-term forecast capability was tested by performing seasonal predictions based on
random re-sampling technique. Further analysis of the climate variability in the state is needed to improve
the forecast skills of this model.

Introduction:

Drought is a part of natural variability while the impact on natural resources and industry due to
drought events can be mitigated with proper planning and preparation (Steinmann 2006). As the cost of
drought during the three-year period between 1987 and 1989 was estimated to be 39 billion dollars
combining energy, agriculture, water losses, etc. in the US, increasing water use for agriculture activities,
power generation, and municipal growth has added concerns to water resources sustainability in the state
of Arkansas. Liu et.al. (2013) also examined the past drought and presented the drought scenarios.

The most recent updates from the IPCC highlights that the contrast in precipitation between wet
and dry seasons will increase amid non-uniform changes in the global water cycle in response to the
predicted global warming in the 21th century (IPCC 2013). IPCC’s draft report also states that regional
scale prediction is still problematic, and would create additional uncertainty in hydro-climate conditions
in Arkansas. Historical data does show noticeable seasonal and annual climate variability in precipitation
and temperature in the state (SPPI, 2008). Considering this uncertainty, any prediction of hydro-climate
variables is challenging but very important in water management and planning in the region.

Through this project, numerical models were tested for monthly forecast of drought stages in
climate divisions (9 regions by NOAA) with short-term prediction (up to 3-month lead). Long-term dry/wet
condition projection were also tested. We anticipate this tool to be utilized to improve local, regional, and
state water management plans in the future.

Methods:

This forecast idea is based on a flexible statistical framework that utilizes residuals in local
regression fits. Conventional ensemble forecast techniques take advantage of historical climatological and
hydrologic data, but those techniques are limited in terms of the forecast performances in two ways. First,
historical data only allows developed models predict within the variability of existing data (normally
instrumental measurements), and therefore all generated forecast becomes very sensitive to the length
and quality of collected time series. Sequential index method (repeating annual historical data to generate
future prediction) is a good example, and forecast products are limited by the observed variability.
Secondly, the model won’t generate possible extreme conditions not existing in historical data. Given the



uncertainty in the model, historical data, and future changes in climate variability, it becomes more
important to utilize natural variability and forecast extreme conditions.

Residual resampling technique focuses on the natural statistical properties in the historical data
and utilizes the residuals in rather simple mathematical models such as linear regression. Calculated
residuals of regression models are collected (re-sampled) and distributed to generate ensemble forecasts.
While residual calculation is easily done over the entire time series, different strategies can be applied to
resample the residuals.

Similar residual resampling techniques have been applied to streamflow forecasts (e.g., Prairie et
al. 2006), and the study of auto-regressive features in drought indices have been utilized in the past.
Popular drought indices such as PDSI (Palmer Drought Severity Index) and SPI (Standardized Precipitation
Index) have been examined and shown as auto-regressive processes in earlier researches (e.g., Guttman
1998). However, previous research has been focused on deterministic forecast techniques until Carbone
and Dow (2005) examined the possibility of ensemble forecast for drought indices using a historical
random sampling technique in South Carolina.

A series of experimental application of this approach at a different spatial scales was tested in
South Carolina (Hwang and Carbone 2009) and later in Arkansas (Martinez 2012, Yan and Hwang 2014).
Although the latest model successfully performed three-month lead drought stage forecasts in Arkansas’
9 climate divisions, this forecast model showed limitations due to the built-in autoregression process. For
example, change of drought condition due to large rainfall in September over the eastern side of the state
wasn’t captured in the interquartile range of the forecasted values. In this project, baseline residual
sampling technique will be applied to the 9 climate divisions in Arkansas to verify the advantages and
disadvantages of this technique. All drought and climate information are compiled from NOAA NCDC
(National Climate Data Center) historical archives. For statistical analyses and forecast model
development, open source statistics package R is utilized. Among other geostatistics libraries pre-
developed and available through R communities, locfit by Loader (1997) provides basic data-driven
analysis using non-parametric polynomial approach. This approach is known to be good for non-linear
historical data.

Results:

Monthly PDSI forecast model with 1 to 3-month lead-time is used to produce 1000 ensemble
members per month using historical data set from NOAA NCDC. All predictions are calculated from the
partial time series up to the current month to perform hind-cast to correctly evaluate the forecast skills.
Different from the local (at climate stations) forecast tested by Hwang and Carbone (2009), regional (for
climate divisions) drought forecast model was applied without weather forecast based residual
resampling strategy. In this previous work, all selected residuals were tagged by pre-determined
categories based on the monthly temperature and precipitation of the year with respect to climate normal
of the station. This allowed the residuals to be more effectively selected. For example, with above normal
temperature and precipitation as the forecasted monthly weather condition of the target month,
residuals from the years with similar condition were more frequently used than other years.

In this work, short-term forecast for monthly historical PDSI utilizes random residual resampling
process. This means that the residuals were randomly sampled from the constructed regression model
for the entire historical time series. Also, all forecasts are produced with a seed value generated from the



linear local correlation model. This correlation model relates the drought conditions of current and target
months depending on the forecast lead time. All correlation models are built without current year’s data
for fair performance evaluation. Figure 1 shows differences in forecast skills for 1 to 3 month forecast lead
time and sample forecast on 2010 in the central Arkansas region (Climate Division 5). It is clear that 1-
month forecast shows better confidence (better capture of PDSI in boxplots) than 3-month forecasts
(longer whiskers and off-box data). However, the 3-month forecast still captures observed values quite
well in many months. Our results show different forecast quality through the years in the time series due
to the nature of random sampling approach. This model shows the forecast skills ranging between 0.4 and
0.1 in KSS (Kuiper Skill Score, Wilks 2011) throughout all 9 Climate Divisions in Arkansas.

Rank Histogram (Wilks 2011) is one of the popular graphical measures to examine the quality of
ensemble climate forecast models. In pre-defined bins evenly divided in the full range of forecast
ensembles, location of observed values are tallied. For example, in the ensemble forecasts ranging
between -1 to 4, observed value of -0.95 will add a count in the first bin (with the bin width of 0.1) to the
far left side of the chart. Flat diagram implies an ideal ensemble forecast that captures natural events with
good variation on both above and below observation all times. Inverse U-shaped chart implies rather
‘accurate’ forecasts that captures the natural events close to the median forecasts values frequently.

Lag-1 Forecast PDSI Lag-2 Forecast PDSI Lag-3 Forecast PDSI
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Figure 1. Example PDSI forecast in Arkansas Climate Division 5 (central Arkansas) using historical residual resampling
technique. Lag-1, 2, and 3 represents the forecast lead of 1, 2, and 3 months, respectively. For example, Lag-2 forecasts are
predicted by utilizing all data available 2 months before the target month. Box plots show the ensemble range, and solid
circles show observed (actual) monthly values. The length of the boxes indicates the interquartile range of all generated
ensemble indices, and the whiskers show the 5th and 95th percentile range.
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Figure 2. Example forecast skill measure (Rank Histogram) of PDSI forecast in Arkansas Climate Division 5. Locations of
observed data are tallied in generated ensemble range.



However, this can also be achieved by generating ensemble forecasts with very large variation, which
leads to inefficient products for actual design and planning. For our models, U-shaped histograms were
obtained and shown in Figure 2. This possibly implies 1) forecast ensemble range is too narrow to perfectly
re-generate natural variability in the record, or 2) overall forecast skill is too low to capture the
observation within ensemble’s interquartile ranges. Given the idea that our 1-month lead forecast records
as high as 0.4 in KSS, the former explains the results better. This ensemble range can easily be adjusted
based on users’ (i.e., decision makers) willingness to take a different level of uncertainty in the forecast
outputs.

Short-term forecast was also tested without looking at the monthly drought correlation between
the current and target months. This strategy would be useful and effective when the model output is more
expected to generate extreme events such as severe drought beyond historical monthly trend or abrupt
change in drought conditions both in dry-to-wet and wet-to-dry conditions. In order to achieve this goal,
seed forecast values are generated randomly on the target months first. Similar to the first model,
collected residuals are randomly added to the seed forecast to generated ensemble forecast (1000
members). For all climate divisions, ensemble forecast showed much bigger range than the first model.
This was clearly shown in wider interquartile range in boxplots similar to Figure 1. However, rank
histogram still was U-shaped, which implies that the forecast needs further improvements. KSS calculated
for this model was significantly lower (-0.05 ~ 0.3) than the first model, too. This is mainly because of the
poor median forecast given from random selection.

Long-term PDSI projection was performed through random sampling over the entire state. Given
the large uncertainty in this index averaged over large spatial scale, only seasonal projection was
generated with 3-month moving window. For example, forecast in season ‘)’ utilized the average monthly
PDSI from December, January, and February. Also, season ‘F’ projection was based on January, February,
and March. Figure 3 shows the overall performance of this seasonal projection. Future model application
will focus on the improvement in seasonal drought projection skill by incorporating climate scenarios such
as CO2 emission scenario or fixed rate temperature increase due to possible climate change in the future.

Conclusions and Recommendations:
The ensemble forecast model used in this work is based on two different residual random

sampling strategies and additional application in seasonal scale drought projection;

1. Historical residual resampling model provides simple but valuable platform to be modified and
applied to drought prediction.

2. As expected, resampling technique is capable of producing useful forecast skill for moderate
progression of drought.

3. Ensemble technique captures uncertainties in the climate system for moderate progression of
drought.

4. Limitations do exist in this simple method when drought condition changes beyond seasonal trend
in the record in Arkansas. Rank Histogram clearly reflects this.

5. Climate division level climate statistics must be analyzed in conjunction with climate forecast
products in the area for further model improvement. This will allow better median forecast quality
and will make overall ensemble ranges properly positioned.
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Figure 3. Example seasonal forecast and it’s skill measure (Rank Histogram) of PDSI forecast in Arkansas. For comprehensive
testing and analysis, seasonal forecasts are presented using 3-month moving window (e.g., January forecast is for DJF, and
February is for JFM, etc).

Further study on climate variability in Arkansas will be essential to improve the quality of drought
prediction. This includes the study of climate teleconnections, seasonal correlations, variability of key

climate variables, etc.
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Executive Summary:

Concentrated animal feeding operations (CAFOs) can be a source of organic matter, nutrients and
bacteria to waterways. This study aims to assess the response of bacteria to increases in dissolved organic
carbon (DOC) concentrations and the role of bacteria and increases in DOC in dissolved nitrogen and
phosphorus assimilation. Water samples were collected at several sites throughout the study area in July
2014 and January 2015 and analyzed for nutrients and bacteria counts. Laboratory microcosm
experiments were conducted using water collected from a spring in Mt. Judea, AR. Mason jars were filled
with spring water and gravel sized rocks collected at the spring. The spring water was amended with
phosphate, 8°N —labeled nitrate, and 6'*C-labeled acetate. The microcosms were sampled at weekly
intervals through the first 3 weeks of the experiment and one final sampling at 13 weeks. Samples were
analyzed for total nitrogen, dissolved oxygen, 6*°>N-NOs, §'¥0-NOs, and §*3C -DIC.

Introduction:

CAFOs are sources of organic matter, nutrients, bacteria, and other products that can potentially
influence water quality (Wantanabe et al., 2010; Ko et al., 2008; Jarvie et al., 2013; Varnel & Brahana,
2003). The impact of increasing labile organic matter can lead to major shifts in microbial ecology,
biogeochemical processes, and potentially degraded water-quality. Organic matter has been linked with
the transport of endocrine disrupting compounds (Yamamoto et al.,, 2003), and metals (Seiler and
Berendonk et al., 2012). This study is part of a larger study aimed to assess the role of organic matter in
the transport and fate of antibiotics and antibiotic resistance in karst groundwater. Karst springs are
particularly vulnerable because of preferential pathways that connect groundwater and surface water,
which allows rapid transport of contaminants. This study will assess the role of carbon and nutrient cycling
in the development of biomass in epikarst springs. The objectives of the project were; (1) to model
changes in microbial metabolic activity based on DOC concentration using laboratory microcosm studies,
(2) to model the effect of DOC concentration on nitrate attenuation, (3) to quantify changes in biomass
production under elevated DOC and nutrient conditions.

Methods:

Water samples were collected in July 2014 and January 2015. Sampling site locations are shown
in Figure 1. Big Creek upstream is located 3.0 miles upstream of the CAFO and the Big Creek downstream
sampling location is located 4 miles downstream of the CAFO. The Buffalo River upstream site is located
0.1 miles upstream of the confluence with Big Creek and the downstream site on the Buffalo River is
located 0.25 miles downstream of the confluence. Dye Spring is an epikarst spring discharging
groundwater from a perched limestone aquifer approximately 2 miles south of the CAFO. Land cover in
the recharge area of the spring consists of agricultural pastures and forested areas. Temperature, pH,
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Figure 1. Map of sampling locations in Mt. Judea, AR.

specific conductivity, and dissolved oxygen measurements were taken at the time of sampling. Water
guality samples were collected in Nalgene or Teflon sample bottles. Samples analyzed for total nitrogen
and total phosphorus were filtered and acidified using 0.2 % sulfuric acid. All samples were stored on ice
during transit to the laboratory. Samples were stored at 4 °C before analysis. Total Phosphorus and total
nitrogen were simultaneously analyzed using alkaline persulfate digestion (APHA, 4500-Pj). Sulfate
analysis was conducted using barium sulfate turbidimetric method (USEPA 375.4). The method for the
analysis of ammonia was conducted using the salicylate-hypochlorite method adapted from Reardon and
others (1966). Biological water quality samples were collected in Teflon sample bottles and transported
to the laboratory. The heterotrophic plate count method was modified to determine the concentration of
live heterotrophic bacteria cells in water samples (APHA, 9215). Biological water samples were shaken
before 10 pl aliquots were used to inoculate a 10% strength Trypticase Soy Agar media. Samples were
allowed to incubate at 35°C for 48 hours.

Laboratory microcosm

Laboratory microcosms were conducted in a dark environment at 13 °C for 13 weeks to simulate
conditions in epikarst. Autoclaved gravel was added to 1.0 L mason jars and the jars were filled with spring
water and amended with organic carbon, nitrate, and phosphate. Three dissolved organic concentrations
were used in the experiments; 1.0 mg/L, 10.0 mg/L, and 100 mg/L. Acetate was chosen as an organic
carbon source because it is easily metabolized by bacteria. The microcosms also received three different
nutrient treatments; nitrogen (KNOs), phosphate (NaPO,), and nitrogen and phosphate at 0.1 mg/L, 1.0
mg/L and 10 mg/L. Nutrient concentration ranges were determined based on historical phosphorus and
nitrogen observations at the spring. Labeled 8>N-nitrate (K>NOs) and labeled- §3C -acetate (**C,HsNa0,)
were used to enrich the isotopic compositions of nitrate and dissolved organic carbon in the microcosms
to 1000%o, respectively. The microcosms were sampled at weeks 1 — 3 and at week 13. Phosphoric acid
conversion of DIC to CO, was used to measure §3C —DIC. Conversion of available nitrate to N,O gas by
the bacteria Pseudomonad aereofaciens was used to measure §°N-nitrate. Nitrate isotope values were
measured relative to ambient air, and 63C —DIC were reported versus the Vienna Pee Dee Belemnite
(VPDB) standard. Dissolved oxygen was also measured using the Winkler titration method. Biofilm
biomass was collected from the microcosms by scrubbing with a stiff plastic bristle brush in 150 mL of
Millipore water. The samples were centrifuged, and the supernatant was decanted from the samples
before freeze drying. The dry mass of the biofilm biomass was then recorded.



Results:

Field pH ranged from 6.38 to 9.64 standard pH units for all sampling sites, Table 1. The mean pH
of surface water was 8.23 +£0.92 standard pH units and ranged from 7.32 to 9.64. The mean pH of
groundwater discharging from Dye Spring was 7.07 +1.14 and had pH measurements ranging from 6.38
to 8.38. Mean water temperature during summer sampling was 23.89 +3.4°C and 17.73 +0.25°C for
surface and groundwater, respectively. Surface water and groundwater mean temperatures in the winter
were 8.3 £ 1.35°Cand 13 + 2.45°C, respectively. Mean specific conductance of the surface water samples
was 207.9 + 46°C; in groundwater mean specific conductance was 413 + 19.7°C. Dye Spring had the least
dissolved oxygen; however, water at all sites was aerobic.

Biological water quality is presented in Figure 2. Mean heterotrophic bacteria counts were
greatest upstream on Big Creek (p<0.001). Dye Spring had the second greatest concentration of
heterotrophic bacteria, 334 * 73 cfu/10uL. There was no statistically significant difference in
heterotrophic bacteria concentrations at upstream and downstream sites on the Buffalo River.

Water chemistry was similar at all sites. Total nitrate and phosphate concentrations in the Buffalo
River and Big Creek were less than 1 mg/L during all sampling events, with exception given to the
downstream site on Buffalo River July 14, 2014, Table 1. The concentration of total phosphorus
downstream on the Buffalo River 1.77 mg/L was unusually high for phosphate concentrations in the

Table 1. Field parameters (measured at time of sampling), and measured water quality parameters. NA — constituent not
measured, Total Phosphorus and total nitrogen MDL<0.02, Ammonia-nitrogen MDL<0.002 mg/L.

Specific Total Total

S li S li T . DO NH3-N o)
Li)r:a?ci:ng aDma;i;ng T:g;’ pH Conductance (ma/L) Nitrogen  Phosphorus (mga/L) (mg/4L)
(uS/cm) (mg/L) (mg/L)
Buffalo River  7/17/2014  25.9 7.32 217.3 7.00 0.18 <0.02 0.01 12.1
(Upstream)
1/30/2015 8.5 7.92 213 NA 0.21 0.02 NA NA
Buffalo River ~ 7/14/2014  26.6 7.44 225 8.01 0.22 1.77 <0.002 12
(Downstream)
1/30/2015 7.1 8.59 216.4 NA 0.22 <0.02 NA NA
Big Creek 7/17/2014 19 7.51 149.7 9.89 0.16 0.14 <0.002 119
(Upstream)
1/30/2015 10.2 9.64 131.5 NA 0.07 0.02 NA NA
Big Creek 7/14/2014 24.02 7.9 273.3 8.43 0.23 <0.02 0.01 12.8
(Downstream)
1/30/2015 7.7 9.49 236.8 NA 0.23 0.02 NA NA
7/17/2014 17.55 6.45 407.1 6.65 2.52 0.04 0.05 11.7
Dye Spring 8/12/2014 17.9 6.38 435 6.38 NA <0.02 NA NA

1/30/2015 13 8.38 397 NA 3.24 0.02 NA NA




Buffalo River. The typical range of total phosphorus concentrations in the Buffalo River at baseflow from
1991 — 2001 was 0.004 mg/L and 0.040 mg/L (White et al., 2004). Additional sampling will be necessary
to determine the validity of this measurement. Dye Spring had significantly greater total nitrogen values
when compared to other sampling sites (p=0.02). Total nitrogen concentrations during sampling events
at Dye Spring were 2.5 mg/L and 3.24 mg/L in summer and winter, respectively. The chemical and
biological composition of the spring water is controlled by a thick soil layer covering the recharge area of
the spring. Water infiltrates through the soil, but is altered chemically and biologically before discharging
atthe spring. In the Buffalo River and Big Creek, lower bacteria and nutrient concentrations were observed
and are examples of dilution effects. Big Creek originates from seeps upstream and gains flow moving
downstream. Upstream the dilution effect is minimal when compared to the downstream site because of
additional flow gained from groundwater and other surface-water features.

Laboratory Microcosms

Data from laboratory microcosm experiments show little change in the isotopic composition of
813C-DIC in microcosm treatments with 1.0 mg/L and 10 mg/L, DOC Figure 3a. In the first three weeks of
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Figure 2. Overview of 6§13C-DIC isotopic composition (left), and dissolved oxygen in microcosm samples (right); DOC
amendments are represented as follows: DOC1 represents 1.0 mg/L DOC, DOC2 represents 10 mg/L DOC, and DOC3
represents 100 mg/L DOC.



sampling 1.0 mg/L and 10.0 mg/L, DOC treatments became isotopically lighter before plateauing for the
remainder of the experiment. The 8§*3C-DIC compositions of microcosms treated with 100 mg/L, DOC
displayed a different trend, becoming isotopically heavier in the first three weeks. After the third sampling
period, 8'3C-DIC changed little before the final sampling period at week 13. Increasing §:3C-DIC values is
an indication of microbial transformation of the isotopically heavy *C-DOC added to the microcosm at the
beginning of the experiment. Decreasing and or unchanged §*3C-DIC values would indicate exhaustion of
13C-DOC, gas exchange with the environment outside of the microcosms, or no quantifiable significant
transformation of DOC to DIC. Dissolved oxygen decreased in the initial three weeks of sampling when
the biological oxygen demand was greatest and increased as oxygen in the headspace of the microcosms
equilibrated with the remaining water and as microbial activity decreased over time Figure 3b. Figure 4
shows 8°N-NOs and 8§'80-NOs compositions of water samples collected from laboratory microcosms. This
data provides information on the attenuation of nitrate under varying concentrations of DOC, nitrate, and
phosphate. The line drawn represents a slope of 0.5, which provides good isotopic indication of
denitrification activity occurring in the microcosms. Denitrification activity was detected in microcosms
containing more DOC, indicating the limiting nature of low concentrations of DOC on denitrification over
the impact of nitrate concentration. This occurs in large part because DOC drives respiration and biological
oxygen demand. Denitrification is an anaerobic to micro-aerobic process, and without sufficient amounts
of DOC, dissolved oxygen concentrations remain too great to observe significant denitrification activity.
Secondly, denitrification is enzymatically coupled with DOC oxidation; therefore ideal conditions for
denitrification must have a sustained DOC source and anaerobic conditions. Biomass production in the
microcosms did not vary significantly across the various treatments with respect to DOC concentration or
nutrient concentration (p=0.4). The mean quantity of biomass collected from DOC1 microcosms was
19.36 * 6.34 mg, from DOC2 microcosms 21.86 + 1.41 mg, and from DOC3 microcosms 13.40 + 2.45 mg
Figure 5. Therefore, while DOC had a significant impact on DIC production and isotopic composition, DO
concentration, and denitrification the total biomass produced was not significantly impacted.

Conclusions:

Water-quality in the Buffalo River, Big Creek, and Dye spring has been consistent over the course
of the study. The early conclusion that may be drawn from the laboratory studies is that the presence of
organic matter in karst systems can cause changes microbial activity based on concentration. More
available organic matter provided indication of nitrate removal and increased biomass production.
Organic matter limits denitrification and respiration, affecting microbial productivity and the evolution of
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Figure 4. Overview of §'N-NOs and §'30-NOs isotopic composition in microcosm water samples, line is drawn at a
slope of 0.5; data points on or near line indicate denitrification activity.
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Figure 5. Mean biofilm biomass collected from laboratory microcosms. DOC 1 represents 1.0 mg/L DOC, DOC 2 represents
10.0 mg/L DOC, and DOC 3 represents 100.0 mg/L DOC. Columns represent mean values and error bars represent standard
deviation of samples.

water chemistry. The broader significance of the findings of this study implicates organic matter as a key
indicator of the assimilatory capacity of karst groundwater environments, specifically in the case of
microbial contributions. When labile organic matter is available at higher concentrations, the influence of
microbial processes on water quality are greater than the opposing conditions when organic matter is
more recalcitrant and sparse. Groundwater management strategies can be improved by increased
monitoring of the flux of organic matter at the surface and subsequently as DOC into groundwater
flowpaths. The findings of this study will be a part of the PI’s dissertation and future publications.
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Executive Summary:

Water samples were collected once per week over a 10 month period at four locations along Lower
Cutoff Creek and 4 locations along Upper Cutoff Creek. Total Suspended Solids (TSS) was measured for
each sample. Results indicated that these two creeks had relatively low levels of TSS throughout the study
period. There was no significant difference in TSS between the two creeks. The data did not identify any
“hot spots” on either creek that would assist in locating point source pollution of TSS. The road crossings
at each sample site had no measurable impact on the TSS in either of the creeks. Continued monitoring
of these two creeks at site four is warranted to better understand these two sub-watersheds and their
contribution to silt loads and turbidity on Bayou Bartholomew.

Introduction:

Bayou Bartholomew is one of ten priority watersheds identified in the 2011-2016 Nonpoint Source
Pollution Management Plan published by the Arkansas Natural Resources Commission. The plan identifies
silt loads and turbidity as a key element causing degradation to the streams in the watershed. The need
for additional water quality data in this HUC 8 watershed is great.

SWAT model simulations performed by Saraswat, Leh, Pai and Daniels divide the Bayou Bartholomew
watershed into 44 sub-watersheds. The modeling was designed to identify sub-watersheds where
mitigation efforts should be focused first. Lower Cutoff Creek is one of those areas in regard to sediment.
The SWAT model, however, was only calibrated and validated at the larger watershed scale. Little to no
data was available on the HUC 12 levels, especially for Lower Cutoff Creek. It is worth noting that while
the SWAT model predicts Lower Cutoff Creek to be high in sediment concentration, the sub-watershed is
flanked by four sub-watersheds that are modeled to have only half the sediment concentration percentile.

This study seeks to identify portions of Lower Cutoff creek where sediment concentrations are the
greatest, ultimately leading to identification of sediment sources and offering solutions. If no “hot spots”
are found, or if specific sources in “hot spots” cannot be identified, then a more general approach to
cleaning the sub-water shed would be in order such as wide spread BMP adoption or a mitigation bank.
In addition, this study collects water samples along Upper Cutoff Creek for comparison. This will provide
one year of observations as to the relative sediment concentration between the two adjoining sub-
watersheds.

Methods:

Seven locations along Lower Cutoff Creek and seven locations along Upper Cutoff Creek were selected
for water sampling sites, and these included sites upstream and downstream from high-water bridges.
Water samples were collected weekly from April 2014 to January 2015, and these collections occurred
during both base- and storm-flow conditions. Weeks when water was present and flowing at all locations,
samples were collected at each location. Weeks when water was not flowing at a location, no sample was
collected at that location. At six of the bridge locations a sample was collected upstream as well as
downstream of the bridge in an effort to measure the impact of the bridge on sediment levels in the creek.



All water samples were delivered to the water quality lab at the UAM School of Forest Resources. Total
suspended solids were analyzed for each sample and the data recorded. In all cases the variable being
measured in this study is total suspended solids (TSS).

In addition, the watersheds associated with each creek were delineated and information on area, land
use and stream length was determined for each watershed upstream from each sampling location.

Results:

Summary statistics for TSS measurements collected over the study period are displayed in Table 1.
Sediment concentrations in Lower Cutoff Creek were not different than those in Upper Cutoff Creek, with
average concentrations of 13 mg/L and ranging from 1 to 80 mg/L throughout the study period. This result
is interesting and surprising since the SWAT model ranked Lower Cutoff Creek as an area with high
sediment loads and Upper Cutoff Creek to have relatively low sediment loads. Bridges, which have been
implicated in increased sediment transport, didn’t cause an increase in sediment concentrations
downstream compared to upstream.

The downstream TSS readings for Lower Cutoff Creek by sample site are displayed in a Box-and-
Whisker plot (Figure 1). The box contains 50% of the observations at each location. Readings ranged from
less than one to thirty mg/l except for three samples that were greater than 30 but less than 50. In
general, site 4 had greater TSS readings than the other sites. Sites three and four are downstream of sites
one and two.

The downstream TSS readings for Upper Cutoff Creek by sample site are also displayed in a Box-and-
Whisker plot (Figure 2). Readings ranged from less than one to thirty mg/I. Site two always had readings
between 6.8 and 12 except on three occasions. In general, site 3 had greater TSS readings than the other
sites. Sites 3 and four had larger boxes than sites 1 and 2 indicating a wider dispersion of observations.

Statistical tests were run on the data sets depicted in Figures 1 and 2 including an ANOVA with
Bartlett’s test for equal variances and Tukey’s Multiple Comparison Test. The means at each location were
not significantly different on Lower Cutoff Creek, while the means on Upper Cutoff were significantly
different at P < 0.05 (Table 2). The Tukey test shows that location 1 is significantly different from location
3 on Upper Cutoff Creek.

The Lower Cutoff Creek watershed encompasses 51,665 acres while the Upper Cutoff Creek

Table 1. Summary statistics of weekly total suspended solids measurements for all observations on Lower Cutoff Creek and
Upper Cutoff Creek by creek and by stream direction; April 2014 to January 2015.

Lower Cutoff Creek* | Upper Cutoff Creek* Upstream ** Downstream**
(mg/1) (mg/1) (mg/1) (mg/1)
Maximum 48.00 77.60 77.60 48.00
Minimum 0.40 0.40 0.40 0.40
Mean 12.29 13.00 13.21 11.96
Std. Deviation 9.68 10.65 12.24 8.66
CV. 0.79 0.82 0.93 0.72

* includes upstream and downstream samples. **Includes both Upper and Lower Cutoff Creeks.
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Figure 1. Total suspended solids measured downstream of the road crossing at four sites on Lower Cutoff Creek;
April 2014 to January 2015.
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Figure 2. Total suspended solids measured downstream of the road crossing at four sites on Upper Cutoff Creek;
April 2014 to January 2015.

watershed is comprised of 60,404 acres. Land use for the two sub-watersheds is displayed in Figure 3.
Both watersheds are well over 50% forest. Lower Cutoff Creek has a larger urban component and a larger
row crop component than Upper Cutoff Creek.

Conclusions:

This study shows that sediment concentrations were not different between Lower and Upper Cutoff
Creeks, which varied in priority rankings based on the watershed model. This underscores the potential
limitations of using model estimations to identify priority sub-watersheds as target areas for the



Table 2. ANOVA test results for Lower and Upper Cutoff Creeks.

Lower Cutoff Creek Upper Cutoff Creek

P value 0.255 0.0205
P value summary ns *

Are means signif. different? (P < 0.05) No Yes

Number of groups 4 4

F 1.402 3.559
R squared 0.08723 0.1731

0.77%
5.17% 7 0a% . 0.62%""720.57%
6.21% 0.75%  gurban 5.89% ® Urban

13.04%

B Water B Water

B Herbaceous H Herbaceous

M Forest
M Forest

M Grasses
M Grasses

m Rowcrop
m Rowcrop

Figure 3. Land use in the Lower Cutoff Creek sub-watershed (left) and Upper Cutoff Creek sub-watershed (right).

implementation of best management practices. However, there are differences in land use and hydrology
between the two sub-watersheds that could influence sediment concentrations at a range of flow
conditions. Water-quality monitoring can provide important information to water resource managers
about how watershed characteristics influence the water quality of streams and rivers.

The U.S. Geological Survey measures suspended sediment concentrations along Bayou Bartholomew
at locations including; 1) near Meroney, AR; 2) at Garrett Bridge; and 3) near McGehee, AR. Readings for
these locations are published on the internet for various dates including May 28, 2014; July 22, 2014;
November 13, 2014; December 19, 2014; and January 4, 2015. Of the eleven observations at these
locations during the study period of this project, the nine observations in 2014 ranged from 12 mg/| to 60
mg/| which is consistent with our findings. The January 4, 2015 samples collected near Meroney and at
Garret Bridge had suspended sediment concentrations of 108 mg/l and 133 mg/| respectively. This study
collected one final water sample on January 8, 2015 of 15.2 mg/l. The level of sediment observed along
Upper and Lower Cutoff Creeks in 2014 is consistent with that observed by the U.S.G.S. along Bayou
Bartholomew.
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Executive Summary:

Phosphorus (P) concentrations within the lllinois River can impair water quality and are of regional
concern. Agricultural soils are commonly considered to be a major contributor of P to this watershed.
However, P can accumulate within various positions in the landscape including riparian areas, stream
banks and stream sediments and provide an additional legacy P source. This research aimed to determine
the potential for P release from these different landscape positions from three different land uses: farm,
urban parkland and a natural forest. Soil samples were taken from six landscape positions: field soils, the
edge of the riparian area, the middle of the riparian area, the stream bank, the edge of the stream bed
and the stream bed across the three land uses. Sequential fractionation was used to determine the
speciation of P within these soils and water extractable P was determined to provide an indication of the
potential for P release. Results suggested that the farm field soils posed the largest risk of P loss to runoff.
However, there was no significant difference in soil P in the stream sediments across the different land
uses indicating that agricultural use did not lead to P accumulating in the sediments. The results also
highlighted the potential for release of organic P forms which are largely overlooked and recommends
that soil and water sampling strategies should monitor both inorganic and organic P forms. The speciation
of soil P varied across the landscape positions. Importantly, the stream sediments were found to be
dominated by the reductive soluble P forms. This indicates that a change in redox state could potentially
mobilize a large store of P and care must be taken to ensure these sediments do not become anoxic.

Introduction:

Phosphorus (P) is widely accepted as a key factor contributing to the eutrophication of many
streams, rivers and lakes (Carpenter et al. 1998). The P content of streams is often related to the
surrounding land use, for example in northwest Arkansas the amount of dissolved reactive P (DRP) in
streams was shown to increase with increasing proportion of pasture and urban development within a
watershed (Haggard et al. 2003; 2007). The long-term application of poultry litter in excess of the crop
nutrient requirements has led to a buildup of P within these pasture soils (Slaton et al. 2004) and there is
growing concern that these soils will pose a chronic risk of P loss to surface waters and lead to large lag
times between mitigation efforts to decrease P loss and observed improvements in water quality (Meals
et al. 2010).

The accumulation of P within the landscape and the subsequent remobilization has been termed
as a legacy P effect (Kleinman et al. 2011) and relates not only to P stored within agricultural field soils but
stores of P which have accumulated in riparian areas, streambanks and bed sediments (Sharpley et al.
2013). Much of the deposition, sorption and remobilization processes occur in transition zones between
the edge of field and the watercourse e.g., riparian buffer zones (Javie et al. 2013). While we know
hotspots of P accumulation exist within a watershed, the location, potential impact and residence time of
these stores is poorly understood (Jarvie et al. (2013). Furthermore, the speciation of the stores of
soil/sediment P and how these vary related to land use and landscape position is unclear and much of the
past research has focused solely on the inorganic P forms. Organic P can represent a significant proportion



of the total soil P, especially in manured pasture soils and there is growing interest in the contribution of
organic P forms to plant production (Nash et al. 2014) and the potential release to water (Darch et al.
2014).

Based in Goose Creek, a tributary of the lllinois River, this work aims to identify the location and
magnitude of legacy P stores within a watershed and to determine their potential impact on P loss to
water in order to improve long-term water quality at a watershed scale. The following specific objectives
were assessed:

1. To determine the forms of P within the soils and riparian, streambank and stream bed

sediments within Goose Creek.

2. To determine which areas of the watershed are acting as a source or sink of P to Goose Creek.

3. To determine the impact of land use and riparian management on the P speciation and release

potential within these zones.

Methods:
Site identification

Working with Arkansas Association of Conservation District (AACD) personnel, 5 agricultural
sampling sites were identified, 4 of which are on the main stem and 1 on Owl Creek. In addition samples
were taken from Creekside Park and Mt. Kessler to provide urban and forest comparison sites. For
sampling locations see Figure 1.

Figure 1: Map showing sampling sites on Goose Creek. Sites 1 — 4 are agricultural, site 6 is forest headwater site, and site 7 is
an urban park. WTTP marks the wastewater treatment plant.



Sampling

At each site three transects were laid crossing through the field/park/forest, the riparian zone and
into the stream bed. Soil samples were taken to a depth of 4”, using a slide hammer, from three locations
in the field, park or forest and bulked to give one sample and from one location each at the edge of the
riparian zone and in the middle of the riparian zone. A sample of the top 0-4” of soil from the exposed
face of the stream bank was collected using a hand trowel. A sample of sediment from the edge of the
stream bed to a depth of 4” was taken with a spade. Finally samples of the stream bed sediment were
taken from three locations across the stream channel and bulked to give one sample. To take the stream
bed samples a bottomless bucket was sunk into the stream bed to interrupt the stream flow. Samples
were then taken from inside the bucket with a spade to a depth of 4” to minimize the loss of fine sediment.
This sampling strategy yielded six samples per transect from different parts of the landscape, denoted as
a zone: (1) field, park or forest,(2) riparian edge, (3) riparian middle, (4) stream bank, (5) stream edge and
(6) stream bed. Additionally at each site, where the stream was flowing, a grab sample of the stream water
was collected.

All samples were collected over two consecutive days during August 2016 under base-flow
conditions. The samples were returned to the lab the same day. Water samples were filtered < 0.45 pm
and submitted to the Arkansas Water Quality Laboratory for analysis for dissolved reactive P (DRP) and
total dissolved P (TDP) following potassium persulfate digestion.

Soil and sediment analysis

Soil samples were air dried and sieved to < 2mm. The stream edge and bed samples were wet
sieved < 2mm prior to air drying. Soil pH was measured in water (1:2 soil-to-solution ratio), samples from
the 3 transects from each site were bulked and particle size determined from each zone via gravimetric
analysis (Gee and Bauder, 1986).

All P analysis were carried out in accordance with the SERA 17 Methods of P Analysis Handbook
(Pierzynski, 2000). Mehlich-3 extractable P (M3-P), Al and Fe were determined and the degree of P
sorption saturation (DPPS) calculated. Water extractable P (WEP) was extracted in a 1:10 soil-to-solution
ratio and the inorganic WEP (WEP;) content analyzed via the molybdate blue method. Additionally the
extract was digested with potassium persulfate prior to colorimetric analysis to determine the total WEP
(WEPy). The organic WEP (WEP,)was then inferred as the difference between WEP; and WEP,

Phosphorus speciation was determined using the sequential fractionation scheme of Zhang and
Kovar (2000). This yielded five fractions, NH4CI-P, NH4F-P, NaOH-P, citrate bicarbonate dithionate-P (CBD-
P) and H,SO4-P which correspond to the following P species respectively: soluble or loosely bound P, Al
bound P, Fe bound P, reductant soluble P and calcium bound P. The P content of each fraction was
determined colorimetrically to determine inorganic P and following potassium persulfate digestion to
determine total P with organic P inferred as the difference. All fractions were added together to determine
total soil P (TP) and the inorganic or organic fractions were added to determine total inorganic or organic
P (Piand P,)

Statistical analysis

The study design consisted of seven field sites with soil samples taken from three transects at
each site. The transects were considered to be replicates and results are presented as a mean of these
transects. All data was inspected for normality and a log10 transformation was performed on all WEP
and M3-P results prior to statistical analysis. A one-way analysis of variance was carried out by site and
by zone and specific differences between sites or between zones were determined using a Tukey
multiple comparisons test at the p < 0.05 level of significance.



Results:
Water extractable P

Water extractable P (WEP) can be used to give an indication of the potential for P release from
soils and sediment to water. In the agricultural soils total WEP and WEP; showed a general decrease along
the transect from the field soils to the stream bed sediment. In contrast, there was no difference in total
WEP or WEP; across the zones in the park or forest soils (Fig. 2). Similarly in the park and forest soils these
sediments showed higher concentrations of M3-P than the park and forest soils.

In addition to this general tread there were significant differences in TWEP and WEP; across the
different farm sites. Sites 1, 2 and 5 all showed significant differences between the field soils and the
corresponding soils taken from the forest and park sites (p < 0.05) (Table 1). Additionally, these sites while
WEP was elevated in the field soils the concentration was significantly lower in the stream edge and
stream bed sediments and sites 1 and 5 showed no significant difference between park and forest
sediments in these zones. This indicates that while manure application and agricultural land use increases
the potential for P loss from the field soils this does not increase the soluble fraction within the stored
stream bed at these sites.

However, field soils of farm sites 3 and 4 showed significantly and appreciably lower
concentrations of TWEP and WEP; which were not significantly different to the other landscape zones or
to the park or forest land uses (p <0.05). This was despite the soils sites 3 and 4 having similar M3-P
concentrations to the other farm sites (Table 1). Interestingly site 3 showed significantly higher WEPi
concentrations than the stream edge sediments from the park site despite having similar M3-P
concentrations in the soil samples (p<0.05). This highlights the variation among sites, potentially as a

35.00 - ‘
' ' . , ,. Farm WEPi
27% : ' ! : 1 @ Farm WEPo
! I | I .
30.00 I | ! | '@ Park WEP;
! ! I | 1O Park WEPo
I I ! ! ! | @ Forest WEPi
I ipari ! i i ISt I Stream
25.00 - Field 1 Riparian | Riparain | ream | D Forest WEPo
| edge ! middle bank | edge |
o ! 1 I I
[a | I
£ 20.00 - 1 67% | ' I I Stream
~ I " !
o ! I I | | bed
oo
€ ! ! | | I
o ! ! I 1 1
& 15.00 | | ! ! !
= 1 | | | !
: ! 1 I I
! | 1 1
10.00 | ! ! ! !
! ! .00 | I
0w i ' 1222 4 g N
5.00 - 78% I 92%1
: 59 A,l | | | -
1 90 % 1 94 % 54 o 84 %
1 |
0.00 |

73% 22% 41% 339% 27% 11% 60% 19% 33% 61% 10% 51% 61 % % % 47% 46% 16%

Figure 2: Water extractable P concertation across land use and landscape zones. Figures show the % of total WEP in the
inorganic (top) and organic (bottom) fraction respectively.



result of differences in soil properties.

In contrast to WEP; there were no significant differences in WEP, between the different land uses
(Fig 2., Table 1). However as a proportion of TWEP, the inorganic fraction was dominant in all the samples,
except the stream bed for the all the farm sites while WEP, was the dominant fraction in almost all of the

Table 1: Mean total (TWEP), inorganic (WEPi) and organic (WEPo) water extractable P concentrations
and Mehlich (Il1)-P (M3-P) concentrations for each site and landscape zone. Capital and lower case
letters denote significant differences between sites and zones respectively from a Tukey’s multiple

comparisons analysis of variance at the p <0.05 level of signficance.

Site Land use  Zone TWEP WEPi WEPo M3-P
1 Farm Field 33.71A° 25.27A° 8.44A° 280.3
2  Farm Field 67.88A° 55.43A° 12.44A° 172.2
3  Farm Field 4.96C?2P 2.95B2 2.01A° 175.9
4  Farm Field 8.32BC? 4.52B2 3.80A¢2 78.9
5 Farm Field 37.42A° 22.70A° 14.72A° 34.0
6 Forest Field 3.68C? 1.51B? 2.18A° 47.4
7 Park Field 5.06BC"? 1.11B° 3.95A? 52.1
1 Farm Riparian edge 22.98A° 17.14A° 5.83A¢2 123.8
2  Farm Riparian edge 27.71A®®  23.20A%  451A% 91.1
3 Farm Riparian edge 11.67AB® 3.58BCD? 8.08A°® 54.2
4  Farm Riparian edge 13.60AB? 7.70ABC?® 5.90A° 19.8
5 Farm Riparian edge 19.89A®  12.3AB? 7.57A° 25.3
6 Forest Riparian edge 5.43B? 0.61D® 4.82A° 22.4
7 Park Riparian edge 4.22B3 1.00CD? 3.22A° 28.5
1 Farm Riparain middle 10.95A%®  7.40A%° 3.55A 0 75.5
2 Farm Riparain middle 4.50A¢ 1.81A°%¢ 2.69A2 72.4
3  Farm Riparain middle 5.30A%0 2.77A2 2.53A% 37.5
4  Farm Riparain middle 12.03A° 7.83A" 4.20A° 29.1
5 Farm Riparain middle 4.58AP¢ 2.72A% 1.86A° 14.7
6 Forest Riparain middle 4.23A° 1.41A° 2.82A¢° 16.8
7 Park Riparain middle 5.37A¢2 0.99A° 4.37A° 27.1
1 Farm Stream bank 10.43A%®  7.57A% 2.86A 68.7
2  Farm Stream bank 9.20AB ¢ 5.13A2b¢ 4.07A%° 62.8
3  Farm Stream bank 2.06B° 0.34BC? 1.72A° 77.8
4  Farm Stream bank 6.05AB? 4.07A%0 1.98A¢ 180.5
5 Farm Stream bank 5.25AB2*  3.12AB® 2.13A° 235.6
6 Forest Stream bank 5.51AB? 2.81ABC® 2.70A° 253.2
7 Park Stream bank 2.24AB % 0.21C?b 2.03A% 223.4
1 Farm Stream edge 2.33AB" 0.98AB" 1.35A° 15.9
2  Farm Stream edge 3.66AB¢ 1.66AB P¢ 2.00A? 96.2
3  Farm Stream edge 6.17A2b 2.58A2 3.59A2 190.3
4 Farm Stream edge 3.16AB? 0.83AB® 2.33A° 180.2
5 Farm Stream edge 2.41AB°€ 0.86AB® 1.55A° 151.1
6 Forest Stream edge 4.67AB? 0.37B? 4.30A2 115.4
7 Park Stream edge 1.968bc 0.12B" 1.84A2b 112.7
1 Farm Stream bed 2.58AP 1.12AB® 1.46A2 142.8
2  Farm Stream bed 2.43A¢ 1.18A¢ 1.25A¢2 203.5
3  Farm Stream bed 4.50A % 2.31A2 2.19A% 177.0
4 Farm Stream bed 2.56A° 0.74AB® 1.81A° 89.7
5 Farm Stream bed 2.41A¢ 1.41AB® 1.01A® 323
6 Forest Stream bed 2.33A¢° 0.38B® 1.95A2 39.6
7 Park Stream bed 1.58A¢ 0.73B® 0.85A° 47.3




forest and park samples. This suggests that P release from agricultural soils is largely in the most available
orthophosphate form while organic P can be a significant portion of P loss from non-agricultural soils.

P fractionation

Total soil P (TP) concentrations were higher in the farm samples compared to park or forest
samples for the field and riparian edge zones only. Stream edge and stream bed sediments of the park
samples had higher TP concentrations than the farm sites despite lower WEP, indicating storage of P in
less mobile forms (Fig. 3). In contrast to WEP, proportions of P,and P;were similar in the soil samples and
P, dominated TP in the stream sediments. The soil samples from the forest sites were dominated by P,,
likely reflecting the increased organic matter inputs at this site. However, the stream sediments were also
dominated by P; indicating that at all sites P, fractions were more mobile. This is in agreement with many
field trials showing greater mobility of dissolved organic P forms (e.g. Leytem et al. 2002).

Soil P fractionation showed that NaOH-P; which corresponds to Fe-bound P was the dominant
inorganic fraction in the farm and forest soils across the majority of landscape positions. This is in
accordance with the large volume of studies documenting P fractionation of manures agricultural soils
(Negassa and Leiweber, 2009). However in the park soils CBD-P;, corresponding to reductant soluble P was
the largest fraction (Table 2). For the organic fraction NaOH-P,, which corresponds to that bound within
organic matter, was dominant across all land uses in the field and riparian soils but CDB-P,, corresponding
to reductive soluble P,, dominated in the farm and park sediment samples. The high concentrations of
both Pi and Po in the reductive soluble form highlights the potential for P release following a change in
redox conditions. This will be particularly significant in the stream sediment samples.

In-stream water quality
Water samples were taken from sites where the stream was flowing at the time of sampling. Due
to only one sample being taken it was not possible to carry out statistical analysis but TDP concentrations
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Table 2: Soil P fractionation results showing mean concentrations of inorganic and organic P in the various fractions across land use and landscape zones. Results in bold

highlight the dominant forms.

Land use
Zone NH4CI-Pi  NHA4CI-Po NHA4F-Pi NH4F-Po NaOH-Pi NaOH-Po CBD_Pi CBD-Po H2S04-Pi H2S04-Po Total

Farm Field 85.3 215 185.7 85.6 369.3 252.5 124.4 145.7 88.7 26.8 8
Park Park 17.6 13.9 20.3 15.0 50.3 122.5 85.0 59.2 53.1 25.4 2
Forest Forest 5.4 15.7 5.6 23.7 29.1 185.3 26.0 39.0 11.3 7.3 ‘
Farm Riparian edge 333 8.1 112.4 27.0 233.8 169.8 100.1 142.9 43.8 13.8 5
Park Riparian edge 12.2 7.9 9.8 17.7 47.5 166.2 62.3 120.2 19.0 29.3 1
Forest Riparian edge 4.8 17.5 3.6 21.4 31.3 169.5 24.0 36.0 125 5.7 ‘
Farm Riparian middle 14.5 5.4 42.8 19.5 106.4 133.2 78.5 121.2 30.0 19.8 2
Park Riparian middle 14.4 7.1 8.9 10.4 66.2 121.2 78.3 65.0 80.1 32.0 2
Forest Riparian middle 3.2 9.1 3.5 13.8 40.0 153.2 25.7 30.2 13.5 22.4 .
Farm Stream bank 9.1 3.4 38.0 11.2 99.7 1241 89.8 155.4 40.6 13.4 2
Park Stream bank 7.8 4.4 8.2 7.7 61.8 91.3 73.0 146.2 132.5 26.5 2
Forest Stream bank 2.6 5.5 3.6 9.4 41.7 110.8 66.0 109.8 21.7 11.2 1
Farm Stream edge 6.6 3.1 31.2 7.9 128.0 83.7 89.6 108.5 61.9 115 3
Park Stream edge 4.8 1.7 12.2 3.9 126.0 47.0 118.0 123.7 258.7 31.3 5
Forest Stream edge 6.4 2.7 6.8 5.5 76.5 84.5 69.3 32.3 116.9 9.0 2
Farm Stream bed 7.0 1.5 26.1 6.0 164.9 73.6 84.0 166.3 83.5 18.6 3
Park Stream bed 10.7 2.8 12.8 49.5 145.2 51.0 153.0 122.0 367.8 60.5 6!
Forest Stream bed 1.8 1.3 3.9 3.6 11.9 46.6 72.7 18.2 74.4 19.3 1




were largely similar across the 4 farm sites sampled and the park site despite differences in WEP (Fig. 4).
However, while DRP dominated the TDP concentration in the farm sites this fraction was much lower in
the park sites where DOP made up 81 % of the TDP. This reflects the differences in WEP fractionation
found across these sites and highlights the importance of considering DOP forms for water quality.

Conclusions and Recommendations:

Soil P concentrations in the agricultural soils of Goose Creek were elevated compared to forest
and urban park soils. This was also the case for WEP concentrations, which were very high in the field soils
of three of the five farm sites. As WEP provides an indication of the potential for P release to water this
suggest that these soils will be contributing a significant amount of P to runoff. However, there was a large
reduction in all soil P forms and WEP along the transect and there was no significant difference in the
stream sediments between the different land uses indicating that the long-term agricultural management
at these sites has not lead the enrichment of P the streambed sediments compared to the natural forested
headwaters.

Interestingly, the field soils at two of the five agricultural sites showed much lower WEP
concentrations, which were not significantly different to that from the park or forest soils. This did not
reflect differences in M3-P concentrations and may be a reflection of soil properties. Additionally, the
stream bank samples across all sites had very high M3-P concentrations but low WEP. This indicates that
M3-P is not a good indicator of the potential risk for P loss questioning the validity of its use for nutrient
management. The results also indicated that the organic P fraction can contribute to total WEP especially
in the forest and park sites. This was also reflected in the stream water data where DRP in the park site
sample was very low and the DOP fraction was large and there was little difference in total dissolved P
between the farm and park sites. While DRP is the most readily available form for algal uptake, DOP can
be utilized via enzyme hydrolysis (Whitton et al. 1991) and can negatively impact water quality. Hence,
we would recommend that both soil and water sampling strategies should consider both inorganic and
organic P fractions.

Phosphorus fractionation showed differences in the dominant P fractions across the different land
use and landscape types. Importantly, the stream sediments tended to be dominated by the reductive
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Figure 4: Total dissolved P concentration in stream samples at the time of soil and sediment sampling. Figures show the %
of total WEP in the inorganic (top) and organic (bottom) fraction respectively.



soluble P form. This has implications for water quality as a change in redox state could mobilize this large
store of P, therefore it is important to ensure that these sediments do not become anoxic.
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Executive Summary:

Rice agriculture uses 35% of Arkansas’s irrigation water and contributes to the unsustainable
depletion of the state’s water resources. New rice irrigation methods introduced to reduce field methane
emissions are also known to reduce overall water use, but their influences on field evapotranspiration
(ET) are unclear. The main method under development is known as Alternate Wetting and Drying (AWD),
which floods the soil and then allows a strategic dry down; such cycles can occur 4-5 times per growing
season. In this study we measure ET from a pair of adjacent production-scale fields under conventional
and AWD irrigation. We measure with the micrometeorological eddy covariance technique and generate
gap-filled seasonal estimates using a moving-window statistical approach. To our surprise the AWD field
generated slightly higher ET fluxes than the neighboring conventionally flooded field (603 mm and 584
mm, respectively). The AWD field also sustained greater plant heights, leaf area indices, and harvest
yields, so we suspect that the greater plant biomass and root activity generated higher transpiration rates
even when the field surface was not flooded. This experiment is still underway, as the field irrigation
strategies will be swapped for the 2016 growing season and additional modeling of the sites’ full water
balances are under development. The implications of the initial findings are (1) potential reductions in
evaporation are balanced by increases in transpiration, (2) there may be increased “green water use
efficiency” with AWD irrigation, and (3) a full water balance that includes infiltration, percolation, and
irrigation on- and off-flows must be conducted to clarify water savings. If the water savings can be
validated in pilot studies in different Mid-South regions, AWD could be implemented on a larger scale as
a regular practice.

Introduction:

Rice agriculture uses 35% of Arkansas’s irrigation water and contributes to the unsustainable
depletion of the state’s water resources (Reba et al., 2013; ANRC, 2014). A variety of new irrigation
methods have been proposed to reduce water use, including alternate wetting and drying (AWD), which
floods the soil and then allows a strategic dry down before reflooding to save water, reduce the risk of
the straighthead disability on rice, and decrease field methane production. This method reduces
greenhouse gas emissions by more than 70% (including from methane, which is produced under water-
saturated conditions and is 20-30 times more potent as a greenhouse gas than CO;) (Rogers et al., 2013;
Linquist et al., 2015). In other settings (e.g., India), AWD is known to reduce overall irrigation applications
by 30-50% (Sudhir-Yadav et al., 2011) so it should have the effect of preserving ground- and surface-water
resources and related pumping and application costs.

The driving hypothesis of the research is that the AWD-field’s ET is significantly less than the
conventionally irrigated field. A proportionally greater fraction of the AWD-field’s ET is expected to be in
the form of transpiration rather than evaporation as there are fewer periods where the surface is flooded.
We focused the project on carefully quantifying the ET flux that is most closely associated with plant water
use and yield production. This term is also likely to be the largest consumptive portion of the water
balance and has direct relevance to the field’s energy balance, carbon balance, and greenhouse gas



production. We measure and compare seasonal ET from two fields under AWD and conventional
management strategies using the quasi-continuous eddy covariance approach, as described in the
methods.

Methods:
Site description

Two privately farmed, adjacent rice fields (34° 35' 8.58" N, 91° 44' 51.07" W) located just outside
of Humnoke, Arkansas, were used for this research. Each field is approximately 350 m wide from north to
south and 750 m long from east to west (i.e., 26 ha). One field was managed with continuous flooding (CF)
during the rice growing season and the other with AWD management practice, facilitating a direct
comparison of the two types of systems with minimal spatial separation. Both sites have been zero-graded
and thus have approximately 0% slopes. Although only about 12.3% of total rice in Arkansas is grown on
zero-graded land, this practice is growing due to the potential to save water in the fields (Hardke, 2015),
to serve as a carbon-offset credit option (ACR, 2014) and to receive credit in the Natural Resources
Conservation Service’s Environmental Quality Incentives Program (EQIP). The sites are not tilled and are
flooded for two months in winter for duck habitat and hunting. The dominant soil mapping unit in this
area is a poorly-drained Perry silty clay. The fields were drill-seed planted April 7 (AWD) and April 8 (CF),
given an irrigation flush on May 3 (CF) and May 4 (AWD), and given a permanent flood on May 16 (CF) and
May 18 (AWD). The AWD field dried on June 5 and received 3 more dry periods through the summer.

Approach

A combination of different measurement and modeling methods are employed to constrain the
ET flux at different temporal scales ranging from hourly to seasonal. The primary environmental drivers
of ET, such as wind speed, radiation, and plant canopy cover, were collected for later use in a process-
based model to enable better predictions of ET. Water table height was measured at both fields using
Ceramic Capacitive Pressure Level Transmitters (Keller USA) as piezometers in shallow dip-wells.

This proposal is situated within a larger research project aimed to measure year-round land-
atmosphere fluxes of energy, water vapor, CO, and CH, from a side-by-side pair of rice fields. The fluxes
were measured using the micrometeorological eddy covariance technique (Baldocchi et al., 1988). For
these measurements, we installed a 3D sonic anemometer (CSAT3, Campbell Scientific, Inc, USA), an open-
path CO,/H,0 infared gas analyzer (LI-7500A, LI-COR Inc., Lincoln, NE, USA), and an open-path CH,4
analyzer using wavelength modulation spectroscopy (LI-7700). The instruments were installed on towers
at each field, at 2 m above the soil surface (AWD field) and 2.2 m (CF field). Sensor data was recorded at
20 Hz and through an Analyzer Interface Unit (LI-7550) with a LI-COR SMARTflux™ automated processing
system. Each tower, equipped with eddy covariance sensors and other low frequency biometeorological
sensors, was located at the north end of its field, approximately in the center by east and west. The
dominant southern winds enabled a data collection footprint over each targeted fields. The high-
frequency data collected from the eddy covariance system was processed and quality controlled using
EddyPro software (v. 6.1, LI-COR Inc., Lincoln, NE, USA) to compute half-hourly estimates of CH4, CO,, ET,
and sensible heat flux from each field. Typical eddy covariance corrections were also applied within this
software. The ET fluxes were gap-filled using a standard moving-window lookup table approach that
correlates flux magnitudes to common meteorological variables (Reichstein et al., 2005; Reddyproc online
tool).

Supplemental measurements of plant stature were determined through plant height, leaf area
index (LAI), and harvest yield. The plant height was measured at ten arbitrarily chosen locations per field
per measurement period. The LAl was measured with the LAI-2200 (LI-COR), a non-destructive plant



canopy analyzer operating via canopy light interception and radiative transfer modeling. This
measurement was performed at five arbitrarily chosen locations per field per measurement period with
at least 10 m from the field edge to avoid potential distorting effects of horizontal penetration of light
into the canopy. A GPS-enabled John Deere GreenStar 3 2630 Harvest Monitor was attached to the
harvesting combine and recorded location-based wet and dry harvest weights from both fields, with
measurements spaced approximately 2 m apart.

Results:

The project successfully measured the evapotranspiration flux (presented as latent heat, Figure
1) using the eddy covariance method. Due to wind direction requirements, instrument reliability, and
measurement quality checking, 27% and 30% of the half-hour measurements were used for the
Conventional and AWD fields, respectively. There was greater data coverage in the key growing season
period from June 1 to July 17. The gap-filling model, across the entire data period, predicts observed LE
fluxes with root mean square error of 39.8 W m2 and coefficient of determination (r?) of 0.94.

The key finding is that there is slightly greater evapotranspiration from the AWD field than the
Conventional field during the 2015 growing season. This difference — from 1477 to 1431 MJ m’%; or 603
mm to 584 mm — is slight but consistent with plant conditions (detailed below) that seem to enhance
growth at the AWD field. This response may be due to the strong ability of rice roots to pull water from
the soil matrix and from the relatively short length of each dry down period (approximately 11 days).
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Figure 1: Preliminary data from the REWARD 104B project. The evapotranspiration flux, presented continuously (gap-filled; solid
lines) and cumulatively (dashed lines) in latent energy terms, in two comparison rice fields from the 2015 growing season in
Humnoke, AR. Fluxes are measured by eddy covariance and gap-filled using an automated moving window, semi-empirical look-
up method based on flux responses to meteorological conditions (Reichstein et al., 2005). Contrary to the hypothesis in the
REWARD project, the AWD field generates slightly higher ET than the conventionally-flooded field (Cumulative LE flux was 1477
MJ m2 from the AWD field and 1431 MJ m from the Conventional Field). The AWD field dried down from June 11-23 and four
more times afterward. Water table height measurements were installed only in mid-May though most of the previous period
was characterized by a subsurface water table.



The plants grown under AWD conditions were taller and had higher LAl by the end of the season
(Figure 2). The AWD field was consistently either more full or equal to the conventional field at each
measurement point. LAl follows the characteristic shape with a late-season decline in canopy thickness
after grain filling. The greater plant heights and LAl in the AWD field may have contributed to the slightly
higher harvests from the AWD field as well (Figure 3). The likely implication is that the AWD field had
greater transpiration as a proportion of total ET than the conventionally flooded field.

Conclusions and Recommendations:

The shift from conventional flooding to AWD irrigation will change the regional water balance,
inducing alterations in field rates of evaporation, transpiration, infiltration, and runoff. Local
measurements of these terms will help in managing water demand and irrigation scheduling as well as
constrain estimates of groundwater recharge, the regional meteorological energy balance, and
downstream water quality. Uncertainty in the field application and water use of rice is explicitly noted in
the Arkansas Water Plan as a challenge for adequately predicting state water supplies. The project findings
help to reduce uncertainty in the evapotranspiration from rice fields and will have significant and practical
effects in the state’s water management.

This research provokes several intriguing questions for follow-up investigations. The first effect
was similar rates of ET due to the preponderance of transpiration in the vertical water budget. This result
will be modeled and investigated in further detail in an ongoing USGS project. Future plans also include
switching the field treatments so that the AWD field will receive conventional flooding and vice versa, to
account for potential changes in drainage or soil moisture wicking between the fields. If the water savings
can be validated in pilot studies in different Mid-South regions, AWD could be implemented on a larger
scale as a regular practice.
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Figure 2: (a) Plant height and (b) leaf area index presented as responses to growth degree days (GDD). The final meausrement
point is 12 August 2015. GDD is measured cumulatively from 8 April 2015. Error bars indicate standard deviations from the
mean over 10 (height) and 5 (LAI) measurements. A quadratic curve, forced through the origin, is shown for convenience (the
coefficient of determination — r? value — for this relationship is provided in legend).



{B) CF, Dry yleld distribution
mean: 9.42 + 0,82 tonne ha™’

CF Eddy tower

Dry Yield 1500 ¢

3100 - tonne ha™

12.5
116 1000
10.5
9.5
500 -
g 2900 a5
9 7.5
£ 0 a8 10 12
t —— - b Y
o Bl §5 . *F h i e -Fg-'
Z 5700 - ﬁéﬁ"ﬂ o i :%;_. {c) AWD, Dry vield distribution
'_8 oy b i . q00Q . ™ean: 983 + 1.02 tonne ha™
o .
-l
2500 500
. . L 0
2300
3100 3300 3500 3700 3900 8 10 12

Dry yield, tonne ha™

Local Easting, m
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Executive Summary:

Understanding optical water quality and particulate matter dynamics in recreational rivers is
integral in shaping management strategies that maintain ecosystem health, perceived value and appeal,
and regional economic significance in a changing environment. Suspended sediment strongly governs
optical water quality and is ecologically, as well as aesthetically significant. Increased sedimentation is
among the most widespread concerns in rivers throughout the world and a dominant portion of
sediment transport occurs in response to increased flow. Thus, it is important to characterize particulate
matter concentrations in rivers under changing flow conditions. This study sought to describe optical
water quality and particulate concentration dynamics as flow recedes after precipitation events in five
ecologically and recreationally significant rivers of the southwestern Ozarks. We found that relationships
between particulate concentrations and hydrograph variables were dependent upon catchment
characteristics and discrete events were highly variable. We determined optical water quality measures
to be strongly correlated to particulate matter concentrations, and may be well suited for describing
variability in the absence of more intensive monitoring programs.

Introduction:

Increased sedimentation is among the most widespread pollutant concerns in US rivers, and is
the primary cause of impairment in Arkansas rivers and streams (US EPA 2008). Suspended sediment in
rivers is greatly influenced by land use within the watershed, and can transport adsorbed pollutants
downstream (Dodds and Whiles 2010). Settling of suspended solids can affect benthic organisms and
may alter the structure and productivity of the biotic community (Ryan 1991). The exact relationship of
suspended sediment concentration with discharge can vary based on sediment availability, precipitation
intensity, distance of sediment source, seasonality (Williams 1989), shear strength and sediment
cohesiveness (Ji 2008), and catchment soil type (Sander et al. 2011). Accurately characterizing variability
in sediment concentrations and transport in individual rivers often requires costly, time-consuming, and
intensive, long-term monitoring, and is arguably impractical in many cases.

Optical water quality (OWQ) is defined as the suitability of water for its role in the environment
as governed by its composition and the geometric structure of the light field (Tyler 1978, Kirk 1988).
Because it involves the behavior of light in both the visible and photosynthetically available part of the
electromagnetic spectrum, OWQ is relevant to water resources management (Julian et al. 2013). OWQ
can affect water temperature, fish predation, predator evasion, photosynthesis, and many other
biogeochemical reactions (Wetzel 1975, Kirk 2011). Suspended particulate matter is often the dominant
influence on OWQ in rivers [Davies-Colley and Close, 1990; Davies-Colley and Smith, 2001; Julian et al.,
2008]. Inorganic and organic particulates influence OWQ differently based on size, shape, and
composition (Davies-Colley et al. 1993, Gippel 1995), and inorganic clay particles can carry substantial
amounts of adsorbed organic matter (Brown and Matthews 2006). Although light availability is a
fundamental factor in river ecology, few studies exist that characterize US rivers in terms of OWQ (Julian
et al. 2008).

We undertook this study seeking to characterize variability in suspended particulate matter and
OWAQ as flow recedes after precipitation events in five ecologically and recreationally significant rivers of
the southwestern Ozarks in Arkansas, US (Table 1).



We also sought to investigate how the organic proportion of particulate matter is related to
specific aspects of the hydrograph. Our measured water quality (WQ) variables were chosen to allow us
to test the following hypotheses (Figure 1): (1) precise relationships between particulate matter
concentrations and discharge will be event specific because particulate matter concentrations in rivers
are sensitive to many environmental influences; (2) the organic proportion of suspended sediment will
increase with time after the event peak because of diminishing carrying capacity for heavier inorganic
sediments and more favorable conditions for sestonic organisms; And (3) measurements of horizontal
black disk visibility and particulate matter concentrations will respond similarly to events, and may serve
to generally describe the dynamics as flow recedes in rivers, in the absence of more intensive water
guality measurements, because OWQ is strongly governed by scattering by suspended particulates.

Table 1. Catchment characteristics of study rivers; land use from US Geological Survey [2011], and Level Il ecoregion from
Woods et al., [2004]; BM, Boston Mountains; OH, Ozark Highlands

Gage # Area (km?) U{;z;\n FT‘;.E)St Agriculture (%) Ecoregion
Buffalo R. 07056000 2147 3.2 83.2 11.2 BM, OH
lllinois R. 07195430 1489 16.4 28.5 52.9 OH
Kings R. 07050500 1365 4.1 67.5 25.8 OH
Mulberry R. 07252000 966 3.2 90.7 4.7 BM
War Eagle Cr. 07049000 681 4.6 58.0 35.1 OH

Suspended particulate matter
=

Visual clarity__.---""""" =

- -
- -

*"_ = “Organic proportion
of suspended matter

Time =~
Figure 1. Hypothesized model of relationships of suspended particulate matter and optical water quality as flow recedes in
individual hydrograph events



Methods:

This study took place between March and October in 2014 and 2015. Site visits were initiated by
precipitation events and occurred at intervals of approximately once every 1 to 3 days as flow receded.
For each sampling event, we calculated the average of three consecutive in-situ black disk visibility
measurements (Davies-Colley 1988) (BDV). We collected grab samples, transported them on ice, and
stored them at ~4° C at the lab at the University of Arkansas, where they were processed within 48
hours. We filtered up to 1L of water through Whatman GF/F 47 mm glass fiber filters for analysis of total
suspended solids concentration (TSS) (APHA 2005). We filtered samples through Whatman GF/F 25 mm
glass fiber filters for analysis of suspended chlorophyll a (Schl) and particulate nitrogen (PN)
concentrations. We used a Turner Designs Model 7200 Trilogy™ flourometer fitted with an absorbance
module to measure Schl by the acid digestion method following overnight extraction with acetone
(APHA 2005). We used a Thermo Scientific™ Flash 2000 Organic Elemental Analyzer to measure PN
(APHA 2005).

All data were logio transformed to account for the tendency for log-normal distributions in
water quality data (Hirsch et al. 1991), with the exception of proportion data, which were logit
transformed as recommended by Warton and Hui [2011]. All statistical tests were performed on the
transformed data with a critical alpha level of 0.05. We tested each WQ variable for equality of variance
among the rivers with Levene’s test and performed an omnibus one-way analysis of variance (ANOVA)
to determine whether differences in means of measured parameters existed among the rivers. Upon
detection of significant differences in those parameters with equal variance among rivers, we performed
multiple comparisons using Tukey’s honestly significant difference (HSD) test in the “stats” package in R
(R Core Team 2015), which automatically adjusts for unequal sample sizes. Parameters for which we
determine unequal variance among rivers, we used the Games-Howell method to test pairwise
differences because it is less sensitive to variance inequalities (Games and Howell 1976). We manually
identified the peak of each flow event and calculated the length of time after the hydrograph peak (TAP)
for each sample. We critically analyzed relationships between particulate concentrations and Q/TAP
using Pearson’s correlation coefficient and ordinary least squares regression (OLS). We further examined
differences in regression relationships among select well-represented events to compare event-specific
dynamics within rivers using OLS and analysis of covariance (ANCOVA). We assumed the inorganic
contribution to PN was negligible [following Beusen et al., 2005] because PN is greatly dominated by
proteins, amino acids, and nucleic acids (Meybeck 1982, Dodds and Whiles 2010), and is well correlated
to particulate organic carbon at TSS concentrations of our study (Ittekkot and Zhang 1989). Therefore,
we examined OLS regressions of the ratio of PN to TSS versus TAP to investigate changes in the relative
organic content of TSS as flow receded.

Results:

Summary statistics for each measured variable are shown in Table 2. Correlation and ANCOVA
results are summarized in Table 3. Analyses of variance indicated significant differences (p < 0.05)
among rivers in means for every measured WQ variable (Figure 2). Hydrographs and relationships
between particulate matter concentrations and discharge for each river are presented in Figures 3-7.

The ratio of PN to TSS was significantly and positively correlated with TAP in BUF, ILL, and KIN,
indicating that suspended particulates were more dominated by organic matter with as flow receded.
However, even though reduced velocity and increased clarity as flow receded may have offered more
favorable conditions for sestonic algae proliferation, we observed declining concentrations of Schl as
flow receded. We suggest sloughing of periphyton from upstream during high flow obscured our ability
to observe whether an increase in sestonic primary productivity contributed to PN:TSS. Regressions in
MUL and WAR indicated slopes were not significantly different from zero (Figure 8), suggesting no
relationship between organic proportions of suspended particulate matter with TAP. ANCOVA of the
relationship of PN:TSS with TAP only resulted in significant interaction effects among the two events in



Table 2. Geometric mean and (multiplicative standard deviation) for measured water quality variables

Black disk visibility Total suspended Suspended Particulate nitrogen
(m) solids (mg/L) chlorophyll-a (ug/L) (mg/L)
Buffalo R. 1.01 (2.22) 7.79 (2.75) 1.14 (1.94) 0.09 (1.91)
Illinois R. 0.42 (1.78) 33.48 (2.51) 2.70 (2.84) 0.22 (2.04)
Kings R. 0.90 (2.09) 9.99 (3.85) 1.43 (2.31) 0.11 (2.50)
Mulberry R. 0.71 (1.63) 10.81 (1.72) 0.46 (1.96) 0.09 (1.54)
War Eagle Cr. 0.61 (2.15) 15.78 (2.73) 1.38 (1.84) 0.13 (1.81)

Table 3. Correlation coefficients for relationships among measured variables and discharge (Q; m3/s) and time after event
peak (TAP; d); text in bold indicates regression slope was significantly different from zero (p < 0.05); asterisk indicates
ANCOVA returned significant interactions among discrete hydrograph events

BDV (m) TSS (mg/L) Schl (ug/L) PN (mg/L) PN:TSS
Buffalo R.
Q -0.02* 0.16 0.01 0.04* -0.30
TAP 0.72* -0.77 -0.22 -0.79* 0.57
lllinois R.
Q -0.84 0.89 0.68* 0.87 -0.68
TAP 0.64 -0.69* -0.69 -0.72 0.49
Kings R.
Q -0.80 0.80* 0.66 0.67* -0.80*
TAP 0.72* -0.78* -0.72 -0.69* 0.79
Mulberry R.
Q -0.51 0.48 -0.37 0.09 -0.68*
TAP 0.80 -0.70 -0.72 -0.90 -0.06*
War Eagle Cr.
Q -0.81* 0.81 0.19 0.66 -0.65
TAP 0.53 -0.51 -0.43 -0.57 0.14

MUL, suggesting the slope of this relationship is not event-specific in the other four rivers. The slopes of
PN:TSS versus TAP in MUL and WAR were not significantly different than zero and demonstrated
substantial scatter.
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Figure 2. Boxplots of logio transformed variables; a) discharge (m3/s); b) black disk visibility (m); c) total suspended solids (mg/L),
d) suspended chlorophyll a (ug/L); e) particulate nitrogen (mg/L); letter above boxed indicate statistical differences in pairwise
comparisons (p < 0.05)

Water quality variables in BUF and MUL were either weakly or not significantly correlated with
discharge over the complete study period (Table 3). In discrete events, the intuitive relationship of
increased particulate matter with increased discharge was much more evident in BUF. Interaction
effects in BUF indicated the magnitude of response in BDV and PN were dependent upon the specific
hydrograph event. However, the lack of significant interactions among discrete events in MUL (Figure 7)
may be because WQ measures were generally less variable than in BUF. While both rivers are
dominated by forested land, the difference between BUF and MUL was likely related to other catchment
characteristics. The MUL watershed exists fully within the Boston Mountains ecoregion, and the steeper
gradient underlain by sandstone means event flow is likely more dominated by overland flow, with little
groundwater-surface water interaction (Adamski et al. 1995). Whereas, while the headwaters of BUF are
in the Boston Mountains ecoregion, the Ozark Highland ecoregion dominates the BUF watershed, and
the karst geology promotes substantial groundwater contributions to flow (Adamski et al. 1995),
effectively diluting the storm response.
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Alternately, in ILL, KIN, and WAR, discharge was relatively strongly correlated with WQ variables,
except Schl in WAR. Interaction effects among well-sampled events were more common in KIN (Figure
5) than in ILL and WAR. It appeared that variability in event magnitudes and antecedent conditions of
discrete events in ILL and WAR did not influence relationships between particulate concentrations and
discharge as strongly as they did in KIN. Agricultural and urban land use are dominant contributors to
excessive nutrient concentrations in surface waters (Carpenter et al. 1998), and agriculture is a principle
source of sediment pollution in the US (Waters 1995). We suspect our observations in ILL are likely a
result of a drainage area in nearly 70% agricultural and urban land use, with point and nonpoint source
nutrient pollution (Green and Haggard 2001). WAR has the second greatest agricultural land use (35%)
of the rivers in our study, and the second highest geometric mean concentrations of TSS, Schl, and PN
(Figure 2; Table 2). It is reasonable to suggest our results in ILL and WAR are characteristics of their
watersheds, as they are less prone to natural temperance provided by the forested landscape, i.e.,
sediment storage and release thresholds (Walling 1999) and riparian nutrient uptake (Peterjohn and
Correll 1984). Our observations in these five rivers suggest as the watershed is more influenced by
agricultural practices in the Ozarks, particulate concentrations may be more tightly coupled to event
discharge. The event-specific relationships we hypothesized were generally only observed in BUF and
KIN.

Measurements of OWQ can be an effective, affordable method for characterizing sediment
concentrations in rivers (Davies-Colley et al. 2014). BDV may be a viable surrogate for TSS when
developed with localized models [Ballantine et al., 2014]. Our results suggest that OWQ measurements
may be valuable in characterizing receding flow dynamics in the absence of resources supporting more
precise chemical and physical characterization. However, because we did not observe patterns of event-
specific control in BDV relationships analogous to those of particulate matter concentrations (as
assessed by ANCOVA), BDV may not demonstrate similar sensitivities as concentration measurements as
flow recedes in Ozark rivers. Though perhaps not generally a strong control, colored dissolved organic
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matter can influence BDV, especially following precipitation events (Julian et al. 2008). Characteristics of
dissolved organic matter in the Ozarks can also vary with land use (Brisco and Ziegler 2004). We
propose, when general characteristics of particulate matter concentrations as flow recedes in rivers of
the Ozarks are sufficient, BDV can be an inexpensive and adequate tool. Nevertheless, more research is
needed to determine sensitivities of simple optical methods to particle size distributions, organic
proportions, and dissolved components in rivers before considering them for detailed characterizations.

Conclusions and Recommendations:

This study helps to describe variability in OWQ in five recreational rivers of the Ozarks in
Arkansas. Outdoor recreation in Arkansas generates approximately $10 billion in consumer spending
each year (Outdoor Industry Association 2012). Visitors to the Buffalo National River alone spent over
$56 million in 2014 (National Park Service 2015). OWQ is particularly relevant in human perceptions of
water quality (Smith et al. 1995, House and Fordham 1997, West et al. 2015) and judgments of
suitability for recreation (Egan et al. 2009, Smith et al. 2015). Given the popularity of kayaking and



canoeing in the Ozarks, many recreationalists will be likely to experience the rivers during periods of
increased flow, thus offering a social application for the increased frequency of water quality
assessment that may be facilitated using OWQ methods. We acknowledge, however, that recreational
visitation also occurs during lower flow conditions, especially in summer. Our study was limited to
approximately the first eight days after peak flow. Future work could extend this time period to
characterize sediment concentration and OWQ dynamics as event flow shifts to base flow conditions in
recreational rivers of the Ozarks.

A better understanding of particulate dynamics and their influence on OWQ may be valuable to
water resources management in recreational rivers of the US. Our study showed that particulate matter
concentrations in rivers in the southwestern Ozarks are temporally variable, and precise relationships
with the hydrograph can differ based upon catchment characteristics, and among specific events within
the same catchment. This study also demonstrated the relatively weak relationship of particulate matter
concentrations with discharge in less-disturbed rivers, and more predictable relationships in agricultural
watersheds. Because OWQ measurements can be useful for characterizing general particulate matter
dynamics, we suggest they be considered for more frequent monitoring in scenic and ecologically
sensitive rivers as climate and land use changes continue to take effect in the region.

References:

Adamski, J. C., J. C. Petersen, D. A. Freiwald, and J. V Davis. 1995. Environmental and hydrologic setting
of the Ozark Plateaus Study Unit, Arkansas, Kansas, Missouri, and Oklahoma: Water-Resources
Investigations Report 94-4022.

APHA. 2005. Standard methods for the examination of water and wastewater. 21st edition. American
Public Health Association, American Water Works, Washington, D.C.

Ballantine, D. J., A. O. Hughes, and R. J. Davies-colley. 2014. Mutual relationships of suspended
sediment, turbidity and visual clarity in New Zealand rivers. Sediment Dynamics from the Summit
to the Sea, 11-14 December 2014 New Orleans, LA.

Beusen, A. H. W., A. L. M. Dekkers, A. F. Bouwman, W. Ludwig, and J. Harrison. 2005. Estimation of
global river transport of sediments and associated particulate C, N, and P. Global Biogeochemical
Cycles 19.

Brisco, S., and S. Ziegler. 2004. Effect of solar radiation on the utilization of dissolved organic matter
(DOM) from two headwater streams Effects of solar radiation on the utilization of dissolved
organic matter ( DOM ) from two headwater streams. Aquatic Microbial Ecology 37:197-208.

Brown, A. V, and W. J. Matthews. 2006. Stream Ecosystems of the Central United States. Page 817 in C.
E. Cushing, K. W. Cummins, and G. W. Minshall, editors. River and Stream Ecosystems of the World.
University of California Press, Berkeley, CA.

Carpenter, S., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, and V. H. Smith. 1998. Nonpoint
pollution of surface waters with phosphorus and nitrogen. Issues Ecol. 8:1 —12.

Davies-Colley, R. J. 1988. Measuring water clarity with a black disk. Limnology and oceanography
33:616-623.

Davies-Colley, R. J., D. J. Ballantine, S. H. Elliott, A. Swales, A. O. Hughes, and M. P. Gall. 2014. Light
attenuation - a more effective basis for the management of fine suspended sediment than mass
concentration? Water Science and Technology 69:1867-74.

Davies-Colley, R. J., and D. G. Smith. 2001. Turbidity, Suspended Sediment, and Water Clarity: A Review.
Journal Of The American Water Resources Association 37:1085-1101.

Davies-Colley, R. J., W. N. Vant, and D. G. Smith. 1993. Colour and Clarity of Natural Waters: Science and
Management of Optical Water Quality. Ellis Horwood, New York.

Davies-Colley, R. J., and M. E. Close. 1990. Water colour and clarity of New Zealand rivers under
baseflow conditions. New Zealand Journal of Marine and Freshwater Research 24:357-365.

Dodds, W., and M. Whiles. 2010. Freshwater Ecoogy: Concepts and Environmental Applications of
Limnology. Second edition. Elsevier, Amsterdam.



Egan, K. J.,, J. A. Herriges, C. L. Kling, and J. A. Downing. 2009. Valuing Water Quality as a Function of
Water Quality Measures. American Journal of Agricultural Economics 91:106-123.

Games, P. A, and J. F. Howell. 1976. Pairwise multiple comparison procedures with unequal N’s and/or
variances: A Monte Carlo study. Journal of Educational Statistics 1:113-125.

Gippel, C. J. 1995. Potential of turbidity monitoring for measuring the transport of suspended solids in
streams. Hydrological Processes 9:83-97.

Green, W. R., and B. E. Haggard. 2001. Phosphorus and nitrogen concentrations and loads at Illinois
River south of Siloam Springs, Arkansas, 1997-1999. Water-Resources Investigation Report 01-
4217. Little Rock, AR.

Hirsch, R. M., R. B. Alexander, and R. A. Smith. 1991. Selection of methods for the Detection and
Estimation of Trends in Water Quality. Water Resources Research 27:803—-813.

House, M. A., and M. Fordham. 1997. Public perceptions of river corridors and attitudes towards river
works. Landscape Research 22:25-44,

Ittekkot, V., and S. Zhang. 1989. Pattern of particulate nitrogen transport in world rivers. Global
Biogeochemical Cycles 3:383—-391.

Ji, Z.-G. 2008. Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries. John Wiley &
Sons, Hoboken, NJ.

Julian, J. P., R. J. Davies-Colley, C. L. Gallegos, and T. V Tran. 2013. Optical water quality of inland waters:
A landscape perspective. Annals of the Association of American Geographers 103:309-318.

Julian, J. P.,, M. W. Doyle, S. M. Powers, E. H. Stanley, and J. A. Riggsbee. 2008. Optical water quality in
rivers. Water Resources Research 44:1-19.

Kirk, J. T. O. 1988. Optical water quality-What does it mean and how should we measure it? Journal-
Water Pollution Control Federation 60:194-197.

Kirk, J. T. O. 2011. Light and Photosynthesis in Aquatic Environments. Third edition. Cambridge
University Press, Cambridge.

Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers.

National Park Service. 2015. 2014 Buffalo National River Visitor Spending Effects: Economic
Contributions to Local Communities, States, and the Nation. Natural Resource Report
NPS/NRSS/EQD/NRR-2015/947.

Outdoor Industry Association. 2012. The Outdoor Recreation Economy: Arkansas. Boulder, CO.

Peterjohn, W. T., and D. L. Correll. 1984. Nutrient Dynamics in an Agricultural Watershed: Observations
on the Role of A Riparian Forest. Ecology 65:1466—1475.

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria.

Ryan, P. A. 1991. Environmental effects of sediment on New Zealand streams: A review. New Zealand
Journal of Marine and Freshwater Research 25:207-221.

Sander, G. C,, T. Zheng, P. Heng, Y. Zhong, and D. A. Barry. 2011. Sustainable soil and water resources :
modelling soil erosion and its impact on the environment. Pages 45-56 19th International Congress
on Modelling and Simulation, Perth, Australia, 12—-16 December 2011.

Smith, A. J., B. T. Duffy, and M. A. Novak. 2015. Observer rating of recreational use in wadeable streams
of New York State, USA : Implications for nutrient criteria development. Water Research 69:195—
209.

Smith, D. G., G. F. Croker, and K. A. Y. McFarlane. 1995. Human perception of water appearance 1.
Clarity and colour for bathing and aesthetics. New Zealand Journal of Marine and Freshwater
Research 29:29-43.

Tyler, J. E. 1978. Optical Properties of Water. Page 416 in W. Driscoll and W. Vaughan, editors.
Handbook of Optics. McGraw-Hill, New York.

US EPA. 2008. Arkansas Water Quality Assessment Report. https://ofmpub.epa.gov/waters10/
attains_state.control?p_state=AR.

US Geological Survey. 2011. GAGES Il: Geospatial Attributes of Gages for Evaluating Streamflow
summary report.



Walling, D. E. 1999. Linking land use , erosion and sediment yields in river basins. Hydrobiologia
410:223-240.

Warton, D. I, and F. K. C. Hui. 2011. The arcsine is asinine: the analysis of proportions in ecology.
Ecology 92:3-10.

Waters, T. F. 1995. Sediment in Streams: Sources, Biological Effects and Control. American Fisheries
Society, Bethesda, Maryland.

West, A. O, J. M. Nolan, and J. T. Scott. 2015. Optical water quality and human perceptions: A synthesis.
WIREs Water 3:167-180.

Wetzel, R. G. 1975. Limnology. W.B. Saunders, Philadelphia.

Williams, G. P. 1989. Sediment concentration versus water discharge during single hydrologic events in
rivers. Journal of Hydrology 111:89-106.

Woods, A. J., T. L. Foti, S. S. Chapman, J. M. Omernik, J. A. Wise, E. O. Murray, W. L. Prior, J. B. J. Pagan, J.
A. Comstock, and M. Radford. 2004. Ecoregions of Arkansas (color poster with map, descriptive
text, summary tables, and photographs). Reston, VA.



inuation of analysis for host-specific viruses in water samples collected from select 303(d) listed streams in the lllinois Rive

Continuation of analysis for host-specific viruses in water
samples collected from select 303(d) listed streams in the
lllinois River Watershed

Basic Information

Continuation of analysis for host-specific viruses in water samples collected from select
303(d) listed streams in the Illinois River Watershed

Project Number:|2015AR368B
Start Date:|3/1/2015
End Date:|2/29/2016
Funding Source:|104B

Congressional
District:

Research Category:|Water Quality

Title:

Focus Category:|Non Point Pollution, Surface Water, Water Quality

Descriptors:|None

Principal
Investigators:

Publication

Kiristen Elizabeth Gibson

1. Gibson, K.E., J.M. Jackson, S.L. Lampman, J.B. Carter, T.J. Moore, and G. Almeida, 2015, Use of
Coliphage and Enteric Viruses for Fecal Source Tracking in Impaired Streams in the Illinois River
Watershed, in International Symposium on Waterborne Pathogens, Savannah, GA.

Continuation of analysis for host-specific viruses in water samples collected from select 303(d) listedl stream



Arkansas Water Resources Center 104B Program — March 2015 through February 2016

Project Title: Continuation of Analysis for Host-Specific Viruses in Water Samples Collected from
Select 303(d) Listed Streams in the Illinois River Watershed
Project Team: Kristen Gibson, Department of Food Science, University of Arkansas

Executive Summary:

In Northwest Arkansas, several streams within the Illinois River Watershed (IRW) have been
placed on the 303(d) list for impaired waterbodies. In 2012, there were 13 streams—including 5 reaches
of the Illinois River—on the 303(d) list for the IRW, and of these, 8 (62%) were due to elevated
Escherichia coli levels. Moreover, the source of fecal contamination is listed as unknown for all but one
stream. The objectives of our first study were to: 1) collect and process water samples from 303 (d)
listed streams within the IRW and 2) determine likely dominant sources of fecal contamination over
multiple seasons including “off-seasons” (e.g., when recreational activity is minimal). From May 2013 to
April 2014, 462 samples were collected — approximately 20 samples from each sampling site (n = 23).
Each sample was analyzed for E. coli. In addition, male-specific, coliphage (FRNA and FDNA) were
analyzed by USEPA Method 1602 followed by isolation of individual plaques (up to 15 from each sample)
and PCR to determine FDNA or FRNA as well as genogroup (G). For detection of additional markers of
fecal contamination (i.e. host specific enteric viruses), polyethylene glycol (PEG 8000) precipitation was
performed on 200 ml portions of samples (n = 38) determined to have elevated levels of coliphage (i.e. >
50 PFU). During the eleven-month sampling period, most streams had E. coli levels exceeding the 126
MPN/100mI cut-off; however, levels seemed to be lower from November 2013 to March 2014. Data also
indicate a lack of correlation between levels of E. coli and coliphage (r> = 0.279). A large library of
coliphage (n = 2,164) was archived for which a subset were analyzed and typed in order to glean more
information about potential fecal source. During the second part of the study, 1,334 coliphage plaque
isolates have been analyzed by PCR and reverse transcription (RT) PCR to determine FDNA or FRNA
status—1,276 and 58, respectively. The FRNA isolates belong primarily to Gl (n = 39) followed by GllI (n
=9), Gll (n = 4), and GIV (n = 2) with GI FRNA associated primarily with animals. Analysis of 38 samples
by PCR and RT-PCR for presence of host-specific and pathogenic enteric viruses revealed the following:
human adenovirus (n = 38), human polyomavirus (n = 7), bovine enterovirus (n = 4), and porcine
sapovirus (n = 0). Overall, this study generated much needed information on the levels of E. coli and
coliphage in impaired waterbodies due to fecal contamination in the IRW.

Introduction:

In Northwest Arkansas, several streams within the lllinois River Watershed (IRW) have been
placed on the 303(d) list for impaired water bodies. In 2012, there were 13 streams—including 5 reaches
of the lllinois River—on the 303(d) list for the IRW, and of these, 8 (62%) were due to elevated
Escherichia coli levels. Moreover, the source of fecal contamination is listed as unknown for all but one
stream. Current standard methods for the evaluation of microbial water quality involve the use of
generic bacterial indicators such as enterococci, fecal coliforms, and E. coli. However, these indicator
bacteria do not provide enough information to determine the source of the fecal contamination or the
actual risk to public health. In order to help prevent these streams from remaining on the 303(d) list,
identification of the primary origins/sources of fecal pollution is needed.

In 2013, the AWRC 104b Program funded our study titled “Fecal Source Characterization in
Select 303(d) listed Streams in the lllinois River Watershed with Elevated Levels of Escherichia coli”. The
objectives of the proposed study were to: 1) collect and process water samples from 303(d) listed
streams within the IRW and 2) determine likely dominant sources of fecal contamination over multiple
seasons including “off-seasons” (e.g., when recreational activity is minimal). Male-specific, sSRNA



coliphage viruses (FRNA) and host-specific enteric viruses were the primary microbial targets for
determination of likely fecal contamination. We generated a large library of coliphage (n = 2,164) of
which a subset were analyzed and typed in order to glean more information about potential fecal
source. Analysis of a subset of samples by PCR and RT-PCR for presence of host-specific and pathogenic
enteric viruses was also proposed. Therefore, the primary purpose of this project was to complete the
analysis of the coliphage isolates as well as analyze the samples with elevated levels of coliphage for the
presence of host-specific viruses.

Methods:

Analysis of coliphage. For selection of FRNA and FDNA coliphage, E. coli strain C3000 host was
utilized. Following quantification by the single agar overlay (SAL) procedure, individual plaques (up to 15
from each sample) were isolated using a sterile micropipette tip, resuspended in 500 ul of SM buffer,
and stored at -80°C until analysis. For nucleic acid extraction, coliphage plaque suspensions (up to 6 for
each sample) were incubated at 94°C for 3 min. Following extraction, the samples were analyzed by
conventional PCR using FDNA specific primers. Those samples that were negative for FDNA were then
analyzed by reverse transcription PCR (RT-PCR) using FRNA specific primers (Table 1). Once confirmed
FRNA, the samples were analyzed to determine the specific FRNA genogroup as described by Friedman
et al. (2011).

Analysis of host-specific markers. For detection of additional markers of fecal contamination,
polyethylene glycol (PEG 8000) precipitation was performed on 200 ml of samples (n = 38) determined
to have elevated levels of coliphage (i.e. > 50 plaque forming units). The resulting pellet was
resuspended in disodium phosphate and total nucleic acid (RNA and DNA) extraction was performed as
describe in Lambertini et al. (2008). The extracted nucleic acid was analyzed by real time PCR for the
presence of human polyomaviruses, bovine enteroviruses as well as porcine and human adenoviruses

(Table 1).
Table 1. Target microorganisms for determination of likely fecal source by PCR and RT-PCR.

Target microorganism Primary Origin  Reference Method
male-specific ssRNA coliphage Gl and GIV animal

male-specific ssSRNA coliphage Gll and GlII human Friedman et al. (2011)
human polyomavirus JC and BK human McQuaig et al. (2009)
human adenovirus human Jothikumar et al. (2005)
bovine enterovirus bovine Jiménez-Clavero et al. (2005)
porcine adenovirus porcine Wolf et al. (2010)

Statistical Analysis. All statistical analyses were performed using JMP® Pro 12.0 on logio
transformed values of E. coli and total coliphage concentrations. Thus far, the relationship between E.
coli and coliphage concentrations has only been determined and analyzed. Future analyses will include
nonparametric tests to compare the proportion of each FRNA genogroup and logio quantities of E. coli in
stream water samples under various physical water quality conditions (Ogorzaly et al., 2009) as well as
paired t tests to compare the logipgeometric means of the density data grouped by land use impact, if
known. A chi-square or Fisher exact test will be used to evaluate potential significance between
frequencies of coliphage and other target microorganism detection and proportions of FRNA
genogroups among land use categories. Additional analyses may include examination of bivariate
associations with sample data as described in Cole et al. (2003). Briefly, “0” will be entered when FRNA
or other target microorganisms are below the detection limit while “1” will be entered for presence of



microorganisms. Based on the statistical tests described above, the strength of association of the
probable fecal source and presence of target microorganisms will be determined.

Results:

The results for levels of E. coli and coliphage at each sampling location were reported previously.
Briefly, during the eleven-month sampling period, most streams had E. coli levels exceeding the 126
MPN/100ml cut-off; however, levels seemed to be lower from November 2013 to March 2014. Based on
bivariate analysis and a linear fit model, the relationship—predictive value—between E. coli and total
coliphage concentrations is relatively weak (r? = 0.379) although the relationship is statistically
significant (p < 0.0001) meaning significantly different from a R-squared value of zero.

Of the 462 samples collected—20 from each sampling site—2,154 coliphage were archived for
analysis. Out of 2,154 coliphage, 1,334 were analyzed to determine whether FDNA or FRNA coliphage
resulting in 1,276 (95.5%) and 58 (4.5%), respectively. Overall, 18 sampling sites had at least one positive
for FRNA; however, 60% of the FRNA positive samples were from Clear Creek, Muddy Fork, and Little
Osage Creek. Moreover, 71% of FRNA coliphage were obtained from 3 sampling dates corresponding to
3.6 to 8.9 cm rain events within 0 to 4 days preceding sample collection. Last, FRNA genogroup typing
indicated a higher prevalence of animal-associated fecal pollution (71%) as opposed to human-
associated (29%). With respect to host-specific viruses, analysis of 38 samples by real time PCR and RT-
PCR for presence of host-specific and pathogenic enteric viruses revealed the following: human
adenovirus (n = 38), human polyomavirus (n = 7), bovine enterovirus (n = 4), porcine adenovirus (n = 0).

Conclusions and Recommendations:

Based on the data for coliphage, there are a few observations that can be made. First, there is a
possible association between precipitation events and the presence of FRNA coliphage in receiving
waters. This potential association may be due to run-off from urban areas as well as agricultural areas
as 71% of FRNA were in animal-associated genogroups. However, most of the FRNA coliphage were
detected in Clear Creek, Muddy Fork, and Little Osage Creek with the former known to be impacted by
urban run-off and the latter two could be impacted more so by municipal discharge. More research is
needed to understand these potential associations. It is important to note that previous research has
demonstrated that the four FRNA genogroups “trend” toward specific fecal sources as indicated in Table
1 (Cole et al., 2003); however, animal associated genogroups (Gl and GIV) do not distinguish between
wildlife and livestock which is a limitation of this source tracking tool.

Second, FDNA dominated the coliphage population in the samples. One reason for this is
possibly due to the selection of E. coli C3000 host for detection of coliphage which is used primarily for
somatic coliphage as opposed to male-specific, FRNA coliphage. There is an E. coli host that is used for
detection of FRNA specifically, but we had decided not to use this host for various reasons. The other
reason for the dominance of FDNA in the coliphage population could be that FDNA has been shown to
comprise a high proportion of male-specific coliphage population in municipal wastewater and
discharge, bovine and swine wastes (Cole et al., 2003) as well as environmental waters (Ravva et al.,
2015). There may be opportunity to evaluate the predictive value of FDNA coliphage when paired with
land use data.

Last, human adenoviruses were present in all samples (n = 38) that had elevated levels of
coliphage (> 50 plaque forming units). This is interesting since human adenoviruses have been proposed
as a virus indicator due to their ubiquity in human-associated wastewaters; however, it is still surprising
that 100% of these samples were positive which warrants further investigation.



Overall, these data provide much needed information on the levels of coliphage in impaired
waterbodies due to fecal contamination in the IRW. The dominance of FDNA coliphage could be
indicative of a greater human influence in the watershed compared to animals if land use data is also
considered during more in depth analysis of the data. Conversely, animal-associated FRNA coliphage
were more prevalent within the 58 FRNA coliphage identified. In addition, based on these data, there is
a possibility that human adenoviruses could serve as a valuable indicator of human fecal pollution in
watersheds; however, more research is needed to confirm this association.
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Executive Summary:

Assessing and predicting ecological alteration is an important management strategy as streams
continue to be impacted by the conversion of forested land to agricultural and urban areas. Relating
environmental factors such as flow regime with ecological processes provide a decision-making tool to
support water management. | sought to assess ecosystem metabolism in two dominant natural flow
regimes, groundwater flashy and runoff flashy flow types, in minimally-impacted (>85% forested
catchment area) Ozark streams to characterize connections between biological activity and hydrology.
Study streams consisted of three groundwater flashy streams and three runoff flashy streams. | collected
dissolved oxygen and temperature data every fifteen minutes with YSI DS5X multiparameter sondes via
the single-station method from April 2015 to March 2016 to determine annual rates of gross primary
production (GPP), ecosystem respiration (ER), and net ecosystem metabolism (NEM). Reaeration
coefficients for metabolism estimates were calculated via surface renewal models for each stream.
Discharge, total phosphorus and total nitrogen were measured monthly throughout the study. Annual
gross primary production, ecosystem respiration, and net ecosystem metabolism were similar between
flow regimes (p=0.27; p= 0.45; p=0.72), but exhibited a high degree of variation in all three metrics over
the study period. Though not statistically significant, groundwater flashy streams exhibited greater gross
primary production as well as more negative ecosystem respiration, which may indicate that groundwater
systems are slightly more productive than runoff systems. Net ecosystem metabolism ranged from -394
to 174 mg 0, m?2 y?! across streams, but values in runoff flashy streams varied more widely than
groundwater streams. Discharge was similar between flow regimes (p= 0.55), as were total nitrogen
concentrations (p=0.13). Gross primary production and ecosystem respiration tended to be higher in
groundwater flashy streams, likely due to stable base flows during dry summer periods as well as less
turbid water. Net ecosystem metabolism was negative in both flow regimes, but both autotrophic and
heterotrophic streams were present in both flow classes, highlighting that flow class characteristics and
land cover may not be the most important predictors of differences in ecosystem production in these
systems. Rather, these data indicate a “mosaic” of carbon dynamics across northern Arkansas. Further
work to discern flow regime differences based on hydrologic characteristics measured in the field are
needed to confirm flow class model predictions, and to what degree intermittency may influence
variability in ecosystem metabolism rates.

Introduction

The Arkansas Natural Resources Council is in the process of updating the state water plan. The
goal of the plan is to provide a framework for the long-term sustainable use for the health, well-being,
environmental, and economic benefit of Arkansas (ANRC 2014). The plan was conceived with little data
on flow-ecology relationships that can provide more accurate estimates of the water resources needed
to maintain the biological integrity and ecosystem function of state waters. Future state water plans will
benefit from studies examining how hydrology and landscape changes influence Arkansas stream biota
and ecosystem processes.

Assessing and predicting ecological alteration is an important management strategy as streams



continue to be impacted by the conversion of forested land to agricultural and urban areas. Anthropogenic
land use alters physical characteristics of streams as well as ecosystem function (Allan 2004, Poff et al.
2006). Relating environmental factors such as flow regime with ecological processes provide a decision-
making tool to support water management (Poff et al. 2010). Several natural flow regime categories exist
for streams within the Ozark forested biome (Leasure et al. 2016, Fig.1) that may result in variation in
ecosystem function within this biome. It is necessary to examine the extent of variation in ecosystem
function explained by flow classification within reference forested streams before assessing the effects of
land use change on these systems. Therefore, | propose to examine flow-ecosystem function
relationships within two predominant flow classes (runoff flashy and groundwater flashy) in the Ozark
forested biome streams that can be used in future projects as a basis to compare stream function in
altered landscapes within these flow regimes.

Whole-stream metabolism is a measure of primary production and ecosystem respiration that
serves as an interface between water quality and ecosystem characteristics such as carbon availability,
nutrient uptake rates, and trophic structure (Dodds 2007). Metabolism is driven by a suite of factors, such
as light and nutrients, which can be influenced by changes in the landscape (Bernot et al. 2010). The
indirect and direct susceptibility of metabolism to land use change makes it a good metric for assessing
impacts at the ecosystem level. Additionally, daily metabolism can be vary temporally due to changes in
light levels, organic matter inputs, algal biomass, and hydrology (Roberts et al. 2007). Annual metabolism
integrates this variability and estimates are greatly dependent upon the frequency of daily measurements;
less frequent measurements can result in erroneous annual metabolism budgets for a given stream
(Roberts et al. 2007). The large dependence of these annual budgets on flow timing and amounts suggests
that they will differ significantly across differing natural flow regimes within the same biome. While others
have examined daily metabolism in Ozark streams, these studies were short in duration, likely missing
patterns or variation in metabolism that would be useful in characterizing natural Ozark forested stream
function.

The objective of this study was to assess ecosystem metabolism under two dominant natural flow
regimes in Ozark forested streams. Stream metabolism was calculated from measures of primary
production and ecosystem respiration from which inferences regarding overall ecosystem carbon and
nutrient dynamics may be made. Annual gross primary production was expected to be higher in streams
exhibiting groundwater flashy flow regimes, as groundwater streams never completely dry. The other
dominant flow regime in Northwest Arkansas, runoff flashy, dries several days to weeks of the year,
leading to the demise of the algal community in areas of no flow. Thus, annual gross primary production
was predicted to be lower in runoff flashy streams given that the algal community dried and required
recolonization. | predicted that both stream types would be net heterotrophic, with ecosystem respiration
outpacing primary production, given that all streams in the proposed study were forested and thus
received annual subsidies of leaf litter every autumn.

Methods:

This study took place in six minimally-impacted (> 85% forested area in the catchment) streams
in Northwest Arkansas. Three streams per flow type were selected from groundwater flashy and runoff
flashy flow regimes. These two natural flow regimes were spatially clustered within the Ozark Highlands
and Boston Mountains ecoregions, respectively. Four streams were located upstream of USGS gaging
stations. Discharge was measured monthly using the mid-section method.



Dissolved oxygen and temperature were measured every 15 minutes by Hydrolab DS5X
multiparameter sondes (Hach Company, Loveland, CO) from April 2015 to February 2016 via the single-
station method. Stream metabolism was calculated based on diel changes in dissolved oxygen and
temperature measurements according to Bott (2006). Reaeration coefficients were calculated via the
surface renewal model method. Preliminary corrections for groundwater contributions to reaches
receiving appreciable inputs were made according to Hall and Tank (2005) by measuring dissolved oxygen
in water at discernible upwellings as well as discharge down the reach to determine springwater gains
and losses from springs to the sonde. We measured total nitrogen by automated cadmium reduction on
a Lachat Quikchem 8500 (Hach Company, Loveland, Colorado). Total phosphorus was measured using the
ascorbic acid method. (APHA 2005)

T-tests were utilized to determine differences in nutrients, discharge, primary production,
respiration, and metabolism between flow classes. Regression analysis was employed to examine
relationships between discharge and net ecosystem metabolism.

Results:

Groundwater streams and one runoff stream, Murray Creek, did not dry for any time throughout
the study period. However, two streams modeled as runoff flashy streams dried for over one month, from
September 24" to November 6%, 2015.

Discharge measured across all streams ranged from 0.4 to 1.48 m3/s, with groundwater streams
exhibiting an average discharge of 0.88 (+/- 0.32) m3/s and runoff streams exhibiting an average discharge
of 0.66 (+/- 0.10) m3/s. Discharge was similar between flow regimes (p=0.55).

Across all streams, total gross primary production (GPP) over the duration of the study ranged
from 134 to0 530 g O, m2yl. GPP did not differ between flow regimes (p=0.27). Mean GPP in groundwater
streams was 344 (+/- 95) g 0, m? y’!, while mean GPP in runoff streams was 203 (+/- 55) g O, m?2y™.
Ecosystem respiration (ER) varied from -54 to -912 g O, m? y}, and was also similar between both flow
regimes (p=0.45). Mean respiration was -464 (+/- 224) g O, m2 y! in groundwater streams and -238 (+/-
145) g 0, m2 ylin runoff streams. Three streams exhibited positive net ecosystem metabolism, indicating
an autotrophic system, while three streams yielded negative, or heterotrophic, metabolism (Table 1);
however, these were not demarcated by flow class. Streams exhibited a high degree of within-class
variation- groundwater systems exhibited total net ecosystem metabolism from -378 to 29 g O, m2 vy},

Table 1. Summary of sites and parameters measured over the course of the study, from April 2015 to late February 2016

GPP ER NEM Discharge TP TN
Flow Class Site g0, m?2y?! gO,m?2y! gO,m2y! md/s ug/L  mg/L
Runoff Big Piney 130 -524 -394 0.49 3.28 0.04
Runoff Little Piney 310 -136 174 0.85 2.69 0.05
Runoff Murray 169 -55 114 0.65 5.52 0.12
Groundwater Sylamore 247 -259 -12 1.48 6.36 0.23
Groundwater Roasting Ear 534 -912 -378 0.76 10.00 0.45

Groundwater Spring 250 -221 29 0.4 12.45 1.15



with an average of -120 (+/- 129) g 0, m2 y'%. Runoff streams yielded a range of metabolism from -394 to
174 g O, m? y'l, averaging -35 (+/- 180) g O, m y (Figures 1, 2). Net ecosystem metabolism was not
related to discharge across streams (p=0.70, R?=0.04) (Figure 3).

Primary production, respiration, and metabolism exhibited similar seasonal trends across flow
regimes throughout the study timeline. Gross primary production peaked in late summer (August to
September), declined following abscission, and began to increase once more in January. Ecosystem
respiration was highest in the months following abscission (October to December), but remained low and
stable the rest of the year in runoff streams while groundwater streams tended to exhibit greater and
more variable ecosystem respiration throughout the year. Over the year, metabolism in runoff flashy
systems was more variable than groundwater streams.
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Figure 1. Gross primary production (GPP), ecosystem respiration (ER), and net ecosystem metabolism (NEM)
in runoff (white boxes) versus groundwater (gray boxes) flashy streams.
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Figure 4. A) Mean total phosphorus (+/- 1 SE) and B) mean total nitrogen (+/- 1 SE) in runoff vs. groundwater flashy
streams.

Total phosphorus was higher in groundwater streams (p= 0.04), though phosphorus levels were
low across sites, averaging 9.6 (+/- 1.77) pg/L in groundwater flashy streams and 3.8 (+/- 0.86) ug/L in
runoff flashy streams. Overall, total phosphorus levels fell between 2.7 and 12.4 ug/L (Figure 4A). Total
nitrogen was similar between flow classes (p= 0.13) ranging from 0.04 to 1.2 mg/L across systems.
Groundwater flashy streams revealed total nitrogen concentrations of 0.61 (+/- 0.1) mg/L while runoff
flashy streams yielded 0.07 (+/- 0.01) mg/L (Figure 4B).

Conclusions and Recommendations:
Two streams that fell under the runoff flashy classification according to model predictions dried
for three weeks longer than model criteria for that flow class. This indicates that these streams may



actually fall under the intermittent runoff flow class, but given that my observations were made over only
one year and flow class analyses utilized a long period of record (at least 50 years for reference gages used
in the model), more work is needed to equivocally reject the original classification of these two streams.
Further, both streams are dominated by runoff sources, which still allows for analysis of differences based
on dominant flow sources. It is important to note, however, that more field measurements are needed
to confirm model classifications, especially in headwaters streams, where the resolution of data used in
flow regime classification was low.

While not statistically significant, gross primary production as well as ecosystem respiration tended to be
greater in groundwater streams, which may be due to stable flows that sustain algal biomass during
periods of little to no rainfall. Additionally, groundwater streams appear to allow more light to pass
through; | observed a greenish tint in runoff flashy streams that makes the stream water nearly opaque
in some areas (mainly pools). This is likely a byproduct of the karst inherent to the Boston Mountains
ecoregion and not anthropogenic sediment pollution upstream, but is an important consideration given
that this phenomenon tends to lower primary production in these systems. It is worth noting that
differences in gross primary production and ecosystem respiration may indeed exist between
groundwater flashy and runoff flashy regimes, but were obscured by low sample size (N=6) and study
duration. It is possible that potential differences between flow classes may exist over interannual time
scales, and that the full scope of variation in primary production and respiration inherent in each flow
regime was not captured by my sample size.

| observed similar patterns in timing of peak primary production and ecosystem respiration
throughout the study, though the magnitude and exact timing of maxima, minima, and variation in these
metrics exhibited flow class- specific trends. This may be an artifact of ecoregion differences in the timing
of abscission and leaf out. Future work will include repeated measures statistics to further explore
potential temporal trends and differences in primary production, ecosystem respiration, and net
metabolism.

Runoff flashy streams exhibited greater variation in metabolism rates over the course of the
study, though data for both flow types highlight the high degree of variation inherent in ecosystem
function across classifications. Proximal and/or distal factors not directly attributable to flow regime or
immediately adjacent land cover are likely driving metabolism rates, perhaps in ways that are more site-
specific than flow class or ecoregion-specific alone. Importantly, streams of the Ozark Highlands and
Boston Mountains are inherently distinct; impacts to one system, even within the same flow regime and
land cover category, may have vastly different effects on downstream habitats and biota.

Interestingly, nutrient levels were higher in groundwater flashy streams than runoff flashy
streams. Both flow classes included streams that had been subject to past agriculture, but groundwater
systems may be especially susceptible to higher concentrations of legacy nutrients, though nutrient levels
were low across all sites.

| can provide no “rules of thumb” for managing these streams based on net ecosystem
metabolism within the context of flow regime, as Northern Arkansas streams represent a mosaic of carbon
uptake and transport. However, this work provides a reference for future evaluation of ecosystem



function within a flow regime framework, which is important for establishing regional and national
environmental flow standards. These efforts are also helpful for comparing urban and agricultural systems
to forested streams to ascertain human alteration of stream function and water quality. Importantly, this
work reveals that level of intermittency rather than water source may be an important factor governing
the amount of inherent variation in ecosystem metabolism across systems in an ecoregion.
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Executive Summary:

Stream anthropogenic nutrient enrichment can cause instream and downstream problems of
excess algal growth, which can constrain the recreational use of streams and reduce stream biodiversity
(Millennium Ecosystem Assessment 2005, Evans-White et al. 2013). Elevated nutrients in streams can
increase algal growth and community composition promoting taxa that are a concern for public health
(Dodds and Welch 2000). A dose- or stressor-response relationship between nutrient levels and stream
benthic algae is being developed by Arkansas Department of Environmental Quality (ADEQ) in accordance
with Arkansas’ Regulation No. 2 narrative, but the study will not measure grazer activity; grazers can be
important determinants of stream benthic algal biomass and production. Specifically, some of the
variation in the relationship between nutrients and benthic algae may be explained by grazer activity
(Stevenson et al. 2012). Intense grazing pressure by benthic algivores, such as stonerollers and crayfish,
may decrease the slope of the relationship between nutrients and algae, thus dampening the magnitude
of the effect of nutrient enrichment in streams. Our objective was to examine how large-bodied abundant
grazers in Ozark streams may modify the dose-response relationship between nutrients and algal biomass
in Ozark Highland streams; these data can be considered when the state is developing their numeric
nutrient standards. Stonerollers and crayfish were collected by backpack electrofishing at fifteen sites in
the Ozark Highlands ecoregions of Oklahoma and Arkansas. Spatial repeated-counts sampling was
conducted on each stream segment. Biomass of stonerollers was estimated using length to dry mass
relationships from all sites, and site-specific biomass was estimated. Crayfish species and numbers were
recorded. Linear regression was used to examine stoneroller, crayfish, and nutrient effects on algal
biomass measured in a separate study during the same season at each site. Linear regression of residuals
of chlorophyll a to nutrients against macrograzer estimates were not statistically significant. However,
accurate stoneroller abundances are difficult to obtain due to limitations of current methodology.
Manipulative experiments excluding grazers may be more effective at estimating large-bodied grazer
effects in these study systems. Further considerations should be given to development of novel
abundance sampling methods such as prepositioned areal electrofisher which may allow for increased
precision of sampling by decreasing sampling biased introduced by fishes moving out of sampling area.

Introduction:

Nutrient pollution to streams can cause instream and downstream problems of excess algal
growth, which can constrain the recreational use of streams and reduce stream biodiversity (Millennium
Ecosystem Assessment 2005, Evans-White et al. 2013). In the Ozark Highlands, stream nutrient
concentrations can be directly related to the land use practices, such as agriculture, poultry farming, and
cattle farming (USGS 2007, Stevenson et al. 2012) within the watershed that contribute non-point
nutrients and to urban point sources, such as sewage treatment plants (Haggard 2010, White et al. 2014).
Elevated nutrients in streams can increase algal growth and shift the algal community composition
towards taxa that are a concern for public health or reduce the recreational value of the water body
(Dodds and Welch 2000). Algae can often be limited by N, P, or sometimes both (Dodds et al. 2002). Local



studies have suggested that nutrients can be a determining factor of algal biomass in Ozark Highland
streams and have suggested that algal growth is limited by N in Ozark streams (Power et al. 1988, Lohman
et al. 1991, Lohman and Jones 1999). Therefore, increasing concentration of N, P, or both may result in
increased algal biomass and eutrophication (Lohman et al. 1992, Lohman and Jones 1999, Dodds and
Welch 2000, Dodds et al. 2002). The US Environmental Protection Agency (USEPA) requires US states and
tribal nations to develop freshwater numeric nutrient criteria for nitrogen (measured as Total Nitrogen)
and phosphorus (measured as Total Phosphorus); Arkansas is currently gathering data to develop these
criteria.

In 2000, the USEPA provided possible national nutrient criteria standards for 13 Aggregate
Ecoregions (Arkansas belonging to IX, X, IX) divided into smaller level Il Nutrient Ecoregions. These were
based off of 75th percentile nutrient concentration distributions for each region that may not account for
finer spatial-scale regional variations (Haggard et al. 2013), which could result in numeric criteria that are
perceived as too conservative or not conservative enough. Additionally, these standards rely solely on
statically methodology and do not consider biological data. Therefore, many states have begun the task
of gathering additional data to aid in the development of regional nutrient criteria standards based on
scientific methods that can include assessment of algal biomass (USEPA 2013). A dose- or stressor-
response relationship between nutrient levels and stream benthic algae is being developed by Arkansas
Department of Environmental Quality (ADEQ) in accordance with Arkansas’ Regulation No. 2 narrative.
Relationships between nutrient concentrations and algae in this region can be variable (Stevenson et al.
2012, Haggard 2010) because other factors in addition to nutrient concentrations can affect benthic algal
concentrations. Specifically, some of the variation in the relationship between nutrients and benthic algae
may be explained by grazer activity (Stevenson et al. 2012).

Intense grazing pressure by benthic algivores (i.e., grazers) may decrease the slope of the
relationship between nutrients and algae, thus dampening the magnitude of the effect of nutrient
enrichment in streams. Algal grazing by stonerollers (Campostoma spp.) and crayfish (Orconectes spp.)
can be imp- ortant determining factors on algal biomass in Ozarks streams. High stoneroller densities can
elicit grazing pressures that affect algal biomass and community composition (Power et al.1988) and can
substantially decrease algal biomass in high nutrient streams (Steward 1987). Crayfish are important
grazers in Ozark streams and are important components of energy flow within streams (Whitledge and
Rabeni 1997, Flinders and Magoulick 2007), and reported to consume much or more of the detrital and
algal materials then other benthic macroinvertebrates. Stable isotope studies have provided evidence
suggesting that crayfish diet may be more dependent on algae than the stoneroller diet and crayfish and
stoneroller experimental manipulations have suggested that each grazer can reduce stream benthic algal
biomass at natural densities (Evans-White et al. 2001), which emphasizes the importance of studying
grazer pressure by both grazer types. Our objective is to examine how grazers may modify the dose-
response relationship between nutrients and algal biomass in Ozark Highland streams. This dose-
response relationship can be considered when the state is developing their nutrient standards.

Hypotheses

Stoneroller and crayfish abundance will explain the variation in regression models predicting algal
biomass from nutrient concentrations. Nutrients will have a positive effect on algal biomass. Streams with
greater crayfish and stoneroller abundances will have lower than expected algal biomass based on the
estimated regression line with nutrients.



Methods:
Site Description

Fifteen sites were sampled in the Ozark Highlands Nutrient Ecoregion of Eastern Oklahoma and
Northwest Arkansas, which is held within aggregate Ecoregion XI. Five of the sites were located in the
Eucha-Spavinaw Watershed and ten where located in the Illinois River Watershed. Land use data is known
Arkansas streams, but is not as well documented in Oklahoma streams. (Table 1). Sites were selected
along a phosphorus gradient with concentrations of Total Phosphorus (TP) ranging from 0.08-0.16 mg/|
and Nitrite-Nitrate (NO,NOs-N) ranging from 0.15-8.3 mg/I. Sites were scouted prior to sampling to assess
sizes that would allow for backpack electrofishing sampling, sites chosen were small to medium sized
streams with an average width ranging from 4-18 m, average depth ranging from 0.11-.282 m, and average
velocity ranging from 0.08-0.42 m/s.

Collection

Sampling was conducted from 5-29 August 2015. The experimental unit being the stream segment
(n=15) with three spatially-distinct riffles. Spatially-replicated count sampling was done whereby a
minimum of three riffles were sampled at each stream segment and five quadrates (5 m?) were sampled
within each riffle. A modified-quantitative kick-net and backpack electrofishing (Smith-Root LR-24)
method was used to sample grazer populations (Flinders and Magoulick 2005, Magoulick and Lynch 2015).
Specifically, the methods were modified to increase the area sampled to an area of five meters-square. A
three-person crew composed of one person equipped with a backpack electrofishing unit and two kickers,
started five meters upstream of a seine (3mm mesh) held five meters in width by two people
perpendicular to flow. The electrofishing crew slowly moved downstream to the seine while dislodging
the substrate and actively electrifying the water which allowed fish and crayfish to be dislodged and

Table 1: List of all study sites within Ozark Highlands level Il Nutrient Ecoregion. Five streams were sampled from the Ecuha-
Spavinaw abbreviated Eucha, and ten found in the Illinois River watershed. Land use data is well known for Arkansas, but not for
Oklahoma. Site ID will be used throughout the report as appreciation in all tables and figures that follow. Land use data provided

by University of Arkansas’ Center for Advanced Spatial Technologies (2006).

Stream SiteID State = Watershed Latitude Longitude Land Use
Illinois River ILLI1 AR Illinois 35.953990 -94.249406 61% Forest, 28% Pasture, 7% Herbacous
Evansville Creek EVAN1 OK Illinois 35.877400 -94.570586 --
Spring Creek SPRG3 oK Illinois 36.148334  -95.154753 --
Saline SALI1 OK Eucha 36.281539  -95.093206 -
Little Saline LSAL1 oK Eucha 36.284553  -95.088672 --
Spavinaw Creek SPAV1 AR Eucha 36.384845 -94.480992 46% Pasture, 47% Forest, 3% Urban
Barren Fork BARR2 oK Illinois 35.919056  -94.619319 --
Flint, Gentry FLIN1 AR Illinois 36.239731 -94.500696 53% Pasture, 35%Forest, 7% Urban
Beaty Creek BEAT1 oK Eucha 36.354951  -94.776667 --
Goose Creek GOOS1 AR Illinois 36.056029  -94.291228 56% Pasture, 26% Forest, 12% Urban
Osage Creek 0OSAG2 AR Illinois 36.221997  -94.290074 43% Urban, 36% Pasture, 13% Forest
Ballard Creek BALL1 OK Illinois 36.061371  -94.573153 --
Osage Creek 0SAG1 AR Illinois 36.265925  -94.237772 43% Urban, 36% Pasture, 13% Forest
Flint Creek FLIN3 OK Illinois 36.214540  -94.665494 --

Spring Creek SPAR1 AR Eucha 36.243673  -94.239325 43% Urban, 36% Pasture, 13% Forest




coherence into the downstream seine. Greater lengths were covered in streams where the width was
less than five meters to standardize the area sampled. All stonerollers and crayfish were collected from
the seine and put into separate five gallon buckets after each electrofishing pass. Raw count and standard
length of stonerollers as well as species and carapace length of crayfish were recorded. Substrate, flow,
depth, and width were taken at each quadrate while habitat length and electrofishing seconds were
recorded at each riffle. Chlorophyll a, ash free dry mass, and nutrient measurements were taken within
two weeks of the sampling time frame by a separate study group.

Calculating Biomass

A subset of stonerollers were retained and used to estimate length-mass relationships to
determine total population biomass (Evans-White et al. 2001). Specifically stonerollers from four sites
were used for the length-mass relationship (llli1, Ball1, Beatl, and Sprg3), which represented low, middle,
and high phosphorus concentrations along the gradient (total N=246). Stonerollers were dried at 48°C for
a minimum of 72 hours. Once removed from oven, fish were put into desiccator for minimum of 1 hour.
Fish were then weighted to the nearest 0.1mg. Length-mass relationship between natural log transformed
dried weight and standard length were then calculated and used to estimate total biomass of stonerollers
per sample reach.

Calculating Nutrient-Macrograzer Relationship

Multiple linear regression was used to examine stoneroller, crayfish, and nutrient effects on algal
biomass. First nutrients, TP, NO2NOs-N, where regressed against the natural log of chlorophyll a and the
residuals were computed. The stoneroller biomass and crayfish counts were then regressed against the
residuals from the nutrient-chlorophyll a relationship.

Results:

Count data of stoneroller and crayfish was collected at all 15 sites (Table 2) and stoneroller counts
were compared to other local studies (Table 3). Biomass relationship between length and dry mass of
stonerollers was significant (y=3.11x-12.8, R?=0.80, p<0.001). Nutrient and algae regression revealed a
medium and significant correlation (Figure 1). Regression between residuals of nutrients to stoneroller
biomass and crayfish count had low correlation coefficients and were not statistically significant (Figure
2, Figure 3).

Conclusions and Recommendations:

Linear regression showed no statistically-significant relationship between corrected residuals and
stoneroller biomass or crayfish counts (Figures 3 and 4). Although sites were sampled along a gradient,
our data did not account for the variation in algae along this gradient. Stonerollers are common in the
Ozarks and inhabit streams in high quantities. They feed in large schools ranging in size from 200-500
individuals when left undisturbed (Matthews et al. 1987). However, stonerollers are described as active
swimmers who face the current while consuming algae (Matthews 1998) which can help justify quick and
robust swimming habits (Scott and Magoulick 2006). This along with their schooling behaviors often make
them hard to sample quantitatively and can result stochastic sampling counts (Table 3). Since numerous
studies have quantified the large scale to which stoneroller consume algae (Power and Matthews 1983,
Steward 1987, Power et al. 1985, 1988, Power 1990, Evans-White et al. 2001) more effective sampling
methods need to be implemented to understand the abundances of stonerollers in streams.



Table 2: Count and relative abundance of stonerollers and crayfish captures in the Ozark Highlands Ecoregion of Oklahoma

and Arkansas.

Site ID Counts Count/m? Counts Count/m?
Campostoma sp. Orconectes sp.
ILLIZ 145 0.39 192 0.51
EVAN1 152 0.41 285 0.76
SPRG3 82 0.22 121 0.32
SALI1 26 0.07 81 0.22
LSAL1 51 0.14 376 1.00
SPAV1 78 0.21 236 0.63
BARR2 168 0.45 170 0.45
FLIN1 12 0.03 99 0.26
BEAT1 205 0.55 383 1.02
GOOS1 190 0.51 235 0.63
0OSAG2 65 0.17 163 0.43
BALL1 166 0.44 226 0.60
0OSAG1 120 0.32 370 0.99
FLIN3 35 0.09 59 0.16
SPAR1 210 0.56 281 0.75
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Figure 1: The relationship between natural log transformed chlorophyll a (mg/1) on Total Phosphorus (TP) and Nitrate-Nitrite
(NO2NO3-N). All measurement were taken within two weeks of macrograzer sampling by a separate study group. Both
significantly correlated.

Other methods for quantifying stonerollers may be more proficient such as using three pass
electrofishing, barge electrofishing, or prepositioned electrofishing method. Three pass electrofishing
method is often used in fish studies, but requires streams with smaller widths. In this method block-nets
are set up at the up-stream and down-stream portions of the sample reach in order to prohibit the
stonerollers from escaping the sampling area which prohibits large numbers of fish from escaping
(Peterson et al. 2004). This method allows for high detection of fish species, however, it was not possible
on most of the streams we sampled because the widths surpassed block-net size ranges. In situations
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Figure 2: The graph shows the residuals of chlorophyll a on Total Phosphorus (TP) and Nitrate-Nitrite (NO2NO3-N) regressed
against stoneroller biomass. The residuals are a measure of variation in chlorophyll a not explained by nutrient concentrations.
The regression between these residuals and stoneroller biomass (g) was not significant with very low R? values.
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Figure 3: The graph shows the residuals of chlorophyll a on Total Phosphorus (TP) and Nitrate-Nitrite (NO2NO3-N) regressed
against crayfish count or relative abundance. The residuals are a measure of variation in chlorophyll a not explained by
nutrient concentrations. The regression between these residuals and stoneroller biomass (g) was not significant with very low
R2value.

where the stream is too wide for standard backpack electrofishing, consideration can be given toward
barge electrofishing with robust block net set-up (Meador and Mclintyre 2003). Weaver et al. recently
proposed a method for quantifying fish using a prepositioned areal electrofisher (2014). This device is a
qguadrate which allows electrical flow and is powered by a generator. This prepositioned electrofisher
would be placed in the stream, fish would be allowed to recolonize the area, and then generator would
be turned on allowing for less biased and more precision in estimations of fish populations (Weaver et al.
2014). Future consideration should be given to other methods of sampling stoneroller abundance in
streams of middle order such as the streams sampled in our study. In addition, it is important to
understand how effective these procedures are both before and after sampling since spatial and temporal
variability in fish communities can affect population estimates (Meador and Mclntyre 2003).



Table 3: Literature and agency search of previous fish surveys. Raw stoneroller counts (not corrected from area) were
extrapolated from the studies. All data correspond to aggregate ecoregion XI, within Ozark Highlands level lll Nutrient Ecoregion
with is consistent with the our study area. Method described by Dauwalter and Edmund where greater areas were collected in
streams with higher mean standard widths. Method described by Ross et al. where at least five seine hauls were collected from
each site during the years of 1972-1981. Arkansas Department of Environmental Quality (ADEQ) follows the methods described
by EPA Rabid Bioassessment Protocol (Barbour et al. 1999).

River Counts Method Source
Big Creek, AR 610 || 721 Electrofish Dauwalter & Edmund 2003 || ADEQ 1999-2001
Brush Creek, AR 23711199 Electrofish Dauwalter & Edmund 2003 || ADEQ 1999-2001
Clear Creek, AR 383|271 Electrofish Dauwalter & Edmund 2003 || ADEQ 1999-2001
Diles Creek, AR 154 || 232 Electrofish Dauwalter & Edmund 2003 || ADEQ 1999-2001
N. Big Creek, AR 1082 || 102-707 Electrofish Dauwalter & Edmund 2003 || ADEQ 1999-2001
Long Creek, AR 4211573 Electrofish Dauwalter & Edmund 2003 || ADEQ 1999-2001
Mill Creek, AR 423 933 Electrofish Dauwalter & Edmund 2003 || ADEQ 1999-2001
Mud Creek, AR 390 728 Electrofish Dauwalter & Edmund 2003 || ADEQ 1999-2001
N. Sylamore Creek, AR 531 198 Electrofish Dauwalter & Edmund 2003 || ADEQ 1999-2001
Piney Creek, AR 53-1082 || 201 Seine || Electrofish Ross et al. 1986 || ADEQ 1999-2001
Dry Creek, AR 119 Electrofish Dauwalter and Edmund 2003
Greasy Creek, AR 257 Electrofish Dauwalter and Edmund 2003
Hampton Creek, AR 343 Electrofish Dauwalter and Edmund 2003
Tuttle Bend, AR 598 Electrofish Dauwalter and Edmund 2003
Upshaw Creek 864 Electrofish Dauwalter and Edmund 2003
Osage Creel, AR 256-713 Electrofish ADEQ 1999-2001
Spavinaw, AR 89-253 Electrofish ADEQ 1999-2001
Spring Creek, AR 220-1417 Electrofish ADEQ 1999-2001
Flint Creek, AR 535 Electrofish ADEQ 1999-2001
Sager Creek, AR 356 Electrofish ADEQ 1999-2001
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Executive Summary:

In this study, a chemiluminescence-based total N-nitrosamine (TONO) assay was adapted to
include a solid-phase extraction (SPE) step to assess the role of a biologically derived chemical as an N-
nitrosamine precursor. Specifically, the role of hydroxylamine — a key nitrification intermediate — was
assessed as a function of five sample treatments related to the TONO assay (Untreated, HgCl; only,
sulfanilamide [SAA] only, HgCl, + SAA, and HCI) in terms of TONO (measured in the aqueous phase), SPE-
TONO (measured in methanol) and NDMA by GC-FID. A series of batch reactor experiments were
performed with various combinations of 3.52 mM hydroxylamine, 35.2 mM dimethylamine (a known
NDMA precursor) and 3.52 mM monochloramine. However, several analytical interferences were
discovered, associated with excess hydroxylamine in the samples, which obscured results from the
TONO assay, GC-FID (for NDMA), and ion chromatography (for nitrite). In the aqueous phase with
dimethylamine present, hydroxylamine was catalyzed by (1) HgCl; to nitrite and NDMA and (2) HgCl, +
SAA to NDMA only, as any nitrite formed was removed by SAA. In the methanol phase, hydroxylamine
and dimethylamine were catalyzed to NDMA on the activated carbon in the SPE cartridges. However,
these experiments revealed a previously unconsidered NDMA formation pathway, in which
hydroxylamine is catalyzed to peroxynitrite (ONOO’) in the presence of dissolved oxygen and
subsequently reacts with dimethylamine to form NDMA. Recommendations are provided to guide the
design of N-nitrosamine formation pathway experiments.

Introduction:

Nitrification episodes are prevalent in chloraminated drinking water distribution systems
(CDWDSs) (Kirmeyer et al., 1995) and may exacerbate N-nitrosamine formation through the production
of hydroxylamine, a key intermediate. In the nitrification process, biological ammonia oxidation to
nitrite occurs in two steps: (1) the ammonia monooxygenase enzyme catalyzes ammonia oxidation to
hydroxylamine (NH>OH) and (2) the hydroxylamine oxidoreductase enzyme catalyzes hydroxylamine
oxidation to nitrite (Kim and Gadd, 2008). Hydroxylamine is known to react with dimethylamine,
(CH3)2NH, to form unsymmetrical dimethylhydrazine (UDMH) (Yang et al., 2009), which in turn can react
with dissolved oxygen to form NDMA (Lunn and Sansone, 1994). Hydroxylamine has been implicated in
the formation of NDMA during ozonation (Zhang et al., 2014), so it is reasonable that if biological
ammonia oxidation occurs during chloramination, the hydroxylamine produced may react with
monochloramine (Wahman et al., 2014) to form peroxynitrite (ONOO’), if dissolved oxygen is present.
Peroxynitrite is a known nitrosating agent (Uppu et al., 2000), but its role in N-nitrosamine formation
under nitrification conditions in chloramine systems remains unknown.

In this study, a total N-nitrosamine (TONO) assay, developed by Mitch and colleagues
(Kulshrestha et al., 2010) was adapted to include a solid-phase extraction (SPE) step, which is faster and
simpler than a continuous liquid-liquid extraction, but may suffer from various analytical interferences.
In particular, N-nitrosamines are known to form in SPE cartridges by catalysis reactions on the surfaces
of the activated carbon (Padhye et al., 2011). Abiotic experiments were completed to assess the role of
hydroxylamine in NDMA formation, as related to nitrification in CDWDSs. These results unexpectedly
revealed the presence of multiple interference pathways associated with the SPE-TONO assay that could
be used to guide methodological improvements and help explore alternative NDMA formation
pathways.



Methods:

Solid Phase Extraction and Quenching Agents. For TONO measurements, 500 mL samples were
concentrated by SPE and eluted to an organic solvent. The SPE columns were conditioned by sequential
rinsing with solvent and water as follows: 3 mL of solvent followed by aspiration (repeated once), 3 mL
of solvent and left wet (repeated once), and 3 mL of Milli-Q water and left wet (repeated four times). To
load the sample onto the SPE columns, a sample delivery system was used to draw each 500 mL sample
through a single column into a waste container at a flow rate of approximately 5 mL min. This was
followed by an aspiration period of 10 minutes of atmospheric air at full vacuum. To elute the N-
nitrosamines from the SPE columns, 12 mL of solvent was passed through each column drop-wise and
collected in a centrifuge tube. The eluted extract was passed through a wetted drying column (rinsed
with 6 mL of solvent), which consisted of 6 g sodium sulfate encapsulated by glass fiber frits in a 6 mL
glass SPE column and followed by 3 mL of organic solvent in an attempt to purge the drying column of
any remaining N-nitrosamines. The sample extracts were then concentrated from ~15 mL to precisely 1
mL in a 37°C water bath using an evaporator with a gentle stream of lab-grade nitrogen. The 1 mL
sample extracts were transferred to individual 2 mL amber glass vials sealed with PTFE lined screw caps
and stored at -20°C.

As described by Kulshrestha et al. (2010), interferences caused by S-nitrosothiols and nitrite can
produce false-positive signals in the chemiluminescence detector and thus need to be quenched in the
sample extracts. S-nitrosothiols were quenched from the 1 mL sample extracts with 100 pL of the
mercuric chloride solution (20 g L™ in Milli-Q water) and allowed to sit in the dark for 30 minutes. Next,
nitrite was quenched with 100 pL of the sulfanilamide solution (50 g L in 1 N HCI) and allowed to sit in
the dark for 15 min. Interfering compounds were quenched and N-nitrosamines quantified within 2
weeks of sample extraction.

Total N-nitrosamine Analysis. Total N-nitrosamines were quantified in the purified sample extracts using
a chemiluminescence NO detector (Eco Physics CLD 88sp), as detailed by Mitch and Dai (2012). Output
signals from the chemiluminescence detector were discretized at 0.2 second intervals and captured
using a MS Excel macro. These data were then imported into MATLAB R2012a to calculate the area
under each sample peak using a summation and baseline subtraction formula. Each sample peak area
was then compared to that of the standard curve preceding its respective injection to determine the
concentration as NDMA based on the volume of the injection and the initial volume of the sample
processed by SPE, if applicable.

Hydroxylamine Experiments. The impact of hydroxylamine on TONO and NDMA formation were
assessed in batch reactors at room temperature (20-22°C) with combinations of hydroxylamine (3.52
mM), monochloramine (3.52 mM), and dimethylamine (35.2 mM). Each batch reactor consisted of an
amber glass bottle filled with 400 mL of 10 mM sodium borate (prepared in Milli-Q water) and purged
with O, for 10 minutes to achieve ~40 mg L™ dissolved oxygen (DO). Each reagent addition was followed
by an allotted time prior to other amendments, as follows: sodium borate (10 minutes), hydroxylamine
(5 minutes), monochloramine (5 minutes), dimethylamine (5 minutes), and the combined sample (60
minutes). Various combinations of the TONO sample treatments were investigated to assess potential
interferences on aqueous phase aliquots and methanol extracts following SPE. Regardless of the sample
phase (i.e., agueous or methanol), the TONO standard curve was prepared by direct injections of NDMA
into methanol, as described previously. The following five treatments were assessed: (1) untreated (i.e.,
no sample treatment), (2) sulfanilamide only (i.e., samples dosed with 100 BL of 50 g L sulfanilamide in
1 N HCI and held in the dark for 15 minutes), (3) mercuric chloride only (i.e., samples dosed with 100 EL



of 50 g L mercuric chloride and held in the dark for 30 minutes), (4) mercuric chloride and
sulfanilamide, and (5) HCI only. Aqueous phase samples were measured by the TONO assay following
the five sample treatments by direct injection into the reaction chamber. Between 404-412 mL of each
aqueous phase sample was processed by SPE and eluted into 10 mL of methanol, but was not further
concentrated using the nitrogen gas blowdown step to avoid further volatile losses. These samples were
subjected to the five sample treatments followed by the TONO assay and GC-FID.

Results:

TONO and NDMA formation were assessed in batch reactors containing combinations of
hydroxylamine (3.52 mM), dimethylamine (35.2 mM), and monochloramine (3.52 mM). N-nitrosamines
were measured in triplicate in (1) aqueous phase aliquots taken prior to SPE (TONO Agueous, Table 3)
and (2) methanol following SPE (TONO Solvent and NDMA by GC-FID, Table 1). Aqueous TONO data for
the batch reactors with hydroxylamine only (Table 1) showed a comparatively large TONO response in
the HgCl,-treated aqueous phase sample (57,249 pg L'* as NDMA), which was subsequently removed by
treatment with SAA. The corresponding data in Table 2 indicate a high concentration of nitrite in this
sample (18,356 pg L as N), presumably from mercury-aided catalysis of hydroxylamine reacting with
oxygen (Wahman et al., 2014). This result demonstrates the need to use SAA when applying the TONO
assay to waters that do not contain nitrite, such as those with hydroxylamine that could produce an
interference signal by HgCl, catalyzing nitrite formation. An additional observation from the
hydroxylamine only experiments (Table 1) is the apparent production of nitrite during IC analysis from
residual hydroxylamine in the sample. HgCl, treatment presumably removed any remaining
hydroxylamine in the sample by catalyzing hydroxylamine’s reaction with oxygen, producing nitrite as a
product. Also, treatment with SAA (by itself or with HgCl,) should result in complete nitrite removal and
the associated TONO response. Therefore, residual hydroxylamine is only expected in the Untreated and
SAA-only treated samples, and nitrite is only expected in the Untreated and HgCl>-only treated samples,
producing an associated TONO response. While the HgCl, + SAA treated sample had an expected non-
detectable nitrite (Table 2) and minimal TONO response (<10 ug L as NDMA, Table 1), the SAA-only
treated sample had a measurable nitrite concentration (1,522 pg L as N) with a minimal TONO
response (<19 pg L™ as NDMA), suggesting formation of nitrite during IC analysis. Taken together, these
results indicate that hydroxylamine present in the SAA-only treated sample was converted to nitrite
during IC analysis.

For the batch reactors with hydroxylamine and dimethylamine, Tukey’s tests were done to
compare the triplicate means between treatments. For NDMA and TONO in methanol, there were no
statistically significant differences between sample treatments, indicating potentially interfering
compounds (e.g., nitrite) were not present in the methanol following SPE or created by the treatment
(e.g., HgCl,). For TONO in the aqueous phase, the comparatively high TONO response in the HgCl>-
treated sample (62,134 ug L't as NDMA) was attributed to nitrite (15,455 pg L™ as N, Table 2) and NDMA,
presumably from mercury catalyzing the reaction of the residual hydroxylamine in the presence of
dissolved oxygen. As in the hydroxylamine only experiments, residual hydroxylamine may have resulted
in nitrite production during IC analysis as the SAA-only treatment had a nitrite concentration (1,350 ug L°
1 as N) without a correspondingly large TONO response (77 pg L™ as NDMA). In contrast, the HgCl, + SAA
treatment showed an undetectable nitrite concentration and a large TONO response (15,834 pg L as
NDMA). This suggests that hydroxylamine and dimethylamine reacted to form UDMH, which
subsequently reacted with dissolved oxygen catalyzed by mercury to form NDMA. In sum, two
interferences were apparent in the aqueous phase batch reactors with hydroxylamine and
dimethylamine: (1) nitrite and NDMA interferences produced by HgCl, treatment and (2) an NDMA
interference produced by HgCl, + SAA treatment.



Table 1. Total N-nitrosamines and N-nitrosodimethylamine formed from reactions with 3.52 mM hydroxylamine (NH,OH),
3.52 mM monochloramine (NH,Cl), and 35.2 mM dimethylamine ((CHs),NH) for various sample treatments

Total N-nitrosamine Assay (TONO) | NDMA Nitrite
ug L'tas NDMA Equivalent
Average t 95% confidence interval TONO ?
pugllas
Reagents Treatment Aqueous ? Solvent © Solvent ¢ NDMA
Untreated 3,230+ 534 527 £ 55 420+ 23 NA
NH,OH + SAA 133 +22 332+97 200 + 55 NA
(CHs)NH + | HgCl, 6,243 £ 209 521+48 489 + 49 7,561
NHCI HgCl, + SAA 765+ 218 326 +112 393 +234 NA
HCI 141 £ 18 407 £ 17 323+ 100 NA
Untreated 1,358 +£1,237 13,087 + 1,298 9,028 £ 771 13,835
SAA 77 £48 10,623 + 3,721 9,558 + 1,039 9,009
:\IC:Z())ZI-I:I; HgCl, 62,134 + 4,187 12,145 + 892 8,935+ 1,015 54,534
HgCl, + SAA 15,834 + 2,866 11,882 + 1,149 7,930 + 1,487 NA
HCI 100 + 108 12,222 £ 957 6,283 £ 909 9,330
Untreated 118 NM NM 25,578
NH,OH SAA <19 NM NM 9,330
HgCl, 57,249 NM NM 70,622
HgCl, + SAA <10 NM NM NA
Untreated 125 NM NM NA
SAA 49 NM NM NA
(CHs)oNH HgCl, 326 NM NM NA
HgCl, + SAA 102 NM NM NA
2@ Theoretical response from nitrite in TONO assay based on 1:1 molar yield and 100% efficiency
b Sample processed in aqueous phase without solid-phase extraction
¢ Sample concentrated by solid-phase extraction and eluted into methanol; values corrected for the estimated NDMA
extraction efficiency (70%, see text)
HCl — treated with 100 pL of 1 N HCl
HgCl, — treated with 100 uL of 20 g L'* mercuric chloride and held in the dark 30 minutes
HgCl, + SAA — treated with mercuric chloride followed by sulfanilamide
NA — not applicable
ND — not detected
NM — not measured
SAA — treated with 100 ulL of 50 g L? sulfanilamide in 1 N HCl and held in the dark 15 minutes

For the batch reactors with hydroxylamine, dimethylamine, and monochloramine, Tukey’s tests
were done to compare the triplicate means between treatments. For NDMA and the TONO samples in
methanol (Table 3), there were no statistically significant differences between sample treatments,
indicating potentially interfering compounds (e.g., nitrite) were not present in the methanol following
SPE. In contrast, for the aqueous phase TONO samples, statistically significant differences were found
between the Untreated sample and the other treatments, which was attributed to the formation and
guenching of nitrite in the presence of hydroxylamine by HgCl, and SAA, respectively (Table 2).
Interestingly, HCI treatment resulted in a comparatively low TONO response in the aqueous phase (141
+ 18 pg L't as NDMA), suggesting hydroxylamine in its acidic form (NH3OH*, pK, = 6) does not react with
dimethylamine to form UDMH. This result is in agreement with Zhang et al. (2014) that found the
reaction between hydroxylamine and dimethylamine to form UDMH was pH dependent.

Comparing the batch reactors containing hydroxylamine, dimethylamine, and monochloramine
with those containing hydroxylamine and dimethylamine indicated that in the (1) aqueous phase,
hydroxylamine reacted in the HgCl,-treatment, and (2) solvent phase, hydroxylamine reacted with the
activated carbon in the SPE cartridges. NDMA formed at over one order of magnitude greater in the
batch reactors with hydroxylamine and dimethylamine compared to those with monochloramine (Table



Table 2. Inorganic nitrogen formed from reactions with 3.52 mM hydroxylamine (NH,OH), 3.52 mM
monochloramine (NH,Cl), and 35.2 mM dimethylamine ((CH3),NH) for various sample treatments

Aqueous phase concentrations, ug L'*as N
Average + 95% confidence interval
Reagents Treatment Nitrite Nitrate Ammonium
Untreated 1,126 £ 210 1,644 £ 1,441 46,267 + 1,931
NH,OH + SAA ND 2,667 + 168 49,262 £ 9,516
(CH3)2NH + | HgCl, 1,806 + 211 2,048 + 53 7,200 *
NH,Cl HgCl, + SAA ND 2,033+ 179 40,122 + 232
HCI ND 2,620+ 77 41,542 + 2,075
Untreated 2,689 +£130 512 +431 4,983 + 483
NH,OH + SAA 1,350 + 143 4,593 + 691 ND
(CHa)oNH HgCl, 15,455 + 224 ND 5,300 *
HgCl, + SAA ND ND ND
HCI 1,421 £293 5,015 + 271 ND
Untreated 2,709 5,783 3,021
SAA 1,522 5,128 ND
NHz0H HgCl, 18,356 497 3,486
HgCl, + SAA ND ND ND
Untreated BDL BDL 3,873
SAA ND ND ND
(CHs)oNH HgCl, ND ND 2,634
HgCl, + SAA ND ND ND
BDL — below detection limit
HCI — treated with 100 pL of 1 N HCl
HgCl, — treated with 100 pL of 20 g L™ mercuric chloride and held in the dark 30 minutes
HgCl, + SAA — treated with mercuric chloride followed by sulfanilamide
ND — not detected
SAA — treated with 100 ulL of 50 g L? sulfanilamide in 1 N HCl and held in the dark 15 minutes
* One of three samples had detectable concentrations
Method detection limits for nitrite, nitrate, and ammonium were respectively 304-, 226- and 775Bg L't as N

3). This suggests that excess hydroxylamine was present in the batch reactors without monochloramine
and reacted with dimethylamine and dissolved oxygen in the SPE cartridges to form NDMA.

Padhye et al. (2011) showed that N-nitrosamines formed from secondary amines by nitrogen
fixation on activated carbon. Additionally, the solvent TONO and NDMA results support the assertion
that any nitrite present or formed does not elute from the SPE process, as both were insensitive to
treatment type (i.e., SAA only or HgCl, + SAA should have quenched nitrite and reduced the TONO and
NDMA, but Tukey’s tests for the solvent phase showed no difference amongst any treatments).
Therefore, following SPE, hydroxylamine and monochloramine are not present and only NDMA and
dimethylamine remained.

For the batch reactors with hydroxylamine and dimethylamine, the comparatively low
Untreated aqueous TONO (1,358 ug L' as NDMA) further supports the assertion that NDMA formation
was catalyzed by the activated carbon in the SPE cartridges. Logically, the majority of this agueous TONO
signal was associated with nitrite (2,689 pg L™ as N, Table 2) that subsequently reacted with HgCl, + SAA
to form N-nitrosamines (15,834 pg L™ as NDMA, Table 1, but nitrite was not detected, Table 2). In this
case, an alternative NDMA formation mechanism is also plausible, one that does not involve UDMH.
Here, hydroxylamine is catalyzed to peroxynitrite (ONOO') in the presence of dissolved oxygen by
HgCl,(Anderson, 1964), and ONOO™ subsequently reacts with dimethylamine to form NDMA.(Masuda et
al., 2000)



Conclusions and Recommendations:

In summary, the presence of hydroxylamine presents two problems in assessing total N-
nitrosamine formation: (1) in the aqueous phase, hydroxylamine is catalyzed by HgCl, to nitrite and
NDMA, and (2) in the solvent phase, hydroxylamine reacts with dimethylamine and is catalyzed to
NDMA on the surfaces of the activated carbon in the SPE cartridges. Additional experiments should be
done to assess the role of hydroxylamine in N-nitrosamine formation at lower molar ratios and longer
reaction times to ensure no unreacted hydroxylamine is present in the batch reactors prior to
measurement of N-nitrosamines by TONO and GC-FID and anions by IC. Further, batch experiments with
UDMH will help elucidate other potential NDMA reaction pathways, similar to the one proposed
involving peroxynitrite. Further examination of extraction techniques and quenching agents are
necessary to eliminate method-derived interferences from the TONO assay and GC-FID measurement of
NDMA.
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Executive Summary:

Unconventional natural gas (UNG) requires land-clearing for infrastructure, water withdrawal,
and chemicals for hydraulic fracturing that could alter water quality. The degree that UNG development
alters nearby stream quality may also depend on stream basin natural characteristics such as slope and
soil type. We adapted a multi-metric model that ranks sensitivity and exposure in Fayetteville Shale
headwater stream basins. Basin vulnerability is a combination of sensitivity and exposure used to
compute relative risk of biological degradation. We predicted macroinvertebrate communities in basins
with UNG and pasture would experience greater compositional change across a vulnerability gradient
than basins without UNG. We sampled macroinvertebrates in 40 basins over a gradient of vulnerability
in streams with UNG and pasture and with pasture only. Macroinvertebrate diversity and percent
Ephemeroptera, Plecoptera and Trichoptera (%EPT) declined linearly as vulnerability increased. Erosive
soils appeared to be driving this relationship, which may indicate an interaction between soil erodibility
and human activities to alter instream habitat. Conversely, macroinvertebrate density and biomass
increased and then decreased in an apparent threshold across the same vulnerability gradient. Human
disturbances on a landscape are typically associated with increased nutrient inputs that would be
expected to support larger organisms but biomass and density declined at a vulnerability score of 260.
This decline may be evidence of sub-lethal effects caused by chemical contamination or habitat
degradation. Vulnerability explained more variation in macroinvertebrate communities than sensitivity
or exposure alone, suggesting an interaction between the landscape natural characteristics and human
disturbances. Sensitivity variables, soil erodibility and slope, drove the differences in macroinvertebrate
community composition across a vulnerability gradient. In contrast to our hypothesis, all
macroinvertebrate metrics responded similarly in basins with and without UNG. Our results suggest that
UNG activities alter landscapes and habitat similar to other land uses, mainly pasture. However, the
apparent threshold shown in macroinvertebrate biomass and density may be a result of cumulative
human activities. As land alteration continues in the Fayetteville Shale, our predictive model could be
used to identify basins that are more or less susceptible to degradation and subsequent differences in
communities as a tool to protect ecological integrity.

Introduction:

As of 2014, 9,259 kilometers of Arkansas streams were listed as impaired by metals, nutrients,
pathogens, or other water quality metric violations, while harboring 183 state-listed species of greatest
conservation need (SGCN) (ADEQ, 2014). Unconventional natural gas (UNG) and agriculture as pasture
are common human disturbances in the Fayetteville Shale located in north-central Arkansas. UNG and
pasture require land development, road construction, and freshwater that could increase sediment,
nutrients, and pollutants in streams (Entrekin et al. 2011, Peirre et al. 2015, Poff et al. 1997). Land
conversion decreases biodiversity in ecosystems (Turner 2015). A decrease in biodiversity can reduce
the resiliency of ecosystems to disturbances and leave biological communities more vulnerable to
degradation (Naeem, 2006). Approximately 500 new shale gas wells per year are predicted through



2025 in the Fayetteville Shale (Arkansas Water Plan) and production is estimated to decline in 2030
(Browning et al. 2014). As humans continue to alter landscapes, it is important to identify cumulative
human effects to stream biological communities to improve river network water quality and conserve
and restore watersheds with the greatest existing biological integrity.

Climate, geology, and topography determine basin natural characteristics that influence stream
structure, function, and biological communities. However, anthropogenic disturbances have disrupted
these predictable relationships by conversion of natural landscapes, hydrology and natural channel
alterations, and climate change acceleration (Dodds et al. 2015). Basin natural characteristics (i.e. slope,
soil type) may interact with human stressors to affect the extent of disturbance to stream biota. For
example, basins with steeper slopes could experience more runoff and erosion. Basin sensitivity was
therefore a combination of environmental characteristics that make a basin more or less resistance or
resilient to degradation following disturbance (McCluney et al. 2014) (Appendix A). Basin exposure was
landscape-level anthropogenic activities that threaten freshwater systems (Paukert et al. 2010)
(Appendix B). Basin vulnerability to disturbance was quantified as the basin sensitivity multiplied with
the exposure (Entrekin et al. 2015). A greater vulnerability score indicates a basin more likely degraded
or with greater potential for degradation with additional stressors. Basin sensitivity and exposure indices
have been developed for analysis of stressor-exposure impacts on streams within basins (Paukert et al.
2010, Matteson and Angermeier 2007, Vorosmarty et al. 2010). However, few empirical studies have
tested these models against biological change (i.e. macroinvertebrate communities) in basins with
varying natural characteristics and regional stressors (Clapcott et al. 2014).

Our objective was to quantify the macroinvertebrate change along a gradient of vulnerability in
basins with UNG and pasture and basins with pasture only. We analyzed macroinvertebrate
communities because they have features that reflect landscape-stream connections (Baxter et al. 2005).
Macroinvertebrate community metrics can be broken into two categories: compositional and aggregate
(Micheli et al. 1999). Compositional metrics include relative abundance and diversity that reflect habitat
quality and heterogeneity necessary to support organisms with different physiological traits. We
predicted that compositional metrics like percent sensitive taxa (% EPT) and diversity will decrease as
vulnerability increases because of greater and more intense disturbances that reduce habitat quality
(Figure 1). Aggregate macroinvertebrate metrics include total biomass, and density that reflect resource
availability. We predicted that aggregate metrics like total biomass or collector-gatherer density would
increase as vulnerability increased because of more nutrient inputs from human activities (Figure 1). We
also predicted that basins with UNG and pasture would have a greater extent of community change
because of more intense and recent landscape disturbances.

Methods:
Vulnerability Model (Entrekin et al. 2015)

Landscape natural characteristics that influence stream resistance and resilience were identified
using literature and available data, then classified as sensitivity variables (Appendix A). We computed
sensitivity variables for 140 headwater stream basins in the Fayetteville Shale, AR. Sensitivity variables in
each basin were ranked based on a calculated quartile of the cumulative distribution of all 140 basins,
where <25% were 1, <50% were 2, <75% were 3 and 2100% were 4. Precipitation, permeability, and
wetland ranks were inversed because basins with less precipitation, less wetlands, and a lower
permeability rate were considered more susceptible to biological degradation. Ranks were summed for
an overall basin sensitivity score. Common human activities in the Fayetteville shale were identified as



exposure variables and categorized similarly to sensitivity scores (Appendix B). Exposure and sensitivity
scores were multiplied to generate a vulnerability score (sensitivity x exposure), which described a
basin’s risk of biological degradation.

Study sites

We sampled 40 streams across north-central Arkansas with basins ranging from 5.9 km?- 84.5
km? (Figure 2). Basins were primarily forested or pasture and 18 basins were exposed to UNG (Appendix
C and D). Basins were selected to achieve a gradient of vulnerability and either with UNG and pasture or
without UNG. UNG well densities in basins with UNG ranged from 0.04 wells/km? — 2.90 wells/km?
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Figure 1: Macroinvertebrate communities reflect altered landscape-stream connections.
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Figure 2: Macroinvertebrates were sampled in 40 headwater streams across a gradient of vulnerability. Twenty-two
streams were not exposed to UNG but had a gradient of pasture and 18 streams were had a gradient of UNG with pasture



according to 2015 data from Arkansas Gas and Oil Commission (Appendix D). Basins without UNG had a
gradient of pasture and basins with UNG had variable pasture.

Field Sampling

Macroinvertebrates were sampled in 40 streams across a gradient of vulnerability and in basins
with UNG and pasture or without UNG. Macroinvertebrates were sampled in streams one time
guantitatively using a Hess sampler with a 250um mesh size from May - June 2015. Two consecutive
riffles were sampled (3 samples from each riffle). We recorded substrate composition and percent fine
sediments at each stream. Macroinvertebrates were stored in 70% ethanol and transported to the
laboratory where they were sorted into greater than 1 mm and less than 1 mm size classes.
Macroinvertebrates were identified to genera in most cases (Merritt et al. 2008). Habitat variables and
water quality metrics such as depth, discharge, pH, conductivity, dissolved oxygen, and substrate
composition were recorded at the time of macroinvertebrate sampling. Substrate, canopy cover,
riparian zone stability, and embeddedness were estimated over the sampled reach using methods from
the Safe Harbor Agreement and Candidate Conservation Agreement with Assurances Habitat
Assessment (Earlywine 2014).

Statistical Methods

Macroinvertebrate community compositional and aggregate metrics were compared across a
gradient of vulnerability in basins with a gradient of UNG and variable pasture or without UNG and a
gradient of pasture using an analysis of covariance (ANCOVA). The covariate was vulnerability and the
factors were basins with UNG and pasture or without UNG. If slopes were heterogeneous between sites
with and without UNG, separate regression lines were fit. We compared slopes from regressions
between exposure, sensitivity, exposure variables, and sensitivity variables that explained variation
among vulnerability scores.

Results:

Compositional metrics

All compositional variables responded as we predicted across a vulnerability gradient; however,
unlike we predicted, basins with and without UNG responded similarly (Figure 3A, B, and C, Table 1). As
stream vulnerability increased the percent dominant taxa increased and ranged from 21% - 85% (Figure
3A). Non-tanypodinae, a tolerant fly larvae, and Leucrocuta, a sensitive mayfly, primarily dominated
macroinvertebrate communities. As stream vulnerability increased Shannon’s diversity decreased
linearly regardless of UNG presence (Figure 3B, Table 1). Shannon’s diversity typically ranges from 1.5 -
3.5, representing high biodiversity in natural systems (MacDonald 2003). Diversity in sampled streams
ranged from 0.5 — 3.0. Percent EPT ranged from 2% - 73%, and were dominated by a combination of
sensitive and tolerant mayflies, sensitive stoneflies, and tolerant caddisflies (Figure 3C, Appendix E).
Neither exposure nor sensitivity alone explained as much variation as vulnerability in any compositional
metrics. However, sensitivity variables, mainly kfactor, slope, and precipitation explained significant
variation among all compositional metrics. Exposure variable, percent crop explained variation in
diversity, despite little crop in any study basins (Mattson and Angermeir 2007). Percent EPT decreased
across an exposure gradient primarily from greater pasture. Percent dominant taxa were not
significantly associated with any exposure variables.
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Figure 2: Compositional metrics were analyzed across a gradient of vulnerability in sites with and without UNG. (A) Percent dominant taxa in streams responded similarly to
vulnerability in basins with UNG and pasture and pasture alone. As vulnerability increased, the percent dominant taxa or unevenness in the community increased. (B) Shannon’s
diversity in streams responded similarly to vulnerability despite the presence of UNG. However, vulnerability did explain a significant amount of variation in stream diversity. (C)
Percent EPT taxa significantly decreased as vulnerability increased regardless of UNG activity. (D) Total biomass responded similarly in streams with UNG and pasture and pasture

alone. As vulnerability increased, total biomass increased to an apparent threshold at a vulnerability score of 260. (E) Collector-gatherer density responded similarly in basins with
UNG and pasture and with pasture alone. Collector-gatherer density increased as vulnerability increased until an apparent threshold at about 300. (F) Scraper density responded
similarly in basins with UNG and pasture and pasture alone. As vulnerability increased, scraper density increased very little until a vulnerability score of 260 where density decreased.



Aggregate Metrics

All aggregate metrics increased to a point and then decreased at a vulnerability score of
approximately 260 (Figure 3D, E, and F). There were no differences in responses between sites with
pasture and UNG and pasture only (Table 1). Neither sensitivity nor exposure explained significant
variation in total biomass; however, vulnerability did (Figure 3D). Sites with a score of < 260 were
dominated by more sensitive organisms and sites with a vulnerability score > 260 had communities
dominated by more tolerant organisms (Appendix F). Both sensitivity and exposure significantly
predicted variation in collector-gatherer density; however, exposure appears to be driving the apparent
threshold (R%= 0.12, p=0.027, R?>= 0.14, p=0.018, respectively). Scraper density, predominantly two
mayflies, increased little and then decreased at vulnerability score of about 260 (Figure 3F, Appendix F).
Neither sensitivity nor exposure explained a significant amount of variation in scraper density across
streams. Sensitivity variables, soil erodibility, percent wetland, slope, and precipitation explained some
variation in scraper density. Exposure variables crop and pasture were the main contributors to the
vulnerability/ aggregate metrics relationships.

Conclusions and Recommendations:

Streams in the Fayetteville Shale harbor 48 aquatic species of greatest conservation need
(USFWS, 2015). Our vulnerability model predicted % dominant taxa, macroinvertebrate diversity, % EPT
taxa, total biomass, collector-gatherer density, and scraper density. Vulnerability described more
variation in compositional and aggregate metrics than sensitivity or exposure alone, suggesting an
interaction between the landscape natural characteristics and human disturbances. Compositional
metrics and aggregate metrics were associated with both exposure and sensitivity variables highlighting
the importance of multi-metric models in understanding the relationship between landscapes and
streams and to describe the potential for biological degradation (Paukert et al. 2011, Truchy et al. 2015).

Table 1: Analysis of Covariance was used to test the heterogeneity of slopes in sites with UNG and pasture and pasture alone. If
sites were homogenous, exposure types were combined and a regression line was fit. Biomass and functional feeding group
densities were fit with a polynomial regression because of an apparent threshold effect.

Variable Factor F df | P-value Exposure Slope P-value R?
Type
% Dominant Vulnerability 2.5 3,36 | 0.017
? Taxa With/Without UNG 0.46 0.646 Combined 0.07 0.02 0.13
Interaction N.A.
Vulnerability -2.62 3,36 | 0.013
Diversity With/Without UNG -0.66 0.514 Combined -0.002 0.015 0.14
Interaction N.A.
Vulnerability -2.85 3,36 | 0.007
% EPT With/Without UNG -0.2 0.843 Combined -0.087 0.003 0.21
Interaction N.A.
Vulnerability 0.33 3,36 | 0.746 0.0048x
Total Biomass With/Without UNG 0.62 0.536 Combined ' 0.013 0.21
- 0.00001x72
Interaction N.A.
Collector- Vulnerability 1.91 3,36 | 0.065
Gatherer With/Without UNG -0.39 0.698 Combined 0.0055x = 0.005 0.25
. - - - 0.000008x"2 ’ ’
Density Interaction N.A.
Vulnerability -2.18 3,36 | 0.036 0.004x
Scraper Density | With/Without UNG -1.22 0.23 Combined : 0.048 0.15
- 0.000012x72
Interaction N.A.




We found that there were no significant differences in macroinvertebrate community metrics between
basins exposed to UNG and pasture and basins exposed to a gradient of pasture only, meaning that UNG
activity is stressing landscapes similarly to other human activities. However, we have observed an
apparent threshold (~260), where cumulative human disturbances may be having sub-lethal effects and
inhibiting biomass accrual. We have also identified natural characteristics that appear to be most
important in a basin’s resistance and resilience to disturbance in the Arkansas River Valley region,
including kfactor, slope, precipitation, and percent wetland. We saw two functionally different
responses between compositional metrics (linear) and aggregate metrics (parabolic) that may reflect the
extent and type of degradation.

Compositional metrics decreased linearly with vulnerability, suggesting that more vulnerable
basins experience greater stream habitat degradation (Figure 1). We found that soil erodibility, slope,
and precipitation explained the most variation in compositional metrics. Slope explained significant
amounts of variation but the relationship was opposite of what we expected. We predicted that steeper
slopes would make a basin more sensitive to degradation because of flashier hydrology and less time for
water and contaminants to infiltrate. However, diversity, and % EPT taxa increased with greater slopes
and percent dominant taxa decreased with greater slopes. This may be due to an increase in habitat
heterogeneity caused by varying substrate deposition and flow patterns (Statzner and Higler 1986). We
also found a strong positive correlation between percent forest and slope in sampled basins (r=0.82).

Macroinvertebrate aggregate metrics increased across a vulnerability gradient and then
declined, suggesting that there is a point where landscape disturbance negates the positive effects of
increased nutrients on biomass and density (Figure 1). We found that total biomass, collector-gatherer
density, and scraper density increased across a vulnerability gradient; however, these metrics began to
decrease when vulnerability reached 260. Aggregate metrics were primarily driven by sensitivity
variables, specifically percent wetlands, slope, and kfactor. However, sensitivity variable/ aggregate
metric relationships were linear and did not appear to be the sole cause of the threshold effect. The
sharp decrease in aggregate metrics may be caused by an increase in chemical contamination or organic
pollution that inhibits biomass accrual (Woodcok and Huryn 2006, Entrekin et al. 2011). Increased salt
concentrations in streams may have sub-lethal effects and inhibit organismal growth (Tyree et al. 2016).

Diversity of a community is determined first at a regional scale, where dispersal barriers and
evolutionary events influence the organisms found within a region. Macroinvertebrate alpha diversity in
our basins was determined at the local scale and represent species that were able to persist through a
particular disturbance regime (Ricklefs 2004, Naeem 2006). Diversity decreased as vulnerability
increased, suggesting that our vulnerability model may represent a gradient of disturbance intensity.
Human activities and natural characteristics quantified as exposure and sensitivity can be described as
disturbances to stream because they represent an event or events that have a frequency, intensity, and
severity outside of predictable range (Resh et al., 1988). Aggregate metrics in our study exhibit
functional responses that support the intermediate disturbance hypothesis, where greater vulnerability
or disturbance increases stream productivity to a point when taxa loss occurs (Connell 1978).

Our results suggest that UNG extraction alone does not cause greater habitat or resource
alterations that would create a different functional response in macroinvertebrate communities than
other human disturbances (i.e. pasture). Surprisingly, percent crop and pasture were the only exposure
variable that explained significant variation in macroinvertebrate metrics. UNG production has slowed in



the Fayetteville Shale since 2012 from about 30 average rig counts to about 7 average rig counts
(Arkansas Oil and Gas Commission). Less UNG development may reflect a decrease in associated UNG
activities, like traffic, land clearing, and potential chemical spills. However, UNG extraction added to
preexisting human activities could be playing an important role in the aggregate metrics threshold
response.

Recommendations

We have identified stream basins that have natural landscape characteristics and anthropogenic
stressors that make them vulnerable to biological degradation. We recommend our model be used to
help USGS and resource managers decide where new development should be avoided to maintain
ecological integrity (Appendix G). Basins that have a suite of less sensitive landscape natural
characteristics may respond better to restoration projects. For example, a stream draining a basin with a
low kfactor, steep slopes, and surrounding wetlands would be more suitable for restoration or
conservation than a basin with a high kfactor, low slopes, and few surrounding wetlands. Finally, we
recommend that there be more investigation on the sub-lethal effects of cumulative human
disturbances. The apparent threshold responses of aggregate metrics suggest that cumulative human
disturbances and more sensitive natural characteristics are interacting to alter a predictable
resource/biomass response.
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Appendix A: Landscape natural characteristics that describe the susceptibility of a stream basin to degradation from human
disturbances were identified using literature and available data. Natural characteristics were classified as sensitivity variables.

Sensitivity Variables

Description

Data Source

Average slope
(degree)

A larger slope increases basin
sensitivity because water
moves over landscapes faster
and carries nutrients and
contaminants

Slope raster calculated from the 100 m DEM in ArcGlIS.

Soil erodibility factor
(k factor)

K factor is a measure of
erosive capability of a soil;
therefore, the higher the k
factor the more sensitive a
basin.

STATSGO soils data for the Conterminous United States;
http://water.usgs.gov/GIS/metadata/usgswrd/31XML/ussoils.xml

Drainage density of
NHDplus flowlines

More streams per area in a
basin increase sensitivity

NHDplus data; http://www.horizonsystems.com/nhdplus/

(km/km?) because of a higher
probability of contamination
reaching a flow path.
% Wetlands Greater percent of wetlands | 2006 NLCD datasets;
(NLCD class 90 &95)- | increase sensitivity because http://www.mrlc.gov/nlcd06_data.php
Inversed greater connectivity to

streams and greater
undeveloped land.

Precipitation (mm)-
Inversed

More precipitation makes a
basin less sensitive because
the ecosystem was not
stressed by lack of water.

PRISM 30 year normal;
http://www.prism.oregonstate.edu/normals/

Soil Permeability
(inches/hour)-
Inversed

The lower the average
permeability rate the more
sensitive a basin is to
degradation because of
greater runoff.

STATSGO soils data for the Conterminous United States;
http://water.usgs.gov/GIS/metadata/usgswrd/31XML/ussoils.xml




Appendix B: Human disturbances that threaten aquatic biological communities in the Fayetteville Shale. Disturbance variables

are classified as exposure variables.

Exposure Variable

Description of associated
disturbance

Data Source

Well density (vertical wells)

Disturbances caused by
roads, well pad, and
pipelines.

Arkansas Oil and Gas Commission
(ftp://www.aogc2.state.ar.us/GIS Files/)

Well density (nonvertical
wells)

Disturbance caused by
roads, well pads, water
withdrawal, contaminates,
and pipelines

Arkansas Oil and Gas Commission
(ftp://www.aogc2.state.ar.us/GIS Files/)

Dam Density (#/km?)

Flow and nutrient
restrictions

NID dataset:
http://nid.usace.army.mil/cm_apex/f?p=838:12

Mine Density (#/km?)

Disturbance from
construction and roads

USGS Mineral Resources Database:
http://mrdata.usgs.gov/mrds/

Road density (km/km?)

Contaminants from vehicles
and increased impervious
surfaces

TIGER 2010 Streets;
http://datagateway.nrcs.usda.gov/GDGOrder.
aspx?order=QuickState

% Impervious surfaces

Decreased water infiltration
causing flashier systems and
increased nutrients

2006 NLCD datasets;
http://www.mrlc.gov/nlcd06_data.php

% Pasture

Habitat alteration, increased
nutrients and sediments

2006 Arkansas Land Use dataset
http://gis.arkansas.gov/?product=land-use-land-cover-
fall-2006-raster

% Row crop

Habitat alteration, increased
nutrients and sediments

2006 Arkansas Land Use dataset
http://gis.arkansas.gov/?product=land-use-land-cover-
fall-2006-raster




Appendix C: Sensitivity variables calculated for each sampled basin.

HUC12 Stream Name Permeability Precipitation Stream density | % Wetland Slope | Kfactor
80203010301 Bayou Des Arc 1.41 1280.11 2.00 0.01 4.35 0.27
111102030102 Beardy Branch 1.72 1298.39 1.70 0.00 2.60 0.29
110100140204 Butler Creek 1.72 1316.33 1.52 0.19 5.67 0.27
111102020806 Cedar Creek (Big River) 1.01 1275.95 2.28 0.00 3.58 0.28
111102050106 | Cedar Creek (Cove Creek) 1.26 1284.29 1.82 0.05 5.30 0.32
110100140601 Choctaw Creek 1.72 1316.33 1.64 0.01 6.09 0.27
111102010904 Cravens 1.72 1329.66 1.68 0.00 5.68 0.27
111102050202 Creben Creek 1.24 1267.14 3.01 0.06 5.15 0.34
110100130401 Departee Creek 1.40 1252.88 1.11 0.00 4.74 0.25
111102020202 Dirty Creek 1.41 1299.88 1.34 0.03 6.06 0.32
111102030101 Driver Creek 1.61 1302.79 1.32 0.00 8.76 0.24
111102020204 EF Horsehead 1.29 1307.99 1.73 0.17 7.97 0.30
111102010704 Fane Creek 1.61 1395.44 1.45 0.00 16.59 0.24
111102030303 Galla Creek 1.20 1308.75 1.74 0.07 4.06 0.32
111102030504 Gap Creek 1.46 1257.32 1.26 0.11 5.43 0.32
111102010905 Gar Creek 1.34 1270.32 1.49 0.00 4.37 0.33
111102020705 Granny 1.50 1276.37 1.73 0.00 6.69 0.30
111102050203 Greenbrier Creek 1.38 1262.30 1.94 1.10 3.01 0.32
110100140506 Hill Creek 1.40 1298.41 1.63 0.00 9.11 0.25
111102050104 Hogan 1.17 1298.78 2.11 0.03 5.03 0.32
111102020802 Indian Creek 1.61 1371.43 1.39 0.00 16.57 0.24
111102050107 Jacks Fork 1.14 1262.30 1.03 3.81 3.87 0.32
111102010504 Little Froggy Bayou 1.83 1271.98 1.48 0.02 3.60 0.33
111102010805 Little Mulberry 2.11 1346.74 1.40 0.06 7.58 0.27
111102020303 Little Spadra 131 1272.41 1.59 0.14 5.26 0.33
111102010802 Maxie Creek 0.99 1329.66 1.24 0.00 5.93 0.29
111102021001 McCoy Creek 1.38 1280.09 1.60 0.01 5.91 0.28
111102020804 Mill Creek 1.53 1286.03 1.59 0.03 8.07 0.26
111102010801 Mill Mulberry 1.50 1379.33 1.61 0.00 11.31 0.27
111102010703 Mountain Creek 1.61 1394.66 1.37 0.00 15.60 0.24
111102050101 North Fork Cadron 1.72 1298.84 1.87 0.01 5.04 0.27
111102050105 Pine Mountain 1.38 1303.32 1.62 0.08 4.03 0.30
111102030204 Pool Hollow 1.34 1265.97 2.10 12.69 4.26 0.31
111102030203 Prairie Creek 1.36 1274.13 1.95 0.12 2.42 0.29
111102030105 Rock Creek 1.44 1295.27 1.66 0.00 7.32 0.30
111102020704 Slover Creek 1.50 1276.49 1.63 0.00 6.11 0.30
111102020301 Spadra Creek 1.45 1339.40 1.64 0.03 11.74 0.30
110100140901 Tenmile Creek 1.50 1253.48 1.19 0.02 3.04 0.25
110100140403 Weaver Creek 1.40 1302.61 1.65 0.06 8.91 0.25
111102020805 Wilson Creek 1.44 1262.39 1.24 0.00 8.18 0.29




Appendix D: Exposure variables for sampled basins

HuC12 Stream Urlfan Cl‘f)p Pasofure D:r':ls(isty Dl\eﬂri:iiy D::;nity verDtti::sli:// e Road Density In;t’:fflzl::: ’
80203010301 Bayou Des Arc 1.09 | 000 | 5532 1.04 0.00 011 0.00 431 032
111102030102 Beardy Branch 318 | 000 | 44.56 2.40 0.00 0.40 0.00 6.48 0.64
110100140204 Butler Creek 159 | 000 | 2431 3.00 0.00 021 0.00 8.13 0.14
111102020806 | Cedar Creek (BigRiver) | 2.08 | 0.00 | 38.90 0.00 0.00 0 0.00 5.64 0.36
111102050106 Cedar Creek (Cove 173 | 000 | 35.04 211 0.00 0.00 5.96 0.08

Creek) 0.25
110100140601 Choctaw Creek 237 | 000 | 2858 2.93 0.00 0.24 0.00 7.59 033
111102010904 Cravens 068 | 000 | 3544 0.00 0.00 0 0.00 3.25 0.02
111102050202 Creben Creek 338 | 000 | 27.68 0.25 0.00 018 0.04 3.72 0.14
110100130401 Departee Creek 420 | 000 | 38586 0.41 1.00 0.03 0.00 7.18 0.70
111102020202 Dirty Creek 200 | 001 | 41.69 0.00 0.00 0 0.57 8.72 3.41
111102030101 Driver Creek 0.00 | 000 | 045 0.00 0.00 0 0.12 4.64 0.04
111102020204 EF Horsehead 1.74 | 000 | 3129 0.00 0.00 0 0.00 3.25 0.02
111102010704 Fane Creek 0.00 | 000 | 044 0.00 0.00 0 0.04 3.72 0.14
111102030303 Galla Creek 11.74 | 001 | 38.04 0.00 0.00 0 0.85 6.21 0.06
111102030504 Gap Creek 2367 | 001 | 29.13 0.06 0.00 0 0.05 4.78 0.34
111102010905 Gar Creek 2363 | 000 | 3567 0.00 0.00 0 1.43 9.53 212
111102020705 Granny 146 | 000 | 1892 0.00 0.00 0 0.48 8.92 051
111102050203 Greenbrier Creek 2515 | 000 | 34.25 0.19 0.00 0 0.83 6.40 0.54
110100140506 Hill Creek 0.88 | 000 | 31.10 0.04 0.00 0 033 6.19 0.26
111102050104 Hogan 268 | 000 | 34.12 2.40 0.00 019 0.55 18.98 0.19
111102020802 Indian Creek 044 | 000 | 048 0.00 0.00 0 0.96 4.16 0.13
111102050107 Jacks Fork 439 | 000 | 51.01 0.00 1.00 0 0.17 3.35 021
111102010504 Little Froggy Bayou | 26.63 | 0.00 | 47.34 0.00 0.00 0 0.00 2.47 0.04
111102010805 Little Mulberry 284 | 000 | 33.60 0.00 0.00 0 0.60 6.41 0.22
111102020303 Little Spadra 509 | 000 | 4631 0.00 0.00 0 0.58 3.97 0.04
111102010802 Maxie Creek 019 | 000 | 31.90 0.00 0.00 0 0.80 4.70 0.08
111102021001 McCoy Creek 305 | 000 | 36.95 0.00 0.00 0 1.06 4.60 0.29
111102020804 Mill Creek 044 | 000 | 1098 0.00 0.00 0 0.00 11.59 0.18
111102010801 Mill Mulberry 056 | 000 | 555 0.00 0.00 0 0.00 5.71 0.09
111102010703 Mountain Creek 066 | 000 | 2.24 0.00 0.00 0 0.00 8.46 0.22
111102050101 North Fork Cadron 147 | 000 | 3151 2.90 2.00 035 0.00 13.08 0.18
111102050105 Pine Mountain 493 | 0.00 | 49.96 2.59 2.00 026 0.05 421 1.51
111102030204 Pool Hollow 2.85 | 000 | 40.15 1.29 0.00 018 0.06 27.39 1.67
111102030203 Praitie Creek 174 | 000 | 6481 2.08 1.00 015 0.00 4.20 021
111102030105 Rock Creek 010 | 000 | 3.90 0.14 0.00 0 0.05 8.91 0.28
111102020704 Slover Creek 110 | 000 | 34.46 0.00 0.00 0 0.00 5.57 0.50
111102020301 Spadra Creek 083 | 000 | 16.33 0.00 0.00 0 0.00 6.87 0.28
110100140901 Tenmile Creek 475 | 000 | 50.45 0.48 1.00 027 0.00 5.55 0.12
110100140403 Weaver Creek 181 | 000 | 2126 0.49 0.00 0.05 0.06 7.76 0.45
111102020805 Wilson Creek 087 | 0.00 | 2653 0.00 2.00 0 0.05 9.23 121




Appendix E: Density and biomass for each taxa found, sorted by functional feeding group

FFG Order Family Genus Density Biomass
Collector-gatherer Coleoptera Elmidae Ancyronyx 11.76 5.75
Dubiraphia 100.00 99.44
Dubiraphia (A) 94.12 87.94
Elmidae 188.24 1.38
Optioservus 43.79 19.48
Optioservus (A) 11.76 22.85

Ordobrevia 120.22 113.15
Ordobrevia (A) 14.12 17.94

Stenelmis 313.90 144.90

Diptera Chironomidae Non-Tanypodinae 3564.55 126.71
Ephydridae Ephydridae 53.70 1.74

Ephemeroptera Baetidae Acentrella 223.53 113.37
Baetidae 41.18 10.86
Baetis 351.50 52.25
Plauditus 94.12 44.69
Caenidae Caenis 194.60 23.21
Ephemerellidae Ephemerella 11.76 4.55
Ephemerellidae 11.76 4.92
Ephemerellidae Eurylophella 82.35 27.04
Serratella 146.78 70.40

Heptageniidae Rhithrogena 108.24 210.03
Stenacron 106.95 87.87
Leptophlebiidae Leptophlebia 154.95 36.46
Leptophlebiidae 137.32 6.00
Paraleptophlebia 157.25 52.49
Tricorythidae Tricorythodes 111.98 15.07
Plecoptera Chloroperlidae Alloperla 14.71 6.23
Trichoptera Leptoceridae Leptoceridae 69.68 0.67
Mystacides 11.76 0.37
Setodes 11.76 0.37
Triaenodes 66.05 1.01
Psychomyiidae Psychomyia 11.76 16.50
Collector-filterer Diptera Simuliidae Prosimulium 418.75 16.04
Simuliidae Simulium 26.14 3.21

Ephemeroptera Isonychiidae Isonychia 93.67 100.17
Trichoptera Brachycentridae Brachycentrus 23.53 76.69
Hydropsychidae Cheumatopsyche 589.85 93.93

Hydropsyche 28.05 198.49
Philopotamidae Chimarra 90.18 16.02
Wormaldia 23.53 36.73
Scraper Coleoptera Curculionidae Curculionidae (A) 11.76 4.45
Elmidae Stenelmis (A) 43.92 63.90

Lampyridae Lampyridae 11.76 15.98
Psephenidae Psephenus 68.74 48.12
Scirtidae Scirtidae 11.76 0.41

Ephemeroptera Baetidae Heterocloeon 358.16 23.37
Heptageniidae Heptageniidae 127.06 23.43

Leucrocuta 464.65 128.91

Stenonema/Maccaffertium 160.58 66.00
Hemiptera Corixidae Corixidae 11.76 2.03
Lepidoptera Crambidae Crambidae 53.54 191
Trichoptera Glossosomatidae Agapetus 97.35 10.38
Helicopsychidae Helicopsyche 39.01 36.03




Hydroptilidae Hydroptila 231.79 19.54
Phryganeidae Phryganeidae 11.76 3.11
Predator Coleoptera Dytiscidae Agabus 11.76 59.97
Dytiscidae 19.61 8.27
Hygrotus 11.76 10.18
Laccophilus 11.76 0.41
Oreodytes 24.62 4.61
Gyrinidae Dineutus 21.67 114.08
Gyretes 11.76 5.97
Gyrinidae 11.76 0.05
Hydrochidae Hydrochus 11.76 0.97
Hydrophilidae Berosus 11.76 2.72
Diptera Ceratopogonidae 44.52 7.26
Chironomidae Tanypodinae 298.30 23.46
Empididae Empididae 25.55 0.31
Hemerodromiinae 30.00 2.65
Tabanidae Chrysops 14.71 85.25
Silvius 15.69 170.71
Tipulidae Hexatoma 37.51 105.25
Pilaria 21.24 7.77
Megaloptera Corydalidae Corydalus 13.57 1299.01
Nigronia 21.05 20.51
Sialidae Sialis 85.78 5.03
Odonata Aeshnidae Aeshna 11.76 3.42
Aeshnidae 24.51 28.00
Calopterygidae Calopterygidae 11.76 215.99
Coenagrionidae Amphiagrion 17.99 41.44
Argia 22.22 119.98
Corduliidae Corduliidae 11.76 142.85
Gomphidae Arigomphus 15.69 86.79
Gomphidae 11.76 104.76
Stylogomphus 26.24 9.98
Stylurus 11.76 1.15
Plecoptera Chloroperlidae Chloroperlidae 11.76 0.08
Haploperla 194.36 125.01
Perlidae Acroneuria 23.53 30.21
Agnetina 20.17 89.67
Hansonoperla 83.82 13.14
Neoperla 101.68 92.36
Perlesta 77.20 53.74
Perlidae 64.71 7.66
Perlinella 14.12 27.27
Perlodidae Isoperla 40.00 58.59
Trichoptera Polycentropodidae Polycentropus 44.39 23.23
Shredder Diptera Tipulidae Tipula 30.10 1081.06
Tipulidae 117.65 1.56
Plecoptera Capniidae Allocapnia 279.89 57.71
Capniidae 17.65 5.96
Leuctridae Paraleuctra 82.35 23.80
Nemouridae Amphinemura 13.45 9.21
Nemouridae 11.76 14.14
Taeniopterygidae Taeniopteryx 47.06 0.34
Trichoptera Lepidostomatidae Lepidostoma 11.76 41.18
Limnephilidae Hydatophylax 15.13 355.68
Limnephilidae 11.76 0.36




Appendix F: Macroinvertebrates density and biomass from 40 streams in Arkansas.

Latitude Longitude HUC12 Stream Name Density (# organisms m?) Biomass (mg m?
-92.025701 35.2498 80203010301 Bayou Des Arc 6492.81 1042.85
-92.645702 35.485183 111102030102 Beardy Branch 16084.31 1249.82
-92.559717 35.537984 110100140204 Butler Creek 3501.57 742.05
-93.298226 35.407453 111102020806 Cedar Creek (Big River) 12417.65 1652.91
-92.496839 35.318065 111102050106 Cedar Creek (Cove Creek) 9072.55 2669.54
-92.462544 35.50462 110100140601 Choctaw Creek 7081.70 2398.05
-93.922742 35.545037 111102010904 Cravens Creek 2858.82 1083.35
-92.560013 35.238779 111102050202 Creben Creek 9227.45 1466.11
-91.565672 35.543021 110100130401 Departee Creek 5260.78 826.66
-93.659802 35.495409 111102020202 Dirty Creek 17186.27 2451.72
-92.73289 35.499182 111102030101 Driver Creek 1456.21 392.14
-93.599332 35.503273 111102020204 East Fork Horsehead 17788.24 3447.72
-93.83645 35.701662 111102010704 Fane Creek 8525.49 1931.71
-93.040002 35.209904 111102030303 Galla Creek 5637.91 878.11
-92.634528 35.154717 111102030504 Gap Creek 5323.53 1188.13
-93.836243 35.498286 111102010905 Gar Creek 9135.29 1102.69
-93.298079 35.518212 111102020705 Granny Creek 4455.82 1427.60
-92.451923 35.194621 111102050203 Greenbrier Creek 17531.37 666.85
-92.155868 35.672478 110100140506 Hill Creek 3695.42 683.11
-92.46436 35.382667 111102050104 Hogan’s Creek 6323.53 744.03
-93.138069 35.605472 111102020802 Indian Creek 1407.84 458.29
-92.475542 35.249278 111102050107 Jacks Fork 4364.71 774.16
-94.196414 35.455981 111102020303 Little Froggy Bayou 6368.63 1259.47
-94.159299 35.544052 111102010504 Little Mulberry 3521.57 1225.43
-93.507553 35.471989 111102010805 Little Spadra 15325.49 3581.61
-93.966732 35.558363 111102010802 Maxie Creek 2699.35 534.02
-93.100479 35.41357 111102021001 McCoy Creek 4403.92 946.50
-93.189774 35.507045 111102020804 Mill Creek 2062.09 553.37
-94.032149 35.573469 111102010801 Mill Creek (Mulberry River) 1529.41 319.85
-93.789667 35.691643 111102010703 Mountain Creek 7907.84 1817.37
-92.288264 35.477223 111102050101 North Fork Cadron 4654.90 762.84
-92.463344 35.38267 111102050105 Pine Mountain 8320.26 695.33
-92.766245 35.266721 111102030204 Pool Hollow 2298.04 295.64
-92.689253 35.314939 111102030203 Prairie Creek 2041.18 804.58
-92.781321 35.418116 111102030105 Rock Creek 2771.90 571.51
-93.333775 35.456683 111102020704 Slover Creek 4195.42 1501.40
-93.478487 35.53922 111102020301 Spadra Creek 1988.24 414.11
-91.648085 35.532217 110100140901 Tenmile Creek 6805.88 1409.98
-92.317331 35.647752 110100140403 Weaver Creek 6517.65 706.48
-93.189132 35.453684 111102020805 Wilson Creek 1856.32 687.48




Appendix G: We calculated vulnerability scores for Hydrologic Unit Code 12 (HUC12) in the Fayetteville Shale region and in the

Arkansas River Valley.
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Executive Summary:

Millions of megagrams of coal combustion byproducts (CCBs) are produced annually in the United
States. Certain CCBs have physical and chemical characteristics that provide potential for use as a soil
amendment. The objective of this experiment was to examine the effect of land application of a dry flue
gas desulfurization (DFGD) by-product on runoff water quality. Dry FGD by-product was applied to a
managed grassland in May of 2015 and trace element concentrations in runoff water were measured
following each runoff-producing event for a 2-mo period. There were no significant differences in
cumulative runoff volume or cumulative loading of As, Be, Cd, Co, Cr, Cs, Cu, Ni, Pb, Rb V, and U between
the amended and unamended plots. Cumulative loading of Se was significantly higher in amended plots
compared to the unamended control. Additional research is needed to fully understand the
environmental impacts of land applying coal combustion by-products, but our results suggest that runoff
water quality from DFGD-amended grassland is very similar to that from unamended grassland.

Introduction:

The 1990 Clean Air Act Amendments mandated a reduction in SO, emissions from coal-fired
power plants, resulting in installation of flue gas scrubbers and the production of flue gas desulfurization
(FGD) by-products. Flue gas desulfurization by-products are produced when a calcitic sorbent is injected
into flue gases to trap and remove SO;. Dry FGD emission control systems often combine FGD by-products
and coal fly ash (siliceous particulate matter produced when coal is burned) together resulting in a by-
product with characteristics different from those of fly ash alone or wet FGD by-products. Dry FGD by-
products are often a mixture of fly ash, unreacted sorbent, calcium sulfite (CaSOse 0.5 H,0), and calcium
sulfate (CaSO4® 2H,0) (Kost et al., 2005). Dry FGD by-products are typically alkaline and may potentially
be beneficially reused as a soil amendment to raise soil pH. Dry FGD by-products also contain plant
essential nutrients such as Ca, S, K, Mg, P, B and Zn and can be used as a soil amendment for increasing
soil nutrient concentrations.

In 2008, only 8.3% of DFGD by-products were beneficially reused, which left 1.5 million
megagrams to be disposed of in surface impoundments and landfills (ACAA, 2008). Coal combustion by-
products contained in landfills and surface impoundment pose significant environmental contamination
risks. If it were to be shown that DFGD by-products can be utilized as a soil amendment without adversely
affecting the environment, more DFGD by-products might be utilized beneficially. The purpose of this
experiment was to monitor the effect of land application of a DFGD by-product to a managed grassland
on runoff quality over a 2-mo period.

Materials and Methods:
Six plots, 6-m long by 1.5-m wide, were located at the University of Arkansas Agricultural Research
and Extension Center in Fayetteville, Arkansas on a 5% west-to-east slope. The research plots were located



in an area mapped as a Captina silt loam (fine-silty, siliceous, active, mesic Typic Fragiudult; Table 1).
Aluminum gutters were positioned on the down-slope edge of each plot to direct runoff into subsurface
collection bottles which were covered with acrylic sheets to prevent direct precipitation from
contaminating runoff samples. The six experimental plots were arranged in a randomized block design
with three replications of two treatments (i.e., amended and unamended) to evaluate the effect of DFGD
land application on runoff water quantity and quality.

The DFGD used was collected from the John W. Turk Power Plant in Hempstead County, Arkansas
by a dry scrubber using an Alstom Novel Integrated Desulfurization design. Chemical characteristics of the
DFGD by-product are presented in Table 2. Dry flue gas desulfurization byproduct treatments in this study
included two application rates imposed once as a single application. Dry FGD byproduct was applied at a
rate equivalent to 9 (amended) and 0 (unamended) Mg DFGD ha™. Dry flue gas desulfurization byproduct
was evenly applied to plots on May 18, 2015.

Following DFGD application, runoff water was collected from each plot after every runoff-
producing precipitation event from May 18, 2015 until July 9, 2015. Total runoff volume captured by the
collection system was measured for each plot following each runoff-producing precipitation event. The
first 15 mL of runoff from each plot was used to determine EC and pH immediately following collection of
runoff samples and was then immediately discarded. Runoff pH was measured using a pH electrode (Orion
Triode, No. 91-79 ORP) and EC was measured using a conductivity cell (VWR symphony, No. 11388-382).
Any remaining runoff subsample was then filtered through a 1.6-um glass microfiber filter (Whatman GFA-
1820-110; Whatman International Ltd., Maidston, England) and then vacuum filtered through a 0.45-um
Metricel membrane filter (GN-6; Pall Life Sciences Corporation, Ann Arbor, Ml). Following filtration, runoff
samples were acidified by adding one drop of 36% (w/w) HCl per 10 mL of filtrate. Acidified aliquots were
used to determine elemental concentrations of As, Be, B, Cd, Co, Cr, Cu, Mo, Ni, Pb, Rb, Se, Sr, and V by
ICP-MS. Mercury concentrations were determined by ALS Environmental, Inc. (Tucson, AZ) in accordance
with EPA method 7470a using a manual cold-vapor technique.

Results:

Fourteen precipitation events occurred during the study period and mean runoff volumes are
presented in Table 3.The cumulative load of Se was significantly higher (P <0.05) in the plots that received
DFGD by-product than the control for the first two months following application (Table 4). Cumulative
loads of other trace elements analyzed were not significantly different between the treated and control
plots. Although not significantly different, cumulative runoff, loads As, Be, Cd, Co, Cr, Cs, Cu, Ni, Pb, V, and
U were numerically higher in the treated plots compared to the unamended control. The high variation
between replicates in both the control and amended plots resulted in cumulative loads that were
numerically different but not statistically different. Cumulative loads of some elements such as Cs and Pb
from plots that received the DFGD by-product were nearly twice those from the unamended control but
due to deviation, neither were significant at a=0.05.

Mobility of selenium in the environment is controlled by soil pH and redox potential (Eh). In oxic
alkaline soils, the highly mobile Se0,> (selenate) is the predominant form of Se (Mayland et al., 1991).

Table 1. Chemical characteristics of a Captina silt loam prior to application of a dry flue gas desulfurization by-product

Mehlich 3 extractable nutrients (mg kg)
Soil Series pH EC umhos cm™ P K Ca Mg S Na Fe Mn Zn Cu B
Captina 6.708 60.6 30.6 45.8 8289 306 6.2 107 1678 714 52 0.5 0.1




Table 2. Chemical characteristics of a dry flue gas
desulfurization by-product originating from the
John W. Turk Power Plant in Hempstead County,

Table 3. Mean runoff volumes of a managed grassland
that received a dry flue gas desulfurization by-product
and an unamended control collected from 5/20/15 to

Arkansas. 7/9/2015.

Element mg kg Volume of Runoff Collected (mL)
As 9.1 Date Control Treatment
Be 2.16 5/20/2015 o' 169.33

B 336.36
5/25/2015 260 491.67
cd 0.61
o 1491 5/27/2015 60 195.00
o 39.05 6/1/2015 255 1341.00
Cs 0.38 6/14/2015 315 223.33
Cu 106.35 6/15/2015 495 450.00
Heg 0.81 6/16/2015 83.33 90.00
Ni 26.03 6/17/2015 522.5 645.00
Pb 7.68 6/26/2015 215.5 400.33
Rb 6.35 7/2/2015  310.33 546.00
Se 15.77
) 197,07 7/3/2015 31 365.00
U 5 7'3 7/7/2015 414.67 911.67
7/8/2015 102.67 273.00

EC (2:1) 4.02 ms cm'! 7/9/2015 127.5 0

pH 10.7 T Plots that received no runoff during the

precipitation event

Table 4. Cumulative runoff, mean electrical conductivity Treatment
(EC), pH, and cumulative trace element loads for a 2- Parameter Control Treatment
month period (May-June 2015) from a managed Cumulative Runoff (L) 2.8a 553
grassland that received a one-time application of a dry
flue gas desulfurization by-product. Means with the Mean EC (s cm™) 215.8a 168.3a
same letter within a row are not significantly different at Mean pH 6.34a 6.24a
2=0.05.
Ast 7.81a 11.81a
Be 0.34a 0.51a
Be 299.48a 477.64a
cd 1.84a 2.51a
Co 4.28a 5.32a
Cr 2.98a 5.04a
Cs 1.25a 3.21a
Cu 65.84a 109.53a
Hgt BDL BDL
Ni 9.17a 14.64a
Pb 4.65a 8.31a
Rb 32.42a 32.85a
Se 21.21a 37.62b
\Y 42.8a 85.57a
U 0.48a 1.46a

tCumulative loads of trace elements are in g
fHg concentrations were below detectable limits (BDL)



Mobility of Se in the environment can be further enhanced in soils with high phosphate concentrations.
Phosphate out competes Se for soil colloid adsorption sites. Due to continuous application of poultry litter
in northwest Arkansas, soils often have high phosphorous concentrations which may have increased the
susceptibility of Se to runoff.

Conclusions and Recommendations:

Although there were no significant difference between the amended and unamended plots in
cumulative loadings of As, Be, Cd, Co, Cr, Cs, Cu, Ni, Pb, V, and U, these elements may have been taken up
by plants, accumulated in the soil, or leached through the soil profile. The U.S. Geologic Survey should
continue to research alternative methods of CCB disposal that may be more sustainable than the current
disposal methods which can pose significant risk for environmental contamination. Beneficial reuse of
CCBs as a soil amendment can only be accomplished if it can be shown that land application will not result
in contamination of natural resources. The experiment described in this report is ongoing and will be
completed in May of 2016. Complete statistical analyses of runoff water quality, plant uptake, and soil
accumulation of trace elements and heavy metals will be performed upon completion of data collection.
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Information Transfer Program Introduction

Information transfer activities are an integral component of the Arkansas Water Resources Center's (AWRC)
mission. Through these information transfer activities, AWRC provides water resources information to the
user community, including researchers, students, water resources planners and managers, environmental
consultants, environmental advocacy entities, lawyers and the general public. The AWRC accomplishes this
mission primarily through seven activities: 1) an annual water resources research conference; 2) monthly
electronic newsletters; 3) publish technical and data reports; 4) maintain and improve the AWRC website as
the primary portal for users to access technical reports, data reports, call for proposals, newsletters, conference
activities, AWRC Water Quality Laboratory information and other library materials; 5) the use of social
media such as Facebook and twitter; 6) engaging the student population at the University of Arkansas -
Fayetteville; and 7) expand the Center's reach to inform the public by utilizing University resources, such as
"Newswire".

Information Transfer Program Introduction 1
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Arkansas Water Resources Center 104B Program — March 2015 through February 2016

Project Title:  Information Transfer Program

Project Team: Brian E. Haggard, University of Arkansas, Arkansas Water Resources Center, Department
of Biological and Agricultural Engineering
Erin E. Scott, Arkansas Water Resources Center

Introduction:

An important component of the Arkansas Water Resources Center’s (AWRC) mission is the transfer of
water resources information to the user community within Arkansas and the region. This community of
users includes researchers, resource planners and managers, environmental consultants, environmental
advocacy entities, lawyers, and the general public. The transfer of information was accomplished through
the following 7 avenues:

1. Hold and sponsor annual water resources conference during the project year.

2. Prepare and disseminate monthly email newsletters that address water related activities and
news throughout Arkansas and regionally.

3. Publish technical reports and data reports on water research and water quality monitoring
projects.

4. Maintain the AWRC website as a primary portal for accessing technical reports, notices,
newsletters, conference registration, AWRC Water Quality Laboratory information, and AWRC
library materials.

5. Update the AWRC Facebook and Twitter page throughout the year.

6. Expand the Center’s reach to inform the public by means of University-wide electronic news (e.g.
“Newswire”) and possibly news through a national platform.

7. Center-related research published in peer-reviewed journals, presentations at scientific
conferences and meetings, and support of students seeking graduate degrees. This includes 104B
funded research as well as other Center-related research.

The dissemination of water resources information through the 7 primary avenues listed above reaches a
broad audience throughout Arkansas and neighboring states.

Annual Water Conference:

Over 150 people attended the annual water conference held in July 2015. Attendees included
stakeholders from municipalities, state agencies, research institutions, non-profit groups, environmental
consulting firms, and the general public from throughout Arkansas and the region. Topics included:

e Animal manure and the land-water interface

e Agricultural water management in the delta

e Urban stormwater management

e Emerging research by students funded through the USGS 104B program.

In conjunction with the annual conference, the Center hosted a stormwater inspector certification
course titled “BMP Design, Application and Inspection for Construction Sites”. This course was taught by
a CMSA4S certified instructor for Stormwater Inspector certification. Over 80 people attended and were
certified through course, including construction site managers and workers, designers, developers,
inspectors, and other interested individuals.



Electronic Newsletters:

The AWRC distributed monthly electronic newsletters to several hundred people from local and state
agencies, municipalities, academia, non-profit organizations, consulting firms, students, and many other
stakeholders. Electronic newsletters continue to be a valuable means of distributing important
information related to water resources. The Center published news articles on current research being
done throughout the State, especially projects funded through the USGS 104B program, recent activities
of the Center, the USGS, and other organizations, funding opportunities, and other timely water-related
news.

The AWRC populates a section of the newsletter for “Upcoming Events” to highlight not only Center-
related events and activities, but also those of other local or national organizations such as ADEQ, ANRC,
Beaver Watershed Alliance, lllinois River Watershed Partnership, and the US EPA. AWRC also updates a
“Jobs” section each month aimed to provide recent graduates or early career people some guidance and
examples of current job openings related to water science and engineering.

Publications:

AWRC published 7 technical reports and 8 water-data reports on the Center’s website during this past
project year (March 2015-February 2016). These technical reports included the USGS annual report, the
USGS annual summary, water research and monitoring reports from projects funded by state or local
water organizations, as well as reports by scientists not related to the Center in an effort to make available
important information in addition to or in lieu of peer-reviewed articles. Water-data reports are published
on AWRCs website and provide easy access to years-worth of Center-related water quality monitoring
data associated with the data collected for the technical reports. These data reports are available to the
public and can be accessed as neatly-organized Microsoft Excel data files.

Website:

The AWRC website is the primary portal for stakeholders to access important and useful water
resources information. During this past year, Center-staff have worked to improve the usability of the
website and the availability of water resources information. The website serves as a platform to provide:

e Immediate electronic availability of almost all AWRC publications

e A warehouse of raw data provided as water-data reports associated with research and monitoring
projects

e Information about submitting a water sample to the AWRC Water Quality Laboratory

e Information on upcoming conferences and funding opportunities, especially USGS 104B and 104G
grants, and other events.

Maintenance of the AWRC website is a critical component of the AWRC'’s information transfer program.

Social Media:

The AWRC continues to expand its presence on social media. During this past year, staff utilized
Facebook and twitter to disseminate information about the activities of the Center including funding
opportunities, conference materials, and research findings. Social media also has been a great way to
network and share ideas and stories among water stakeholders and organizations. The Center shares
posts from other water or water-related organizations about current news or upcoming events. During
this past project year, the Center began posting the monthly electronic newsletters on Facebook and
started utilizing the “boost post” function. This has resulted in posts reaching over 5,000 people, with



increased user engagement. The use of Hootsuite enabled our twitter activity to at least mirror our
Facebook posts.

Other News Outlets:

The AWRC began reaching out to communications staff at the University of Arkansas, University
Relations Department, to increase the Center’s reach and inform the greater public through additional
news outlets. Specifically, AWRC worked with University Relations to run a story on a local water-research
project that the Center had recently published. This news article was distributed via email to over 25,000
faculty, staff and students at the University of Arkansas, and also available on a national news platform
accessed by communications professionals around the country. The story was picked up by a contributing
editor for the American Society of Civil Engineers and published in that organization’s national magazine.

Publications, Presentations and Degrees:

When soliciting research proposals through the USGS 104B program, AWRC emphasizes several
objectives, including the future publication of research results in peer-reviewed scientific literature.
During this past year, 12 publications have been submitted or accepted into peer-reviewed scientific
journals. These publications are listed within each project report or in the section for publications from
previous project years.

AWRC also emphasizes the presentation of research results at local, national and international
meetings and conferences, and the support of graduate research assistants. During this past year, 31 oral
and poster presentations were given by student and faculty researchers at conferences around the
country. Additionally, 9 graduate students either successfully completed their graduate studies and have
published their thesis or dissertation, or are expected to graduate in coming years.

Conclusions:

One of the primary missions of the AWRC is the transfer of information to water resources
stakeholders. Through the use of an annual water conference, electronic newsletters, publication of
reports, maintenance of the website, engagement through social media, and utilization of additional news
outlets, AWRC continues to reach a broad audience throughout Arkansas and even the Nation. The Center
has helped to ensure that water resources managers have the information necessary to help guide
important management decisions.



USGS Summer Intern Program

None.

USGS Summer Intern Program



Student Support

Category Section 104 Base | Section 104 NCGP NIWR-US.GS Supplemental Total
Grant Award Internship Awards
Undergraduate 10 0 0 0 10
Masters 7 0 0 0 7
Ph.D. 4 0 0 0 4
Post-Doc. 1 0 0 0 1
Total 22 0 0 0 22




Notable Awards and Achievements

Lucy Baker was awarded third place for the student oral presentations at the Natural Areas Association
Conference held in Little Rock, AR. This award recognized outstanding student presentations that occurred
over the two day conference. Lucy competed with approximately 30 students.

Notable Awards and Achievements



Publications from Prior Years

1. 2011AR313B ("Continued Investigation of Land Use and Best Management Practices on the
Strawberry River Watershed") - Articles in Refereed Scientific Journals - Brueggen-Boman, T.R.,
S.Choi, and J.L. Bouldin, 2015, Response of Water Quality Indicators to the Implementation of Best
Management Practices in the Upper Strawberry River Watershed, Arkansas, Southeastern Naturalist
Journal, 14(4): 697-713.

2.2014AR349B ("Assessing total nitrosamine formation and speciation in drinking water systems") -
Articles in Refereed Scientific Journals - Do, T.D., J.R. Chimka, and J.L. Fairey, Improved (and
Singular) Disinfectant Protocol for Indirectly Assessing Organic Precursor Concentrations of
Trihalomethanes and Dihaloacetonitriles, Environmental Science and Technology, 49: 9858-9865.

3.2014AR354B ("Economics of Multiple Water-Saving Technologies across the Arkansas Delta
Region") - Articles in Refereed Scientific Journals - Kovacs, K., M. Mattia, G. West, 2015,
Landscape irrigation management for maintaining an aquifer and economic returns, Journal of
Environmental Management, 160: 271-282.

4.2014AR354B ("Economics of Multiple Water-Saving Technologies across the Arkansas Delta
Region") - Conference Proceedings - Kovacs, K., 2015, Regional Irrigation Management with
Conjunctive Surface and Groundwater Use, Agricultural and Applied Economics Association Annual
Meeting, San Francisco, CA.

5.2014AR354B ("Economics of Multiple Water-Saving Technologies across the Arkansas Delta
Region") - Conference Proceedings - West, G. and K. Kovacs, 2015, Spatial irrigation management to
sustain groundwater and economic returns, SERA35: Delta Region Farm Management and
Agricultural Policy Working Group, Vicksburg, MS.
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