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Introduction

The Georgia Water Resources Institute (GWRI) aims to provide interdisciplinary research, education,
technology transfer, and information dissemination, and works collaboratively with various local, state, and
federal agencies. At the state and local levels, GWRI collaborates with and supports the Georgia
Environmental Protection Division/Georgia Department of Natural Resources, water and power utilities,
environmental organizations and citizen groups, and lake associations. At the national level, GWRI
collaborative efforts with the California Energy Commission, California Department of Water Resources,
National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, U.S. Bureau of
Reclamation, U.S. Geological Survey, U.S. Environmental Protection Agency, and U.S. Fish and Wildlife
Service. Finally, GWRI has a significant international research and educational program in Europe, Africa,
China, Middle East, and South America with support from the U.S. Agency for International Development,
World Bank, Food and Agriculture Organization of the United Nations, and other international organizations.
In all its programs, the Institute strives to bring to bear expertise from a variety of disciplines, including civil
and environmental engineering, atmospheric sciences, agriculture, oceanography, forestry, ecology,
economics, and public policy.

This year's funded activities include:

RESEARCH PROJECTS

(1) Multi-Scale Investigation of Seawater Intrusion and Application in Coastal Georgia, Jian Luo PI, Georgia
Institute of Technology, sponsored by USGS under grant # 2006P17 (Fund #R9261).

(2) Assessing the impacts of a major wildfire in the Okefenokee Swamp on mercury levels in resident
Macroinvertebrates and Mosquitofish, Darold Batzer PI, University of Georgia, sponsored by USGS under
grant #1266663 (Fund #R7113.

(3) Temporal and Micro-site Variation in Flow Characteristics in Estuarine Habitats, Donald Webster and
Marc Weissburg, sponsored by USGS under grant #1266663 (Fund R7113).

(4) Assessment of Endocrine Disruption in Fish and Estrogenic Potency of Waters in Georgia, Robert
Bringolf, University of Georgia, sponsored by USGS under grant #1266663 (Fund R7113).

(5) Operational Multi-scale Forecast and Reservoir Management in Northern California, Aris Georgakakos PI,
Georgia Institute of Technology, sponsored by NOAA through the Hydrologic Research Center under grant
#2006N95.

(6) Integrated Forecast and Reservoir Management (INFORM) for Northern California, Phase II: Operational
Implementation, Aris Georgakakos PI, Georgia Institute of Technology, sponsored by California-Nevada
River Forecast Center, California Department of Water Resources, California Energy Commission under grant
#2006Q15.

(7) Technical Assistance in Water Resource Planning, Aris Georgakakos PI, Georgia Institute of Technology,
sponsored by Georgia Department of Natural Resources/ Environmental Protection Division under grant
#2006R69.

(8) Technical Assistance for Water Resources Planning in the State of Georgia, Aris Georgakakos PI, Georgia
Institute of Technology, sponsored by Georgia Environmental Protection Division under grant #2006Q13.
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EDUCATIONAL INITIATIVES

The Africa Water Resources Institute for Education and Applied Research (AWARE) is a joint institute
established by the Georgia Institute of Technology (GT) and the University of Pretoria (UP), through the
Georgia Water Resources Institute (GWRI) and the University of Pretoria Water Institute (UPWI). This is the
first such initiative between major American and African Universities and focuses on interdisciplinary
graduate education, applied research, and technology transfer in the areas of water, energy, and environmental
resources planning and management. AWARE was officially launched on June 19, 2008, and is based at the
UP campus in Pretoria, South Africa. The first AWARE programs include a Joint Masters Degree Program in
Water Resources Management and a Professional Continuing Education Program for water and hydropower
professionals.

PROFESSIONAL AND POLICY IMPACT

Georgia: GWRI continues to provide technical assistance to the Georgia Department of Natural Resources in
relation to the state water planning process. GWRI’s River Basin Planning Tool (RBPT) was developed
specifically for this purpose and is now being applied to assess water supply availability and gaps in various
Georgia basins. The results are communicated to 12 Water Councils that have been formed across the state.
GWRI provides training to state engineers and their contractors who are involved in these assessments. The
RBPT is further developed as more specific assessment needs arise in the planning process. In addition to the
Georgia Tech River Basin Planning Tool, GWRI has completed a comprehensive study on the impacts of
climate change for the Apalachicola-Chattahoochee-Flint River Basin shared with Alabama and Florida. The
study indicates that droughts will most likely intensify having serious implications on water supply, energy
generation, and ecological flows. The study is now being expanded to include all Georgia basins.

California:

Similar work, collaboratively with the Hydrologic Research Center in San Diego, has focused on climate
change impacts on the Northern California water resources system (including the Sacramento and San Joaquin
River basins). While the nature of the changes is different, due to hydrologic significance of snow melt, the
findings are equally important regarding the need for mitigation and adaptation measures. With funding from
the California Energy Commission and the Department of Water Resources, GWRI and HRC have just
initiated a second project phase which aims at finalizing and transferring the forecast-decision tools and
evaluating alternative climate and demand change mitigation measures.

International:

GWRI continues its collaboration with the Democratic Republic of the Congo (DRC), helping raise funding
for a comprehensive assessment and development program. The program focuses on water, environmental,
and energy development, as well as institutional and legal reforms, and is a collaborative effort with the
United Nations Development Program and the DRC Ministry of the Environment. The plan was recently
presented to the World Bank and is under funding consideration.
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Research Program Introduction

None.
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Multi-Scale Investigation of Seawater Intrusion and
Application in Coastal Georgia

Basic Information

Title:Multi-Scale Investigation of Seawater Intrusion and Application in Coastal Georgia
Project Number: 2007GA165G

Start Date: 4/1/2008
End Date: 9/30/2011

Funding Source: 104G
Congressional District: 5th

Research Category: Ground-water Flow and Transport
Focus Category: Groundwater, Hydrology, Models
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Report as of FY2010 for 2007GA165G: “ Multi-Scale 
Investigation of Seawater Intrusion and Application in 
Coastal Georgia” 
 

Students Supported 
 
Ph.D. student: Lu, Chunhui, Yiming Chen 
 

Journal Publications 
 
Lu, C., Kitanidis, P.K., Luo, J. (2009), Effects of kinetic mass transfer and transient flow 
conditions on widening mixing zones in coastal aquifers, Water Resour. Res., 45, 
W12402, doi:10.1029/2008WR007643. 
 
Lu, C., Gong, R., Luo, J. (2009), Analysis of stagnation points for a pumping well in 
recharge areas, J. Hydrol., 373, 442-452. 
 
Lu, C., Luo, J. (2010), Dynamics of freshwater-seawater mixing zone development in 
dual-domain formations, Water Resour. Res., 46, W11601, doi:10.1029/2010WR009344. 
 
Lu, C., Du, P., Chen, Y., Luo, J. (2011), Recovery efficiency of aquifer storage and 
recovery (ASR) with mass transfer limitation, Water Resour. Res., in revision. 
 
Lu, C., Luo, J. (2011), Boundary condition effects on estimating maximum groundwater 
withdrawal in coastal aquifers, Ground Water, in revision. 
 
Chen, Y., Lu, C., Luo, J. (2011), Solute transport in transient divergent flow, Water 
Resour. Res., in review. 
 

Conference 
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San Francisco, CA, Dec. 14-18, 2009. 
 
Lu, C., Luo, J., Effects of aquifer stratification on freshwater-seawater mixing- zone 
development, EOS Trans. AGU, Fall Meet. Suppl., Abstract H43A-1206, San Francisco, 
CA, Dec. 13-17, 2010. 

 
Report Follows 

In the following report, the research conducted in FY2010 is presented. 
Research completed or published in previous years are not included.
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Chap. 1 
 
Recovery efficiency of aquifer storage and recovery (ASR) with 
mass transfer limitation 

 

Abstract 

Aquifer storage recovery (ASR) is an effective strategy for water resources 
management and has been widely used in many contaminated and saline aquifers. 
However, its recovery efficiency (RE) may be significantly affected by mass transfer 
limitations. A numerical model is developed to simulate ASR performance by combining 
the convergent and divergent dispersion models with a first-order mass transfer model. 
By analyzing the concentration history at the pumping well, we obtain simple and 
effective relationships for investigating ASR efficiency under various mass transfer 
parameters, including capacity ratio and mass transfer timescale, and operational 
parameters, including injection durations and well pumping rates. Based on such 
relationships, one can conveniently determine whether a site with mass transfer 
limitations is appropriate or not for ASR and how many ASR cycles are required for 
achieving a positive RE. Results indicate that the immobile domain may function as a 
contaminant source or sink or both during the recovery phase and RE usually improves 
with well flow rate, the decrease of capacity ratio, and the ASR cycles. However, RE is a 
non-monotonic function of the mass transfer timescale and the injection duration. A 
critical timescale is given for quantifying this non-monotonic behavior. When the 
injection period is greater than such a critical value, increasing injection period results in 
a higher RE. Contrarily, when the injection period is less than the critical value, 
increasing the injection period may even yield a lower RE. 
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1 Introduction 

Aquifer storage and recovery (ASR) is an effective technology for optimal 
management of water resources. ASR involves injecting fresh water into aquifers through 
a well (or a cluster of wells) when additional water is available (storage), and pumping 
water out from the same or adjacent wells when needed (recovery). The injection, storage 
and recovery process forms one cycle of ASR (see Figure 1). Interest in ASR has been 
growing in the face of declining groundwater levels caused by excessive exploitation, 
increasing vulnerability of surface water supplies to contamination, and salinization of 
groundwater resources in coastal and offshore environments [e.g., Eastwood and 
Stanfield, 2001; Almulla et al., 2005; Pyne, 2005; Lowry and Anderson, 2006; Culkin et 
al., 2008; Vandenbohede et al., 2008]. Specifically, ASR avoids the construction of large 
and expensive reservoirs, prevents easy loss of freshwater resources, and provides a cost-
effective solution to water resources management. In addition, the development of 
environmentally friendly ASR systems can alleviate land subsidence and act as a 
hydraulic barrier against saltwater intrusion in coastal regions [e.g., Shammas, 2008]. 

The performance of an ASR system is generally quantified by the recovery 
efficiency (RE), defined as the quantity of stored water that can be recovered without 
further treatment divided by the total quantity injected [Kimbler et al., 1975]. It is not 
uncommon that RE may be significantly lower than 100% for ASR systems installed in 
an initially non-potable aquifer due to the mixing between the injected fresh water and 
originally-contaminated groundwater [e.g., Eastwood and Stanfield, 2001; Lowry and 
Anderson, 2006]. Primary mechanisms that may influence the RE of an ASR system are 
those that can introduce or enhance mixing in the subsurface, including density-gradient 
driven convection, dispersion and diffusion, heterogeneity of the aquifers, rate-limited 
mass transfer, and others [e.g., Kuman and Kimbler, 1970; Moulder, 1970; Merritt, 1986; 
Maliva et al., 2006; Ward et al., 2007, 2008, 2009; Lu et al., 2009]. For example, 
numerical studies of three ASR field sites in Wisconsin, USA showed that dispersive 
mixing was an important process affecting the RE and a larger longitudinal dispersivity 
would lead to a much lower RE due to enhanced mixing [Lowry, 2004; Lowry and 
Anderson, 2006]. Among all these mechanisms, rate-limited mass transfer, referring to 
non-equlibrium mass exchange between relatively mobile and immobile or solid phases, 
was recognized as a potential key factor that may control the RE of an ASR system 
[Eastwood and Stanfield, 2001; Culkin et al., 2008]. In geologic formations exhibiting 
dual-domain behavior, e.g., mobile-immobile domains such as media consisting of 
fractures and matrices, preferential flow paths and low permeability zones, injection of 
potable water may break the local geochemical equilibrium in the subsurface and cause 
dissolution and desorption of chemical constituents from matrices and rocks, which may 
contaminate the injected potable water and potentially release more toxic compounds. 
Culkin et al. [2008] observed significant salinity rebounds during the storage phase in 
ASR field experiments in Charleston, South Carolina, USA, which was successfully 
characterized by a dual-domain mass transfer model. Thus, prior to the significant 
depletion of the immobile domain or the solid phase, one would always expect a low RE. 



 5

 

Although the prevalent existence of mass transfer behavior in natural aquifers has 
been recognized [e.g., Coats and Smith, 1964; van Genuchten and Wierenga, 1976] and 
many numerical and analytical solutions have been developed to simulate divergent and 
convergent dispersion with mass transfer limitations [e.g., Chen, 1985, 1986; Goltz and 
Oxley, 1991; Moench, 1995], the effectiveness and efficiency of ASR subject to mass 
transfer limitations remains unknown. In particular, there are no guidelines to determine 
the likelihood of ASR being successful with mass transfer limitations and to optimize 
ASR operational parameters. The present study numerically and analytically investigates 
the efficiency of an ASR system in dual-domain aquifers with mass transfer limitations 
under various hydrogeologic and operational conditions. Simple and effective 
relationships between transport parameters and ASR operational parameters are derived 
to quantify the effectiveness and ascertain the potential of ASR systems with mass 
transfer limitations. Specific questions to be answered by the present research are as 
follows: (1) how can we determine whether a site is appropriate or not for ASR with mass 
transfer limitations and identify when mass-transfer limitations are important; (2) what is 
the effect of mass transfer parameters and ASR operational parameters on ASR 
performance; and (3) how many cycles are needed for an ASR system to perform well? 

2 Numerical Model 

Figure 1 shows the conceptual model of a typical ASR system with a fully-
penetrated pumping well installed in a confined, homogeneous, isotropic aquifer. The 
three-dimensional domain is modeled by a two-dimensional axisymmetric cross-section. 
The vertical axis of rotation is located at the pumping well. The medium consists of 
overlapped mobile and immobile domains, which have a uniform initial contaminant 
concentration of  0c  . The mass transfer process between the mobile and immobile 

domain is described by a first-order mass transfer model. An ASR cycle consists of an 
injection, resting (storage) and extraction (recovery) phase. The groundwater velocity is 
assumed to be steady state during each phase and the transition period between two 
phases is neglected [Harvey et al., 1994]. During the injection phase, fresh water is 
injected into the aquifer and a concentration front moves away from the pumping well. 
During the storage phase, no flow occurs but the concentration profile may be altered by 
mass transfer between the mobile and immobile domain. During the recovery phase, 
stored water is extracted via the same pumping well and the concentration front moves 
toward the pumping well. For simplicity, we assume that the injection flow rate and the 
recovery rate are the same and the flow field is static during the storage phase. These 
assumptions are reasonable in practice and were adopted in many other studies [e.g., 
Ward et al., 2007, 2008]. By neglecting regional flow and density effects, the problem 
can be described as one-dimensional transport in radial coordinates. It has been known 
that both regional flow and density effects may significantly influence the RE because 
regional flow may alter the shape of the water body in the subsurface during the storage 
phase and density effects may enhance solute mixing [e.g., Ward et al., 2007, 2008]. 
However, these two mechanisms are not the focus of the present research. The RE is 
evaluated by setting a criterion of the average concentration of extracted water at the 
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pumping well, such as the U.S. EPA potable-water standard. In the absence of dispersion 
and mass transfer, i.e., advection is the only transport process, the ASR system is 
completely reversible and the RE is 1. With dispersion and mass transfer, the mixing 
enhancement is not reversible, and hence the injection and extraction phase are not 
identically reversed and the RE is less than 1. 

2.1 Governing Equations 

In radial coordinates, the conceptual model can be described by one-dimensional 
dual-domain advective-dispersive transport and a first-order mass transfer model [e.g., 
Bear, 1979; Chen, 1985]: 
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where  t   [ T  ] is the time;  r   [ L  ] is the radial distance from the well center;  wr   [ L  ] 

is the well radius;  mθ   [-] and  imθ   [-] are porosities of the mobile and immobile domain, 

respectively;  mc   [ 3/ LM  ] and  imc   [ 3/ LM  ] are dissolved solute concentrations in 

the mobile and immobile domain, respectively;  Lα   [ L  ] is the longitudinal dispersivity;  

v   [ TL /  ] is the pore fluid velocity;  v   represents the absolute magnitude of  v  ; and  

α   [ T/1  ] is the first-order mass transfer rate coefficient. Eqs. (Eq. pumping) and (Eq. 
storage) assumes that lateral mixing caused by molecular diffusion is negligible. 

The steady-state velocity is given by: 
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 where  q   [ TL /2  ] is the specific pumping rate (positive sign for injection and negative 
for extraction), defined as the flow rate per unit length of aquifer thickness. Substituting 
Eq. (3) into Eq. (1) yields: 
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The boundary conditions are given by: 
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where  0c   [ 3/ LM  ] is the initial background concentration. For injection of fresh water, 

the boundary condition assumes zero mass flux during the injection phase. For ASR 
systems with stream water or reclaimed wastewater injection [e.g., Sheng, 2005], a non-
zero input flux may be defined. Note the boundary conditions for the extraction phase are 
the same at the pumping well as previous radial pumping problems, but are different at 
the inifinite distance [e.g., Chen and Woodside, 1988; Harvey et al., 1994], in which the 
concentrations at the infinite distance are 0, representing a finite contaminant plume 
length. This is because such problems only involved extraction phases with or without 
storage phases, which resulted in a trivial solution of concentration  0c   for an infinite 

plume. However, for ASR systems, such a problem does not occur because extraction 
phases always follow injection and storage phases, which result in nonuniform 
concentration distributions at the beginning of extraction phases. 

The final concentration distribution at the end of each cycle is used as the initial 
concentration distribution at the start of the subsequent cycle: 

( ) ( ) ( ) ( )rctrcrctrc imimmm 00 0,,0, ====    (6) 

 where the time is reset for each ASR cycle.  ( )rcm0   and  ( )rcim0   are not constant 

functions and vary for different phases and different ASR cycles. For the first injection 
phase,  ( )rcm0   and  ( )rcim0   are equal to  0c  . 

2.2 Dimensional Analysis 

We introduce the following dimensionless groups: 
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where  imτ   [ T  ] is a dimensional parameter. 

• ASR operational parameters: 
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where  it  ,  st   and  et   are the actual time periods of the injection, storage and extraction 

phase. All these time periods are normalized by the mass transfer timescale. 

By substituting the velocity function given by Eq. (velocity) and the defined 
dimensionless groups into Eqs. (1) and (2), the governing equations for an ASR system 
can be transformed into: 
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Immobile domain: 
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Correspondingly, the boundary and initial conditions become: 
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Our definition of dimensionless groups follows the previous study for intermittent 
extraction of contaminant plume [Harvey et al., 1994]. Other dimensionless systems are 
also available for mass transfer models [e.g., van Genuchten and Wierenga, 1976; Goltz 
and Oxley, 1991]. The advantage of the defined dimensionless parameters is that the time 
is normalized by the mass transfer timescale, which is particularly useful for studying the 
storage phase. In addition, Eqs. (Injection) - (Immobile) are also valid for linear rate-
limited sorption processes by modifying dimensionless groups accordingly [Harvey et al., 
1994]. 

2.3 Numerical Solution 

Analytical solutions in Laplace domain have been derived for radial injection and 
extraction problems [e.g., Chen, 1985, 1986, 1987; Chen and Woodside, 1988; Moench, 
1989, 1995; Goltz and Oxley, 1991; Huang and Goltz, 2006; Huang et al., 2010]. Such 
analytical solutions have been used to analyze tracer tests in convergent and divergent 
radial flow fields [e.g., Novakowski, 1992; Moench, 1995; Becker and Charbeneau, 
2000], decontamination by pumping with rate-limited sorption or mass transfer [e.g., 
Goltz and Oxley, 1991; Harvey et al., 1994], and single-well push-pull tracer tests 
[Huang et al., 2010]. For the injection and recovery phase, the proposed ASR model is a 
combination of radial dispersion in convergent and divergent flow fields and rate-limited 
mass transfer, which can be readily solved by modifying the available solutions. For the 
storage phase, analytical solutions in time domain are given by [Harvey et al., 1994]: 
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where  ∗
0mc   and  ∗

0imc   are the initial concentrations at the beginning of the storage phase. 

In addition, numerical codes, such as MT3DMS and SUTRA, are also available for 
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modeling axisymmetric solute transport by adjusting transport parameters to account for 
the cylindrical geometry [Langevin, 2008]. In the present research, we use Matlab built-in 
ode solvers to solve Eqs. (Injection) - (Immobile), which yield satisfactory results 
comparing with analytical solutions (see Supplementary Material). 

3 Evaluation of ASR Performance 

The performance of an ASR system is evaluated by the RE, which is defined as 
[Kimbler et al., 1975]:  

( )( )
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∗∗ <
= 0  (16) 

where  ∗
critc   is the critical concentration normalized by  0c  ,  rV   is the volume of 

recovered water through the pumping well that satisfies the predefined standard, and  iV   

is the total volume of injected fresh water. Certainly, RE increases with  ∗critc  , i.e., more 

water can be recovered for lower-standard quality requirements. We here assume  
1.0=∗

critc  , which represents that the initial contaminant concentration is 10 times of the 

criterion. During the recovery phase, if the extracted concentration becomes greater than  
∗
critc  , the pumping will be terminated because the extracted water will need further 

aboveground treatment. 

Other than the critical concentration  ∗
critc  , which is a function of the initial 

contaminant concentration and the predefined criterion, RE is affected by both transport 
parameters, including dispersion and mass transfer coefficients, and ASR operational 
parameters, including durations of injection, storage and extraction phase and well flow 
rates. At a selected site where transport parameters are fixed and are a function of the 
hydrogeology, the optimization of ASR operational parameters is the major problem. 
Furthermore, in regions of stable seasonal fluctuations in freshwater resources 
availability, the durations of injection, storage and extraction phase are relatively constant 
and well pumping rates are the most flexible parameter to control. For simplicity, we 
assume  esi ttt ==  , i.e., equal durations of injection, storage and extraction phase, 

representing a 4-month time period for each phase for a yearly-based ASR cycle. To 
analyze the ASR performance at different hypothetical sites, we vary three dimensionless 
parameters:  β  ,  iT   and  φ  , in which  β   is controlled by the mass transfer capacity or 

the size of the immobile domain,  iT   is influenced by the mass transfer timescale, i.e., 

the first-order mass transfer rate coefficient and the immobile porosity, given constant 
pumping periods, and  φ   is influenced by the well pumping rate, mass transfer 
coefficients and dispersivity. 

4 Results and Discussion 
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4.1 Single ASR Cycle 

Figure 2 shows the RE of a single ASR cycle at different  β  ,  iT   and  φ  . The tested 

parameter ranges are:  11 1010~ −−β  ,  11 1010~ −−
iT  , and  50 1010~ −φ  , in which  

1.0=β   represents small portion of immobile domain (~9%) and  10=β   large portion 

of immobile domain (~91%) and  1.0=iT   represents a large mass transfer timescale 

comparing with pumping periods and a small mass transfer rate coefficient and  10=iT   

represents a small mass transfer timescale and a large mass transfer rate coefficient. If we 
consider an aquifer thickness  20   m,  1=Lα   m, and  3.0=mθ  , the examined range of  

φ   corresponds to the actual pumping rate  0157.0[   m 3  /d,  31057.1 ×   m 3  /d ]   for  

1.0=iT   and  57.1[   m 3  /d,  51057.1 ×   m 3  /d ]   for  10=iT  , respectively. The major 

information delivered by Figure 2 is summarized in the following: 

1) RE generally increases with the well pumping rate given  β   and  iT   except for cases 

with zero RE. 

2) In many combinations of  β   and  iT  , RE remains zero, i.e., no recovered water 

satisfies the predefined standard,  1.0=∗
critc  , within the wide tested range of  φ  . 

However, no clear pattern of  β   and  iT   can be observed for zero RE from Figure 2 

(the pattern will be explained in the next section). 

3) At a small  β  , e.g.,  1.0=β  , RE increases with  iT   at the same  φ  , implying a 

faster mass transfer rate yields a higher RE for a small immobile domain. However, 
such behavior is not consistent for all examined  β  . For example, at  5.0=β   and  

1=β  , the RE of  1.0=iT   is greater than that of  5.0=iT   and  1=iT  , indicating 

that the RE is not a monotonic function of  T i  .  

4) At a large  iT  , e.g.,  10=iT  , RE decreases with  β  , implying a larger immobile 

domain yields a lower RE for a fast mass transfer rate coefficient. At low  iT  s except 

those cases with zero RE, RE also decreases with  β  . However, at different low  iT  s, 

the cases of zero RE do not show a consistent pattern. 

4.1.1 Zero and non-zero RE 

Understanding the pattern of cases with zero RE is an essential problem for ASR 
design because it identifies specific conditions inappropriate for ASR. According to the 
zero-gradient boundary condition at the well during the extraction phase, the 
concentration of extracted water is identical to the concentrations at adjacent locations.  

0=RE   implies that after the storage phase the concentration at such adjacent locations 
are greater than  ∗critc   so that no fresh water can be extracted. Consider such an adjacent 
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point,  +
0R  , with an infinitesimally small distance to the well boundary. During the 

injection phase, we assume that the concentration at this point will quickly change to zero 
as a result of fresh water flushing at a large flow rate. Thus, the immobile concentration 
history at this point during the injection phase is governed by the following equation: 

( ) ∗
+∗

−=
∂

∂
im

im c
Rc

τ
0  (17) 

 which yields 

( ) ( )τ−=+∗ exp0Rcim  (18) 

 and the initial condition for the subsequent storage phase is: 

( )iim

m

Tc

c

−=

=
∗

∗

exp

00  (19) 

 Substituting Eqs. (initial storage m) and (initial storage im) into (cm storage) 
yields the concentration at the end of the storage phase: 

( ) ( ) ( )[ ]{ }sisim TTTTRc β
β

β +−−−
+

=++∗ 1exp1exp
1

,0  (20) 

 Thus, for a non-zero RE, the ASR system must satisfy 

( ) ( )[ ]{ } ∗<+−−−
+ critsi cTT β

β
β

1exp1exp
1

 (21) 

 This is a simple relationship that can be applied to evaluate the applicability for a single 
ASR cycle. For the proposed case,  si TT =   and  1.0=∗

critc  , we have: 

( ) ( ) ( )[ ]{ } 1.01exp1exp
1

,0 <+−−−
+

=++∗
iisim TTTTRc β

β
β

 (22) 

Figure 3 shows the contourlines of  ( )sm Tc ∗   as a function of  β   and  iT  . The 

area contained by the thick contourline of 0.1 indicates the regions of  β   and  iT   that 

will yield zero RE. All simulated cases in Figure 2 are shown by "+". There is no 
exception that all the cases with zero RE fall into the area contained by 0.1 contourline 
and all the cases with non-zero RE are located outside of this area. Thus, the simple 
inequality (inequatity) provides an efficient approach for determining the likelihood of 
single ASR cycle being successful. Furthermore, inequality (inequatity) gives operational 
guidance for ASR systems: (1) inequality (inequatity) does not involve the well pumping 
rate, indicating that increasing the well pumping rate is not an effective way for 
improving the RE within a single ASR cycle at aquifers falling into the zero-RE area 
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shown in Figure 3; and (2) there are two ways to convert a zero-RE case to a non-zero RE 
case by increasing the injection period, which yields a longer mass transfer duration to 
deplete contaminant in the immobile domain, and by decreasing the storage period, which 
yields a shorter mass transfer duration for the high concentration in the immobile domain 
entering the low-concentration mobile domain. Essentially, these approaches are to move 
the points vertically upward from inside the zero-RE area in Figure 3. In addition, if the 
concentration at the end of the injection phase is greater than  ∗

critc  , decreasing the 

storage period is not effective. Finally, Figure 3 also shows that a lower  ∗critc   yields a 

larger zero-RE area. An aquifer with a fast mass transfer rate coefficient, i.e., a larger  iT  , 

or a small immobile domain, i.e., a small  β  , is generally appropriate for ASR. Thus, for 
aquifers without mass transfer or with equilibrium (i.e., instantaneous) mass transfer, we 
can always have a positive RE. 

4.1.2 Effects of mass transfer parameters 

Given the same ASR operational strategies, i.e., constant well flow rate  q   and 

phase durations ( si tt ,   and  et  ), the RE is controlled by the mass transfer parameters, 

including capacity ratio  β   and mass transfer timescale  imτ  , and the dispersivity  αL  . 

According to the dimensionless groups, the effect of dispersivity is opposite to the well 
flow rate: a larger dispersivity yields a lower RE because more fresh water is 
contaminated due to enhanced mixing. In the following, we consider constant ASR 
operational parameters and dispersivity and examine the transferability of an ASR 
strategy to aquifers with different mass transfer parameters by varying  β   and  iT   (Note  

iT   is controlled by  imτ   for a constant  it  ). 

With the same flow rate and dispersivity, the RE is ultimately controlled by the 
mobile concentration at the adjacent points to the well boundary at the end of the storage 
phase, described by Eq. (equation mobile). That is, a lower  ( )sm Tc ∗   yields a higher RE 

and a higher  ( )sm Tc ∗   a lower RE. Taking derivatives of Eq. (cm*Ts) with respect to  β   

and  iT   (We assume  si TT =  ), we have: 

( )
( )

( ) ( )[ ]{ }

( ) ( )[ ] 01expexp
1

1exp1exp
1

1,
2

0

>+−−
+

+

+−−−
+

=
∂

+∂ +∗

ii
i

ii
sim

TT
T

TT
TTRc

β
β

β

β
ββ

 (23) 

( ) ( ) ( )[ ] ( ){ }ii
i

sim TT
T

TTRc
−−+−+

+
=

∂
+∂ +∗

exp2exp2
1

,0 ββ
β

β
 (24) 

 Thus, for a constant mass transfer timescale,  ( )sim TTRc ++∗ ,0   always increases with  β  , 
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resulting in a decreasing RE as shown by Figure 2. For a constant  β  , let  ( ) 0,0 =∂
∂ +∗

i

sm

T

TRc  . 

We obtain a critical  iT  , 

( )
β

β
+

+=
1

2ln
critT  (25) 

 and 

( )

( )
criti

i

sim

criti
i

sim

TT
T

TTRc

TT
T

TTRc

><
∂

+∂

<>
∂

+∂

+∗

+∗

 if 

  if 

,0
,

,0
,

0

0

 (26) 

 Thus, the changing pattern of  ( )sim TTRc ++∗ ,0   with the mass transfer timescale or mass 

transfer rate coefficient is non-monotonic. 

Figure 4 shows that  critT   decreases with  β   and the concentration gradient non-

monotonically changes with  T i  . Figure 4a identifies the specific cases shown in Figure 
2. For  5.0=β  ,  critT   61.0=  . Thus, Figure 2 shows a decrease of RE from  10=iT   to  

1=iT   (negative concentration gradient in Figure 4b) and then an increase to  1.0=iT   

(positive concentration gradient in Figure 4b). In fact, this non-monotonic behavior 
always occurs in the presence of mass transfer. Consider two limiting cases: one with an 
extremely high  iT   and the other nearly 0. The high  iT   case represents a small mass 

transfer timescale or a very large mass transfer rate coefficient. Thus, the rate-limited 
mass transfer process becomes equilibrium and the transport problem may be described 
by an advection-disperion equation with a retardation factor. On the other hand, the low  

iT   case implies a large mass transfer timescale or a very small mass transfer rate 

coefficient. In such cases, mass transfer may be neglected and the transport problem may 
be simplified into an advection-dispersion equation. Both limiting cases will yield high 
RE and  critT   is the turning point between them. 

Figure 5 shows the concentration profiles for the cases with  5.0=β   and 

different  iT   at the same well flow rate and pumping durations. Here we do not terminate 

the recovery phase when the concentration is greater than the criterion in order to show 
the concentration profiles during a complete cycle. During the injection phase, the 
immobile domain serves as a contaminant source for all cases. However, immobile 
concentrations drop significantly for  10=iT   due to fast mass transfer and remain high 

levels for  1.0=iT   due to slow mass transfer. During the storage phase, the mobile 

concentration rebounds as a result of mass transfer from the immobile domain with 
higher concentrations. By the end of the storage phase, mobile and immobile 
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concentrations reach equilibrium for  10=iT  , while there remain small and significant 

concentration differences for  1=iT   and  1.0=iT  , respectively .   As a result of the 

equilibrium concentrations, the immobile domain always serves as a sink during the 
recovery phase for  10=iT  , which has positive impact on the RE. For  1=iT  , the 

immobile domain initially acts as a contaminant source and then as a sink after the plume 
front in the mobile domain passes. By contrast, the immobile domain mostly serves as a 
contaminant source near the pumping well for  1.0=iT  . However, such negative impact 

on the RE may not be significant because of slow mass transfer rates. That is, the overall 
effect on the RE is an integral result of both immobile domain functions and mass 
transfer rates. With the increase of  iT  , the immobile domain transforms from a 

contaminant source to a sink, but the increased mass transfer rate may enhance the 
negative impact from the function as a contaminant source more than the positive impact 
from the function as a contaminant sink. The critical value of  critT   reflects a turning 

point when the immobile domain functions and mass transfer rate reach a certain 
balanced state. 

Inequalities (ineuqal more) and (ineuqal less) also provide very useful operational 
guidance for ASR systems at sites where there is flexibility in injection times. At a site 
with  criti TT >  , increasing the injection duration always improves the RE. However, if  

criti TT <  , one may need to increase the injection duration significantly in order to 

achieve an improved RE. A slight increase may even result in a lower RE. Furthermore, 

Eq. (Tcrit) yields the range  0, ln2   for  critT  , which implies that if the injection 

duration satisfies  imit τ2ln>   (or  imit τ6931.0>  ), increasing pumping duration is an 

effective approach for improving RE.  imτ2ln   is known as the half life of mass transfer, 

i.e., the time period for the concentration to decay to one half of its initial value by 
assuming first-order decay. Thus, increasing pumping period is effective when the period 
is greater than the half life of mass transfer. 

4.2 Multiple ASR Cycles 

Figure 6 shows a typical concentration history at the pumping well during 
multiple ASR cycles for specified parameters. For injection phases, the concentration 
remains zero as a result of freshwater flushing. During the first three ASR cycles, no 
water can be recovered because at the end of the storage phase the concentration is 
greater than the predefined standard due to mass transfer from the immobile domain. 
Thus, recovery phases during the first three cycles actually function as storage phases. 
From the fourth cycle, the mobile concentration drops below the standard at the end of 
the storage phase so that fresh water can be extracted from the pumping well until the 
concentration rises to the standard. The withdrawal period during the recovery phase 
increases with the ASR cycle, representing that the RE increases with the ASR cycle. The 
immobile domain functions as a contaminant source at the early ASR cycles, and 
gradually transforms into a contaminant sink during the recovery phase. In general, the 
RE of an ASR system improves with ASR cycles and a zero-RE ASR system for a single 
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cycle may eventually develop into an ASR system with a positive RE because multiple 
ASR cycles essentially increase the injection duration and total injected fresh water. Here, 
we are particularly interested in how many ASR cycles are necessary for such a 
transformation. 

To determine the number of needed ASR cycles for a system to transform from a 
zero RE to a non-zero RE, we still focus on the adjacent points to the well boundary. 
Because no water can be extracted for an ASR system with a zero RE, the actual storage 
duration is actually the sum of the designed storage phase and the recovery phase. By the 
end of such a cycle, the mobile and immobile concentrations are: 

( ) ( ) ( )( )[ ]{ }

( ) ( ) ( )( )[ ]{ }esinimesinim
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 (27) 

 where  ∗
−1,nmc   and  ∗

−1,nimc   are the mobile and immobile concentrations during the  

( )1−n  th ASR cycle, and  ∗ −1,0 nimc   is the initial immobile concentration of the  n  th cycle. 

Thus, at the end of the storage phase of the  n  th cycle, we have: 
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 A non-zero RE for the  n  th cycle requires: 

( ) ∗+∗ <+ critsinm cTTRc ,0,  (29) 

 By assuming  esi TTT ==  , we have: 
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 which yields 
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Figure 7 shows the areas with zero RE and non-zero RE delineated by the 

contourlines of the mobile concentration at the end of the storage phase of the  n  th cycle. 
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The subplot of cycle 1 is identical to Figure 3. With the increase of ASR cycles, the area 
with zero RE, i.e., the area contained by the contourline of 0.1 becomes smaller and more 
tested cases, "+" symbols, fall outside of the area. At cycle 7, all the tested cases, except 
the one with  10=β   and  1.0=iT  , should have non-zero RE at a large pumping rate. In 

addition, the area with zero RE shrinks with ASR cycles, but the shape of the 
contourlines remains similar, indicating that the effects of mass transfer and operational 
parameters on multiple ASR cycles may be similar to those identified in the single ASR 
cycle. 

Actually, taking derivatives of Eq. (multiple C) with respect to  n  ,  β  , and  T i  , 

respectively, we can also obtain  
( )

0
,0, <∂

+∂ +∗

n

TTRc sinm     for  2≥n  ,  
( )

0
,0, >∂

+∂ +∗

β
sinm TTRc

 , and a 

critical value,  ( ),, βnTcrit   by setting  
( )

0
,0, =∂

+∂ +∗

i

sinm

T

TTRc
 . Thus, the RE improves with ASR 

cycles, decreases with capacity ratio, and exhibits non-monotonic behavior in terms of 
mass transfer timescale and the injection duration. Figure 8 shows that the critical 
timescale decreases with ASR cycle and all cases with different  β   approach a low value 

of 0.0405 according to our numerical solution. In addition,  critT   is a monotonic, 

decreasing function of  β   at the first cycle, a non-monotonic function at intermediate 
cycles, and a monotonic, increasing function at late cycles. 

Figure 9 shows the contoured areas for the required cycles to achieve a non-zero 
RE. For  1≤β   or  1>iT  , all the tested cases should expect a non-zero RE within two 

ASR cycles. For a large  β   and a small  iT  , e.g.,  5=β   and  1.0=iT  , more ASR 

cycles are required. In particular, the case with  10=β   and  1.0=iT   requires more than 

10 cycles. 

Figure 10 shows the numerically-simulated RE for  5=β   at a constant  φ  . For 

large mass transfer rate coefficients, i.e.,  5=iT   and  10  , the first ASR cycle has a non-

zero RE. For  ,1=iT    ,5.0   and  1.0  , it requires 2, 4, and 7 ASR cycles, respectively. 

The result is consistent with that shown by Figures 6, 7 and 9. 

The above analyses delineate between zero RE and non-zero RE and determine 
the number of ASR cycles required to sufficiently "flush" the subsurface and move from 
zero RE to non-zero RE. However, in practial ASR applications, a low RE of, say, 5% 
may be considered effectively a failure despite being non-zero. Thus, the number of ASR 
cycles determined here may serve as an indicator for broad comparisons between 
hydrogeological and operational combinations (i.e. those that are likely to be fairly 
quickly flushed versus those which are likely to require many flushing cycles), and may 
not be taken as a strict predictor of how many cycles/years before an operation becomes 
viable. 

5 Summary and Conclusion 
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ASR is an effective strategy for sustainable management of water resources, but its 
efficiency may be limited by kinetic mass transfer caused by contaminant sorption and 
dual-domain behavior of subsurface media. A numerical model is developed for 
simulating ASR performance by combining the convergent and divergent dispersion 
models with a first-order mass transfer model. More importantly, by analyzing the 
concentration history at the pumping well, simple relationships between mass transfer 
parameters and ASR operational parameters are derived for understanding ASR 
performance and improving its efficiency. Several practical and useful contour figures are 
generated based on such relationships for delineating the ranges of mass transfer 
parameters and the necessary ASR cycles that may yield effective and efficient ASR 
performance. The developed numerical model and analyzed results provide very useful 
and practical guidance for determining a potential ASR site with mass transfer limitations 
and optimizing ASR operations. The main conclusions that can drawn from the analysis 
are as follows: 

1) Increasing well pumping rates may yield higher RE for a single ASR cycle, but 
usually does not transform an ASR system from zero RE to non-zero RE. 

2) RE decreases with the mass transfer capacity ratio, i.e., a large immobile domain or 
sorption capacity often undermines the ASR efficiency. 

3) The effect of mass transfer rate coefficients and the injection period on the ASR 
efficiency is non-monotonic. A critical value,  critT  , may be defined for both single 

and multiple ASR cases. When the injection period is greater than such a critical 
value, increasing injection period results in a higher RE. Contrarily, when the 
injection period is less than the critical value, increasing the injection period may 
even yield a lower RE. 

4) ASR efficiency improves with multiple ASR cycles and the required cycles for a 
zero-RE ASR in a single cycle to transform into a non-zero RE is derived as a 
function of mass transfer parameters and the durations of injection, storage and 
recovery phases. 

5) The immobile domain may function as a contaminant source or sink or both during 
the recovery phase. In aquifers with large capacity ratio and slow mass transfer, the 
immobile domain may serve as a long-term contaminant source that causes negative 
impacts on ASR efficiency. By contrast, in aquifers with small capacity ratio and fast 
mass transfer, concentrations in the mobile and immobile domain may quickly reach 
equilibrium at the end of the storage phase so that the immobile domain mostly serves 
as a contaminant sink, which improves the RE. With the increase of ASR cycles, the 
immobile domain will eventually transform from a contaminant source to a sink. 

Our analyses and results are based on the transport model with both a mobile and an 
immobile domain with adjustable mass transfer parameters, which may represent an 
aquifer with high and low permeability zones and mass transfer between these zones. As 
stated in the introduction and conceptual model, many other mechanisms may 
significantly influence the ASR performance, such as density effects and regional flow. 
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Further modeling work is required to study the combined effects of these mechanisms 
and rate-limited mass transfer in more realistic geological settings. 
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Figure 1 
Schematic conceptual model of an ASR system with a fully-penetrating well in a 
confined aquifer in an axisymmetric coordinate system. The right panel is the 
concentration along the radial direction. 

Figure 2 
Recovery efficiency (RE) for a single ASR cycle at various mass transfer parameters and 
pumping operational parameters. 

Figure 3 
Concentration in the mobile domain after the storage phase for a single ASR cycle. 
Contour lines represent predefined concentration criteria. + indicates the numerical case 
with a zero RE and "*" indiates the case with a non-zero RE. 

Figure 4 
Critical timescale at different capacity ratio and sensitivity of concentration at the 
pumping well to the dimensionless timescale. 

Figure 5 
Concentration profiles during a single ASR cycle at different mass transfer timescale or 
injection duration. 

Figure 6 
Concentration history at the pumping well for multiple ASR cycles. 

Figure 7 
Evolution of zero-RE cases with ASR cycles as a function of mass transfer parameters. 

Figure 8 
Critical timescale at multiple ASR cycles. 

Figure 9 
Required number of ASR cycles for achieving a non-zero RE. 

Figure 10 
RE improvement with ASR cycles for  5=β   and  5101×=φ  . 
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Chap. 2 

 
Dynamics of freshwater-seawater mixing zone development in 
dual-domain formations 
 

Abstract 

The dynamic response of freshwater-seawater mixing zones to seasonal 
freshwater level fluctuations and the presence of kinetic mass transfer between mobile 
and immobile domains has been analyzed using numerical models.  Mixing zone 
enhancement is mainly controlled by the unsynchronized behavior of concentration 
distributions in the mobile and immobile domain.  Such behavior is maximized at the 
aquifer bottom when the retention time scale in the immobile domain is comparable to 
the period of freshwater level fluctuations, resulting in a thicker mixing zone.  Kinetic 
mass transfer may alter the time tag between periodic freshwater level fluctuations and 
the movement of the mixing zone, causing the expansion and contraction of the mixing 
zone.  That is, the effect of mixing enhancement by kinetic mass transfer may be 
nonuniform in the mixing zone, and the mixing zone thickness may vary significantly 
within a period.  By contrast, large dispersion coefficients may create thicker mixing 
zones, but may not cause such unsynchronized behavior and alter the time lags of 
different concentration contour lines, i.e., the mixing enhancement is rather uniform in 
the mixing zone.  The dynamics of mixing zone development is sensitive to the flow 
velocity, which is influenced by the hydraulic conductivity, amplitude of the freshwater 
level fluctuations, and the capacity ratio of kinetic mass transfer. 

1 Introduction 

The mixing zone developed at the freshwater-seawater interface is one of the most 
important features in complex coastal hydrogeologic systems [Cooper et al., 1964].  
Across the mixing zone, the salt concentration and fluid density vary between those of 
freshwater and seawater.  The density gradient within the mixing zone causes the rise of 
diluted saltwater, overlaying seawater, and results in flow circulation as the seawater 
moves towards the mixing zone to replace the diluted saltwater. Understanding the 
dynamics of mixing-zone development under various hydrogeologic conditions is 
essential for designing effective management strategies of groundwater resources and 
implementing sustainable stewardship of coastal and offshore environments.   

The present research aims to numerically investigate the dynamic process of 
mixing-zone development in a dual-domain subsurface medium.  Our previous study has 
found that kinetic mass transfer between relatively mobile fluids and fluids in stagnant 
pores combined with periodic movement of the mixing zone may significantly enhance 
mixing and result in a much thicker mixing zone, shown in Figure 1 [Lu et al., 2009].  
Kinetic mass transfer occurs in almost all fractured and porous media over various scales 
ranging from pore scale to field scale, and has significant implications on coastal 
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groundwater management.  For example, the aquifer storage and recovery (ASR) strategy 
may have a low freshwater recovery ratio in a dual-domain coastal aquifer due to the 
mobilization of solutes initially residing in immobile domains [Eastwood and Stanfield, 
2001; Culkin et al., 2008]. Prior to our finding, thick mixing zones were usually 
characterized by large dispersion coefficients or assuming highly heterogeneous 
hydraulic conductivity fields, both of which may not be realistic [Dagan, 2003].  In 
addition, the recharge and tidal fluctuations may only slightly increase the thickness of 
the mixing zone in the absence of kinetic mass transfer [Lu et al., 2009].  In this note, we 
conduct numerical experiments to further illustrate the dynamic process of mixing-zone 
enhancement for a periodically moving mixing zone in the presence of kinetic mass 
transfer.  Specifically, the major questions that have been considered during this work are: 
how does the distribution of a mixing zone vary in response to variations of 
hydrogeologic conditions and how are such variations different from those by assuming 
large dispersion coefficients? 

2 Numerical Method 

A typical two-dimensional domain (see Figure 1) is set up to represent a cross-
shore transect of an unconfined coastal aquifer with a length of 200m, a thickness of 35m, 
and a beach slope of 0.1, similar to previously reported numerical experiments [Michael 
et al., 2005; Robinson et al., 2006, 2007; Lu et al., 2009]. For this domain, a base model 
is first built by defining the following hydrogeologic conditions.  The aquifer is isotropic 
and homogeneous with both mobile and immobile porosities being 0.2.  The value of the 
hydraulic conductivity K  is 30m/d. The longitudinal and transverse dispersivity are 0.5m 
and 0.05m, respectively.  Seasonal freshwater level fluctuations are imposed at the 
landward boundary by defining a triangular, periodic hydraulic head variation with the 
amplitude A =1m and the period T =360d.  The use of the triangular function instead of a 
sinusoid function is to minimize the pressure periods required to reproduce the periodic 
function [Zhang et al., 2001; Brovelli et al., 2007].  The first-order mass transfer rate 
coefficient is 0.0028d-1, which implies a retention time scale in the immobile domain, 
defined as the reciprocal of the rate coefficient, equal to the period of freshwater 
fluctuations.  At the seaward boundary, constant hydraulic head and salt concentration are 
assigned because tidal activities have a much shorter period and may hardly cause the 
movement of the mixing zone in a large-scale simulation [Cartwright et al., 2004; 
Michael et al., 2005].  The mean hydraulic gradient between the landward and seaward 
boundary is 0.005.  The upper boundary in the aquifer is phreatic surface with negligible 
groundwater recharge, and the bottom is a no-flow boundary. 

A miscible fluid model with coupled flow and transport models is applied to 
simulate the mixing zone development in a dual-domain coastal aquifer.  Transport 
processes include advection, dispersion, and a first-order kinetic mass transfer between 
the mobile and immobile domain.  Flow and transport is coupled by a linear relationship 
between density and concentration in the mobile domain. The density-dependent 
groundwater flow code SEAWAT-2000 [Langevin et al., 2003] is used to simulate the 
groundwater flow and salt transport problem described above.  The entire domain is 
divided into two zones: an ocean zone and an aquifer zone, which are separated by the 
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slanted beach.  A high hydraulic conductivity (103m/d), an effective porosity 1=en , and 

a constant saltwater concentration of 35kg/m3 are assigned to the ocean zone, and a 
horizontal strip of cells are added on the tope of the ocean surface to reproduce the flat 
surface of the ocean [Brovelli et al., 2007; Robinson et al., 2007].  The entire domain is 
discretized into a uniform grid with a cell size of 0.5m×0.5m, yielding 28000 cells in 
total.  This grid spacing corresponds to a local Peclet number of 1.   

The following numerical experiments are conducted: (1) steady-state simulations 
for the base model with and without mass transfer; (2) transient simulations for the base 
model with periodic freshwater level fluctuations; and (3) transient simulations by 
varying a series of parameters, including hydraulic conductivity, dispersion coefficients, 
amplitude of freshwater fluctuations, and mass transfer coefficients.  All transient 
simulations start from steady-state simulations, and terminate until the salt concentration 
distributions reaching a dynamic equilibrium state, i.e., the computation duration is 
sufficiently long so that the tolerance of the maximum concentration variation is satisfied 
when doubling the computation periods.  For simplicity, we use three normalized salt 
concentration contour lines, 0.1, 0.5 and 0.9, to describe the movement and distribution 
of the mixing zone. 

3 Results and Discussion 

Mixing of freshwater and seawater is enhanced primarily due to the 
unsynchronized behavior of concentrations in the mobile and immobile domain.  Two 
mixing zones may be defined in a dual-domain medium: one in the mobile domain, and 
the other in the immobile domain.  There is an overlap between these two mixing zones, 
but they do not exactly coincide.  The non-equilibrium concentrations in the mobile and 
immobile domain create the driving force for mass transfer and enhance mixing.   

Figure 2 illustrates this process within one period by analyzing the concentration 
profiles at three points, (70, 0), (90, 0), and (110, 0), all of which are located at the 
aquifer bottom (Figure 1), where the mixing enhancement is the most significant. At the 
beginning of the period, non-equilibrium concentrations in the mobile and immobile 
domains drive mass transfer from the immobile domain to the mobile domain, which 
result in slowly increasing mobile concentrations and slowly decreasing immobile 
concentrations.  With the decrease of the freshwater level, significant landward 
movement of the mixing zone causes a fast increasing concentration in the mobile 
domain, which results in a fast increasing concentration in the immobile domain due to 
enhanced mass transfer driving forces.  Maximum concentrations in the mobile domain 
occur in the second quarter. After that, the mobile concentration gradually decreases as a 
result of mass transfer, while the immobile concentration keeps rising until these two 
become equal.  When the hydraulic gradient is reversed as a result of the rise of the 
freshwater level, seaward movement of the mixing zone causes significant dilution and a 
fast decreasing mobile concentration. The immobile concentration then decreases due to 
the reversed mass transfer process. The point at (110, 0), the closest point to the seaward 
boundary, has the longest period for salt mass transferred from the mobile domain to the 
immobile domain because the influence by seawater intrusion is more significant than 
that by freshwater dilution. Contrarily, the point at (70, 0) has the shortest period of mass 
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transfer from the mobile domain to the immobile domain because it is easier to be diluted 
by the freshwater with the movement of the mixing zone. 

Figure 3 illustrates the impacts of hydrogeologic conditions on the dynamics of 
the mixing zone development by the temporal and spatial distributions of three 
concentration contour lines, 0.1, 0.5 and 0.9.   

Panel A shows the base model results: (1) the movement of different contour lines 
in response to freshwater fluctuations is unsynchronized due to kinetic mass transfer, 
resulting in significantly varying moving ranges for different contour lines, by a factor of 
4; and (2) a time lag exists between freshwater level fluctuations and the movement of 
the mixing zone.   

Panel B shows that the mixing zone in the case with larger dispersivities (B2) is 
thicker than that with smaller dispersivities (B1) in the absence of kinetic mass transfer.  
However, the enhanced thickness of the mixing zone is nearly uniform within a period 
for both cases without mass transfer.  This indicates synchronized behavior for different 
contour lines in response to freshwater fluctuations, resulting in similar moving ranges 
for different contour lines.  In specific, the 0.5 contour line remains almost at the middle 
of the mixing zone for the cases without mass transfer, but approaches the 0.1 contour 
line when the mixing zone expands and the 0.9 contour line when the mixing zone 
shrinks for the case with mass transfer.  Because the freshwater level drops from the 
mean level at the beginning of a period, one may expect that the maximum landward 
movement of the mixing zone occurs at the end of the second quarter when the 
freshwater level rises to the mean level from the lowest level, which implies a three-
month time lag between the freshwater level variation and the mixing zone movement. 
With the consideration of mass transfer, this time lag becomes shorter than a quarter, i.e., 
the maximum landward movement of the mixing zone occurs within the second quarter.  
Michael et al. [2005] identified a time lag between the seasonal freshwater level 
fluctuations and the submarine groundwater discharge rate in the absence of mass transfer.  
Our analysis indicates that the kinetic mass transfer may alter such time lags.  In addition, 
the cases without mass transfer show almost synchronized time lags for different contour 
lines, while the case with mass transfer shows significant discrepancies in time lags for 
different concentration contour lines: the 0.9 contour line has the shortest time lag while 
the 0.1 contour line the longest, resulting in the expansion of the mixing zone.  Likewise, 
similar time lag behavior and movement discrepancies of contour lines are found in the 
fourth quarter for the seaward movement of the mixing zone, resulting in the contraction 
of the mixing zone. 

Panel C in Figure 3 shows the mixing zone distributions for different hydraulic 
conductivities: 10 m/d, 30 m/d (base model), and 50 m/d. It is shown that higher 
hydraulic conductivity causes larger maximum and smaller minimum mixing zone 
thickness and more unsynchronized responses of various concentration contour lines. 
Mixing enhanced by mass transfer causes more significantly non-equilibrium 
concentrations between the mobile and immobile domain for faster flow due to enhanced 
time scale discrepancies between mass transfer and advection. In addition, higher 
hydraulic conductivities lead to larger landward and seaward movement. The impact of 
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the amplitude of freshwater level fluctuation is similar to that of the hydraulic 
conductivity because variations of the amplitude essentially change the hydraulic gradient 
and the flow velocity. Furthermore, given a constant total porosity, altering capacity ratio, 
the ratio between the immobile and mobile porosity, yields different effective mobile 
porosities and different flow velocities.  Thus, the impact of the capacity ratio is also 
similar to that of hydraulic conductivity and amplitude of freshwater fluctuations. 

Panel D in Figure 3 shows the impacts of the first-order mass transfer coefficient. 
The mass transfer rate coefficient controls how quickly mass is exchanged between the 
mobile and immobile domain.  Our previous study found that when the retention time 
scale and the period of freshwater level fluctuations become comparable, the mixing-zone 
thickness is maximized [Lu et al., 2009]. Three time scale ratios are considered: 0.01, 
1(base model) and 100.  It is shown that narrower mixing zones are developed for the 
ratios 0.01 and 100, compared with the ratio 1, and their unsynchronized time-lag 
behavior of the contour lines is similar to the case without kinetic mass transfer.  Actually, 
mass transfer models with very small and large mass transfer rate coefficients may be 
simplified to a classical advective-dispersive transport problem.  For a small time scale 
ratio, i.e., the mass transfer is approximately equilibrium, the transport equation may be 
simplified by including a retardation factor. Thus, D1 also shows smaller displacements 
of the landward and seaward movement of the mixing zone.  By contrast, for a large time 
scale ratio, i.e., the mass transfer is slow, the mass transfer between the mobile and 
immobile domains may be negligible and the entire system behaves approximately like a 
single-domain system with the effective porosity approaching the mobile porosity.  As a 
consequence, the decreased porosity effectively speeds up the flow, resulting in a larger 
moving range of the mixing zone (see D2).  

4 Conclusion 

Our numerical experiments show that mixing enhancement in a dual-domain 
coastal aquifer is mainly controlled by the unsynchronized behavior of concentration 
distributions in the mobile and immobile domain.  Such behavior is maximized at the 
aquifer bottom when the retention time scale in the immobile domain is comparable to 
the period of freshwater level fluctuations, resulting in nonuniform moving ranges of 
different concentration contour lines, nonuniform mixing enhancement in the mixing 
zone, and significantly varying mixing zone thickness during a period.  A time lag exists 
between the freshwater fluctuations and the movement of the mixing zone.  This time tag 
may be altered by kinetic mass transfer.  By contrast, large dispersion coefficients may 
create thicker mixing zones, but may not cause the unsynchronized behavior and alter the 
time lags of different concentration contour lines, i.e., the mixing enhancement is rather 
uniform in the mixing zone.  The dynamics of mixing zone development is sensitive to 
the flow velocity, which is influenced by the hydraulic conductivity, amplitude of the 
freshwater level fluctuations, and the capacity ratio of mass transfer.  These findings 
provide useful insights for understanding the mechanisms responsible for thick mixing 
zones and identifying key transport processes in coastal aquifers.  Field data collection 
and analysis is underway for verifying these numerical results. 
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Figure Caption 

Figure 1 

A numerical simulation of freshwater-seawater mixing zone in an unconfined aquifer. (A) 
steady-state normalized concentration distribution in the absence of kinetic mass transfer; 
and (B) normalized concentration distribution of a transient simulation with kinetic mass 
transfer at the time event when the freshwater boundary (left boundary) equals the mean 
freshwater head. The thick black lines represent the coastal beach with a slope of 0.1. The 
mixing zones are characterized by three concentration contour lines normalized by the 
seawater salt concentration: 0.1, 0.5, and 0.9. The stars in (B) represent three observation 
points at the aquifer bottom. 

Figure 2 

Temporal profiles of concentrations in the mobile and immobile domain at three 
observation points: (70,0), (90,0), and (110,0) for the case with kinetic mass transfer and 
periodic freshwater fluctuations. 

Figure 3 

The dynamics of mixing zone development influenced by hydrogeologic conditions, 
including dispersion, hydraulic conductivity, and mass transfer rate coefficient. Temporal 
and spatial evolution of the mixing zone distribution is characterized by three normalized 
concentration contour lines at the aquifer bottom (left y-axis) corresponding to periodic 
freshwater fluctuations (right y-axis). Panel A is the base model with defined parameters: 

hydraulic conductivity 30m/d, first-order mass transfer rate coefficient 0.0028d −1  , 
which corresponds to a unitary time scale ratio between the retention in the immobile 
domain and the period of freshwater fluctuations, and longitudinal and transverse 
dispersivities 0.5m and 0.05m, respectively. Panel B shows the impact of dispersion, in 
which B1 is the base model without kinetic mass transfer and B2 is the base model with 
larger dispersivities (2.5m and 0.25m) and without kinetic mass transfer. Panel C shows 
the impact of hydraulic conductivity, in which C1 is the base model with hydraulic 
conductivity 10m/d and C2 50m/d. Panel D shows the impact of mass transfer rate 
coefficient, in which D1 has a time scale ratio of 0.01 and D. 
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Figure 3 
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Chap. 3 

 
Solute transport in transient divergent flow 
 

Abstract 

Efficient approaches are developed to analytically evaluate solute transport in a 
horizontal, radially divergent flow field with a time-dependent well injection rate and 
input concentration. By working on the cumulative injected flow domain, the transient-
flow problem can be transformed into a steady-state flow problem. Linear convolution 
can then be applied on the cumulative injected flow domain to evaluate the solution for 
time-dependent input concentrations. Solutions on the regular time domain can be 
conveniently obtained by mapping the solution on the cumulative injected flow domain to 
the time domain.  

1 Introduction 

Significant contributions have been made to evaluate analytical solutions to the 
problem of advection and dispersion in a homogeneous aquifer due to well injection or 
extraction in a horizontal, radially divergent or convergent flow field [e.g., Ogata, 1958; 
Tang and Babu, 1979; Moench and Ogata, 1981; Chen, 1985, 1986, 1987; Hsieh, 1986; 
Chen and Woodside, 1988; Moench, 1989, 1995; Goltz and Oxley, 1991; Huang and 
Goltz, 2006; Huang et al., 2010]. Such solutions have important applications in 
groundwater practice whenever well pumping is involved, such as tracer tests in 
convergent and divergent radial flow fields [e.g., Novakowski, 1992; Moench, 1995; 
Becker and Charbeneau, 2000], decontamination by pumping with rate-limited sorption 
or mass transfer [e.g., Goltz and Oxley, 1991; Harvey et al., 1994], and single-well push-
pull tracer tests [Huang et al., 2010], etc. One major assumption for these analytical 
solutions is that the radial flow field is steady state, i.e., the velocity field is a spatial 
function of the distance to the pumping well, but does not vary temporally. In this note, 
we present efficient approaches to analytically evaluate solute transport in transient, 
divergent flow fields with a time-dependent well injection rate and input concentration. 

2 Numerical Model 

Consider a recharge well that fully penetrates a homogeneous, confined aquifer of 
uniform thickness and infinite lateral extent. The transport problem can be described by a 
one-dimensional radially advective-dispersive equation as the following by neglecting 
molecular diffusion [e.g., Hoopes and Harleman, 1967; Hsieh, 1986]: 

( ) wr
c

Lrrr
c

t
c rrvrv >+−= ∂

∂
∂
∂

∂
∂

∂
∂ ,1 αθθθ  (1) 

 where  t   [ T  ] is the time;  r   [ L  ] is the radial distance from the well center;  wr   [ L  ] 
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is the well radius;  c   [ 3/ LM  ] is the dissolved solute concentration;  θ   [ −  ] is the 
porosity;  Lα   [ L  ] is the longitudinal dispersivity;  v   [ TL /  ] is the pore fluid velocity; 

and  v   represents the absolute magnitude of  v  . 

When the well injection rate is constant, the velocity field is only a spatial function of  r  , 

( ) wrr
r

q
rv >=    ,

2πθ
 (2) 

 where  q   [ TL /2  ] is the specific injection rate, defined as the flow recharge rate per 
unit length of aquifer thickness. The initial condition is: 

( ) 00, ==trc  (3) 

 and the boundary condition with a constant injection concentration is: 

( ) ( ) 0,,0, ctrrctrc w ===∞→  (4) 

For a time-dependent well pumping rate  ( )tq  , we assume that the velocity field varies 
with the well pumping rate and the velocity field is a function of both  r   and  t  , i.e., 

( ) ( )
wrr

r

tq
trv >=    ,

2
,

πθ
 (5) 

 and for a time-dependent input concentration, the boundary condition is: 

( ) ( ) ( )tctrrctrc w 0,,0, ===∞→  (6) 

Eq. (2) neglects the transition period between two well pumping rates and 
assumes a steady-state velocity for each pumping rate. Harvey et al. [1994] showed that 
velocities approach steady state rapidly (exponentially decay with the increase of time 
and radial distance) for changing pumping rates. For a sand aquifer, velocities may take 
only minutes to couple of days to reach 99% of steady state for a scale up to 100 meters. 
Thus, the model setup is appropriate for a discrete pumping profile with a long pumping 
period for each pumping rate. 

3 Analytical Solutions 

3.1 Steady-state flow with a constant input concentration 

For the sake of completeness, we first summarize the analytical solution in a 
steady-state flow field with a constant input concentration, which will also be used later 
to evaluate the solution in a transient flow field. We denote  sc   as the solution in a 

steady-state flow field. By introducing the following dimensionless groups: 
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 Eq. (1) can be transformed into: 
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 The analytical solution on the Laplace domain is given by [Moench and Ogata, 1981]: 
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 where  p   is the Laplace coordinate, Ai ( )z   is an Airy function, and 
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 The time-domain solution can be evaluated numerically by inverse Laplace algorithms 
[e.g., de Hoog et al., 1982] or analytically by [Moench and Ogata, 1981]: 

( ) ( ) υυτ dFRcs ∫
∞∗ −=
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1,  (11) 
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3.2 Steady-state flow with a time-dependent input 
concentration 

For a steady-state divergent flow field with a time-dependent injection history at the 
pumping well,  ( )tc0  , the solution can be conveniently evaluated by linear convolution: 
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( ) ( ) ( ) τττττ
τ

′′−′= ∫ dgcRc 00
,  (15) 

 where  g   is known as the transfer function or impulse response function corresponding 
to a unit impulse input function at the pumping well.  g   can be evaluated by taking 
inverse Laplace transform of: 
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2
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 or by taking the first derivative of Eq. (steady solution) with respect to  τ  : 

( ) ( ) υυυτ dFRg 2

0
, ∫

∞
=  (17) 

 Because there is a scaling factor between  t   and  τ   according to the definition of 

dimensionless groups,  g   on the time domain is given by: 

( ) ( )τ
πθα
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2

,
2

Rg
q

trg
L

=  (18) 

3.3 Transient flow with a constant input concentration 

To evaluate solute transport in a transient radial flow field, we may discretize the 
time-dependent function,  ( )tq  , into a number of small intervals,  ( ) ( ),..., 10 tqtq  , and 

assume a steady-state flow field within each time interval  nn ttt <≤−1  . The solution 

within the first time interval,  100 ttt <≤=  , is given by Eq. (steady solution). For all 

subsequent time intervals, the transport problem can be described by Eq. (pumping) with 
a steady-state velocity field but with a non-zero initial condition. Laplace transform of 
such a problem leads to an inhomogeneous differential equation, which may be solved by 
the Green's function approach [e.g., Chen and Woodside, 1988]. This method is 
computationally complicated and its accuracy significantly relies on the discretization of 
the transient pumping rate  q  . 

We notice that Eq. (steady solution) is a general solution on the transformed time 
domain  τ   for a steady-state flow field with an arbitrary well pumping rate. For the 
solution on the regular time domain  t  , one only needs to scale  τ   according to the 
definition of dimensionless parameters, i.e., 

( ) 
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,,
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s

qtr
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 We define: 
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( ) qttQ =  (20) 

 which represents the cumulative amount of injected flow. Eq. (c trans) can then be 
written as: 
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 For any two different steady-state flow fields with well flow rates,  1q   and  2q  , we have: 

( ) ( )2211 ;,;, qQrcqQrc ss
∗∗ =  (22) 

 which implies that the concentration distribution is independent of specific flow rate  q   
given a constant total injected flow  Q  . 

Eq. (22) leads to an efficient approach to transform a transient pumping history  ( )tq   to a 
constant pumping rate by working on the  Q   domain instead of the regular time domain  

t  . Consider a simple  ( )tq   with a two-step injection:  ( )11 0 ttq <≤   and  ( )212 tttq <≤  . 
At the end of the first pumping period, the concentration is given by: 

( ) ( ) ( )211111 ;,;,;, qQrcqQrcqtrc ss
∗∗∗ == (23) 

 where  1Q   is the total injected flow amount during the first injection period, i.e.,  

111 tqQ =  . Eq. (cts) implies that the initial concentration for the second period may be 

considered as a result of the pumping rate  2q   for a total injected flow of  1Q  . Thus, the 
transient flow field created by a two-step injection can be transformed into a steady-state 
flow field with a constant injection rate. The solution at  2t   can then be conveniently 
evaluated by: 

( ) ( )22122 ;,;, qQQrcqtrc s += ∗∗  (24) 

Eq. (22) can be generalized to an arbitrarily discretized pumping history,  

q1t1 ,q2t2 , . . . ,qntn   : 
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 where  q′   represents an arbitrary, constant specific flow rate. 

Similarly, for a continuous pumping function, we have: 
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Essentially, Eqs. (discrete) and (continuous) evaluate the solution on the domain of 
the cumulative injection flow volume,  Q  , instead of the time domain. On the  Q   
domain, Eq. (cQ) may be considered as the solution for a unit step injection flow rate, i.e., 
on the  Q   domain, the transient flow can be transformed into steady-state flow. To 
obtain the time-domain solution, one only needs to map the solution to the time domain 
according to the relation between  t   and  ( )tQ  . The general procedure to analytically 
evaluate the concentration solution in a transient divergent flow field with a constant 
injection concentration can be summarized as follows: 

• Calculate the analytical solution for a steady-state flow field  ( )τ,Rc∗  ; 

• Transform  ( )τ,Rc∗   into  ( )Qrc ,∗   according to the definition of dimensionless 

groups, i.e.,  Rr Lα=   and  τπθα 22 LQ =  ; 

• Evaluate the cumulative pumping function  ( ) qdttQ t
∫= 0  ; 

• Map  ( )Qrc ,∗   onto the time domain,  ( )trc ,∗  . 

3.4 Transient flow with a time-dependent input 
concentration 

For both a time-dependent well flow rate,  ( )tq  , and input concentration,  ( )tc0  , 

we may discretize the functions into  ( ) ( ),..., 10 tqtq   and  ( ) ( ),..., 1000 tctc  . Consider the 

simple case with the first two steps:  ( ) ( )1111 0,0 ttcttq <≤<≤   and  

( ) ( )212212 , tttctttq <≤<≤  . Following the procedure describe in the previous section, 

the solution at  t1   is given by: 

( ) ( ) ( )121111111 ,;,,;,,;, cqQrccqQrccqtrc ss ==  (26) 

That is, the initial solution for the second period can be regarded as a result of the 
pumping rate  2q   for a total injected flow  1Q   at a constant input concentration  1c  . 
Thus, for the second period, the problem becomes a steady-state flow with a time-
dependent input history at the pumping well, which can be solved by linear convolution, 

( ) ( ) ( ) 21121222 ,,,;, cQrgcQQrgcqtrc ++=  (27) 

 where the transfer function  ( )Qrg ,   is given by 
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The general solution on the  Q   domain is given by: 

( ) ( )( ) ( ) ( ) QdQQcQrgtctqQrc
Q

′′−′= ∫ 000 ,,;,  (29) 

 where the input concentration is written as a function of  Q   instead of  t  . Thus, the 
procedure to analytically evaluate solute transport in a transient divergent flow field with 
a time-dependent input concentration can be summarized as follows: 

• Calculate the transfer function  ( )trg ,   in a steady-state flow field; 

• Transform  ( )trg ,   into  ( )Qrg ,   according to the definition of dimensionless groups; 

• Evaluate the cumulative pumping function  ( ) qdttQ t
∫= 0  ; 

• Transform the input concentration history  ( )tc0   into  ( )Qc0  ; 

• Evaluate the linear convolution, Eq. (conv); 

• Map  ( )Qrc ,   onto the time domain,  ( )trc ,  . 

4 Case Study 

In this section, we present a synthetic case to validate the developed algorithms 
describe in the previous section. Consider a discrete functions for  ( )tq  : 
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 Associated with the well flow rate, we consider a input history: 
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 Other parameters include:  mrw 5.0=  ,  mL 1=α  , and  3.0=θ  . 

Figure 1 shows the well flow rate history (Figure 1a) and the input concentration 
history (Figure 1b). Figure 1c shows the cumulative injected flow,  Q  . Figure 1d shows 

the input concentration as a function of  Q   by mapping  ( )tc∗
0   onto the  Q   domain. 

Figure 2 compares analytical solutions using the developed methods with 
numerical solutions evaluated using the Matlab built-in ode solver. The cases compared 
include: (a) steady-state flow for a constant well injection rate,  dmq /10 2=  , and a 

constant input concentration,  10 =c  , throughout the pumping history; (b) steady-state 

flow,  dmq /10 2=  , and the time-dependent input concentration history described by Eq. 
(c0t); (c) transient flow created by the time-dependent pumping history, Eq. (qt), and a 
constant input concentration,  10 =c  ; and (d) transient flow with the time-dependent 

input concentration history. The developed analytical solutions and numerical solutions 
match very well for all cases. 

5 Conclusion 

We develop efficient approaches to analytically evaluate solute transport in 
transient divergent flow fields created by time-dependent pumping. By working on the 

cumulative injected flow domain,  Q  , instead of the time domain, the transient flow 
problem can be transformed into a steady-state flow problem. Thus, by directly mapping 
the analytical solution in a steady-state flow field according to the relation between the 
cumulative injected flow and time, one can conveniently evaluate the solution in 
transient-flow fields. For time-dependent input concentrations, linear convolution can be 
applied on the  Q   domain and the solution on the time domain can be obtained by direct 
mapping. 

The developed approaches can be conveniently extended to uniform flow fields in 
homogeneous aquifers if diffusion is negligible. For example, in a two-dimensional 
homogeneous aquifer, the transport equation may be written as: 

( ) ( ) ( )
2

2

2

2

y

c
tq

x

c
tq

x

c
tq

t

c
TL ∂

∂+
∂
∂+

∂
∂−=

∂
∂ ααθ  (32) 

where the time-dependent Darcy's velocity  ( )tq   is along the  x   direction and  αT   is the 
transverse dispersivity. Both longitudinal and transverse dispersion are only linearly 
dependent on the magnitude of velocity. Carlier [2008] proposed to analytically evaluate 

such a problem by time transformation for a discretized  qt  . Using our developed 

approaches, the transient problem becomes a steady-state flow problem on the  qt   

domain. Thus, the concentration for an arbitrary function of  q   and input concentration 
can be conveniently evaluated. 
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Figure 1 

Numerical case for testing developed algorithms for analytically evaluating solute 
transport in transient divergent flow with time-dependent input concentrations. (a) well 
flow rate; (b) input concentration; (c) cumulative injected flow; and (d) input 
concentration as a function of cumulative injected flow. 

Figure 2 

Comparison of analytical solutions with numerical solutions. (a) steady-state flow and a 
constant input concentration; (b) steady-state flow and time-dependent input 
concentrations; (c) transient flow and a constant concentration input; and (d) transient 
flow and time-dependent input concentrations. 
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Executive Summary 
The recent invasion by the hemlock woolly adelgid and the resultant demise of hemlock trees 
could affect Georgia mountain streams. A loss of riparian shading, altering temperature and light 
regimes of streams, might negatively affect biota. Streams adjacent to hemlocks treated with 
imidacloprid to prevent tree death might be negatively affected by the pesticide applications. 
Once the hemlock trees die, a massive influx of woody debris into streams might occur and have 
long term consequences for stream ecology. For this project, I used aquatic macroinvertebrates 
as response organisms, and have developed the following three hypotheses regarding the impacts 
of hemlock demise on stream ecology: 1) Loss of shading from hemlock demise will have 
negligible impacts on aquatic invertebrates because other plants already provide much of the 
natural canopy over channels. 2) Imidacloprid treatments to save riparian hemlocks in high 
priority area, if properly applied, will not adversely affect stream invertebrates. 3) A future large 
influx of woody debris from dead hemlocks into stream channels will significantly alter 
invertebrate community composition in terms of both abundance and biomass. Hypotheses were 
tested experimentally in Billingsley Creek in the southern Appalachians of Georgia from October 
2009 through April 2011. Data thus far supported Hypotheses 1 and 2, but not Hypothesis 3. At 
least at this stream, the invasion of the hemlock woolly adelgid may not have profound 
implications for the ecology of aquatic macroinvertebrates. However, analyses are not complete. 
For Hypothesis 3 regarding impacts of wood addition only a single collection has been assessed, 
and then only partially. Impacts might not become evident in samples until the wood was present 
for a longer period of time.  
 
List of Figures 
Figure 1. Map of research site indicating treated area with intact hemlock, and locations of 
sample plots.  
 
PROJECT SCOPE AND OBJECTIVES  
The hemlock woolly adelgid (Adelgus tsugae) was first observed in the eastern US in Virginia 
during the 1950s, and has since spread south into the southern Appalachians, including Georgia. 
It is causing extensive mortality of eastern hemlock trees (Tsuga canadensis), which typically die 
within a few years after infestation (Cheah et al. 2004). The extreme susceptibility of eastern 
hemlock has led to real concerns that the tree species could go extinct in Georgia, except where 
protected by human intervention. Currently the only effective control method is inoculation of 
the trees with imidacloprid insecticide (Cowles 2009). Because hemlock is such an important 
component of the riparian forest along many streams, numerous concerns have developed about 
consequences for the streams’ ecology (Snyder et al. 2002).  
 The invasion by the hemlock woolly adelgid and the resultant demise of the trees could 
affect Georgia mountain streams in three main ways: 1) the death of hemlocks could reduce 
riparian shading, alter temperature and light regimes of streams, and negatively affect biota; 2) 



streams adjacent to hemlocks treated with imidacloprid might be negatively affected by the 
insecticide applications; and 3) once the hemlock trees die, a massive influx of woody debris into 
streams might occur and have long term consequences for stream ecology.   

For most, loss of shading and insecticide treatments associated with hemlock infestation 
by adelgid would seem the most logical issues of concern. However, I predict that the most 
dramatic ecological change in streams from the demise of hemlocks will be the large influx of 
woody debris, and the impacts from loss of shading and insecticide treatments on streams 
probably will be negligible.  
 
REVIEW OF PAST RELEVANT WORK 

Woody debris provides food and habitat for invertebrates, provides refugia for fish, and 
influences flow, substrate and nutrient dynamics (O’Connor 1991, Wallace et al. 1995, Eggert 
and Wallace 2007).  Numerous experimental studies have demonstrated the ecosystem values of 
woody debris to streams (Wallace et al. 1995, Lester et al. 2007, Entrekin et al. 2009), with the 
major concern of past studies being the consequences of a lack of this resource.  However, the 
demise of hemlock will pose a new concern that has rarely been addressed. What are the 
ecological effects of an excess of woody debris?  In headwater streams of the Pacific Northwest, 
my colleagues and I (Haggerty et al. 2004, Jackson et al. 2007) demonstrated that an excessive 
influx of woody debris from logging operations had unexpected consequences to stream 
invertebrates, with the fauna of slash inundated streams becoming even more shredder and 
collector-gatherer dominated than is typical.  It is likely that ecological conditions in 
Appalachian streams will be altered in reaches where large amounts of hemlock wood are 
deposited, and this impact could persist for decades. Wallace et al. (2001) found that streams of 
the southern Appalachians are still being significantly affected by the influx of wood from the 
demise of the American Chestnut almost 80 years ago. Although the impact of dead hemlock 
wood might not occur for several years, as trees die and decay, conducting an experiment now 
might permit us to predict consequences. For this project, an article was published (Pitt and 
Batzer 2011) that reviewed the importance of woody debris to aquatic macroinvertebrates in 
stream of the Southeastern US, and that paper is available at 
http://www.gawrc.org/2011paper_pdfs/4.2.3Pitt.pdf.  
 The primary reason I suspect that loss of riparian shading will not be a major impact of 
hemlock demise is that most streams in the Georgia Appalachians have a very diverse riparian 
forest. Independent of hemlock, most small order streams are frequently bordered by a dense 
Rhododendron and shrub riparian zone that provides intense shading. The overstory forest of 
streams of all sizes is typically composed of a mixed hardwood/pine forest (of which hemlock is 
only a part) that provides additional shade. Even if hemlock death reduces shading, reduction 
will probably only be temporary because canopy gaps will be filled by other trees or shrubs.  
Hemlock shading might perhaps be more important in winter after deciduous trees drop their 
leaves, but even then, shading from evergreen Rhododendron will probably still dominate in 
most cases.  Loss of shading will probably only be important to those few stream reaches 
bordered by very dense mono-typic stands of hemlock which also lack a Rhododendron sub-
canopy. 
 Imidacloprid, as a broad spectrum insecticide, clearly has the potential to impact the 
ecology of aquatic habitats by harming invertebrates (Stoughton et al. 2008, Tisler et al. 2009). 
However, I predict that properly administered imidacloprid treatments to control hemlock woolly 
adelgid near Appalachian streams will probably be of negligible importance to stream ecology.  



Operational procedures have already been developed to minimize risk of treatments to streams 
(Cowles 2009). In addition, the risk to streams in Georgia has already been addressed to some 
extent. The potential demise of hemlock in Georgia led the US Forest Service to establish refugia 
areas where stands of hemlocks are being treated with imidacloprid with the goal of saving some 
reproductive trees. (Their hope is that more effective adelgid control methods might emerge in 
the future, e.g., biological control, and these trees might serve as seed stock for hemlock 
reestablishment.)  The treatments have turned out to be very effective at saving some tree stands 
(USFS, personal communication). Because personnel at the US Forest Service anticipated 
concerns about the impacts of insecticide treatments on stream ecosystems, they have already 
commissioned assessment studies.  Results (USFS, unpublished), thus far, indicate that aquatic 
invertebrates, the stream organism mostly likely to be affected by the insecticide, do not exhibit 
detectable treatment effects, and samplings of stream water indicate that levels of the insecticide 
are very low in treated areas. The insecticide is applied to the soil around the trees, and the 
insecticide is believed to bind to soil organic matter, minimizing lateral spread (Cowles 2009). 
Operationally, care is taken to avoid treating trees in very close proximity to stream channels. 
 For this project, I used aquatic macroinvertebrates as response organisms, and have 
developed the following three hypotheses regarding the impacts of hemlock demise on stream 
ecology: 
1) Loss of shading from hemlock demise will have negligible impacts on aquatic invertebrates 
because other plants already provide much of the natural canopy over channels. 
2) Imidacloprid treatments to save riparian hemlocks in high priority area, if properly applied, 
will not adversely affect stream invertebrates. 
3) A future large influx of woody debris from dead hemlocks into stream channels will 
significantly alter invertebrate community composition in terms of both abundance and biomass.  
 
METHODS  
Study Site 

The US Forest Service has designated several hemlock stands in Chattahoochee National 
Forest to be protected from hemlock woolly adelgid using imidacloprid treatments. One of these 
sites, Billingsley Creek, a third-order tributary of Holcomb Creek in the Chattooga River 
watershed in northeast Georgia, had attributes especially conducive to my proposed studies.  The 
site has an intact stand of hemlock trees straddling about a 200 m reach of the stream, which 
should persist indefinitely because of imidacloprid treatments.  A re-occurring problem with 
studies of invasive species is maintaining a reference standard in similar but uninvaded habitat; 
the existence of this treated stand eliminated that problem for my work.  Although this stand was 
protected, extensive similar reaches of stream exist both above and below the protected area 
where the hemlocks were dead or dying. Thus, similar stream habitat existed in Billingsley Creek 
with and without living hemlocks. Finally, previous studies on aquatic invertebrates in the 
“treated” reach of Billingsley Creek failed to detect any negative impacts of the insecticide 
treatments when compared to a non-treated reference elsewhere (US Forest Service, J. Hanula), 
and the two-year data set on invertebrates collected in that study was fully available for my use.   

Contrasting the upstream and downstream areas with the middle treated reach of 
Billingsley Creek provided an opportunity to re-confirm that stream biota are not being impacted 
by imidacloprid insecticide treatments.  Additionally, because vibrant hemlock trees existed in 
the treated area, while hemlock upstream and downstream were dying or dead, the Billingsley 
Creek site also offered a unique opportunity to assess impacts of the death of hemlock trees on 



stream ecology.  As mentioned, I hypothesize that neither imidacloprid treatment nor simply the 
death of hemlock trees will be a significant influence on stream ecology.  However, the 
Billingsley Creek system offered me an opportunity to re-consider those impacts, under the 
auspices of an experimental study designed primarily to assess potential impacts of a future 
influx of hemlock wood.  
Study Design and Sampling 
 In October 2009, I randomly selected 9 plots, each ~2 m long, from the set of gravel, 
cobble riffles in the 200 m portion of Billingsley Creek adjacent to the treated hemlock trees.  
(The only other common habitats in the creek were sandy runs, with only occasional depositional 
pools or bedrock outcrops.) I also randomly selected 6 similar gravel/cobble plots in a portion of 
the stream about 250 to 400 meters downstream from the treated reach, and another 6 plots in an 
area about 50 to 200 meters upstream from the treated areas (Figure 1).  A 250 m buffer was 
maintained between treated reach and the downstream sites to minimize impacts of pesticide-
carry downstream. Thus, I had 9 plots with riparian hemlock trees kept alive by insecticide 
applications, and 12 plots where the hemlock trees were dead and no insecticide treatments were 
being applied. Each plot location was entered into a GPS unit so they could be revisited.   

I used aquatic macroinvertebrate communities as my indicator of stream ecological 
condition. There is a rich tradition of using aquatic macroinvertebrates as a measure of biotic 
integrity of streams (see Rosenberg et al. 2008), including the southern Appalachians (but I do 
not review that literature here). As mentioned, I had access from the US Forest Service to two 
years of invertebrate data (2006-2008) from the center reach of Billingsley Creek collected with 
a Surber sampler.  In October 2009, I again sampled the aquatic invertebrates in that reach in 
each of 9 plots, plus in my 12 plots located upstream (6) or downstream (6). However, instead of 
a Surber sampler, I opted to use a T-sampler because that device was more practical to use in 
subsequent studies where large amount of woody debris were present (see below).  A T-sampler 
(Merritt et al. 2008) is essentially a small version of a Surber or Hess sampler, where sediments, 
gravel, and cobble are agitated within a 15 cm wide tube and then transferred into a side net.  
The shallow depths (<15 cm) in gravel/cobble riffles of Billingsley Creek permitted the use of 
this device. Because of the relatively small size of the core, I collected four T-samples per plot 
and pooled the material into single samples.  I collected samples in October 2009, April 2010, 
July 2010, October 2010, and April 2011.  On each invertebrate sampling visit, depths, rates of 
flows, temperature, electrical conductivity, and pH of the water were also assessed.   

I also sampled invertebrates from wood. For this effort I tethered 25 cm sections of dead 
hemlock wood (10 cm diameter) into each of the 21 plots in December 2009, and retrieve them 
the next June, 2010. New pieces were tethered in June of 2010 and were retrieved in December 
2010, and an additional sample will be collected in June 2011. Invertebrates colonizing the wood 
were extracted in the laboratory. Also in December (after leaf fall) and June (at full canopy 
closure), light levels were measured using a light meter and canopy covers were measured using 
a spherical densiometer. Benthic organic matter was measured in July using a core sampler in 
each of the 21 plots. 

 
 
 
 
 
 



Figure 1. Map of research site indicating treated area with intact hemlock, and locations of sample plots.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After the July 2010 samples were collected, I initiated the woody debris aspects of the 

study.  Over the previous spring, I quantified the amount and volume of woody debris that is 
naturally occurring in the Billingsley Creek channel using the methods of Wallace and Benke 
(1984), including individually sampling each of the 21 2-m long plots.  A preliminary survey of 
the creek indicates that existing wood was not accumulating in any particular sub-habitat, and 
was now only common near sources of dead fall.  I cut a supply of dead hemlock wood (adelgid-
killed) from standing trees in the vicinity of Billingsley Creek (but not from my study reaches 
proper) and transported it to the site.  I amassed 11 sets of assorted-sized pieces of dead stem 
wood that approximated 10 times the ambient level of wood in a 2-m reach of the stream. This 



order of magnitude increase in the amount of wood was designed to approximate the increase 
from future influxes of hemlock wood, but specific levels were not possible to predict with any 
precision. I then randomly select 3 plots from each of the upstream and downstream study 
reaches (6 of the 12 total), and 5 of the 9 plots in the middle reach, and with the help of the US 
Forest Service, added the allotted wood to each designated plot.  Using metal rods and wire (as 
in Wallace et al. 1995), if necessary, the wood was anchored into plots. Flow in Billingsley 
Creek was not sufficient to dislodge large wood, but wood sets were checked after every flood 
event and replenished or anchored more securely if necessary. After wood was introduced I had 
3 plots with wood and 3 plots without in both the downstream and upstream reaches, and 5 plots 
with wood and 4 without wood in the central reach (see Figure 1).   

After wood was added, all sampling efforts resume on the schedule indicated above. The 
small size of the T-sampler permitted efficient sampling of benthos even in congested wood 
addition plots (unlike a conventional Surber sampler), hence its choice for this study. 
Invertebrates were not sampled directly from the large pieces if wood that were introduced (as 
they were only present in 11 of 21 plots), but instead wood-associated organisms were monitored 
on the 25 cm X 10 cm pieces of dead hemlock wood tethered into each of the 21 plots. 
Analyses 
 Macroinvertebrates were identified to genus (if possible), enumerated, measured to 
length, and biomass calculated using published mass-length regressions (Benke et al. 1999). 
Organic matter in core samples was measured by drying and ashing samples, and calculating 
AFDM of the cores. 
 This project was designed primarily to address potential impacts of excessive wood 
additions, with the impacts of loss of shading and imidacloprid treatments as secondary 
concerns.  To assess shading and imidacloprid impacts the design was pseudoreplicated, 
although having upstream and downstream plots added interpretative power.  However, my 
hypotheses stated that neither shading nor imidacloprid should have any affect, so a lack of 
statistical significance was anticipated.  If these hypotheses were borne out by my analyses, 
pseudoreplication was less of a problem (if reaches are very similar, it is unlikely that adding 
“true” replicates would result in differences emerging).  With negative effects being anticipated, 
I was most concerned with Type II error (saying there is no difference when in fact there is), and 
therefore used a relaxed alpha of 0.10, rather than 0.05. 
 For the wood addition aspects of the study, the unit of interest was the plot rather than the 
reach, and thus for that factor the design was not pseudoreplicated (although extrapolating results 
to other streams would have to be conducted with caution).  If stream reach effects were 
unexpectedly significant (regardless of mechanism), I was still able to address impacts of wood 
additions using stream reach as a blocking effect.  
 Univariate responses (total macroinvertebrate abundance or biomass, taxon specific 
abundance or biomass, benthic organic matter biomass, water quality attributes) were contrasted 
between treatments (with or without wood, with or without live hemlocks, with or without 
insecticide) using ANOVA.  Multivariate ANOSIM analyses, coupled with Non-Metric 
Multidimensional Scaling Ordination to provide a visual perspective, was used to assess 
differences in macroinvertebrate community composition among treatments (using both Bray-
curtis and Euclidean distances measures). 
 



CONCLUSIONS AND RECOMMENDATIONS  
Data collected through October 2010 has been fully processed and provides some 

preliminary conclusions on my hypotheses: 
 Abundance and biomass invertebrate data analyzed with ANOSIM from October 2009, 
April 2010, and July 2010, prior to any wood additions, and October 2010, after additons, 
indicated that some differences among the three study reaches existed, but these patterns did not 
suggest a response to imidacloprid treats or loss of hemlock trees. Instead differences simply 
suggest a natural continuum along the stream (Table 1), where communities only tended to differ 
between the upper and lower reaches. The central Treated reach was never unique from both the 
up-stream and downstream reaches. 
 
Table 1. Differences in macroinvertebrate densities and biomass among Downstream (D), central Treatment (T), and 
Upstream (U) reaches as assessed using ANOSIM, evaluated with Bray-Curtis (top) and Euclidean (bottom) 
distance measures. Shaded cells indicate a significant difference (α = 0.1) for the specific comparison. Biomass data 
for October 2010 are still being processed.  
 
Bray‐Curtis
Sample Abundance Biomass

D vs. U D vs. T U vs. T D vs. U D vs. T U vs. T
Overall 0.155 0.904 0.431 0.224 0.814 0.908
Oct 2009 0.006 0.113 0.281 0.004 0.159 0.117
Apr 2010 0.532 0.727 0.819 0.173 0.489 0.961
Jul 2010 0.069 0.771 0.365 0.123 0.944 0.738
Oct 2010 0.540 0.858 0.828

Euclidean
Sample Abundance Biomass

D vs. U D vs. T U vs. T D vs. U D vs. T U vs. T
Overall 0.177 0.293 0.134 0.152 0.267 0.951
Oct 2009 0.024 0.031 0.398 0.019 0.155 0.721
Apr 2010 0.589 0.857 0.691 0.290 0.398 0.994
Jul 2010 0.067 0.317 0.092 0.156 0.769 0.738
Oct 2010 0.450 0.872 0.654

Black = significant difference  
 
 Data collected using a densiometer at full canopy cover in Jul 2010 indicated natural 
changes along the gradient of the stream as well (percent cover: upstream 57.7%, treatment 
68.4%, downstream 84.8%). While there was a significant difference in canopy cover between 
the upstream and downstream reaches (α = 0.1, p = 0.066), the treatment reach was not unique, 
but instead simply intermediary to upstream and downstream reaches.  
 Thus preliminary findings support the hypotheses that:  
1) Loss of shading from hemlock demise had negligible impacts on aquatic macroinvertebrates 
because other plants already provide much of the natural canopy over channels; and  
2) Imidacloprid treatments to save riparian hemlocks in a high priority area, if properly applied, 
does not adversely affect stream macroinvertebrates. 



 In terms of the potential impacts of wood debris, I only have data from October 2010 T-
samples processed and analyzed.  April 2011 samples were collected and are now being 
processed.  In October 2010, no significant differences in invertebrate community composition 
was detected between sites with or without wood additions (ANOSIM; Bray-Curtis: p = 0.372; 
Euclidean: p = 0.559). Thus, at this early stage of the study, findings do not support the 
hypothesis that: 
3) A future large influx of woody debris from dead hemlocks into stream channels will 
significantly alter the invertebrate community composition in terms of abundance and biomass. 
 
Additional samplings for 2011 will further assess all hypotheses. 
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Executive summary 

The overall goal of this project was to provide information on the incidence of intersex bass and 
estrogenic potency of waters  across  the  state of Georgia.    Specific objectives of  this project 
were to (1) assess  intersex condition  in fish collected from rivers and  lakes across Georgia; (2) 
determine  estrogenic  potency  (a measure  of  the  estrogens  and  estrogen‐like  substances)  of 
surface  waters  near  municipal  effluent  discharges,  which  are  commonly  associated  with 
intersex  fish;  (3) compare  the  sensitivity of  in vivo and  in vitro assays  to detect estrogens  in 
river water. 

This  project  has  supported  one  Ph.D.  student,  Kristen  Kellock,  in  the  UGA  Interdisciplinary 
Toxicology Program.  Kristen received the Best Student Presentation Award at the 2011 Georgia 
Water  Resources  Conference  held  in  Athens,  GA,  April  11‐13,  2011.    Kristen  published  her 
findings in the Conference Proceedings (Kellock and Bringolf 2011).  

After one year of sampling we have confirmed that intersex is prevalent in some water bodies 
across the state and that intersex is not confined to rivers that receive wastewater effluent.  Of 
the 147 male bass collected in 2010, 42.9% were intersex (contained eggs in testes).  Of the 
male fish collected from impoundments, 51.8% were intersex whereas 12.1% of males from 
rivers were intersex.  Most strikingly, intersex rates were >66% in all male bass collected from 
impoundments with a surface area of 20 acres or less (N=5).  Additional sampling from Georgia 
rivers and impoundments is critical to fully elucidate the extent and factors influencing the 
occurrence of intersex fish in the state.   

The yeast‐based assay (BL‐YES assay) used to measure total estrogenic potency in water 
samples was initially unsuccessful.  Despite thorough troubleshooting and considerable time 
and effort, the bioluminescent yeast strain did not respond to estrogens in a consistent and 
predictable manner.  Therefore, we obtained a different strain of transgenic yeast (YES assay) 
and, following optimization, we are presently analyzing water samples collected from each of 
the rivers and lakes with the YES assay to determine estrogen activity in these waters.   

To determine  if water  temperature  influences  the effects of early‐life estrogen exposure, we 
performed a preliminary lab study with newly‐hatched fathead minnows that were exposed to 
an estrogen at various  temperatures.    Interestingly, no  intersex was evident by 75 days post 
hatch (dph) which suggests that the E2 exposure did not induce intersex, or the fish ‘recovered’ 
from the intersex condition by 75 dph.  There was high mortality in the 35oC treatment but all 
fish at 30oC appeared healthy and grew better than those exposed to 25oC for 15 d early in life.  
Although all fish were cultured at the different temperatures for just 15 days prior to transfer to 
25oC  for  grow  out,  all  fish  (regardless  of  E2  exposure)  raised  at  30oC  for  15  days  were 
significantly less responsive to the second estrogen exposure than those raised at 25oC early in 



life.  This suggests that a permanent effect occurred in the fish exposed to 30oC that resulted in 
estrogen  insensitivity  later  in  life.    This  study  must  be  repeated  and  requires  further 
investigation before  the  full  implication of  temperature effects on estrogen sensitivity can be 
understood. 

Overall, this research has greatly advanced the understanding of the distribution and severity of 
the intersex condition in bass in Georgia and has discovered substantial, unexpected and novel 
trends in the waters where intersex occurs most frequently.  Additional investigation is 
warranted to understand the primary factors involved in development of intersex gonads, to 
elucidate the relative sensitivity of bass compared to other fishes, and to determine potential 
population‐level effects of the condition. 

   



Introduction 
 
Reports of intersex fish in water bodies around the world (including Georgia) have stimulated 
widespread concern about the effects that chemicals are having in the environment.  Intersex is 
a term used to describe the presence of both male and female characteristics in individual fish, 
most commonly presence of oocytes (eggs) in testicular tissue, a pathological condition that is 
not routinely observed in most fish species (Hecker et al. 2006).  The intersex condition has 
often been associated with a hormonally active component of municipal wastewater effluent 
discharge and has been induced in laboratory studies where fish were exposed to natural and 
synthetic hormones (Jobling et al. 2002), which are routinely measured in treated municipal 
wastewater effluent.  The intersex condition has individual‐ as well as population‐level 
implications; intersex male fish have been shown to have altered sperm production and 
reproductive success compared to non‐intersex male fish (Jobling et al. 2002).  These findings 
generate numerous questions about the ecological implications of intersex fish and fuel 
widespread concerns about the role of chemicals in well‐documented trends in reproductive 
abnormalities in human health as well (Colborn et al. 1994).  Understanding the extent and 
distribution of intersex fish in the environment and the chemicals that are known to induce this 
condition is a critical first step toward developing a management strategy.   
 
In a widely‐publicized recent scientific article, Hinck et al. 2009 reported that intersex 
largemouth bass (Micropterus salmoides) were found in rivers across the US.  Intersex bass 
were more common (up to 91%) in Southeastern US rivers than in other sampled areas of the 
country.  The Chattahoochee, Flint and Savannah Rivers in Georgia were included in the 
sampling, and of the five sites sampled in these rivers, the incidence of intersex in bass ranged 
from 30–50%.  The fish all appeared to be male but had oocytes in their testes.  Causes for the 
intersex condition are currently unknown and in this study the authors did not analyze water 
samples for the presence of estrogens or other hormones that have previously been associated 
with this condition.  Sample sites were not associated with wastewater effluent or particular 
contaminants but were stratified by land use (urban, agricultural, etc.).  Other indicators of 
reproductive system abnormalities were not assessed.  Additional sampling is required to fully 
understand the extent of the distribution of intersex fish in Georgia and the underlying causes 
for this condition.  Our objectives are to: (1) assess intersex condition in fish collected from 
rivers and lakes across Georgia; (2) determine estrogenic potency (a measure of the estrogens 
and estrogen‐like substances) of surface waters; and (3) compare the sensitivity of in vivo and 
in vitro assays to detect estrogens in river water. 

 
 
 



Methods 
 
RIVER SAMPLING.  Black bass sampling was conducted from April – June 2010.  Fish were 
collected by boat electroshocking and/or hook and line from the North Oconee River, Broad 
River, Ocmulgee River, and Savannah Rivers in Georgia. The target was to collect 15 adult (age 
1+) male fish at each site but this was not reached in all samples (Table 1).  Fish from all rivers 
except the Broad R. were collected within 1 km of a municipal wastewater effluent outfall.  The 
fish were kept alive in an aerated live well until sufficient numbers were obtained.  Fish were 
anesthetized by buffered MS‐222 overdose, weighed and measured.  Gonads from each fish 
were examined macroscopically for confirmation of gender.  Gonads were dissected from each 
fish, weighed and preserved in 10% buffered formalin for histological preparation by the Fish 
Pathology Laboratory at the University of Georgia College of Veterinary Medicine Diagnostic 
Lab.  We determined the incidence and severity of intersex based on presence of oocytes in the 
testes of apparent (macroscopic) male fish.  Severity of intersex was rated with criteria 
described previously (Blazer et al. 2007) for smallmouth bass by scoring each fish on a scale of 0 
(no intersex) to 4 (multiple clusters of more than 5 closely associated oocytes in the testes).  A 
mean index of severity was calculated for fish from each river.   
 
IMPOUNDMENT SAMPLING.  Black bass were collected (also in April – June 2010) by boat 
electroshocking from eleven impoundments across Georgia.  Ten to 15 adult bass adult (age 1+) 
were obtained from each lake. The fish were kept alive in an aerated live well until sufficient 
numbers were obtained.  Fish were anesthetized by buffered MS‐222 overdose, weighed and 
measured.  Gonads were dissected from the fish, weighed and preserved in 10% buffered 
formalin for histological analysis.  Rates of intersex from the lakes were compared to the 
intersex rate in males from rivers receiving high volume municipal wastewater effluent.  
Severity of intersex was rated with criteria described previously for river fish. A mean index of 
severity was calculated for fish from each impoundment.   
 
ESTROGENIC POTENCY.  River water samples (2 L) were collected from at least 1 km upstream 
and less than 1 km downstream of point source effluent discharges.  Lake water samples were 
collected as close to the center of the lake as possible. The water samples were filtered to 
remove suspended solids and extracted on a C‐18 solid phase extraction column.  The column 
was eluted with 3 x 1 ml methanol and extracts were stored at 4oC until analysis.  Total 
estrogenic activity will be determined by the yeast estrogen screen (YES) assay, an in vitro assay 
with yeast (Saccharomyces cerevisiae) cells that have been transfected with the human 
estrogen receptor and an enzyme reporter gene.  Estrogenic compounds in water samples bind 
the receptors and stimulate production of an enzyme, the activity of which can be measured 



with a colorimeter. The YES assay has been previously validated for rapid, sensitive detection of 
estrogenic compounds in water samples (Routledge and Sumpter 1996). 

TEMPERATURE EFFECTS ON INTERSEX.  We performed a preliminary lab study with newly‐
hatched fathead minnows that were exposed to an estrogen early in life at various 
temperatures.  Larval fathead minnows were exposed to 10 or 100 ng/L of 17‐β estradiol (E2) at 
different temperatures (25, 30, 35 oC) from day 0 to 15 days post‐hatch (dph).  Three replicates 
of 600‐ml glass beakers with 500 ml of dechlorinated tap water and 20 larval fish were used for 
each treatment.  Water was renewed (90%) daily.  Prior to renewal, water samples (n=3) were 
collected for confirmation of estradiol exposure concentrations.  Following estradiol exposure, 
all fish were transferred to 19 L aquaria with clean, dechlorinated tap water at 25oC and 
cultured to 75 dph.  Fish were fed flake food and live Artemia nauplii daily to satiation.  At 75 
dph, all fish were challenged with an exposure of 100 ng/L of E2.  At 82 dph, fish were 
euthanized, weighed, measured, gonads were dissected out and the carcass was homogenized 
and frozen at ‐80oC.  The gonads were fixed in 10% buffered formalin and processed for 
sectioning and H&E stain.  Gonads were staged (development) and evaluated for incidence and 
severity of intersex.  Fish homogenates were assayed for vitellogenin, the egg yolk protein 
precursor, which is induced by exposure to estrogens.   

Table 1. Intersex black bass collected in 2010 from Georgia rivers and impoundments. 
 

Water Body 
Type  Site  GA County 

Surface 
Area (ac) 

Male 
Bass  Intersex 

% Intersex 
Males 

Impoundment  Hatchery Pond  Ben Hill  3.2  22  18  81.8 
Impoundment  Private pond 1  Wilkes  7  5  5  100 
Impoundment  Lake Paradise  Barrien  17  6  4  66.7 
Impoundment  Private pond  Hancock  18  15  12  80 
Impoundment  Private pond 2  Wilkes  20  17  14  82.4 
Impoundment  Dodge Co. PFA  Dodge  104  4  2  50 
Impoundment  Antitoch East  Floyd  202  5  0  0 
Impoundment  Lake Blackshear  Lee  8,600  9  0  0 
Impoundment  Walter George  Clay  11,184  14  3  21.4 
Impoundment  Lake Oconee  Greene  19,050  8  1  12.5 
Impoundment  Lake Seminole  Seminole  37,000  9  0  0 

River  North Oconee  Clarke  n/a  5  3  60 
River  Broad River  Elbert  n/a  12  0  0 
River  Ocmulgee River  Bibb  n/a  8  0  0 
River  Savannah River  Richmond  n/a  8  1  12.5 

 

 



Results and Discussion 

Preliminary results suggest that intersex is prevalent in some water bodies across Georgia and 
that intersex is not confined to rivers that receive wastewater effluent (Table 1).  Of the total 
147 male bass collected in 2010, 42.9% were intersex.  Of the male fish collected from 
impoundments, 51.8% were intersex whereas 12.1% of males from rivers were intersex.  
Among fish from rivers, bass from the North Oconee River (downstream of wastewater 
effluent) had the highest incidence of intersex at 60%, but the sample size from the river was 
low.  The only other river with intersex fish was the Savannah, with just one of eight males with 
intersex.  Interestingly, the highest rate of intersex was found in small impoundments, 
particularly those less than 200 surface acres.  Surface area was a good predictor of intersex 
rate, accounting for 78% of the variability in incidence of intersex among fish from 
impoundments (Figure 1).  We had expected to see the highest rates of intersex in fish collected 
from rivers; however, our results suggest that black bass from small ponds (<200 acres) are 
highly susceptible to the intersex condition. Factors affecting intersex in small ponds are not 
known at this time but are likely different from those in river that receive wastewater effluent 
containing estrogens and other hormone‐mimicing compounds.  Some of the factors that differ 
among the various impoundments include: 1) small ponds sampled in this study generally had 
dense, overcrowded, bass populations as opposed to the larger impoundments which had 
much lower bass densities; 2) small ponds were generally more eutrophic than larger bodies of 
water; and 3) water temperature was greater in ponds than in other waters.  These factors 
have led us to a number of hypotheses regarding factors that may be involved in intersex.  
Clearly, additional studies will be necessary to determine the factors that lead to development 
of intersex in bass and other fishes.  Detailed chemical and environmental analyses as well as 
targeted lab testing may help further elucidate the causes of intersex fish in the state.   

Severity of intersex did not differ (T‐test, p=0.899) between rivers (2.0 ± 1.5) and 
impoundments (2.0 ± 1.5).  Additionally, severity of intersex was variable among 
impoundments and was not correlated with surface area of the impoundment (Figure 2).  
Intersex incidence and severity do not appear to be interrelated as impoundments with low 
incidence often had high severity.   

We are presently analyzing water samples collected from each of the rivers and lakes with the 
YES assay to determine estrogen activity in these waters.  The YES data from 2010 will be 
informative; however, temporal sampling is required because estrogen levels may not be stable 
throughout the year and annual patterns (i.e., year to year) are unknown.  We hypothesized 
that the highest estrogen concentrations would be found in water samples from areas with 
greater incidence of intersex fish; however, high concentrations of estrogens seem unlikely in 



lake samples because few of the lakes we sampled receive effluent or had homes or other 
facilities located nearby.   
 

 
Figure 1.  Relationship between incidence of intersex in bass and surface area of impoundments 
where fish were collected across Georgia.   
 
 

 
Figure 2.  Relationship between severity of intersex and surface area of impoundments were 
fish were collected across Georgia.   
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In the lab study, all of the fish exposed to 35oC died by the end of the 15‐day exposure.  All fish 
cultured at 25 and 30oC survived.  Sex ratio ranged from 50% males to 72% males and did not 
differ among any of the temperatures or estradiol treatments (ANOVA, Tukey’s Test, N=3, df=5, 
p=0.899).  Measured concentrations of estradiol were 84‐210% of target concentrations and no 
estradiol was detected in the controls.  Males and females cultured at 30oC early in life, 
regardless of estrogen exposure, were generally in later stages of gonadal development by 82 
dph.  Early life estradiol exposure stimulated gonad development in both males and females.  
Early life exposure to estradiol did not significantly alter sensitivity to estrogen exposure (i.e. 
vitellogenin induction) later in life, at 75 dph (Figure 3); however, fish cultured at 30oC early in 
life were much less sensitive to estradiol (less vitellogenin induction) at 75 dph than those that 
were cultured at 25oC throughout life (Figure 3).  The same trends existed for males (Figure 4).   
 
We expected skewed sex ratios in favor of females but this did not occur.  Because exposure 
concentrations were verified, we conclude that the exposure concentrations or duration were 
insufficient to induce alteration of sex ratio.  Based on published literature, we expected to se 
intersex and this did not occur either.  We conclude that one of two things occurred, either 1) 
fish developed intersex then ‘recovered’ once placed in clean water for 60 days, or 2) intersex 
did not develop during the test period.  Previous studies have used a similar exposure period 
and estradiol concentrations to induce intersex, but those investigators cultured the fish in 
clean water for at least 150 days.  The possibility exists that intersex does not manifest until the 
fish become reproductively mature.  Further study is warranted to fully understand the effects 
of temperature and early life estrogen exposure on reproductive health.   
 
Conclusions.  This study will provide the first investigation of estrogens in Georgia’s surface 
waters and intersex fish in many of Georgia’s rivers and lakes.  The results are crucial for 
understanding the spatial and temporal distribution of estrogens in surface waters.  Intersex is 
currently thought to be an abnormal condition for bass, but little research on the background 
incidence of intersex has been reported.  Comparison of intersex in fish from rivers and lakes 
will allow insight into the ‘normal’ background incidence of intersex in basses and provide 
additional evidence to determine if the condition is indeed linked to estrogens in the water.  
Our preliminary results suggest that intersex rates are high in some bass populations, including 
those in lakes, but the factors influencing intersex are currently poorly understood.  Results of 
our sampling suggest that intersex is not confined to fish in Georgia rivers but occurs in lake 
populations as well.  Additional sampling is required to elucidate the incidence and severity of 
intersex in Georgia fish and to determine potential causes of the condition.     
 



 
Figure 3.  Effects of early life exposure to estradiol at two temperatures (25 or 30oC) during days 
0 to 15 dph.  Fish were cultured in clean water at 25oC from 15 dph to 75 dph then exposed to 
estradiol until 82 dph.  Different letters indicate significant differences (p<0.05) among 
treatments within a temperature (ANOVA, Tukey’s, N=3).   
 
 

 
Figure 4.  Effects of early life exposure to estradiol at two temperatures (25 or 30oC) during days 
0 to 15 dph.  Fish were cultured in clean water at 25oC from 15 dph to 75 dph then exposed to 
estradiol until 82 dph.  Different letters indicate significant differences (p<0.05) among 
treatments within a temperature (ANOVA, Tukey’s, N=3).   

0
50

100
150
200
250
300

Control Ctl + E2 10ng/L + 
E2

100ng/L + 
E2

Vi
te

llo
ge

ni
n 

(µ
g/

m
l)

Treatment

25 C
30 C

0
5000

10000
15000
20000
25000
30000

Control Ctl + E2 10ng/L + 
E2

100ng/L + 
E2

Vi
te

llo
ge

ni
n 

(n
g/

m
l)

Treatment

2…3…

bb

B

b
A

AB
AB

a



REFERENCES 
 
Blazer, V.     2007.  Intersex (testicular oocytes) in smallmouth bass from the Potomac River and 
selected nearby drainages.  Journal of Aquatic Animal Health 19:242‐253.   

 
Colborn, T., F. vom Saal, and A. Soto. 1994. Developmental effects of endocrine‐disrupting 
chemicals in wildlife and humans. Environmental Impact Assessment Review 14:469‐489. 

 
Hecker, M., M. Murphy, K. Coady, D. Villeneuve, P. Jones, J. Carr, K. Solomon, E. Smith, G. Van 
Der Kraak, and T. Gross. 2006. Terminology of gonadal anomalies in fish and amphibians 
resulting from chemical exposures. Reviews of Environmental Contamination and Toxicology 
187:103‐131. 

 
Hinck, J.E., V.S. Blazer, C. Schmitt, D. Papoulias, and D. Tillitt. 2009. Widespread occurrence of 
intersex in black basses (Micropterus spp.) from US rivers, 1995–2004. Aquatic Toxicology 95: 
60‐70. 

 
Jobling, S., S. Coey, J. Whitmore, D. Kime, K. Van Look, B. McAllister, N. Beresford, A. Henshaw, 
G. Brighty, and C. Tyler. 2002. Wild intersex roach (Rutilus rutilus) have reduced fertility. 
Biology of Reproduction 67:515‐524. 

 
Routledge, E.J. and J.P. Sumpter. 1996. Estrogenic activity of surfactants and some of their 
degradation products assessed using a recombinant yeast screen. Environmental Toxicology 
and Chemistry 15:241‐248. 

 

 

 



Temporal and micro-site variation in flow characteristics in
estuarine habitats

Basic Information

Title: Temporal and micro-site variation in flow characteristics in estuarine habitats
Project Number: 2010GA238B

Start Date: 3/1/2010
End Date: 2/28/2011

Funding Source: 104B
Congressional District: 5th

Research Category: Biological Sciences
Focus Category: Ecology, Solute Transport, None

Descriptors:
Principal Investigators: Donald R. Webster, Marc Weissburg

Publications

Berry, W.A., Webster, D.R., Wilson, M.L. Ferner, M.C., Smee, D.L., and Weissburg, M.J., 2011,
"Characterization of Turbulent Hydrodynamics in the Intertidal Zone of a Small Estuary with Respect
to Predator-Prey Chemical Signaling, submitted to Environment Fluid Mechanics.

1. 

Wilson, M.L., Webster, D.R., and Weissburg, M.J. "site and Tide-Specific Variation in the
Hydrodynamic Landscape Relative to Odor-Mediated Predators in Salt Marsh System" in preparation
for Wilson's Ph.D thesis defense (chapter 5) on 06/03/11. The manuscript will be polished
subsequently into a journal submission.

2. 

Wilson, M.L., Webster, D.R., and Weissburg, M.J., "Tide and Wind Effects on the Fluctuating Flow
Parameters in Shallow Intertidal Salt Marsh Habitats" in preparation for Wilson's Ph.D. thesis defense
(Chapter 6) on 06/03/11. The manuscript will be polished subsequently into a journal submission.

3. 

Temporal and micro-site variation in flow characteristics in estuarine habitats

Temporal and micro-site variation in flow characteristics in estuarine habitats 1



 

 

Final Report 
 
 

 
 
 
 
 
 
 

Temporal and micro-site variation in flow 
characteristics in estuarine habitats 

 
 
 

Donald R. Webster 
School of Civil and Environmental Engineering 

Georgia Institute of Technology 
Atlanta, GA 30332-0355 

 
Marc Weissburg 

School of Biology 
Georgia Institute of Technology 

Atlanta, GA 30332-0230 
 
 
 
 
 
 
 
 
 
 



 

 

Summary of Activities and Accomplishments: 
The goal of this project is to provide comprehensive and detailed information about flow 
dynamics in the intertidal region of an estuary on the Georgia coast.  Coupled with our 
current and ongoing work on olfactory predators, knowledge about the variability and 
range of flow environments allows us to make predictions concerning which aspects of 
fluid flow may impact predator behavior.  Our measurements address a series of 
questions regarding flow properties in the intertidal zone: (1) What are the temporal 
trends in flow characteristics at both small (over one tidal cycle) and large (over 3 
months) scales? (2) Are flow characteristics correlated with any other concurrent 
physical parameters unique to the estuary system such as tidal range or wind speed? 
(3) At what temporal scales do study sites need to be examined in order to fully 
characterize those turbulent flow parameters that may impact biological interactions? (4) 
At what spatial scales do micro-sites differ in their turbulent flow characteristics – that is, 
what is the variability in a single region within an estuary? And (5) What sampling 
regimes need to be used in order to fully characterize those flow parameters that could 
impact interspecific interactions (i.e. How long should the instrumentation be deployed? 
How many different micro-sites should be sampled within each study area?)? 
 
As planned, during Summer 2010 we deployed 6 acoustic Doppler velocimeters (ADVs) 
in Wassaw Sound and tributaries.  Measurements were performed at four sites and data 
for Spring, Neap, and Normal tide types were collected at each site for 48 hour periods.  
We also deployed two ADV probes at the Priest Landing site continuously for a three 
month period.  To analyze and interpret the data, we have developed a new method for 
separating the wave and turbulent components of the velocity fluctuations.  Three 
manuscripts have been prepared and are presented here to report the details of the 
activities and accomplishments: 
 
W.A. Berry, D.R. Webster, M.L. Wilson, M.C. Ferner, D.L. Smee, and M.J. Weissburg. 

“Characterization of Turbulent Hydrodynamics in the Intertidal Zone of a Small 
Estuary with Respect to Predator-Prey Chemical Signaling,” submitted to 
Environmental Fluid Mechanics (Feb 2011). 

 
M. L. Wilson, D.R. Webster, and M.J. Weissburg. “Site- and Tide-Specific Variation in 

the Hydrodynamic Landscape Relative to Odor-Mediated Predators in Salt Marsh 
System,” in preparation for Wilson’s Ph.D. thesis defense (Chapter 5) on 6/3/11.  
The manuscript will be polished subsequently into a journal submission. 

 
M. L. Wilson, D.R. Webster, and M.J. Weissburg. “Tide and Wind Effects on the 

Fluctuating Flow Parameters in Shallow Intertidal Salt Marsh Habitats,” in 
preparation for Wilson’s Ph.D. thesis defense (Chapter 6) on 6/3/11.  The 
manuscript will be polished subsequently into a journal submission. 

 
The project was also highlighted on the NortekUSA website: 
http://www.nortekusa.com/usa/news/nortek-vectors-used-to-study-odor-mediated-interactions 
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Abstract 

  This study quantifies naturally occurring differences in the hydrodynamic environment in a variety of field 

sites in Wassaw Sound and associated tributaries (near Savannah, GA, USA).  Previously, these sites were used to 

study predator‐prey interactions, and the current study provides a more in‐depth characterization of the flow and 

turbulence characteristics.  Velocity time records were recorded using acoustic Doppler velocimeter (ADV) probes 

at six sites on four days, with a total of 11 data sets.  Each set spans one complete tidal cycle and consists of 

periodically‐collected 5‐minute bursts of data.  These data were subjected to differential‐estimate phase filtering 

in order to identify erroneous velocity measurements.  Additionally, the wave component was separated from the 

turbulent kinetic energy (TKE) and Reynolds shear stress measurements via spectral analysis combined with the 

coherence function between the simultaneously collected velocity and pressure records.  The wave component 

was in the range of 15 to 56% for the TKE and 13 to 44% for the Reynolds shear stress.  Burst‐averaged velocity 

statistics, TKE, Reynolds shear stress, and turbulence intensity (TI) are presented for each data set.  Because 

multiple sites were monitored over multiple days, variation was examined both spatially and temporally.  Large 

variability in turbulent characteristics was observed at different sites on the same day as well as at the same site 

over different days.  The high level of variability in the flow and turbulence characteristics provides insights into 

the complex, chemosensory‐mediated predator‐prey interactions that have been observed in the Wassaw Sound 

ecosystem. 
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1. Introduction 

 Ecological processes in aquatic systems, such as predation, reproduction, and benthic 

settling, are often chemically-mediated, and resultantly, these processes are strongly influenced 

by flow and chemical transport characteristics (reviewed in Zimmer and Butman 2000, 

Weissburg et al. 2002, Webster and Weissburg 2009).  In the context of benthic predation, the 

transport of chemical cues in (typically) turbulent flow is particularly important to define when 

attempting to understand and explain organism behavior and predator-prey interactions.  In both 

laboratory and field studies, turbulence manipulation experiments have shown that the influence 

of increased flow and mixing on perceptive abilities is species-specific for both the predator and 

prey organisms (Weissburg and Zimmer-Faust 1993, Finelli et al. 2000, Powers and Kittinger 

2002, Smee et al. 2008, Ferner et al. 2009).  For instance, slower moving predators (i.e., knobbed 

whelks) can forage effectively at large flow and mixing rates that produce more dispersed 

chemical signals, whereas highly mobile predators (i.e., blue crabs) function best at smaller flow 

and mixing rates that result in less dispersed chemical plumes (Powers and Kittinger 2002, 

Ferner and Weissburg 2005, Jackson et al. 2007).  Further, prey, such as bivalves, alter their 

behavior depending on the hydrodynamic conditions (Smee and Weissburg 2006), in some cases 

apparently manipulating the excurrent flow conditions to (presumably) alter the downstream 

odorant landscape (Delavan and Webster 2011). 

 The current study seeks to identify naturally occurring differences in the flow and 

turbulence characteristics at a variety of field sites near the Skidaway Institute of Oceanography 

on the coast of Georgia, USA.  These sites have been used recently to examine predator-prey 

interactions in the field (e.g., Smee and Weissburg 2006, Smee et al. 2008, Ferner et al. 2009, 

Smee et al. 2010).  An understanding of the turbulent environment in these sites serves to 

illuminate some of the factors mediating the transmission of chemical signals, which in turn play 

a role in the predator-prey interactions among local organisms that shape ecological processes.  

Relatively few studies have quantitatively examined the flow and turbulence characteristics in 

the intertidal zone of small estuaries.  In contrast to a controlled laboratory setting, significant 

difficulties and challenges arise in the collection of field data.  Complex bed morphologies, 

unsteady flows, and irregular disturbances such as changing atmospheric conditions, upstream 

inputs, and anthropogenic or organismal interference can all yield modified flow characteristics.  
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The spatial and temporal variability of studies in a natural environment presents additional 

challenges to quantifying the connection between effects and observations in predator-prey 

interactions.  Similarly, understanding the extent of temporal and spatial variation is helpful for 

identifying regions that are characterized by similar flow patterns.  Such areas often serve to 

make observations or perform ecological experiments to understand the role of environmental 

forcing on ecological interactions.  

 

1.1 Background 

 In a tidally-driven river, the mean velocity lags slightly behind the water level (Kawanisi 

and Yokosi 1994, Trevethan et al. 2008).  Trevethan et al. (2008) and Trevethan and Chanson 

(2009) observed flood tide velocities that exceed those of ebb tide, suggesting a net upstream 

flux.  In contrast, Shiono and West (1987) and Voulgaris and Meyers (2004) observed larger 

velocities in the ebb tide compared to flood tide, and Verney et al. (2006) observed both 

conditions depending on the measurement location and other factors.  Hence, the tidal flow 

asymmetry appears to depend on local conditions. 

 Turbulent properties exhibit great spatial variability (Trevethan and Chanson 2009).  

Relative turbulence intensities are large when compared to similar results from larger estuaries, 

indicating increased turbulent activity due to greater friction and bed roughness impacts in 

shallow water (Trevethan and Chanson 2009).  Salinity measurements indicate that vertical 

stratification found in ebb tides can reduce the ratio of Reynolds stress to turbulence intensity, 

whereas flood tides can be considered well mixed and have larger ratios (Kawanisi and Yokosi 

1994).  Near-bed fluctuations behave similarly to bed-generated turbulence found in laboratory 

settings and generate a well-mixed zone near the bed during flood tides (Shiono and West 1987).  

In contrast, shear-generated turbulent behavior is observed during ebb tides (Shiono and West 

1987).  These studies illuminate some important turbulent characteristics of small estuaries, and 

Trevethan and Chanson (2009) call for further study from a hydrodynamics standpoint, as there 

can be significant variability both among and within these small estuaries. 
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1.2. Objectives 

 The objective of the current study is to quantify the flow and turbulence characteristics in 

the intertidal zone at six sites on the coast of Georgia, USA.  The data consist of time records of 

velocity for a period of one tidal cycle.  Data were collected simultaneously at three or four sites, 

facilitating spatial comparisons.  Data were collected at the same site for a series of days, 

facilitating a temporal comparison.  A primary objective of the data analysis is to separate the 

wave and turbulence components of the fluctuating velocity.  We also discuss how the flow and 

turbulence characteristics provide insight to chemical cue transport and success of knobbed 

whelk and blue crab predators at these sites. 

 

2. Materials and Methods 

2.1. Data Collection 

 Time sequences of velocity were collected at intertidal sites located in the Skidaway, 

Wilmington, Herb, and Moon Rivers as well as at Dead Man's Hammock and House Creek in 

May 2007 (see Figure 1).  The sites exhibit extended periods of tidally-driven unidirectional 

flow.  The sites are bordered by marsh grass, Spartina alterniflora, have average salinity in the 

range 20-28 ppt, experience a tidal range of 2 to 3 m, and receive small levels of freshwater 

inflow (Smee et al. 2010).  Substrates primarily consist of fine-grained sand and mud.  The sites 

were generally located 10 to 20 meters from oyster, Crassostrea virginica, reefs.  Exceptions 

were the Skidaway River and Wilmington River sites, which were located at larger distances due 

to the minimal oyster reefs presence. 

 Acoustic Doppler velocimeters (ADVs) (NortekUSA Vector) were placed simultaneously 

at up to four sites for data collection.  ADVs recorded three components of velocity, signal-to-

noise ratio, correlation coefficient for each sensor, and pressure.  ADVs were mounted such that 

the x-direction was roughly parallel to the mean flow direction, and the direction upwards from 

the bed corresponds to positive z-component velocity.  Data were collected at 16 Hz for 5 minute 

bursts with 10 minute intervals between bursts.  The ADV sampling volume center was located 

approximately 0.18 m above the substrate and at the mean lower-low water (MLLW) contour.  

The probe placement is consistent with our goal to quantify the flow and turbulence 
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characteristics at locations that predators (blue crabs and knobbed whelks) inhabit.  During data 

processing, the x- and y-direction velocity components were rotated to maximize the magnitude 

of the x-direction velocity within each burst.  Additional rotation was performed to ensure that 

the rotated x-direction velocity component is positive for flood tide and negative for ebb tide.  

ADVs were deployed for a minimum of one tidal cycle.  See Table 1 for more information about 

the individual data sets.  The DMH (side) data set collected on 5/16/07 was obtained using a 

side-mounted ADV. 

 

2.2. Data Analysis 

 Regarding notation, overbar notation is used to indicate averaging within a burst of data.  

The  notation indicates ensemble averaging over the sequence of burst-averaged values 

covering one tidal cycle (i.e., the average for one tidal cycle). 

 

2.2.1. Basic Filtering of Data 

 Velocity data were first evaluated by computing the mean values of the three correlation 

coefficients (provided for each sample in the ADV data) for each burst.  The entire burst was 

discarded if the mean value of any correlation coefficient was below 70%.  Typically, poor 

correlation coefficient values corresponded to bursts collected while the probe was exposed to 

the atmosphere at low tides.  Additionally, any burst with a string of 500 consecutive points 

(31.25 seconds out of 5 minutes total) having a mean correlation coefficient below 70% was also 

excluded, to account for bursts with partial probe exposure. 

 

2.2.2. Phase Filtering 

 Erroneous “spikes” occur in ADV data due to aliasing of the Doppler signal, resulting in 

erroneous data that still may possess good correlation coefficient and signal-to-noise ratio.  

Individual velocity measurement filtering was composed of two components: spike detection and 

spike replacement.  For spike detection, individual velocity measurements are assumed to behave 

as n independent, identically distributed, standard, normal random variables (Goring and Nikora 
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2002).  Data points were flagged when the first and second order differencing estimates indicate 

that a non-physical spike has occurred based on the universal threshold for normal random 

variables (Goring and Nikora 2002).  Table 1 reports the percentage of samples flagged for each 

set, which was below 3% for all cases.  For spike replacement, erroneous velocity samples were 

replaced by a polynomial best fit at the velocity component level.  A third-order polynomial fit 

was used, employing 12 points on either side of the identified spike, with an expanded range 

used in the presence of nearby spikes. 

 

2.2.3. Removal of Wave Energy 

 Turbulent measurements are more difficult to accurately obtain in aquatic systems in the 

presence of waves.  Grant et al. (1984) identified the potential for wave fluctuations contributing 

to apparent turbulent fluctuations, which can occur if sensors are improperly aligned with the 

principal axes of the flow or if there is sloping bed geometry (also see Trowbridge 1998).  The 

apparent wave contribution to turbulent quantities can result in inaccurate calculations that either 

over- or underestimate parameters due to wave fluctuations that should not be considered 

turbulent because of their low frequency periodicity. 

 This study uses the coherence of the velocity and pressure measurements to identify and 

remove wave contributions to the Reynolds shear stress and turbulent kinetic energy (TKE), two 

quantities that provide important information about the turbulent environment at each site.  The 

study also assesses the importance of wave influence at each site. 

 Instantaneous velocity samples are decomposed into the following convention: 

  u u u u      (1) 

where u  is the mean component, u  is the wave-induced component, and u   is the turbulent 

fluctuation.  Computing the Reynolds shear stress through Reynolds averaging of the velocity 

components yields: 

 
uw uw u w u w

       


   
  (2) 
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Ideally, the first three terms of Equation (2) can be neglected.  However, instrument uncertainty 

or sloping bed geometry yields 0uw   , which artificially inflates the estimate of the Reynolds 

shear stress (Trowbridge 1998). 

 The objective of the analysis procedure described below is to estimate the normal and 

shear Reynolds stress components based on the time record of a single probe.  The method is 

described in detail for the Reynolds shear stress and the normal stresses are calculated in an 

analogous manner (and subsequently combined to report the TKE).  Rising or falling trends 

(typically due to the tide) in the velocity and pressure (5 minute) time records are removed by 

performing a linear trend removal (Bendat and Piersol 2010).  The mean value is also subtracted 

from the records, thus the notation below implies that the mean component of each record is 

zero.  Following the method of Benilov and Filyushkin (1970), the coherence function is 

calculated for the u  velocity component and the pressure, p, as a function of frequency: 

 

     
   

*
2 up up

uu pp

S S

S S

 
  

 
  (3) 

where upS  is the cross-spectral density (CSD) of u and p, uuS  and ppS  are the respective power 

spectral density (PSD) functions,   is frequency, and * indicates the complex conjugate. 

 Assuming that the coherent signal between the pressure and velocity measurement is due 

to waves, the power spectral density (PSD) for the turbulence portion of the signal is obtained 

by: 

 
     21u u uuS S           (4) 

The magnitude of the turbulent velocity fluctuation, jU  , is then calculated based on the power 

spectral density for each discrete frequency via: 

 

21
u u j jS U

d
  

   (5) 

where the subscript j indicates the discrete frequency value, and the capital case notation 

indicates that the velocity is represented in the frequency domain compared to the lower case 

notation corresponding to the time domain.  The procedure is repeated based on the coherence 
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between the w  velocity component and the pressure to yield jW  .  In this manner, the magnitude 

of each velocity component is adjusted by the coherence of the respective velocity component 

with the pressure signal. 

 The phase of the velocity components must be incorporated with the adjusted velocity 

fluctuation magnitude to calculate the Reynolds shear stress.  The Fourier coefficients of the 

respective velocity components can be expressed in phasor notation: 

 
ji U

j jU U e 
, 

ji W
j jW W e 

  (6) 

with the phase of each defined as: 

 

 
 

Im
arctan

Re

j

j

j

U
U

U

 
   

   , 

 
 

Im
arctan

Re

j

j

j

W
W

W

 
   

     (7) 

The CSD can then be expressed as: 

 

      * cos sinj ji W U

j j j j j j j j j jU W U W e U W W U i W U
       

  (8) 

The imaginary part of the CSD may be neglected in the summation over the two-sided spectral 

domain.  Hence, the Reynolds shear stress is given by: 

 
 * cosj j j j j j

j j

u w U W U W W U         
  (9) 

where jU   and jW   are calculated via Equation (5) and jU  and jW  are calculated via 

Equation (7).  As a final step, the wave portion of the covariance is calculated by difference: 

  uw uw u w      (10) 

 As mentioned above, the normal Reynolds stresses are calculated in an analogous 

manner, although the calculation is more streamlined since the phase difference in Equation (9) 

is zero for the normal stresses.  Summing the three normal stresses yields the TKE: 

 
 1

2
TKE u u v v w w       

  (11) 

Turbulence intensity (TI) is calculated by normalizing the TKE via the mean velocities: 
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2 2 2

2
100

TKE
TI

u v w
 

    (12) 

 

3. Results 

3.1. Wave Removal 

 The results of the wave removal procedure can be seen in Table 2.  The wave 

contribution to TKE or Reynolds shear stress was in the range of 13 to 30% of the total measured 

value for the majority of data sets.  For the DMHside16 and DHM16 data sets, however, the 

wave contribution to TKE and Reynolds shear stress accounted for a larger fraction of the 

measured value (28 – 56%).  The Dead Man’s Hammock measurement site is more directly 

exposed to Wassaw Sound and the Atlantic Ocean (Figure 1) suggesting larger wave exposure, 

which is in accordance with visual observations.  The greater propensity for wave action at this 

site is consistent with the larger contribution of wave motion relative to the other locations.  

 

3.2. Flow Measurements on 5/14/07 

 This section presents example burst-averaged records collected on 5/14/07.  Burst-

averaged quantities for each set are computed for the first full tidal cycle, defined as a period 

roughly half of a day in length, in which data quality parameters indicated the probe was 

submerged.  Two flow regimes are usually apparent in each set.  The first period of the time 

series occurs during the flood tide, whereas the second period corresponds to the ebb tide.  These 

examples are representative of the all of the sets, and similar results are presented for the other 

collection days in Berry (2009).  

 

3.2.1. Wilmington14 Data Set 

 Figure 2 contains the records for the Wilmington14 data set.  The burst-averaged 

horizontal velocity is larger in magnitude during the flood tide, with a maximum of 5.08 × 10-1 

m/s at 133.71 year-days and a maximum negative value of -3.40 × 10-1 m/s at 133.93 year-days 
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(1.02 × 10-1 ± 3.23 × 10-1 m/s [mean ± standard deviation], note the mean value does not match 

the mean of the absolute value of velocity reported in Table 3).  The burst-averaged vertical 

velocity is positive for the flood tide and changes sign following high tide around 133.83 year-

days.  The within burst variability is large for the vertical velocity as indicated by the size of the 

error bars.  Both TKE and Reynolds shear stress have maximum absolute values during the flood 

tide around 133.75 year-days.  A local maximum for TKE and the magnitude of the Reynolds 

shear stress is also observed during the ebb tide around 133.93 year-days. 

 

3.2.2. Skidaway14 Data Set 

 Figure 3 contains the records for the Skidaway14 data set.  The burst-averaged values of 

horizontal velocity (0.31 × 10-1 ± 1.45 × 10-1 m/s [mean ± standard deviation]) exhibit unusual 

“lull periods”.  For instance, u  for the Skidaway14 set is close to zero around 133.73 year-days, 

during which time the u  velocity in the Wilmington14 data set (Figure 2) is at a maximum value 

(characteristic of a flood tide).  A similar phenomenon is observed around 133.93 year-days.  

This observation is explained by the fact that the Skidaway River site has tidal influence from 

both Wassaw Sound and Ossabaw Sound (located to the South of the map in Figure 1).  Under 

certain conditions the tidal flows may collide at the Skidaway River site and create an apparent 

“lull period”, as we observe in this example.  The burst-averaged vertical velocity (-5.18 × 10-3 ± 

5.82 × 10-3 m/s [mean ± standard deviation]) is small throughout the record.  TKE for the 

Skidaway14 set peaks from 133.80 to 133.87 year-days, which corresponds to an elevated period 

of u  velocity in the set.  Another period with elevated TKE is observed around 134.02 year-

days, which again corresponds to a period of large magnitude for u .  The periods of minimum 

TKE value around 133.73 and 133.93 year-days correspond roughly with the “lull periods”.  The 

burst-averaged value of the Reynolds shear stress is small and varies minimally during the 

record. 

 

3.2.3. Moon14 Data Set 

 Figure 4 contains the records for the Moon14 data set.  The record exhibits a flood-ebb 

tidal cycle of burst-averaged horizontal velocity (-0.26 × 10-1 ± 2.94 × 10-1 m/s [mean ± standard 
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deviation]), with high tide occurring around 133.84 year-days.  The values of burst-averaged 

horizontal velocity are positive for the flood tide (maximum of 3.77 × 10-1 m/s at 133.71 year-

days) and negative for the ebb tide (maximum negative value of -4.65 × 10-1 m/s at 133.92 year-

days).  The burst-averaged vertical velocity values are positive for the flood tide with a 

maximum of 2.58 × 10-2 m/s at 133.71 year-days (matching the time of maximum u  velocity) 

and negative for the ebb tide with a maximum negative value of -2.34 × 10-2 m/s at 133.87 year-

days.  TKE is largest during the ebb tide around 133.93 year-days, concurrent with the maximum 

negative value of u .  The magnitude of the Reynolds shear stress also is largest during the 

periods of largest velocity, although the variation during the tidal cycle is small. 

 

3.3. Set Comparisons 

 Characteristics for each data set are presented in Tables 3 and 4 via the ensemble average 

of the burst-averaged values.  The u  values are in the range of 0.05 – 0.32 m/s.  The absolute 

value of the burst-averaged horizontal velocity is reported because the relevant parameter from 

an ecological perspective is the magnitude of the fluid motion and the flow changes direction 

during the tidal cycle.  The DMHside16 and DMH16 data sets stand out due to their relatively 

small values of u .  For the data collected on different days at the same site, we expected the 

ensemble average of the burst-averaged values of horizontal velocity, u , to generally 

correlate with the tidal range (also shown in Table 3).  The data from Wilmington River site 

follow the expected correlation, but the data from the Skidaway River and Herb River sites do 

not.  The Skidaway14 set data may be confounded by the colliding tidal flows that create the 

“lull periods” in Figure 3.  This comparison also may be adversely influenced by small 

differences in probe placement on different days at the same site.  The w  values are negative, 

which indicates an ensemble-averaged downward flow, in all sets except Moon14.  The 

magnitude is one to two orders of magnitude smaller than the horizontal velocity component.  

For all sets, the v  values are multiple orders of magnitude smaller than u  due to the data 

rotation (and are not shown in Table 3). 
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 TKE is largest for the Wilmington14 (3.03 × 10-3 m2/s2) and House16 (2.62 × 10-3 m2/s2) 

sets (Table 4).  Of these two sets, the Wilmington14 set (Figure 2) shows the largest tidal 

variability.  The Wilmington14 set also has the largest deviation from the ensemble average and 

largest within-burst variability for the vertical velocity.  TKE is smallest for the Skidaway14 and 

DMH16 sets (0.48 × 10-3 m2/s2 and 0.49 × 10-3 m2/s2, respectively).  The DMH16 set has the 

largest TI (60.5%), but it has one of the smaller TKE values.  Conversely, while the House16 set 

has among the largest TKE, the TI (22.5%) is much smaller than that of the DMH16 set.  The 

variation of the absolute value of burst-averaged Reynolds shear stresses among the sets 

generally followed the pattern for the TKE.  As with the horizontal burst-averaged velocity, the 

ensemble average of the absolute value of the Reynolds shear stress is reported due to the sign 

change during the tidal cycle. 

 Tidal influences within the estuary are indicated by observations that turbulent 

characteristics often reach maximum absolute values during the flood or ebb tides, and sites 

generally were less energetic near high and low tide when the flow rate is at a minimum.  

However, some sets (Skidaway14, for example) did not show a clear tidal response, further 

illustrating the spatial and temporal variability observed in the study.  Similar variability in 

turbulence parameters has been seen in another study in a small estuary by Trevethan and 

Chanson (2009), where variability was primarily attributed to small water depths, among other 

factors. 

 

3.3.1. Spatial Comparison 

 Comparison of the three sets collected on 5/14/2007 is presented in Figure 5.  Similar 

comparisons for the other collection days are presented in Berry (2009).  Of the 5/14/2007 sets, 

the Wilmington14 set exhibits the most tidal influence, as u , w , TKE, and Reynolds shear 

stress vary in direct correspondence with the flood and ebb tides (Figure 2).  The variation of w 

in the Wilmington14 set both within-burst and among burst-averaged values is the largest of any 

set collected on any day (Figure 2).  The large mean velocities of the Wilmington14 set ( u  of 

3.19 × 10-1 m/s, for example) result in a TI value that is among the smallest of all sets.  The mean 

absolute value of the burst-averaged Reynolds shear stress is largest for the Wilmington14 set (
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u w   = 49.0 × 10-5 m2/s2).  The Moon14 set reveals tidal behavior in the records of u  and w , 

but tidal response in TKE and Reynolds shear stress is predominately seen in the ebb tide, if at 

all (Figure 4).  The mean of the burst-averaged values of u , TKE, and Reynolds shear stress for 

the Skidaway14 set are smaller than the corresponding quantities for the data collected at other 

sites (Figure 5).  This is also observed in the data collected on 5/19/07 (Tables 3 and 4).  Of 

particular note are the “lull periods”' that occur around 133.73 and 133.93 year-days (see Figure 

3).  These are periods in which the other sets exhibit maximum values of the measured 

quantities, but the Skidaway14 mean velocity and turbulence values are depressed and exhibit 

small within-burst variability in u and w (see Figure 3).  Due to the small mean velocity, the 

turbulence intensity has the largest set mean value for the Skidaway14 set among the sets on 

5/14/2007 (Figure 5).  Among these sets, u , TKE, and u w   vary in lockstep (i.e., a large 

value of u  also indicates a large value of TKE and u w  ), whereas TI follows a converse 

trend (Figure 5).  These relationships also are evident in the data collected on 5/16/07, whereas 

the relationships among the sets on 5/19/07 are not as clear due to the similar values of u  

(Table 3). 

 

3.3.2. Temporal Comparison 

 Data were collected at the Skidaway River site on 5/14/2007, 5/19/2007, and 5/20/2007.  

Comparison of the ensemble average of the burst-averaged values is provided in Figure 6 for the 

three days.  Variation is observed among the sets collected on different days at the same site, 

likely due to different tidal height, wind, and other conditions including slightly different probe 

placement.  The unusual u  velocity “lull periods” exhibited in the Skidaway14 data set (Figure 

3) were not seen in the Skidaway19 or Skidaway20 data sets (records not shown here).  On both 

occasions (5/14/2007 and 5/19/2007) when other sites were concurrently monitored, the 

ensemble averaged TKE value for the Skidaway River sets was substantially smaller than that for 

the other sites (see Table 4).  In contrast, the mean value of TKE for the Skidaway20 set is larger 
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and similar to that measured at other sites on different days.  The same trend is not exhibited for 

u , w , or Reynolds shear stress. 

 

3.3.3. Overall Comparison 

 As shown in Figure 7, there is an apparent direct relationship between u  and TKE  

and between u  and u w  .  Figure 7 suggests possible direct relationships, and a linear 

regression yields statistically significant trend lines, as shown.  Turbulence intensity ( TI ), in 

contrast, decreases with increasing u , which is expected since the mean velocity appears in 

the denominator of the definition of TI.  Further, there is an apparent direct relationship between 

the turbulence quantities, u w   and TKE , with a statistically significant trend line revealed 

by linear regression (Figure 7).  Thus, although it is difficult to see trends in the site-to-site 

comparisons for simultaneous records and in the within sites comparison among different days, 

there appears to be a universal connection between the horizontal velocity magnitude and the 

turbulence quantities. 

 

4. Discussion 

4.1. Phase Filtering 

 This study serves to illustrate the importance of rigorous consideration of data quality 

when using data collected from ADV probes.  Whereas no more than 3% of individual velocity 

measurements were flagged as spikes (Table 1), these points are exclusively extreme values.  

The data identified as spikes were found to alter the burst-averaged values of TKE because the 

extreme values disproportionately contribute to elevated TKE measurements due to their 

relatively large magnitudes.  These findings are consistent with prior observations regarding the 

importance of advanced data filtering when working with ADV data (see Goring and Nikora 

2002 and Chanson et al. 2008). 
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4.2. Wave Removal 

 The separation of wave energy in this study addresses the magnitude of the wave 

contribution to the apparent TKE and Reynolds shear stress measurement at the study sites and 

serves to demonstrate the importance of considering wave contributions in studies where waves 

may be present.  Despite prior observations of relatively small surface wave activity (Ferner et 

al. 2009), the current data demonstrate substantial (i.e., greater than 15%) wave contributions to 

both TKE and Reynolds shear stress in some regions within the Wassaw Sound ecosystem (see 

Table 2).  Wave-related fluctuations accounted for as much as 56% of the measured TKE 

(DMH16 set) and as much as 44% of the measure Reynolds shear stress (also DMH16 set) in the 

ensemble averaged data, and the minimum wave contribution was 15% and 13%, respectively, 

for TKE and Reynolds shear stress.  It is therefore clearly important to address the wave 

contribution when characterizing field sites in order to gain a better understanding of the sources 

of velocity fluctuations within the system.  This is particularly true in shallow habitats, where 

wind waves may have a larger impact, and in small estuarine systems, where minimal prior work 

has been done to describe the turbulent characteristics. 

 We also extensively tested the wave-turbulence decomposition method described by 

Bricker and Monismith (2007).  The method consists of identifying the frequency range 

corresponding to wave motion in the PSD and calculating the wave component via the difference 

between the PSD and a linear fit of the PSD data at higher and lower frequencies.  The difference 

is used to estimate the velocity component associated with the wave motion, jU , which is then 

used to calculate uw   via an equation analogous to Equation (9).  We found that this method 

struggled to faithfully separate the wave component for data from our shallow water 

environment.  Consistently, Bricker et al. (2005) reported that, near the water surface, the 

Bricker and Monismith (2007) method yielded Reynolds stress results that were an order of 

magnitude different (smaller) than the results from other decomposition methods.  For the 

current data, we found that the frequency range corresponding to wave motion changed among 

burst sets, which required manual tuning of the range.  The algorithm output is sensitive to the 

identified range, which adds subjectivity to the analysis.  Further, we observed that the CSD, in 

certain sets, contained a band of frequencies with large positive values and a second band with 

large negative values.  These bands effectively balance to yield a comparatively smaller value of 
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uw .  The effect of modifying a particular band of frequencies during this analysis is to disrupt 

the balance and yield values of uw   (and u w  ) that are two or even three orders of magnitude 

greater than the measured value, uw .  Overall, the Bricker and Monismith (2007) method 

yielded results for TKE that were generally consistent with the results of the analysis based on 

the method described in the Discussion section.  Specifically, the percentage of TKE due to wave 

component was in the range of 12 to 57% for the Bricker and Monismith (2007) method 

(reported in Berry 2009) in comparison to the range of 15 to 56% shown in Table 2.  In contrast, 

the Bricker and Monismith (2007) analysis frequently yielded results for the Reynolds shear 

stress that are difficult to physically reconcile due to u w   switching sign compared to uw  and 

u w   being orders of magnitude greater than uw  (Berry 2009).  We decided not to employ the 

method of Bricker and Monismith (2007) for our data analyses given the less subjective and 

more reliable nature of the method described in the Discussion section. 

 

4.3. Set Comparisons 

 Because data were collected from multiple sites simultaneously, it is possible to compare 

the turbulent characteristics under the same large-scale environmental conditions.  For the sets 

collected on 5/14/2007 (Wilmington14, Skidaway14, and Moon14), there is great variability.  

Tidal influence is seen in the Wilmington14 and Moon14 sets, whereas the Skidaway14 site 

exhibited less tidal influence, likely due to colliding tidal flows, and yielded smaller magnitudes 

and smaller variability for u , w , TKE, and Reynolds shear stress.  The findings illustrate the 

importance of factors that act on scales smaller than the primary tidal forcing within the estuary.  

Whereas sites monitored simultaneously were subjected to identical estuary-scale tidal behavior, 

significant differences in turbulent characteristics were observed.  Local bed geometry, local 

vegetation, biogenic structure (bivalve reefs, for example), and flow influx from tributaries or 

subsurface sources are all factors that could alter turbulent properties at the cross-site scales 

monitored in this experiment (e.g., Finelli 2000, Dade et al. 2001, van Duren et al. 2006, 

Widdows et al. 2008, Folkard and Gascoigne 2009, Jamieson et al. 2010). 

 The relatively short periods of observation reported herein provide only a limited 

characterization of the flow and turbulence.  The variation among sets collected on different days 
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at the same site also demonstrates the temporal variability of flow and turbulence characteristics.  

The data suggest that to adequately quantify the flow characteristics at a site and to assess the 

variability in these characteristics, data should be collected over a period exceeding several days 

in order to capture temporal variation, in particular spring/neap and seasonal variation. 

 Despite the noted spatial and temporal variability, Figure 7 suggests a linear relationship 

among u , TKE , and u w   across all sets.  Potentially, this is a useful observation since in 

ecological studies it is not always practical or possible to fully characterize the turbulence 

characteristics.  Hence, a measure of one quantity may provide, with a suitable calibration, 

additional insight to the hydrodynamic conditions. 

 

4.4. Ecological Consequences 

 A number of previous laboratory studies have examined how hydrodynamic regime 

affects odor-mediated benthic foraging, and it is instructive to compare the flow conditions 

employed in those studies to the field conditions reported here.  Zimmer and Zimmer (2008) 

explain the importance of correctly reproducing field environmental conditions in laboratory 

experiments in order for the laboratory results to have ecological significance.  Laboratory 

studies that report flow and turbulence quantities generally employ conditions within the range 

of parameters shown in Figure 7 (e.g., Weissburg and Zimmer-Faust 1993, Moore and Grills 

1999, Ferner and Weissburg 2005, Jackson et al. 2007).  Rahman and Webster (2005), for 

instance, report a mean channel velocity of 0.05 m/s, TKE values in the range of 0.05×10-3 to 

0.1×10-3 m2/s2, and u w   in the range of 1×10-5 to 3×10-5 m2/s2.  Although these data are 

consistent with the conditions summarized in Figure 7, the lab conditions are clearly to the lower 

end of the range for mean flow and turbulence.  Laboratory experiments predominately report 

mean velocities of less than 0.1 m/s (exceptions include Weissburg and Zimmer-Faust 1993 

[maximum channel velocity of 0.144 m/s], Ferner and Weissburg 2005 [0.15 m/s], and Smee and 

Weissburg 2006 [0.11 m/s]).  Employing conditions at the lower end of the field range is not 

surprising since the studies are often performed in low velocity flumes under highly-controlled 

conditions (for experimental repeatability).  Many of these studies are geared towards examining 

basic mechanisms of odor-mediated foraging and therefore use conditions permissive of 
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behavioral response.  The turbulence quantities also appear to be smaller in the laboratory flows, 

presumably due to the controlled conditions compared to the field.  Flume environments do not 

replicate all of the mechanisms by which turbulence is generated in field conditions and use 

uniform substrate conditions and topography.  However, some studies use different substrate 

types (e.g. Weissburg and Zimmer-Faust 1993, Jackson et al. 2007) or other roughness elements 

(Ferner and Weissburg 2005) to enhance turbulence in specific velocity conditions.  It is also 

important to note that the laboratory studies do not include the effects of waves, which the 

current study indicates is a potentially substantial contribution to the fluid motion and hence 

chemical transport.  It may be possible to reproduce a wider range of flow and turbulence 

conditions in controlled field trials of benthic foraging.  Finelli et al. (1999, 2000), for instance, 

report a wide range of flow and turbulence conditions that span ranges similar to that reported in 

Figure 7. 

 The overall findings of the study suggest that TKE, Reynolds shear stress, and TI vary 

substantially within the Wassaw Sound ecosystem, both spatially and temporally.  Spatial and 

temporal variability demand extensive sampling, particularly in time, to make reliable 

generalizations about hydrodynamic differences between regions or even adjacent sites in this 

estuary.  Previous observations indicate that knobbed whelk predation is dominant at the Dead 

Man's Hammock and House Creek sites, whereas blue crab predation dominates at the Skidaway 

River, Wilmington River, Herb River, and Moon River sites (Ferner et al. 2009 and Smee et al. 

2010).  One potential explanation is that these patterns reflect, at least partially, the 

chemosensory foraging strategies of each species.  Knobbed whelks appear much more 

proficient at foraging in conditions that are detrimental to blue crab foraging and hence, may 

select or be confined to more turbulent environments where they enjoy an advantage (Ferner et 

al. 2009).  Our data are not inconsistent with this notion; some of the largest TKE and TI values 

come from sites where knobbed whelks are the dominant predator (e.g. Dead Man’s Hammock 

and House Creek).  However, the data in the current study do not reveal common mean flow, 

TKE, TI, and Reynolds stress characteristics at these grouped sites, and the lack of consistent 

simultaneous sampling across these sites hinders more accurate comparisons. Although prior 

studies have suggested TI (see Robson et al. 1999, Smee et al. 2008, Ferner et al. 2009) and root-

mean-square of velocity fluctuations (see Smee and Weissburg 2006, Smee et al. 2010) to be 
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useful parameters for gauging the impacts of turbulent flow on ecological processes, other 

characteristics should be considered.  The Reynolds shear stress, for instance, is a critical 

component in defining the boundary layer where benthic predator and prey organisms are found, 

hence this appears to be a relevant parameter to define the physical environment.  As revealed by 

our analysis, several parameters are correlated and statistical regressions explain 60 to 80% of 

the variance.  It is possible that a small number of variables may be sufficient to characterize the 

environment, and/or that simple velocity measures may provide a rough guide to turbulence 

statistics.  It is important to note, however, that mean velocity and turbulence seem to exert 

independent effects on chemosensory foraging in blue crabs (Smee et al. 2010).  Further, it is 

important to realize that organism behavioral reaction may be dependent on (rare) large 

instantaneous fluctuations rather than average values (e.g., Crimaldi et al. 2002).  Additional 

work is needed to determine whether correlations we observe are robust in other environments 

and if other parameters that are important from a flow characterization standpoint also are 

ecologically significant. 

 

4.5. Future Directions 

 The ease of use and robust features of ADV probes likely means they will continue to be 

commonly used for collecting point velocity time records in the field.  It is therefore important to 

continue to improve methods for addressing data quality and analysis accuracy.  The phase 

filtration method and wave component separation technique used in this study are essential 

aspects in quantitative description of the flow and turbulence characteristics in tidal channels of 

relatively small estuaries.  The wave separation technique presented is particularly necessary for 

isolating the component of the velocity fluctuations that is truly associated with turbulence.  The 

mean flow and turbulence data presented in this study provide important information about the 

environment that aquatic organisms experience in this habitat.  The significant temporal 

variability suggests long term flow records are required to characterize turbulent properties, and 

that across site comparisons are most accurate when these locations are sampled simultaneously.  

The high degree of spatial variability means spatial sampling at different scales will be necessary 

to adequately identify regions where flow properties are roughly similar.  This is an important 

consideration for ecological studies attempting to address biological-physical linkages, such as 
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the role of the flow environment in modulating chemosensory foraging.  Proper characterization 

and interpretation of near-bed turbulence data are also important for many other processes such 

as sediment resuspension and transport, particle flux to suspension feeders, porewater flushing, 

and nutrient uptake by benthic algae (e.g., Boudreau and Jørgensen 2001).  The observed 

variability, both spatial and temporal, suggests that we need significantly more data in order to 

reasonably assess conditions among habitat sites and changes at daily, monthly and seasonal 

scales. 
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Table 1.  Summary of ADV data collection information for each data set.  The last column reports the mean 

percentage of samples flagged by the phase filtration method and replaced by the polynomial fitting method 

described in the text.  

Site Data Set Name Start Time Mean % 
Flagged 

Wilmington River 
Skidaway River 
Moon River 

Wilmington14 
Skidaway14 
Moon14 

5/14/2007 12:03:00 
5/14/2007 12:05:00 
5/14/2007 12:09:00 

0.9 
2.4 
1.9 

DMH (side) 
Herb River 
DMH 
House Creek 

DMHside16 
Herb16 
DMH16 
House16 

5/16/2007 14:00:00 
5/16/2007 14:00:00 
5/16/2007 14:00:00 
5/16/2007 14:00:00 

2.7 
2.1 
2.3 
1.8 

Herb River 
Skidaway River 
Wilmington River 

Herb19 
Skidaway19 
Wilmington19 

5/19/2007 19:00:00 
5/19/2007 19:00:00 
5/19/2007 19:00:00 

2.4 
1.9 
2.4 

Skidaway River Skidaway20 5/20/2007 19:00:00 1.9 
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Table 2. Comparison of TKE and Reynolds shear stress before and after wave component removal.  PF indicates result based on phase‐filtered fluctuations, and 

WR indicates the value calculated after wave component removal.  Note that the percentage due to wave component is calculated for each burst, then the 

ensemble is averaged to yield the reported value, hence the value does not correspond to the percentage of the ensemble‐averaged values reported in the 

other columns. 

Set Name TKE  PF 

×10-3 (m2/s2) 

TKE  WR 

×10-3 (m2/s2) 

% Due to Wave

 Component
u w   PF 

×10-5 (m2/s2) 

u w   WR 

×10-5 (m2/s2) 

% Due to Wave

 Component

5/14/2007
Wilmington14 
Skidaway14 
Moon14 

3.62 
0.60 
1.50 

3.03 
0.48 
1.21 

17 
18 
17 

40.2 
0.23 
4.18 

33.6 
0.23 
3.04 

17 
33 
26 

5/16/2007
DHMside16 
Herb16 
DMH16 
House16 

1.90 
1.69 
1.12 
3.21 

1.06 
1.32 
0.49 
2.62 

47 
21 
56 
18 

6.25 
-1.22 
1.55 
7.93 

4.28 
-1.69 
0.46 
6.19 

28 
18 
44 
19 

5/19/2007
Herb19 
Skidaway19 
Wilmington19 

1.38 
0.88 
1.34 

1.17 
0.74 
1.13 

15 
15 
16 

4.56 
-5.16 
17.1 

3.31 
-4.44 
14.35 

17 
23 
13 

5/20/2007
Skidaway20 1.42 1.09 18 2.44 1.39 13 
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Table 3.  Tidal range, set length, and set mean velocity data.  The mean and standard deviation are computed based on the ensemble of burst‐averaged values 

over the sequence covering one tidal cycle.  The v  component of velocity is near zero due to the data rotation described in Section 2.1. 

Set Name Tidal range 
(m) 

Length (days) u  (m/s) ×10-1 w  (m/s) ×10-3 

mean std dev mean std dev 
5/14/2007

Wilmington14 
Skidaway14 
Moon14 

2.92 
0.43 
0.40 
0.40 

3.19 
1.19 
2.65 

1.02 
0.87 
1.24 

-9.54 
-5.18 
5.99 

36.6 
5.82 
13.9 

5/16/2007
DHMside16 
Herb16 
DMH16 
House16 

3.11 

0.36 
0.39 
0.39 
0.32 

0.84 
1.78 
0.53 
2.15 

0.45 
1.34 
0.32 
0.85 

-4.26 
-13.8 
-3.47 
-16.9 

5.15 
5.80 
1.64 
5.28 

5/19/2007
Herb19 
Skidaway19 
Wilmington19 

2.62 
0.45 
0.45 
0.44 

1.91 
1.77 
1.62 

0.91 
1.02 
1.11 

-9.96 
-5.89 
-12.4 

4.17 
3.38 
9.39 

5/20/2007
Skidaway20 2.34 0.48 1.59 0.85 -9.44 10.3 

  



28 

 

Table 4. Set TKE, Turbulence Intensity (TI), and Reynolds shear stresses data.  The mean and standard deviation are computed based on the ensemble of burst‐

averaged values over the sequence covering one tidal cycle. 

Set Name TKE  (m2/s2) ×10-3 TI  (%) u w   (m2/s2) ×10-5 

 mean std dev mean std dev mean std dev 
5/14/2007

Wilmington14 
Skidaway14 
Moon14 

3.03 
0.48 
1.21 

1.35 
0.34 
0.68 

14.0 
24.6 
13.3 

1.9 
26.1 
13.0 

49.0 
3.24 
13.4 

41.9 
4.06 
8.75 

5/16/2007
DHMside16 
Herb16 
DMH16 
House16 

1.06 
1.32 
0.49 
2.62 

1.55 
0.87 
0.35 
0.64 

40.4 
20.4 
60.5 
22.5 

29.9 
8.4 
86.5 
10.9 

8.26 
21.8 
3.02 
23.0 

7.20 
15.5 
2.78 
12.5 

5/19/2007
Herb19 
Skidaway19 
Wilmington19 

1.17 
0.74 
1.13 

0.46 
0.64 
0.49 

31.1 
13.4 
34.0 

62.7 
5.8 
33.2 

13.7 
9.82 
18.1 

7.54 
10.1 
13.9 

5/20/2007
Skidaway20 1.09 0.74 23.4 27.1 9.22 9.22 
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Site- and tide-specific variation in the hydrodynamic landscape relative to odor-mediated

predators in salt marsh systems

Miranda L. Wilson1, Donald R. Webster2, and Marc J. Weissburg1

1School of Biology, Georgia Institute of Technology

2School of Civil and Environmental Engineering, Georgia Institute of Technology

1 Introduction

Many physical processes in estuarine systems, such as the transportation of sediment,

toxins, and wastewater runoff, are influenced by the turbulent characteristics of the water

flow (Chanson et al. 2005). Flow and turbulence also mediate a variety of ecological

interactions. For instance, flow and turbulence have been shown to mediate the

distribution and intensity of larval settlement (Pawlik and Butman 1993, Abelson and

Denny 1997), contribute to the erosion or smothering of infaunal communities (Miller et al.

2002), and impact odor-mediated predator-prey interactions (reviewed in Weissburg 2000,

Webster and Weissburg 2009).

Odor-mediated predator-prey interactions are important in estuarine environments

where suspended sediment and algal blooms increase the turbidity of water and prevent

visual cues from being used to locate prey. The ability of predators to extract information

from chemical cues entrained in flows mediates their ability to successfully locate prey

individuals and hence affects prey populations. Variation in flow velocity, turbulence

intensity, and Reynolds stresses affect predator tracking abilities in laboratory flume

studies (Weissburg and Zimmer-Faust 1993, Jackson et al. 2007) and translate into changes

in predatory success in the field (Zimmer-Faust et al. 1995, Finelli et al. 2000, Smee et al.
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2010). The magnitude and effects of flow characteristics on predators, and subsequently

prey populations, is predator-specific and directly related to their sensory capabilities and

foraging modalities. For example, blue crabs (Callinectes sapidus) in the lab show

decreased tracking success in swift flows (Weissburg and Zimmer-Faust 1993), and flows

with large turbulence intensity (Jackson et al. 2007). The decrease in tracking success leads

to reduced predation rates on infaunal bivalve populations in the field (Smee et al. 2008,

Smee et al. 2010). It is hypothesized that the blue crabs’ quick movement, consisting of

cross-stream comparisons of chemical cues in conjunction with upstream movement in

response to concentrated odor filaments, reduces their ability to gather adequate

information from prey plumes in highly turbulent flows where odors are diluted,

homogenized and spread out from the plume centerline fairly quickly. Knobbed whelks

(Busycon carica), in contrast, show increased predation success in the field when roughness

elements are placed around prey patches (Ferner et al. 2009) and in faster flow velocities

(Powers and Kittinger 2002). Their slow movement may help them time-average

information contained in dilute prey odor plumes and enhance foraging efficiency in

turbulent environments.

The ability of predators to locate food can affect the abundance and distribution of

prey populations, which is important in estuary systems along the East coast where blue

crabs (Hines et al. 1990) and whelks (Carriker 1951) are two significant predators on

infaunal bivalve populations. Predation rates by these two predators may likely be

context-specific (both spatially and temporally) because local flow conditions may be

dependent on site and bulk flow characteristics (Smee et al. 2010). By combining

information about the fluid environment with corresponding biological behavior, informed

hypotheses can be formulated as to the spatial and temporal patterns in predation success,
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and by extension, a better understanding of the ability of predators to control and shape

prey populations can be created.

Thus far, information about flow characteristics in near-bed estuarine habitats has

been sparse; relegated to short sampling time periods, irrelevant locations above the

substrate, arbitrarily-selected sampling time periods, and limited study sites (but see Smee

et al. 2008, Ferner et al. 2009, Smee et al. 2010, and Berry et al. 2011). Hence, information

about turbulent flows experienced by benthic foragers is largely unknown, preventing

adequate development of hypotheses as to how physical parameters may impact

interspecific interactions over temporal and spatial scales that are relevant to

odor-mediated predator and prey populations.

A relatively few studies have examined turbulent flow characteristics in the near-bed

habitats of small-channel estuaries, or explore how processes like tidal forcing, wind

generation of currents, and turbulence interact to affect large-scale estuarine dynamics as

well as sediment entrainment and deposition processes (Kawanisi and Yokosi 1994, Bell

et al. 1997, Collins et al. 1998, Le Hir et al. 2000, Voulgaris and Meyers 2004). Although

these studies were not motivated to address ecological issues, they can be used to identify

those processes and flow characteristics that may be important in estuarine dynamics. Bell

et al. [1997] showed that mean velocity was correlated with tidal strength; with spring tides

showing larger magnitude velocity flows (although see Trevethan et al. 2008 for contrasting

tidal patterns). Although these studies provide essential information as to the variation

and causes of turbulent flow characteristics, information about temporal and spatial

variation in turbulent flow characteristics (especially over long time-periods, in multiple

sites, and in areas where concurrent information about predation is known) is lacking.

In order to understand how turbulent flows impact odor-mediated predation, we

3



must assess the flow environments in which these predator-prey interactions occur at

relevant spatial and temporal scales. Specifically, we must explore the spatial variation in

flow environments (at multiple scales) that may result in spatially-explicit impacts on

odor-mediated predator prey interactions and their corresponding effects on prey

populations. To do this we measured velocity time series at multiple locations within four

sites across an intertidal estuary system. We also obtained measurements across and within

multiple sites corresponding to variation in tidal forcing (neap tide, normal tide, and spring

tide). Based on previous studies of intertidal estuary turbulent properties, we predict that

tidal forcing will have a large effect on mean flow properties, with stronger forcing (spring

tide) resulting in larger velocities and increased turbulence. We also predict that the values

of turbulent flow parameters will vary within and between sites, although the extent to

which these variations impact odor-mediated interactions should be greater between sites

than within sites. We deployed multiple acoustic Doppler velocimeters (ADVs) over a three

month survey period in Wassaw Sound, Georgia, USA to explore these hypotheses.

2 Methods

2.1 Data Collection

Time series of three-dimensional flow velocity were obtained during June-August

2010 at four sites in Wassaw Sound, GA and its surrounding tributaries including; Dead

Man’s Hammock (DMH), across from Priest Landing (APL), the Skidaway Narrows (SN),

and Priest Landing (PL) (comparison site; Figure 1). These sites are characterized by

semi-diurnal tidally-driven flow with tidal ranges of 2-3 m. All sites are exposed to largely

unidirectional flows during both ebb and flood tides. All sites have substrates consisting of
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a mix of mud and fine sand, are bordered by marsh grass (Spartina alterniflora) or oyster

reefs (Crassostrea virginica), and range in salinity from 20-28 ppt (Smee et al. 2010).

Four acoustic Doppler velocimeters (ADVs; NortekUSA Vector) were simultaneously

placed within each site, with each site measured over different dates during the sampling

period. Instruments were placed 1 m, 5 m, and 10 m from a reference instrument within

each site. Concurrent to measurements taken within each site, two ADVs were placed 1 m

apart at the Priest Landing comparison site. All instruments were placed parallel to the

water line at the mean low tide level. The sampling volume for each instrument was

approximately 0.10 m above the substrate. This experimental protocol was repeated for

each of the three other sites (not the PL comparison site) and for each of three tidal types

(spring tide (SP), neap tide (NP), and normal tide (NL)). This facilitated within-site and

between-site spatial comparisons of flows in the context of large scale changes in tidal

forcing. To examine patterns of flow at larger within-site spatial scales, within-site

comparisons were also made for the Priest Landing comparison site during three tidal types

using six ADVs located at 1 m, 5 m, 10 m, 15 m, and 20 m from a reference instrument.

All ADVs recorded three components of velocity, pressure, signal-to-noise ratios, and

correlation coefficients over 4 consecutive complete tidal cycles (from low tide to

subsequent low tide) for each tidal type deployment. Instruments were placed in the field

such that the x-velocity was predominately the along-stream component and the direction

upwards from the substrate was represented by a positive z-velocity. During data analysis,

the x- and y-direction velocity components were rotated to maximize the magnitude of the

x-velocity component and to ensure that the x-velocity was positive for flood tide and

negative for ebb tide. Data were collected continuously at 16 Hz during 5 minute bursts,

which were separated by 10 minutes.
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2.2 Data Analysis

2.2.1 Data Filtering

Bursts were discarded if the mean correlation coefficient calculated was less than 70

%. Bursts also were discarded if they contained more than 500 consecutive points with a

mean correlation coefficient less than 70 %. These two conditions occurred as a result of

probe exposure to the atmosphere during low tides and resulted in removal of an average of

10 bursts for each tidal cycle data set.

2.2.2 Phase Filtering

“Spikes” commonly occur in ADV data because of aliasing of the Doppler signal,

which results in erroneous data that still show good signal-to-noise ratios and correlation

coefficients. To detect spikes we used the phase filtering method of Goring and Nikora

[2002], which uses the first and second order differencing estimates to reveal non-physical

spikes based on the universal threshold. Erroneous spikes were removed and replaced using

a third-order polynomial fit including 12 points on either side of the spike, with an

extended range in the presence of other nearby spikes (Goring and Nikora 2002).

2.2.3 Removal of Wave Energy

The presence of wind waves in shallow water estuaries can result in apparent wave

motion contributions to turbulence parameters. Fluctuations from waves can also

contribute to the turbulence signature when sensors are aligned improperly with the

principal axis or when there is sloping bed geometry (Grant et al. 1984, Trowbridge 1998).

The apparent contribution of wave motion to turbulent parameters should not be
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considered turbulence because of their low frequency ranges. Instantaneous velocity is

decomposed into the mean component u, the wave motion component ũ, and the turbulent

fluctuation component u′ according to:

u = u+ ũ+ u′ (1)

We used the coherence between the velocity and pressure measurements to identify

and remove the wave portion of the kinetic energy and the Reynolds shear stress using

methodology developed by Berry et al. [2011]. The following is a brief description of the

calculations involved in separating the wave component of the Reynolds shear stress. An

analogous method is used for the normal stresses in order to separate the wave component

of TKE (see Berry et al. [2011] for a more thorough description of all calculations).

Trends due to a rising or falling tide were first removed from the velocity and pressure

time series (each 5 minute burst) using a linear trend removal (Bendat and Piersol 2010).

The mean value was then subtracted to obtain the fluctuating component of velocity and

pressure. The notation employed below implies that the mean component is therefore zero.

Following the methodology of Benilov and Filyushkin [1970], we calculated the coherence

function for the u component of velocity and pressure (p), as a function of frequency:

γ2(ω) =
Sup(ω)S∗up(ω)

Suu(ω)Spp(ω)
(2)

where Sup is the cross-spectral density (CSD) of u and p, Suu and Spp are power spectral

density (PSD) functions, ω is frequency, and ∗ represents the complex conjugate.

Assuming that the coherence between velocity and pressure is due to wave influence,
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we then calculated the PSD for the turbulent portion of the signal by:

Su′u′(ω) = [1− γ2(ω)]Suu(ω) (3)

and used it to calculate the magnitude of the turbulent velocity fluctuation |U ′j| as a

function of discrete frequency (denoted with index j) via:

Su′u′j =
1

dω
|U ′j|2 (4)

These steps were then repeated for the w component of velocity and pressure such

that the magnitude of the turbulent velocity fluctuations for both the u and w velocity

components were adjusted using the coherence of the respective velocity components with

the pressure signal.

To calculate the Reynolds shear stress we then incorporated the phase of each

velocity component with the magnitude of the turbulent velocity fluctuation. We can

express the velocity components using phasor notation of the Fourier coefficients:

Uj = |Uj|ei
6 Uj and Wj = |Wj|ei

6 Wj (5)

with the phases defined by:

6 Uj = arctan

[
Im(Uj)

Re(Uj)

]
and 6 Wj = arctan

[
Im(Wj)

Re(Wj)

]
(6)
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Using this, the CSD can be expressed as:

U∗jWj = |Uj||Wj|ej(
6 Wj−6 Uj) = |Uj||Wj|(cos(6 Wj − 6 Uj)− isin(6 Wj − 6 Uj)) (7)

Neglecting the imaginary part of the CSD, the Reynolds shear stress can be

calculated using:

u′w′ =
∑
j

U ′∗j W
′
j =

∑
j

|U ′j||W ′
j|cos(6 Wj − 6 Uj) (8)

where |U ′j| and |W ′
j| are calculated from Equation (4) and 6 Uj and 6 Wj are calculated from

Equation (6). The wave portion of the Reynolds shear stress then is calculated by

subtracting the turbulent velocity fluctuation from the total covariance:

ũw̃ = uw − u′w′ (9)

We used this methodology to calculate the wave contribution to TKE and Reynolds

shear stress for all bursts in each data set except the first two and last two bursts of each

tidal cycle for data sets collected at Priest Landing. The two downward facing fixed stem

ADVs at the Priest Landing site were mounted such that they were able to record velocity

data while the pressure sensor was not immersed at the beginning and end of each tidal

cycle, preventing the calculation of coherence between velocity and pressure for these

bursts.
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2.2.4 Calculation of Turbulent Parameters

Mean turbulence characteristics were calculated for each burst. Turbulence

parameters calculated are as follows:

Turbulent Kinetic Energy (TKE) = 0.5((u′)2 + (v′)2 + (w′)2) (10)

Reynolds Shear Stress = u′w′ (11)

Turbulence Intensity (TI) =

√
(u′)2 + (v′)2 + (w′)2
√
u2 + v2 + w2

∗ 100 (12)

2.2.5 Statistical Analysis

To examine the spatial variability within sites, we performed a series of correlations

between turbulence data from each ADV probe and the corresponding reference instrument

within each site. Distance comparisons for the DMH, SN, and APL sites were 0×1 m, 0×5

m, and 0×10 m, and distance comparisons for the PL site were 0×1 m, 0×5 m, 0×10 m,

0×15 m, and 0×20 m, where zero represents the reference instrument. Burst-averaged data

from four measured tidal cycles (approximately 140 bursts) was used to calculate

correlation coefficients. Pearson correlations were used to calculate correlation coefficients

for the burst-averaged absolute value of the u-component of velocity, and Spearman rank

correlations were used for all other flow parameters (TKE, |u′w′|, TI) because we were

unable to achieve normality via transformation.

To determine correlation strengths between turbulent flow parameters at each site

(DMH, APL, and SN) and the PL comparison site, we again utilized a series of Pearson

and Spearman rank correlation analyses for each turbulent flow parameter and each tidal
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type. Data used for between-site correlations were for time series taken simultaneously at

PL and each individual site (approximately 135 bursts).

To determine the influence of site and tidal forcing (and any interactions) on mean

turbulent flow parameters, we utilized a two-way analysis of variance (ANOVA), which is

fairly robust to issues of non-normality (Zar 1999). Because we were unable to achieve

normality via transformation for most of our turbulent parameters (TKE, TI, and |u′w′|),

we also utilized non-parametric Kruskal-Wallis tests to confirm significance of one-way

comparisons. This was done for each flow parameter separately using burst-averaged data

from the entire deployment period described above (approximately 140 bursts).

Regression analysis also was used to determine the relationship between values of |u|,

TKE, and |u′w′| using the ensemble-averaged values calculated for each site by tidal type

combination for comparison.

3 Results

3.1 Flow Time Series and Comparison Within Sites

Similar values of u, TKE and u′w′ were obtained from the four simultaneously

deployed instruments within a site (Figure 2 shows example data from the APL-NP data

set). Similar patterns were seen for set comparisons within all sites. Overall, there is

greater variation between instruments for values of TKE and u′w′ than values of u and

greater variation between instruments during ebb tide, regardless of the turbulent flow

parameter. These patterns hold for the entire four tidal cycle sampling period (Figure 3).
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3.2 Correlation within and between Sites

Correlation coefficients for within-site comparisons of all turbulent flow parameters

were large and significantly different from zero for all distance comparisons and at the

DMH, SN, and APL sites (Table 1, see Figure 4 for an example of correlations within the

PL site). Correlation coefficients tended to decrease with separation distance, but statistics

were not used to determine significant differences between correlation coefficients within

each site. Comparisons of multiple correlation coefficients greater than 0.9 are discouraged

because the z-transformation needed to normalize and stabilize the variance of the

underlying correlation coefficient distribution is not reliable for coefficients greater than 0.9

(Zar 1999). Correlation coefficients ranged from 0.99 for |u| to 0.18 for |u′w′| (Table 1). For

the DMH, SN, and APL sites, correlation coefficients for |u| were generally the highest and

correlation coefficients for |u′w′| were generally the lowest, with the correlation coefficients

for the other two turbulent flow parameters (TKE and TI) falling in between.

Correlation coefficients for within-site comparisons at PL also were large and

significantly different from zero (Table 2). Correlation coefficients at PL ranged from 0.99

for |u| to 0.25 for TI, with generally the highest correlation coefficients for |u| and the

lowest for |u′w′|. Average correlation coefficients for PL (including all tidal types) showed a

general decrease with distance for all flow parameters except TI, which were relatively

similar for all distance comparisons.

Correlation coefficients for within-site comparisons at the PL, DMH, SN, and APL

sites were similar for all flow parameters except for TI. Data at the PL site showed smaller

correlation coefficients for TI for all distance comparisons when compared to the other

three sites. Average correlation coefficients for all turbulent flow parameters (except TI)
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for the PL 0×20 m and DMH, SN, and APL 0×10 m distance comparisons were similar

and large, indicating that flow parameters are still highly correlated at 20 m separation

distance. We did not see any clear effects of tidal type on correlation coefficients for any

site.

For between-site comparisons we found larger correlation coefficients for all turbulent

parameters for sites that are located closer to each other (Table 3 and Figure 1), but we did

not see a clear effect of tidal type on correlation strength. The largest correlation coefficient

was seen for the neap tide comparison of |u| between data for the APL and PL site (0.77),

and the smallest was for the normal tide comparison of data for the SN and PL sites for

both |u| and TI with a value of 0.02. As seen for within-site correlation coefficients (Table

1), comparisons of |u| between sites generally resulted in larger correlation coefficients than

for other turbulence parameters. Negative correlations were seen for many between-site

comparisons, possibly resulting from local bed topography (DMH is bordered by extensive

mudflats) or in the case of SN, tidal influence from the adjacent Obassaw Sound (Figure 1).

As expected, correlation coefficients are generally larger for within-site comparisons

than between-site comparisons (largest within-site correlation coefficient = 0.99; largest

between-site correlation coefficient = 0.77).

3.3 Site and Tide Comparisons

We found a significant effect of site (F3,1537 = 72.08, P < 0.001), tidal type

(F2,1537 = 38.62, P < 0.001), and interaction between site and tidal type

(F6,1537 = 2.88, P = 0.008) on |u| (Figure 5). Kruskal-Wallis tests confirmed significance of

one-way interactions (site: H = 190.64, d.f. = 3, P < 0.001, tide:

H = 44.31, d.f. = 2, P < 0.001). Data at the DMH site showed the smallest |u| for all tidal
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types which may be related to the extensive mudflats located near the sampling site. |u|

generally increased from neap tide to normal tide, with spring tide showing larger velocities

than either other tidal type. The lone exception was data at the SN site where neap tide

and normal tide show no apparent differences in velocity. Patterns of |u| confirm that

increases in tidal forcing, with spring tide having a larger tidal range than neap tide,

correspond to increases in flow velocity.

TKE was significantly affected by site (F3,1537 = 17.71, P < 0.001) and tidal type

(F2,1537 = 20.97, P < 0.001), but there was not a significant interaction between site and

tidal type (F6,1537 =, P = 0.153) (Figure 6). One-way analyses confirmed significant effects

of site and tide (site: H = 154.48, d.f. = 3, P < 0.001 tide: H = 58.24, d.f. = 2, P < 0.001).

Data for APL and PL sites had greater TKE than data for the DMH and SN sites (almost

two times greater for some sites). All sites had greater TKE during spring tide than

during either neap or normal tides (Figure 6).

Turbulence intensity (TI) was significantly affected by site

(F3,1537 = 63.52, P < 0.001) and tidal type (F2,1537 = 3.19, P = 0.041) (Figure 7), with

DMH having greater TI than the other three sites. On average, there was lower turbulence

intensity during spring tide than other tidal types, the result of large u velocities during

spring tide (See Equation 12 and Figure 5). One-way analyses confirmed significance of site

and tidal type (site: H = 455.46, d.f. = 3, P < 0.001 tide: H = 7.67, d.f. = 2, P = 0.022).

There also was a significant interaction between site and tidal type

(F6,1537 = 3.52, P = 0.002). At the PL and APL sites, the data reveal greater TI during

neap and spring tides, but the data at the SN site show greater turbulence intensity during

normal tide. Turbulence intensity at the DMH site was greater during neap and normal

tides than spring tide.

14



There also was a significant effect of site (F3,1433 = 10.02, P < 0.001) and tide

(F2,1433 = 8.38, P < 0.001) on Reynolds shear stress (Figure 8), with greater Reynolds

shear stress at the APL site than the other three sites and greater Reynolds shear stress

during normal tides (although this seems to be driven by large Reynolds shear stress for

the APL site only). Kruskal-Wallis tests confirm significance of one-way analyses (site:

H = 51.85, d.f. = 3, P < 0.001, tide: H = 20.48, d.f. = 2, P < 0.001). There also was a

significant interaction between site and tidal type (F6,1433 = 9.761, P < 0.001), with APL

showing greater Reynolds shears tress during normal tide as opposed to the other three

sites that show smaller Reynolds shear stress during normal tide.

Regressions between ensemble-averaged values of |u| and TKE (F1,10 = 1.957,

P = 0.19), |u| and |u′w′| (F1,10 = 3.78, P = 0.08), and TKE and |u′w′| (F1,10 = 4.09,

P = 0.07) for all site by tidal type combinations were marginally non-significant (Figure 9).

Values of |u| were only able to explain 14 % of the variance in values of TKE and 27 % of

the variance in values of |u′w′|. Values of TKE explained 21 % of the variance in values of

|u′w′|. Relationships between values of turbulent flow parameters within sites are more

similar to each other than relationships between values of turbulent flow parameters within

each tidal type (i.e. values of turbulent flow parameters group together by site and not

tidal type; Figure 9).

4 Discussion

Results from our within- and between-site comparisons of turbulent flow dynamics

indicate that there is significant predictive ability (based on correlation strengths) within

sites using limited instrument locations. However, the predictive ability between sites
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seems to be dependent on site separation distance, where differences in channel topography

may be greater than within sites. This indicates that characterization of flow environments

needs to be done for each site where experiments occur, but may not need to be obtained

for multiple locations within sites (at least up to 20 m separation distance). There also are

significant differences in mean values of flow parameters between sites and for different

strengths of tidal forcing. There were significant interaction effects between sites and tidal

types, indicating that tidal forcing may operate in a site-dependent manner to influence

turbulent flow. This prevents large-scale generalizations concerning the influence of site

and tidal forcing on turbulent flow parameters and suggests that observations need to be

conducted within sites during different tidal forcing strengths to understand the variability

in turbulent flow that organisms may be exposed to in natural environments. Differences in

mean values, ranges, and maximum values of flow parameters may have important effects

on odor-mediated interactions, potentially creating site-specific impacts on predator

foraging efficiency and, subsequently, prey population densities and distributions.

4.1 Variation of Flow within Sites

Our study indicates that values of within-site turbulent flow parameters are very

similar for simultaneously deployed instruments (Figure 2) and are well correlated up to 20

m distant, regardless of tidal type (Tables 1 and 2). This suggests that large scale tidal

forcing may overwhelm small differences in substrate or local topography within sites that

could affect turbulent flow parameters. Still, we do see generally smaller correlation

coefficients for turbulent flow parameters that are more dependent on small-scale substrate

differences or bed topography (TKE and u′w′) than those that are dependent on

large-scale tidal forcing (Table 1). There are few studies that have measured turbulent flow
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properties at multiple locations within a single site, although to our knowledge none have

taken simultaneous measurements. Both Chanson et al. [2005] and Collins et al. [1998]

measured flow at multiple locations within single sites during subsequent sampling periods

(separated by up to a month), possibly confounding differences between microsites and

differences in large scale flow patterns. Simultaneous sampling within our sites confirms

that measurements of turbulent flow parameters from one instrument can be highly

predictive of turbulent flow parameters up to 20 m distant and that this predictive ability

is not dependent on tidal type. Larger-scale comparisons (20 m plus) need to be made to

confirm the ability of single-location measurements to predict values of turbulent flow

parameters at larger distances within sites. We do not see a break-point in the relationship

between distance and correlation coefficients with distance, suggesting correlations will

continue to decline with much the same slope observed from 0 to 20 m. In the absence of

other studies, it is impossible to determine whether the patterns we observe characterize

other estuaries as well.

The area defined as a single site also varies drastically among studies. Sites range in

separation distance from approximately 200 m (Chanson et al. 2005) to multiple kilometers

(Collins et al. 1998). Studies examining turbulent flow parameters at multiple within-site

locations have done so at separation distances of approximately 80 m (Chanson et al. 2005)

to 200 m (Collins et al. 1998). Our data suggest that these larger separation distances may

comprise sites that exhibit substantial differences in flow properties. For ecological

applications of flow monitoring, we suggest that the scale of sampling within-sites should

be relevant to the ecology of the focal organism (sensu Levin 1992). Odor-mediated

predators in our study system are highly varied in their mobility, with blue crabs moving

at greater than 3 cm/s (Weissburg and Zimmer-Faust 1994) and knobbed whelks moving
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at 0.15 cm/s (calculated from Ferner and Weissburg 2005). Blue crab movement in the

field has been reported as slower than in the laboratory at approximately 20 m/hr (0.5

cm/s) (Hines et al. 1995). The scale of our survey seems ecologically-relevant, as both

predator species would spend ample time in our survey area.

4.2 Variation of Flow between Sites

The strength of between-site correlations for turbulent flow parameters seems

dependent on the distance between sites, but not on tidal type (Table 3). Sites that are

closer in proximity may be subject to more similar large-scale tidal forcing processes than

those farther apart. There were also site- and tide-specific impacts on all mean turbulent

flow parameters, indicating that flow impacts on odor-mediated interactions may be highly

context-specific.

Other studies comparing multiple intertidal sites within Wassaw Sound, GA (Smee

et al. 2010, Berry et al. 2011) have shown site-specific differences in mean turbulent flow

parameters. Both |u| and TKE at DMH and SN in our study are similar to those

measured by Berry et al. [2011] for the DMH16 and Skidaway14/19/20 sets, but |u′w′| for

these two sites is an order of magnitude larger in our data set than reported in Berry et al.

[2011]. This may be due to differences in the respective wave contributions for the two data

sets (See Chapter 6 ), substrate properties due to erosion or sedimentation in the four years

between sampling, or distance of the sampling volume from the bed. Velocities reported by

Smee et al. [2010] for the Skidaway River (our SN site) are approximately 20% larger than

our measured velocities, which can be accounted for by differences in our data filtration

processes and sampling volume height.

Relationship trends between values of average turbulent flow parameters measured at
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each site and for each tidal type match those described in Berry et al. [2011] (Figure 9).

Values from our study represent only the lower values of those measured in Berry et al.

[2011], which may account for the different numerical relationships between the variables

within the two studies and the marginal non-significance in our study. The relationships

between values of average turbulent flow parameters measured in our study seem to group

together based on site rather than tidal type, indicating that variation between sites drives

the overall relationship between turbulent flow parameters (Figure 9). Berry et al. [2011]

utilized more sites characterized by greater variability in bulk flow, exposure to Wassaw

Sound, and sediment composition than our study, possibly accounting for differences in the

linear relationships and significance of relationships between turbulent flow parameters in

our two studies.

Differences in turbulent parameters between sites could have large spatial impacts on

odor-mediated interspecific interactions throughout estuary systems. Using information

about predator foraging efficiency under different flow regimes in combination with our

observed vales of turbulent flow parameters (Figures 5, 6, 8) we can make predictions about

temporal and spatial patterns of predation in the field. When turbulent properties such as

|u| and TKE follow similar patterns in relation to tidal type or site, similar predictions of

predation rates in the field would be made based on each turbulent flow parameter.

Predators such as blue crabs, seem to be more sensitive to changes in turbulence than

velocity in the laboratory (Jackson et al. 2007), suggesting that if patterns in |u| and TKE

differ based on site or tidal type it could result in different predictions being made as to the

impacts of these two turbulent flow parameters on predation efficiency. For example, higher

|u| and TKE during spring tide both suggest a reduction in foraging efficiency by blue

crabs during spring tide relative to neap and normal tides, but high values of |u| and low
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values of TKE at the SN site suggest opposing influences on blue crab foraging efficiency.

Field assessments of blue crab predation rates also need to be made to confirm site and

tidal forcing predictions, as there have not been any large-scale experiments comparing

predation rates or bivalve prey densities (Walker and Tenore 1984) in our specific sites

(although see Smee et al. [2010] for predation rates at other sites in Wassaw Sound, GA).

4.3 Variation in Flow as a Function of Tidal Forcing

Some studies have shown that the influence of tidal forcing on turbulent flow

parameters at different sites is dependent on the balance between freshwater and marine

inputs (Chanson et al. 2005, Chanson et al. 2008). This effect did not seem to be a factor

in our study, as all of our sites are distant from freshwater inflow (Figure 1). Differences in

turbulent flow characteristics between sites can be due to channel topography (Collins

et al. 1998), substrate characteristics (Shiono and West 1987), tidal lag, or variation in

tidal forcing (Le Hir et al. 2000). Other studies support our findings that u-velocity

(Figure 5) (Trevethan et al. 2008, Le Hir et al. 2000, Trevethan and Chanson 2009, Bell

et al. 1997) and TKE (Figure 6) (Trevethan and Chanson 2009) are greater during spring

tide than neap tide. Trevethan et al. [2008] also recorded 2 to 4 times more variability in

values of u-velocity during spring tides than during neap tides, which we confirmed for our

DMH, APL, and PL sites, but not at our SN site (Figure 5).

There was a 3 to 4 cm/s increase in |u| between neap and spring tides in data for all

our sites (Figure 5). In laboratory studies, a 2.8 cm/s increase in flow velocity (from 1 cm/s

to 3.8 cm/s) resulted in a 50% reduction in predation success by blue crabs (Weissburg and

Zimmer-Faust 1993). Increases in turbulence (due to increased bed roughness) also resulted

in an approximately 50% reduction in blue crab foraging success (Jackson et al. 2007).
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Independent of other processes, differences in turbulent flow parameters between neap and

spring tide could result in significant differences in blue crab predation rates in the field,

although additional field surveys and experimentation are needed to confirm this.

4.4 Summary

Based on large within-site correlation coefficients, we suggest that a limited number

of sampling locations are necessary to accurately predict variation in turbulent flow

parameters that an organism may encounter over distances of 10 to 20 m. Based on

distant-dependent correlation strength between sites, we suggest that additional

between-site comparisons be made to determine the distance at which predictive

capabilities are maintained. Differences in turbulent flow parameters between sites and

during different tidal types suggest that odor-mediated interactions should vary both

spatially and temporally within the estuary system. This could have important

consequences for predator-prey population dynamics via the creation of flow-mediated

refuges from predation (as suggested by Smee and Weissburg [2006] and Smee et al. [2010])

and vary based on the dominant predator species.

21



Wassaw Sound

Obassaw Sound
DMH

PL
APL
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2 Km

Figure 1: Map of Wassaw Sound, Georgia where instruments were deployed June-August
2010. DMH = Dead Man’s Hammock, PL = Priest Landing, APL = Across from Priest
Landing, SN = Skidaway Narrows.
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Figure 2: Time-series of flow parameters (u [top], TKE [middle], and u′w′ [bottom]) from
four simultaneously deployed ADVs within the APL site during neap tide for one tidal cycle.
Error bars represent one standard deviation. Dashed lines represent the mean value for all
instruments combined. Differently colored symbols represent the four instruments: Reference
instrument = black, 1 m = red, 5 m = blue, and 10 m = green.
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Figure 3: Time-series of flow parameters (u [top], TKE [middle], and u′w′ [bottom]) from
four simultaneously deployed ADVs within the APL site during neap tide for four tidal
cycle. Error bars represent one standard deviation. Dashed lines represent the mean value
for all instruments combined. Differently colored symbols represent the four instruments:
Reference instrument = black, 1 m = red, 5 m = blue, and 10 m = green.
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Figure 4: Within-site correlations of the absolute value of burst averaged u-velocity at Priest
Landing site during normal tide. Correlation coefficients are shown for comparisons between
each instrument and the reference instrument that was simultaneously deployed. Data in-
cluded in the correlation calculation consisted of 128 bursts collected over 4 tidal cycles.
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Figure 5: Ensemble average of the absolute value of burst-averaged values of u-velocity
(m/s). Error bars represent one standard deviation. For the number of bursts included in
calculating ensemble averages see Tables 1 and 2. APL = Across from Priest Landing, DMH
= Dead Man’s Hammock, SN = Skidaway Narrows, and PL = Priest Landing. Statistical
significance was determined using a two-way ANOVA.
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Site Comparison Tidal Type No. Bursts |u| TKE KEwave TI u′w′ ũw̃
APL × PL Normal 140 0.74 0.63 0.62 0.27 0.64 0.51
APL × PL Neap 145 0.77 0.70 0.66 0.29 0.45 0.36
APL × PL Spring 130 0.72 0.58 0.72 0.26 0.63 0.38
SN × PL Normal 61 0.02∗ -0.08∗ 0.17∗ 0.02∗ -0.04∗ 0.10∗

SN × PL Spring 98 0.28 0.16∗ 0.15∗ 0.15∗ 0.08∗ 0.13∗

DMH × PL Normal 137 -0.41 -0.23 0.34 0.34 -0.19 0.33
DMH × PL Spring 140 -0.36 -0.46 -0.15∗ 0.39 -0.31 0.15∗

Table 3: Correlation coefficients for comparisons between data at each site and simultaneous
data at the Priest Landing (PL) comparison site for each tidal type and for each turbulent
parameter calculated (|u|, TKE, KEwave, TI, u′w′, and ũw̃). “No. Bursts” indicates the
number of bursts compared to calculate correlation coefficients. ∗ indicates non-significant
correlation coefficients.
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Figure 6: Ensemble average of burst-averaged values of TKE (m2/s2). Error bars represent
one standard deviation. For the number of bursts included in calculating ensemble averages
see Tables 1 and 2. APL = Across from Priest Landing, DMH = Dead Man’s Hammock,
SN = Skidaway Narrows, and PL = Priest Landing. Statistical significance was determined
using a two-way ANOVA.

28



0

50

100

150

200

250

Neap Tide

Normal Tide

Spring Tide

APL DMH SN PL

Site p < 0.001
Tide p = 0.041 (K-W p = 0.022)
Site x Tide p = 0.002

Figure 7: Ensemble average of burst-averaged values of Turbulence Intensity (TI, %). Error
bars represent one standard deviation. For the number of bursts included in calculating
ensemble averages see Tables 1 and 2. APL = Across from Priest Landing, DMH = Dead
Man’s Hammock, SN = Skidaway Narrows, and PL = Priest Landing. Statistical significance
was determined using a two-way ANOVA.
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Figure 8: Ensemble average of the absolute value of the burst-averaged values of the Reynolds
shear stress (|u′w′| (m2/s2)). Error bars represent one standard deviation. For the number
of bursts included in calculating ensemble averages see Tables 1 and 2. APL = Across from
Priest Landing, DMH = Dead Man’s Hammock, SN = Skidaway Narrows, and PL = Priest
Landing. Statistical significance was determined using a two-way ANOVA.
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Figure 9: Relationships between values of turbulent flow parameters for emsemble averages
of all sites by tidal type combinations. Data sets are named using the convention of site
followed by tidal type: APL (green) = Across from Priest Landing, DMH (red) = Dead
Man’s Hammock, SN (blue) = Skidaway Narrows, PL (black) = Priest Landing; NP =
neap tide, NL = normal tide, and SP = spring tide. Dashed lines show the line of best fit
for a linear trend. Significance was determined using linear regression analysis. Brackets
around each turbulent flow parameter axis label indicates the ensemble averaged (approx.
140 bursts) value. Error bars represent one standard deviation.
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1 Introduction

The ability of predators to locate food can affect the abundance and distribution of

prey populations. This is especially important in estuary systems along the East coast of

the United States where blue crabs (Hines et al. 1990) and whelks (Carriker 1951) are two

key odor-mediated predators on infaunal bivalve populations. Odor-mediated predators

extract information from chemical cues that are transported and shaped by the flowing

environment to locate resources. Their ability to do this efficiently determines their impact

on prey populations in natural environments. Species-specific predation rates by these

predators appear to be dependent on spatially- and temporally-specific local flow

conditions, which vary with site and bulk flow characteristics (Smee et al. 2010, also see

Chapter 5). By combining information about the fluid environment with corresponding

biological behavior, informed hypotheses can be formulated as to the spatial and temporal

patterns in predation success. By extension, we gain a better understanding of the ability

of predators to control and shape prey populations.

To date, information about turbulent flow characteristics in near-bed estuarine

habitats has been relegated to short sampling time periods, irrelevant locations above the

substrate (i.e. not in the near-bed environments where odor-mediated predators forage),
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arbitrarily-selected sampling time periods, and few study sites. A handful of recent studies

have provide limited data, however (Smee et al. 2008, Ferner et al. 2009, Smee et al. 2010,

and Berry et al. 2011, see Chapter 5). Some studies have investigated energy and

momentum transport processes in estuaries, but have failed to adequately account for wave

contributions to the fluctuating velocity (although see Shaw and Trowbridge 2001 and

Bricker and Monismith 2007) or spatial and temporal differences in the wave component of

fluctuating flow parameters throughout estuary systems. To our knowledge, no study of

the flow environment of the intertidal zone of small-scale estuary systems has examined the

wave components of fluctuating flow parameters (turbulent kinetic energy and covariance)

over large spatial and temporal scales (although see Berry et al. [2011] for wave

contributions during single tidal cycles). Hence, information about turbulent flows

experienced by benthic foragers is largely unknown, preventing adequate development of

hypotheses as to how physical parameters may impact interspecific interactions over

temporal and spatial scales that are relevant to odor-mediated predator and prey

populations.

Turbulence in the water column can be mediated by tidal forcing (Grant et al. 1984),

the presence of whitecapping and breaking waves caused by wind forcing (Terray et al.

1996), and waves transferring energy and momentum to the water column through orbital

motion (discussed in Jones and Monismith [2008]). Wave motion and tidal forcing enhance

the transport of energy and momentum to the near-bed environment by increasing the

thickness of the wind-affected surface layer relative to the bed stress log layer (Jones and

Monismith 2008) and enhancing the dissipation rate of turbulent kinetic energy from

surface layers toward the near-bed environment (Agrawal et al. 1992).

Despite the importance of flow conditions in shaping interactions between organisms,
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many ecologists fail to measure water flow during field experiments or reproduce natural

flow regimes in laboratory trials (Zimmer and Zimmer 2008). This prevents an

understanding of how ecological interactions may vary naturally under different

hydrodynamic conditions and inhibits the scope of processes used to understand patterns

in data. Adequately measuring and reproducing natural hydrodynamic conditions (flow

velocity and turbulence) requires expensive equipment and technological expertise that are

not normally included in the typical ecologists’ repertoire. It would be helpful for ecologists

if adequate surrogate data that were easily collected and interpreted could be identified

that would serve as a proxy for estimating flow velocity and turbulence characteristics in

natural settings.

Wind speed and tidal range may be good candidates for surrogate data to make

predictions about hydrodynamic environments, as these two parameters are known to have

large influences on wave motion and bulk velocity characteristics, respectively. Our

objective is to understand how wind and tidal forcing influence the distribution of wave

and turbulent components of fluctuating flow parameters between sites and at large

temporal scales to assess the predictive ability of these parameters in estimating velocity

and turbulence characteristics. Information about the wave and turbulent components of

the fluctuating kinetic energy and covariance also can help make predictions as to the

distribution and temporal patterns of wind and tidal forcing effects on these fluctuating

flow parameters and ultimately, their influence on odor-mediated predator-prey

interactions. If wind speed and tidal range correlate well with the wave and turbulent

components of fluctuating flow parameters, ecologists should be able to use them to

supplement difficult measurements of flow when generating hypotheses and explaining

patterns of interactions that are mediated by hydrodynamic processes.
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We measured velocity-time series at multiple sites in Wassaw Sound, GA over a

variety of different tidal forcing strengths (neap, normal, and spring tides) and naturally

occurring wind speeds. We calculated the wave components of fluctuating kinetic energy

and Reynolds shear stress as a function of site and tidal type. We also calculated

correlation coefficients for comparisons of values of fluctuating flow parameters and wind

speed or tidal range to assess their predictive capacities. Based on prior knowledge of this

system (Berry 2009, Berry et al. 2011), we predict that the wave components of fluctuating

kinetic energy and covariance will be greater in sites that have larger fetch (allowing

generation of wind waves) and during neap tides when the transfer of energy and

momentum generated from wave motion can penetrate further into the near-bed

environment because of shallower water depth. We also expect to see large correlation

coefficients for comparisons between tidal range and flow velocity and between wind speed

and the wave component of fluctuating flow parameters (kinetic energy and covariance).

We deployed multiple acoustic Doppler velocimeters (ADVs) in four sites over a three

month period to assess these hypotheses.

2 Methods

2.1 Data Collection

Time-series of flow velocity were collected from June to August 2010 at four sites in

Wassaw Sound, GA and its tributaries: Dead Man’s Hammock (DMH), Skidaway Narrows

(SN), across from Priest Landing (APL), and Priest Landing (PL) (comparison site)

(Figure 1). Sites are similarly characterized by semi-diurnal tidal flow with ranges of 2 to 3

m. All sites are exposed to largely unidirectional flows during ebb and flood tides. Sites all
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contain substrates of mud and fine sand, are bordered by marsh grass (Spartina

alterniflora) or oyster reefs (Crassostrea virginica), and range in salinity from 20 to 28 ppt

(Smee et al. 2010).

Four acoustic Doppler velocimeters (ADVs) (NortekUSA Vector) were simultaneously

placed within each site, with each site measured over different dates during the sampling

period. Instruments were placed 1 m, 5 m, and 10 m from a reference instrument within

each site. Concurrent to measurements taken within each site, two ADVs were placed 1 m

apart at the Priest Landing comparison site. Flow velocity at the Priest Landing

comparison site was also recorded for an additional 35 days, independent of the other three

sites. All instruments were placed parallel to the water line at the mean low tide level. The

sampling volume of each instrument was approximately 0.10 m above the substrate. This

experimental deployment was repeated for each of the four sites and for each of three tidal

types (spring tide [SP], neap tide [NP], and normal tide [NL]).

All ADVs recorded three components of velocity, pressure, signal-to-noise ratios, and

correlation coefficients over 4 consecutive complete tidal cycles (from low tide to

subsequent low tide) for each tidal type deployment. Instruments were placed in the field

such that the x-velocity was predominately the along-stream component and the direction

upwards from the substrate was represented by a positive z-velocity. During data analysis,

the x- and y-velocity components were rotated to maximize the magnitude of the

x-velocity component and to ensure that the x-velocity was positive for flood tide and

negative for ebb tide. Data were collected continuously at 16 Hz during 5 minute bursts,

which were separated by 10 minutes.

Tidal ranges were obtained during the sampling period for Romerly Marsh Creek

(Figure 1) from published tables (http://www.tidesandcurrents.noaa.gov). Tidal ranges
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from only one location were used because published data from Romerly Marsh Creek are

highly similar to other sites in Wassaw Sound and its tributaries. Average and maximum

wind speeds were obtained from the Skidaway Institute of Oceanography weather station

(Figure 1) at 5 minute intervals (corresponding to the 5 minute bursts of recorded water

velocity time-series).

2.2 Data Analysis

2.2.1 Data Filtering

ADV data were filtered to remove erroneous samples by discarding individual bursts

if the mean correlation coefficient calculated was less than 70 % and if bursts contained

more than 500 consecutive points whose mean correlation coefficients were less than 70%.

We also filtered out erroneous data that manifested as “spikes” because of aliasing of the

Doppler signal. We used the phase filtering method of Goring and Nikora [2002] to identify,

remove and replace spikes throughout our data set (see Chapter 5 for more detailed

information about data filtering).

2.2.2 Identification of the Wave Component of Fluctuating Flow Parameters

The presence of wind waves in shallow water estuaries results in wave motion

contributions to fluctuating flow parameters. Fluctuations from waves also can contribute

to the turbulence signature when sensors are aligned improperly with the principal axis or

when there is sloping bed geometry (Grant et al. 1984, Trowbridge 1998). The contribution

of wave motion to fluctuating flow parameters should not be considered turbulence because

of their low frequency ranges, periodicity, and orbital motion.
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We used the coherence between the velocity and pressure measurements (as seen in

Benilov and Filyushkin [1970]) to identify and separate the wave component of the

fluctuating kinetic energy and the covariance using the methodology developed by Berry

et al. [2011]. Fluctuations in the velocity components due to wave motions are coherent to

simultaneously measured fluctuations in the water surface level (recorded as pressure in our

data; Benilov and Filyushkin 1970). Correspondingly, the component of the fluctuating

velocity that is not coherent with the fluctuating pressure can be attributed to turbulence.

The following is a brief description of the calculations involved in separating the wave

component of the covariance (and analogously the variance of each velocity component to

separate the wave component of the fluctuating kinetic energy). See Chapter 5 and Berry

et al. [2011] for a more thorough description of the calculations.

Instantaneous velocity can be decomposed into the mean component u, the wave

motion component ũ, and the turbulent fluctuation component u′:

u = u+ ũ+ u′ (1)

Trends due to rising or falling tides were first removed from the velocity and pressure

time series (each 5 minute burst) using a linear trend removal (Bendat and Piersol 2010),

and the mean was subtracted to obtain the fluctuating component of velocity and pressure.

The notation employed below imples that the mean component is therefore zero. The

coherence function for the u component of velocity and pressure (p) was then calculated as

a function of frequency (following the methodology of Benilov and Filyushkin [1970]):

γ2(ω) =
Sup(ω)S∗up(ω)

Suu(ω)Spp(ω)
(2)
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where Sup is the cross-spectral density (CSD) of u and p, Suu and Spp are power spectral

density (PSD) functions, ω is frequency, and ∗ represents the complex conjugate.

The PSD for the turbulent portion of the signal was then calculated (assuming that

the coherence between velocity and pressure is due to wave influence) using:

Su′u′(ω) = [1− γ2(ω)]Suu(ω) (3)

which was then used to calculate the magnitude of the turbulent velocity fluctuation |U ′j|

as a function of discrete frequency (denoted with index j) via:

Su′u′j =
1

dω
|U ′j|2 (4)

The above calculations were repeated for the w component of velocity and pressure.

The Reynolds shear stress was then calculated by incorporating the phases of each velocity

component with the magnitude of the turbulent velocity fluctuation. Velocity components

can be expressed using phasor notation of the Fourier coefficient according to:

Uj = |Uj|ei 6 Uj and Wj = |Wj|ei 6 Wj (5)

where the phases are defined by:

6 Uj = arctan

[
Im(Uj)

Re(Uj)

]
and 6 Wj = arctan

[
Im(Wj)

Re(Wj)

]
(6)
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Using this the CSD can be expressed as:

U∗jWj = |Uj||Wj|ej(6 Wj−6 Uj) = |Uj||Wj|(cos(6 Wj − 6 Uj)− isin(6 Wj − 6 Uj)) (7)

and the Reynolds shear stress can be calculated using:

u′w′ =
∑
j

U ′∗j W
′
j =

∑
j

|U ′j||W ′
j|cos(6 Wj − 6 Uj) (8)

where |U ′j| and |W ′
j| are calculated from Equation (4) and 6 Uj and 6 Wj are calculated from

Equation (6).

We used this methodology to calculate the wave component of the fluctuating kinetic

energy and covariance (KEwave and |ũw̃|, respectively) for all bursts in each data set

except the first two and last two bursts of each tidal cycle for data sets collected at the

Priest Landing comparison site. Two downward facing, fixed stem ADVs at the Priest

Landing site were mounted such that they were able to record velocity data while the

pressure sensor was not immersed at the beginning and end of each tidal cycle, which

prevented the calculation of coherence between velocity and pressure for these bursts.

Mean fluctuating characteristics also were calculated for each burst. Turbulence

parameters calculated are as follows:

Total F luctuating KE = 0.5(u− u2 + v − v2 + w − w2) (9)

TKE = 0.5((u′)2 + (v′)2 + (w′)2) (10)

9



KEwave = Fluctuating KE − TKE (11)

Total F luctuating Covariance = u− uw − w (12)

Reynolds Shear Stress = u′w′ (13)

ũw̃ = u− uw − w − u′w′ (14)

Turbulence Intensity (TI) =

√
(u′)2 + (v′)2 + (w′)2
√
u2 + v2 + w2

∗ 100 (15)

We also calculated the percent contribution of the respective wave contributions to

total fluctuating KE and total fluctuating covariance.

2.2.3 Statistical Analysis

To determine the influence of site and tidal type (neap, normal, and spring tide; and

any interactions) on values of wave components of fluctuating flow parameters (KEwave

and |ũw̃|) and their percent contribution to the total, we utilized a two-way analysis of

variance (ANOVA), which is fairly robust to issues of non-normality (Zar 1999), with site

and tidal type as factors. We also utilized non-parametric Kruskal-Wallis tests to confirm

significance of one-way comparisons because we were unable to achieve normality via

transformation for our fluctuating flow parameters. This was done for each fluctuating flow

parameter separately (KEwave, |ũw̃|, % KEwave, and % |ũw̃|) using burst-averaged data

from the reference instrument at each site and for each deployment period described above

(approximately 140 bursts).

We calculated correlation coefficients for comparisons between maximum wind speed

and values of fluctuating flow parameters (|u|, TKE, KEwave, |u′w′|, and |ũw̃|) to examine
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the relationship between wind speed and values of fluctuating flow parameters by using a

non-parametric Spearman correlation for each site separately, including all tidal types. We

used burst-averaged data from each site-specific reference instrument to calculate

correlation coefficients (approximately 140 bursts). A Spearman correlation also was used

to determine if site-specific relationships were similar to comparisons using data from all

four sites.

The relationship between wind speed and values of fluctuating flow parameters as a

function of sampling duration was further elucidated using long term time-series data from

Priest Landing. We assessed comparisons between wind speed (average and maximum) and

values of fluctuating flow parameters (|u|, TKE, KEwave, |u′w′|, |ũw̃|, and TI) by

calculating correlation coefficients (Spearman correlation) using tidal-cycle-averaged data

for each variable. The number of tidal cycles used to calculate correlation coefficients

ranged from 4 to 79. Data from individual tidal cycles was sequenced randomly to achieve

the desired number of tidal cycles for calculation.

We also assessed comparisons between tidal range and values of fluctuating flow

parameters at Priest Landing (|u|, TKE, KEwave, |u′w′|, |ũw̃|, and TI) by calculating

correlation coefficients (Spearman correlation). We utilized tidal-cycle-averaged data for all

fluctuating flow parameters, with the range of tidal cycles used to calculate correlation

coefficients. Again, the number of tidal cycles used to calculate correlation coefficients

ranged from 4 to 79 and the sequence was random. Tidal range was calculated by taking

the difference between the height above mean low water for the high tide and the average

of the height above mean low water for the previous and subsequent low tides using

published records (see above).

We also investigated the impact of tidal type and flow direction (flood and ebb) on
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values of turbulent flow parameters (|u|, TKE, and |u′w′|), because there seemed to be

intrinsic asymmetries in values of fluctuating flow parameters between flood and ebb tides.

The effect of tidal type and flow direction on values of fluctuating flow parameters was

determined using a two-way ANOVA with tidal type and tide direction as factors.

Ensemble-averaged values corresponding to flood and ebb tide from the PL site were used

for the analysis.

3 Results

3.1 Velocity Data Associated with Wave Motions

There was a significant effect of site (F3,1474 = 67.79, P < 0.001; Figure 2) on KEwave,

with the greatest values of KEwave at the DMH site and the smallest at the SN site. There

also was a significant effect of tidal type (F2,1474 = 9.25, P < 0.001) and interaction between

site and tidal type (F6,1474 = 11.37, P < 0.001), with greater values of KEwave during neap

and spring tide at all sites except for the PL site which had the greatest values of KEwave

during neap tide only (Figure 2). Non-parametric Kruskal-Wallis tests (site: H = 745.72,

df = 3, P < 0.001; tide: H = 28.58, df = 2, P < 0.001) confirmed significance of one-way

interactions. The percent wave contribution to total fluctuating KE showed similar

patterns to the dimensional values of KEwave. There was a significant effect of site

(F3,1474 = 588.38, P < 0.001) and tidal type (F2,1474 = 16.03, P < 0.001) on the percent

wave contribution to total fluctuating KE (Figure 2). The wave contribution to total

fluctuating KE was greatest for the DMH site and smallest for the SN site. Overall, the

greatest wave contribution to total fluctuating KE was during neap tide, but there was a

significant interaction between site and tidal type (F6,1474 = 10.67, P < 0.001). Both the
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APL and DMH sites had greater wave contributions to total fluctuating KE during neap

and spring tide, but the PL site had the smallest contributions during spring tide and there

were negligible differences in wave contributions to total fluctuating KE between tidal

types at the SN site (Figure 2). Non-parametric Kruskal-Wallis tests (site: H = 785.66,

df = 3, P < 0.001; tide: H = 6.58, df = 2, P = 0.037) again confirmed significance of

one-way analyses.

Values of |ũw̃| showed similar patterns to KEwave based on site and tidal type

relationships: there was a significant effect of site (F3,1367 = 98.94, P = 0.001) and tidal

type (F2,1367 = 37.36, P < 0.001) on values of |ũw̃| (Figure 3). There also was a significant

interaction between site and tidal type (F6,1367 = 79.90, P < 0.001). Non-parametric

Kruskal-Wallis tests (site: H = 287.69, df = 3, P < 0.001; tide: H = 8.55, df = 2,

P = 0.017) confirmed significance of one-way analyses. The SN site had the smallest values

of |ũw̃|, and values of |ũw̃| were greater during neap and spring tide at all sites except at

the APL site where |ũw̃| was greater during the normal tide (Figure 3). The percent wave

contribution to total fluctuating covariance also had similar patterns to the wave

contribution to total fluctuating KE based on site and tidal type. There was a significant

effect of site (F3,1367 = 86.08, P < 0.001) on the wave contribution to total fluctuating

covariance with the greatest percentage of wave contribution at the DMH site (Figure 3).

Significance of this one-way interaction was confirmed using a Kruskal-Wallis test

(H = 227.08, df = 3, P < 0.001). There also was a significant effect of tide

(F2,1367 = 3.52, P < 0.03) on the percent wave contribution to total fluctuating covariance

based on a two-way ANOVA, but this was not confirmed using a one-way non-parametric

Kruskal-Wallis test (H = 2.00, df = 2, P = 0.367). There was no significant site by tidal

type interaction (F6,1367 = 1.21, P = 0.297) on the percent wave contribution to total
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fluctuating covariance.

3.2 Correlation of Wind Speed and Fluctuating Flow Parameters

There were significant correlations between burst-averaged values of fluctuating flow

parameters and maximum wind speed, but significance was site and parameter specific.

Comparisons between values of fluctuating flow parameters and average wind speed

resulted in similar relationships between correlation coefficients to those calculated using

maximum wind speed, although a lower number of correlation coefficients were statistically

significant when using average wind speed for comparisons. Therefore, we chose to report

results only for comparisons using maximum wind speed. There were significant

correlations between values of TKE, KEwave, and |ũw̃| with maximum wind speed at the

APL site (Table 1). There were similar patterns of significant correlations at the DMH site

as at the APL site, with the exception of the correlation between |ũw̃| and maximum wind

speed, which was not significant. There were no significant correlations between values of

any fluctuating flow parameter and maximum wind speed at the PL site, although the

correlation coefficient for the comparison between KEwave and maximum wind speed was

only marginally insignificant. There were significant correlations between all fluctuating

flow parameters (except KEwave) and maximum wind speed at the SN site, but as

maximum wind speed increased, values of the fluctuating flow parameters decreased (i.e.

correlation coefficients were negative). This relationship cannot be explained by errors in

the raw or filtered data. There was a significant correlation for the comparison of KEwave

with maximum wind speed (Table 1) when data from all sites were combined (APL, DMH,

SN, and PL).

Long-term time-series indicate a close relationship between values of fluctuating flow
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parameters and maximum wind speed at the PL site (Figure 4). To quantify the apparent

relationship, the correlation coefficient was calculated as a function of the number of tidal

cycles. Correlations between wind speed (maximum and average) and |ũw̃| at the PL site

were significantly different from zero for correlations using sample sizes greater than 9 tidal

cycles (Figure 5). More than 43 and 55 tidal cycles were needed to achieve correlation

coefficients significantly different from zero for correlations between KEwave and maximum

and average wind speed, respectively. Values of |u′w′| and TI were never significantly

correlated with maximum or average wind speed. Marginally significant correlations

between |u| and maximum or average wind speed were seen only for comparisons using

data from more than 55 tidal cycles (Figure 5).

3.3 Correlation of Tidal Range and Fluctuating Flow Parameters

Long-term time-series at Priest Landing indicate the tight relationship between values

of fluctuating flow parameters and tidal range (Figure 6). Correlations between |u|, TKE,

and |ũw̃| and tidal range at the Priest Landing site were all significantly different from zero

using data from more than 4 tidal cycles (Figure 5). Correlations between |u′w′| and tidal

range were significantly different from zero using data from more than 9 tidal cycles.

Correlations between KEwave and tidal range were marginally significant using data from

more than 37 tidal cycles. Values of TI were never significantly correlated with tidal range.

Values of |u| were greater during spring tides and during ebb tides (Figure 7). There

was a significant effect of flood versus ebb tide on values of the |u| component at the PL

site (F1,18 = 123.36, P < 0.001), and a marginally insignificant effect of tidal type

(F2,18 = 3.20, P = 0.065). There was not a significant interaction between tidal type and

flood/ebb tide status on values of |u| (F2,18 = 0.15, P = 0.86). There was a significant effect
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of tidal type on TKE (F2,18 = 3.59, P = 0.049), with greater values of TKE during spring

tides (Figure 7). There also was a significant effect of flood/ebb tide status on TKE

(F1,18 = 6.24, P = 0.022), but no significant interaction between tidal type and flood/ebb

tide status (F2,18 = 1.78, P = 0.19). Values of |u′w′| were greater during ebb tides than

during flood tides (Figure 7). There was a significant effect of flood/ebb tide status on

values of |u′w′| (F1,18 = 113.23, P < 0.001), but no significant effects of tidal type

(F2,18 = 0.20, P = 0.82) or tidal type by flood/ebb tide status interaction on |u′w′|

(F2,18 =, P = 0.42). Similar asymmetries were observed in the values of fluctuating flow

parameters for all other sites, with greater values during the ebb portion of the tide

compared to the flood portion.

4 Discussion

4.1 Context-Specificity of Wave Components of Fluctuating

Flow Parameters

Wave contributions to total fluctuating KE and total fluctuating covariance in our

study agree well with previous data reported by Berry et al. [2011] for the same estuary

system. The magnitude of wave components of fluctuating turbulent parameters seems site

dependent for data from both studies. Wave contributions to total fluctuating KE at our

SN site and the Skidaway River site of Berry et al. [2011] were 17− 19% and 15− 18%,

respectively. At our DMH site and the DMH16 site of Berry et al. [2011], wave

contributions to total fluctuating KE were 59− 72% and 56%, respectively. Another study

in the same estuary system (Ferner et al. 2009), estimated the contribution of wave activity
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to values of fluctuating flow parameters as small, although these results may be accounted

for by the relatively simple calculation of wave contributions using the root mean square of

wave amplitude as compared to the spectral-based method employed in the current study.

Studies focusing on wave contributions to fluctuating flow parameters primarily focus on

decomposition techniques (Bricker and Monismith 2007, Trowbridge 1998, Shaw and

Trowbridge 2001) and lack discussion of the distribution of wave contributions to values of

turbulent flow parameters in different locations or systems, hence preventing comparisons

with our study. In the shallow intertidal environments that are of interest in the current

study, it is essential to account for wave contributions to values of fluctuating flow

parameters to fully assess the turbulent environment that odor-mediated predator may be

exposed to while foraging.

Unlike the study of Berry et al. [2011], which compared the wave contribution to

values of total fluctuating KE and total fluctuating covariance in a variety of sites in

Wassaw Sound, GA using data from one tidal cycle, we were able to collect information

about wave contributions to fluctuating flow parameters at a variety of sites over longer

periods (4 tidal cycles) of different tidal types (neap, normal, and spring tides).

Spatially-explicit patterns of the wave contributions to the fluctuating flow parameters

(Figures 2 and 3) suggest that wave contributions may be mediated by the area available

for the generation of wind waves (i.e., the fetch). For example, the DMH site, which is

exposed to Wassaw Sound and has a fetch that ranges from approximately 5 km to 20 km

depending on wind direction (Figure 1), has the largest measured value of KEwave and

|ũw̃| (Figures 2 and 3). The SN site, in comparison, has the smallest values of KEwave and

|ũw̃| as well as the smallest fetch (< 1 km), regardless of wind direction. Prevailing wind

orientation (202.5◦ for our study; 204◦ from Powell and Rinard [1998]; with 0◦ indicating
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winds from due north [Figure 1]) supports the idea of greater wave generation at the APL

site, but greater exposure to Wassaw Sound may contribute to the influence of waves at the

DMH site (Figure 1). Waves generally slow down and steepen in shallow environments

which allows more transfer of energy from wind to wave motion (Holthuijsen 2007),

suggesting that the DMH site also may have a greater influence of wave motion on

fluctuating flow parameters because of the extensive mudflats that border the site. Data

from Berry et al. [2011] support these patterns of wave influence as a function of exposure

to Wassaw Sound, but additional sites with significant exposure need to be assessed for

comparison.

Differences between sites in the wave contribution to the fluctuating flow parameters

may have significant effects on odor-mediated foraging that could not be predicted from

examining the turbulent portion of fluctuating flow parameters only. For example, based

on values of KEwave (Figure 2), blue crabs would have reduced foraging efficiency and

success in the more turbulent environments at the DMH site than the other three sites, but

based on values of TKE (See Chapter 5), blue crabs would have reduced foraging at the

APL and PL sites relative to the DMH and SN sites. Combining values of KEwave and

TKE indicate that the DMH site has greater total fluctuating kinetic energy than the

other three sites, suggesting that blue crabs may have reduced foraging in the DMH site

relative to the other three sites. Whelk foraging success is less affected by turbulence than

blue crabs (Powers and Kittinger 2002, Ferner and Weissburg 2005), suggesting that their

dominance at the DMH site (Ferner et al. 2009) may be related to their maintenance of

foraging success relative to blue crabs. The wave component of fluctuating kinetic energy

represents a larger portion of the total fluctuating kinetic energy at the DMH site than at

the SN site (Figure 2), possibly making this site less attractive to foraging blue crabs and
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more attractive to whelks. Correlations between maximum wind speed and values of wave

components of fluctuating flow parameters at different sites over 4 tidal cycles (Table 1)

support site-specific influences of the wave contributions to values of total fluctuating flow

parameters. Thus far, no experiments have been done to explicitly connect wave

characteristics with plume dispersion and subsequent impacts on chemically-mediated

predator-prey interactions. Additional studies are needed to describe wave impacts on odor

plume dispersion to better predict predatory behaviors under conditions of wave motion.

Significant differences in the wave components of fluctuating flow parameters,

generally and as a function of tidal type, indicate that large-scale tidal forcing may

influence the transfer of energy and momentum to the near-bed environment (Figures 2

and 3). The magnitude of wind impacts to near-bed environments will increase as water

depth decreases (Agrawal et al. 1992, Terray et al. 1996, Holthuijsen 2007, Jones and

Monismith 2008), suggesting that greater wave contributions to values of total fluctuating

KE during neap tide (Figure 2) may be attributed to water-depth-specific patterns of

TKE. Patterns of wave contributions to values of fluctuating flow parameters also suggest

greater contributions during spring tides. This may be associated with increases in

Reynolds shear stress throughout the water column, which would increase the size of the

wave-affected surface layer and increase momentum flux to the near-bed environment

(Jones and Monismith 2008).

The larger the contribution of the wave component to total fluctuating flow

parameters, the greater influence any patterns in tidal type dependence will have on values

of total fluctuating flow parameters. Specific patterns of mean values of total fluctuating

flow parameters based on tidal type will be dependent on corresponding patterns in the

wave and turbulent components of total fluctuating flow parameters. Values of total
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fluctuating flow parameters suggest that foraging efficiency and success of odor-mediated

predators will vary over a roughly weekly time scale (the scale at which tidal types

change). It also suggests that care should be taken when designing sampling schema for

ecological experiments; taking into account possible variation in predation rates concurrent

to changes in tidal type.

Tidal asymmetries are a common component of flow patterns in small-scale estuaries,

but the relationship between values of turbulent flow parameters during flood and ebb tide

are not dependent on large-scale tidal forcing in our system (neap, normal, and spring

tides) (Figure 7). Asymmetries in the |u| velocity component, TKE and |u′w′| that favor

ebb tides (Chanson et al. 2005, Collins et al. 1998) are usually associated with freshwater

input, whereas asymmetries that favor flood tide result from local channel topography that

acts to slow down tidal propagation (Le Hir et al. 2000). Our sites have very little

freshwater input (Walker and Tenore 1984) despite very large asymmetries in |u| favoring

ebb tide. Although there are differences in |u| and TKE based on tidal type, there were no

changes in the strength and direction of the flood/ebb asymmetry (although this has been

seen in other estuary systems [Trevethan et al. 2008]). The asymmetry of |u| between flood

and ebb tide in our system is comparable to that for laboratory experiments challenging

blue crabs to locate prey odors under different hydrodynamic conditions (Weissburg and

Zimmer-Faust 1993). Weissburg and Zimmer-Faust [1993] observed that an increase in flow

velocity by 10.6 cm/s (from 3.8 cm/s to 14.4 cm/s), which closely mirrors differences in our

study between |u| during flood and ebb tides (Figure 7), resulted in a roughly 50% decrease

in foraging success (from 22% to 10% success). To our knowledge, no studies have

examined differences in predatory success between ebb and flood tidal periods in the field.

20



4.2 Ability to Predict Fluctuating Flow Parameters

Ecologists often have limited or no ability to make detailed flow and turbulence

measurements of the environments used in their field studies. Hence, it is useful to make

connections between surrogate information, such as tidal range and wind speed, and mean

and fluctuating flow parameters. If robust correlations can be identified for the intertidal

zone, then surrogate data will provide insightful characterization of the flow environment

when detailed assessment is impossible or impractical.

There are site-dependent differences in the predictive capacity of maximum wind

speed to estimate values of fluctuating flow parameters (Table 1). Wind speed is directly

related to the formation of whitecapping waves (Jones and Monismith 2008), which

increases orbital motion in the water column and helps transfer energy and momentum to

near-bed environments. The relationship between maximum wind speed and values of

fluctuating flow parameters is not related to the distance between each site and the

location where wind speed was measured (Figure 1). The wind speeds recorded during our

observation period were relatively small compared to others examining the relationship

between wind speed and fluctuating flow parameters (our study = 0 to 8 m/s, Jones and

Monismith [2008] = 0 to 15 m/s, Bricker et al. [2005] = 0 to 12 m/s), which decreases the

range of our comparisons and the power needed to detect a significant relationship.

Wind speed (both maximum and average) and tidal range are correlated to values of

fluctuating flow parameters at the Priest Landing Site, but the amount of data needed

(tidal cycles) to achieve significant predictive ability varies as a function of specific

fluctuating flow parameter. Wind speed is significantly correlated with |ũw̃| when more

than 9 tidal cycles are used to calculate correlation coefficients, but KEwave is significantly
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correlated with maximum wind speed only when more than 43 tidal cycles are used. The

majority of fluctuating flow parameters (|u|, TKE, |u′w′|, and |ũw̃|) are significantly

correlated with tidal range using data from more than 4 tidal cycles. Values of fluctuating

flow parameters track more closely with those of tidal range than wind speed (compare

Figures 4 and 6), thus we suggest that tidal range is a better predicator than wind speed

for values of fluctuating flow parameters.

The predictive capacity of tidal range and wind speed to values of fluctuating flow

parameters, should only be used at temporal scales similar to those of the ecological

experimentation. Most ecological experiments occur over short time scales (e.g. 48 hrs in

Smee and Weissburg 2006, see Chapter 1; although see Ferner et al. 2009 for experiments

on the scale of 28 days) where correlations between wind speed or tidal range and values of

fluctuating flow parameters are not significant. Tidal range seems to be a good predictor of

a wide range of fluctuating flow parameters (|u|, TKE, |u′w′|, and |ũw̃|) at time scales

greater than 4 complete tidal cycles, whereas wind speed seems to be a good predictor of

|ũw̃| and KEwave at time scales greater than 9 and 43 complete tidal cycles, respectively.

4.3 Summary Comments

Fluctuating flow parameters have the capacity to influence ecological interactions in

intertidal near-bed habitats in salt marsh systems, making characterization of the

hydrodynamic environment essential in understanding the processes mediating interactions.

The predictive capacity of both tidal range and wind speed can give some insight to the

mean and fluctuating flow parameters organisms are exposed to, but we suggest that these

relationships only be utilized if the temporal scale of ecological experimentation matches

that of significant correlations between wind speed or tidal range and fluctuating flow
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parameters. We also caution that the influence of wind speed on values of fluctuating flow

parameters can vary between sites at small temporal scales, suggesting that the outcome of

ecological interactions may be site-specific. Additional site-specific information about wind

speed, tidal range, and values of fluctuating flow parameters needs to be assessed to

determine relationships between these parameters for longer temporal scales throughout

estuary systems.

5 Figures

Wassaw Sound

Obassaw Sound
DMH

PL
APL

SN

Skidaway Institute
of Oceanography

Romerly 
Marsh Creek

2 Km

Prevailing Wind
Direction (202°)

Figure 1: Map of Wassaw Sound, Georgia where instruments were deployed June-August
2010. DMH = Dead Man’s Hammock, PL = Priest Landing, APL = Across from Priest
Landing, SN = Skidaway Narrows. Also shown are the locations of the Skidaway Institute
of Oceanography (site of wind speed measurement) and Romerly Marsh Creek (site of tidal
range data).
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Figure 2: Ensemble average of burst-averaged values of KEwave (m2/s2; top) and percentage
of the total fluctuating kinetic energy attributable to the wave component (bottom). Error
bars represent one standard deviation. The number of bursts included was: 149, 145, and
137 (APL; neap tide, normal tide, spring tide, respectively); 129, 144, 143 (DMH; neap,
normal, spring, respectively); 141, 173, 126 (SN; neap, normal, spring, respectively); 128,
134, 136 (PL; neap, normal, spring, respectively), where APL = Across from Priest Landing,
DMH = Dead Man’s Hammock, SN = Skidaway Narrows, and PL = Priest Landing. Sta-
tistical significance was determined using a two-way ANOVA, with confirmation of one-way
comparisons shown using a Kruskal-Wallis test (K-W).
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|ũ
w̃

|(
m

2
/s

2
)

Figure 3: Ensemble average of burst-averaged values of |ũw̃| (m2/s2; top) and the percentage
of the total covariance attributable to the wave component (bottom). Error bars represent
one standard deviation. The number of bursts included is the same as reported in Figure
2. APL = Across from Priest Landing, DMH = Dead Man’s Hammock, SN = Skidaway
Narrows, and PL = Priest Landing. Statistical significance was determined using a two-
way ANOVA, with confirmation of one-way comparisons shown using a Kruskal-Wallis test
(K-W).

25



〈T
K

E
〉(

m
2
/
s2

)
〈|u

|〉
(m

/s
)

〈|u
′ w

′ |〉
(m

2
/
s2

)

M
a
x
im

u
m

W
in

d
S

p
ee

d
(k

m
/h

)

Figure 4: Long-term time-series of 〈|u|〉 (top), 〈TKE〉 (middle), and 〈|u′w′|〉 (bottom) at
Priest Landing (filled circles). Maximum wind speed data (open triangles) are overlaid on
each turbulent flow parameter to visually show the correlation. Values represent the tidal-
cycle-average for all turbulent flow parameters and maximum wind speed (as denoted by
angle brackets). Wind speed data were obtained from the Skidaway Institute of Oceanogra-
phy weather station (see Figure 1). Error bars for turbulent flow parameters and maximum
wind speed represent one standard deviation.
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Figure 5: Correlation coefficients with (A) maximum wind speed, (B) average wind speed,
and (C) tidal range as a function of the amount of data (number of tidal cycles) included in
the calculation. Correlation coefficients shown for comparisons between |u| (closed circles),
TKE (plus), KEwave (closed inverted triangle), |u′w′| (open square), |ũw̃| (closed triangle),
or TI (open circle). Minimum values of significant correlation coefficients are shown by the
solid line. Correlation coefficients above this line are significantly different from zero.
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Figure 6: Long-term time-series of 〈|u|〉 (top), 〈TKE〉 (middle), and 〈|u′w′|〉 (bottom) at
Priest Landing (filled circles). Tidal range data (open triangles) are overlaid on each turbu-
lent flow parameter to visually show the correlation. Values represent the tidal-cycle-average
for all turbulent flow parameters (as denoted with angle brackets). Tidal range was calcu-
lated as the difference between the height above mean low water for the high tide and the
average of the height above mean low water for the previous and subsequent low tides. Tidal
heights were obtained from published records for Romerly Marsh Creek (see Figure 1). Error
bars for turbulent flow parameters represent one standard deviation.
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Figure 7: Effect of tidal type and ebb or flood flow on values of the turbulent flow parameters
at the Priest Landing site. Values of turbulent flow parameters were calculated based on
averages for flood and ebb portions of the tidal cycle (N = 8 for each tidal type). Error bars
indicate one standard deviation. Statistical significance was determined using a two-way
ANOVA.

29



Site Burst. No |u| TKE KEwave |u′w′| |ũw̃|
APL 430 0.07 0.13* 0.30* -0.03 0.15*
DMH 287 0.12 0.15* 0.12* 0.09 -0.03

PL 280 -0.02 0.01 0.10 -0.003 0.05
SN 325 -0.15* -0.17* -0.08 -0.14* -0.14*
All 1322 0.03 0.03 0.08* -0.01 -0.01

Table 1: Correlation coefficients for comparisons between maximum wind speed and values
of fluctuating flow parameters. Data used for comparisons consist of burst averaged val-
ues for individual fluctuating flow parameters collected during all tidal type deployments.
Wind speed data were acquired from the Skidaway Institute of Oceanography weather sta-
tion. “Burst No.” indicates the number of bursts that were used to calculate correlation
coefficients. * indicates correlation coefficients significantly different from zero. Data sets
are labeled using site names; APL = Across from Priest Landing, DMH = Dead Man’s
Hammock, SN = Skidaway Narrows, PL = Priest Landing.
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Abstract 

Joint Variable Spatial Downscaling (JVSD), a new statistical technique for downscaling gridded climatic 

variables, is developed to generate high resolution gridded datasets for regional watershed modeling and 

assessments. The proposed approach differs from previous statistical downscaling methods in that multiple 

climatic variables are downscaled simultaneously and consistently to produce realistic climate projections. In 

the bias correction step, JVSD uses a differencing process to create stationary joint cumulative frequency 

statistics of the variables being downscaled.  The functional relationship between these statistics and those of the 

historical observation period is subsequently used to remove GCM bias. The original variables are recovered 

through summation of bias corrected differenced sequences. In the spatial disaggregation step, JVSD uses a 

historical analogue approach, with historical analogues identified simultaneously for all atmospheric fields and 

over all areas of the basin under study. Analysis and comparisons are performed for 20th Century Climate in 

Coupled Models (20C3M), broadly available for most GCMs. The results show that the proposed downscaling 

method is able to reproduce the sub-grid climatic features as well as their temporal/spatial variability in the 

historical periods. Comparisons are also performed for precipitation and temperature with other statistical and 

dynamic downscaling methods over the southeastern US and show that JVSD performs favorably.  The 

downscaled sequences are used to assess the implications of GCM scenarios for the Apalachicola-

Chattahoochee-Flint river basin as part of a comprehensive climate change impact assessment. 

     

Keywords 

Statistical Downscaling, Global Circulation Model, Bias Correction, Spatial Disaggregation, 

Hydrologic Assessments 
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1. Introduction 

Concerns over water resources vulnerability to climatic change are rising, and water 

resources planners and managers are becoming increasingly interested to quantify the 

implications, if any, and explore plausible mitigation and adaptation measures.  This is an 

active research area with several past and on-going studies, including Lettenmaier and Rind, 

1992; Stamm et al., 1994; Conway, 1998; Wood et al., 2004; VanRheenen et al., 2004; 

Tanaka et al., 2006; Maurer, 2007; Medelin-Azuara et al., 2008; Vicuna et al., 2009; K. 

Georgakakos et al., 2011; and A. Georgakakos et al., 2011. Among these studies, general 

circulation models (GCMs) are broadly used as an important tool for qualitative impact 

assessment. The GCMs represent (through a large system of partial differential equations) the 

coupled atmospheric and oceanic processes currently understood to govern the Earth’s 

climate. Climate scenarios are generated by the numerical integration of the underlying 

equations over space and time. The purpose of developing such models is to obtain the range 

of future global climate response forced with concentrations of greenhouse gases and other 

constituents derived from various emissions scenarios (IPCC WGI, 2007).  

At present, GCMs run on global scales at relatively low spatial resolutions (~100x100 

km
2
 to ~250x250 km

2
).  However, certain types of observational data (e.g., precipitation, 

ground air temperature, and wind speed) usually have much higher spatial resolution than that 

of GCMs. An example of GCM and observational data resolutions is shown in Figure 1, 

where the CGCM3.1 (Canadian Centre for Climate Modeling and Analysis) grid is 

superimposed on the observational data grid over the southeast US.  

Because of their coarse spatial resolution, GCM outputs are usually inadequate to 

capture the spatial variability at regional or local scales necessary for hydrological 

applications. Kuhl et al. (1992) compared the observed river runoff of the world’s largest 

rivers to the monthly runoff simulated by using a GCM model.  They found that  predicting 
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the runoff of high-latitude rivers directly from GCM outputs over-simplifies and ignores the 

lateral transfer of water between grid cells within the land phase. Xu (1999) also comments 

that the excess and overland flow is not well simulated by the GCMs.  Another drawback of 

using direct GCM outputs to simulate local hydro-climate is that the regional topographic 

features are usually not well represented in most global climate models. Such limitation is 

overcome in two stages: First, downscaling procedures are used to construct climate 

scenarios at more application-relevant scales, capturing the sub-grid climatic variability. 

Second, the downscaled sequences are used to drive hydrologic watershed models which 

have been shown to represent sufficiently well the dynamics of runoff and other hydrologic 

variables.  

Existing downscaling techniques can be organized into two main categories: dynamic 

and statistical downscaling. Fowler and Blenkinsop (2007), Wilby and Wigley (1997), and 

Xu (1999) thoroughly review most existing downscaling techniques of both types.  The 

techniques most relevant to the methods developed herein are briefly discussed next.    

Regarding dynamic downscaling, a regional climate model (RCM) is used to model 

the target region at finer scales bounded by larger GCM nodes (Miller et al., 1999; Xue et al., 

2007). The results of RCMs still depend on the validity and skill of the overriding GCM. 

Mearns et al. (2003) outlined the advantages and disadvantages of using RCMs and provided 

guidance on the use of their outputs.  Generally, RCMs provide high resolution climatic fields 

spatially and globally consistent with GCM scenarios. Although some RCMs can  generate 

climatic fields evolving differently that the original GCM fields, they usually inherit the 

biases of the driving global models, and they are computationally expensive.  

The North American Regional Climate Change Assessment Program (NARCCAP; 

Mearns et al., 2007; Mearns et al., 2009) is among the most notable dynamic downscaling 

research efforts and provides valuable online datasets (http://www.narccap.ucar.edu/). This 
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program investigates the uncertainties of regional scale projections of GCM outputs, and 

generates high resolution scenarios for regional climate impact assessments. NARCCAP 

provides a very important source of dynamically downscaled regional climatic scenarios. 

These simulations correspond only to SRES A2 emissions scenario, and, due to their heavy 

computational requirements, they are generated for selected time horizons (1971-2000; 2041-

2070). It takes approximately 36 hours to complete a 30-day simulation using a RCM (e.g., 

MM5 or WRF) over an area of 90,000 km
2
 with 30 x 30 km spatial resolution on a 2.1GHz 

dual core personal computer.  Thus, the currently available results are not sufficient for 

comprehensive climate change impact assessments, but are used in this study to compare the 

skill of statistical versus dynamic downscaling methods.  Lastly, it is unclear whether the 

uncertainties surrounding dynamic downscaling methods are not comparable to those of the 

more computationally efficient statistical downscaling methods.  For example, Fowler et al. 

(2007) suggest that ―dynamical downscaling methods provide little advantage over statistical 

techniques.‖ 

Statistical downscaling does not depend on GCM boundary conditions and can be 

used to downscale climatic variables without the full set of climatic fields at the coarse level. 

Statistical downscaling is based on relationships between low resolution GCM outputs and 

associated higher resolution observations over the same historical period. These statistical 

relationships are then used to infer the observations on finer grids at future times when only 

GCM outputs are available. Examples of statistical downscaling methods include changing 

factor methods (Beniston et al., 2003), regression methods (Huth, 1999), weather typing 

schemes (Vrac, 2007), weather generators (Wilks and Wilby, 1999), bias correction and 

spatial disaggregation (BCSD; Wood et al., 2004), and constructed analogues (Hidalgo et al., 

2008).  
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Wood et al. (2004) proposed a two-step statistical downscaling method to address bias 

correction and spatial disaggregation (BCSD). In the first step, GCM biases are adjusted 

through a quantile mapping technique individually for temperature and precipitation. The 

spatial disaggregation step translates adjusted GCM data on climate model resolutions to a 

basin-relevant resolution (observational resolution) by using interpolated spatial factors. The 

spatial interpolation method is a modified version of inverse-distance-squared interpolation 

developed by Shepard (1984).  

BCSD is a very efficient statistical downscaling technique for climate change 

assessments. At the individual grid level, BCSD generates a similar climatology of 

precipitation and temperature as the observed. However, as will be shown later in the article, 

the monthly BCSD fields are spatially much more homogeneous that the observed.  This 

occurs because the same GCM data is used to interpolate several downscaled grid values. 

Furthermore, while the temperature shift-removing procedure enables the bias correction step 

without extrapolation, it also makes the assumption that future temperature distributions 

remain similar to those of the historical period.  This, however, is not a valid assumption, as 

future temperature (and precipitation) distributions are not simply trend-adjusted versions of 

the historical distributions.    

 Li et al. (2010) recently proposed the equidistant cumulative distribution function 

matching (EDCDFm) method as an improvement to the cumulative distribution function 

matching (CDFm) method used as part of BCSD (bias correction step).  EDCDFm explicitly 

considers the changes between the baseline and future distributions.  It also fits the marginal 

CDF of precipitation and temperature with a mixed two-parameter gamma distribution and a 

four-parameter beta distribution respectively.  By performing a synthetic experiment at a 

continental scale (northern Eurasia), they conclude that EDCDFm is superior to CDFm 

method in that it reduces the mean bias and RMSE for summer and winter, especially under 
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changing variability.  Furthermore, EDCDFm is found to perform better than CDFm in 

correcting biases of extremes.  However, as the original CDFm, it is based on the idea of 

downscaling climatic variables individually.  This method only concerns the bias correction 

step and presents no new spatial downscaling experiments or data.   

Hidalgo et al. (2008) and Maurer et. al. (2010) proposed and implemented the 

constructed analogues (CA) and the hybrid bias correction and constructed analogues 

(BCCA) techniques. The CA method essentially makes no bias corrections, but rather relates 

model-simulated variables to observed variables, using relationships established during 

historical periods when observations are available. These relationships are established 

through multiple regression analysis and are based on  daily reanalysis data.Maurer and 

Hidalgo (2010) further investigated the application of a bias correction step before the CA 

process is performed and conclude that the BCCA method is consistently better than BCSD 

in simulating daily stream flows, especially for hydrologic extremes.  The CA assumption is 

that the relationships between large-scale and downscaled fields derived based on historical 

reanalysis data will also be valid in future climates.  

 

Overall, downscaled sequences must meet several criteria to be useful in regional 

water resources assessments:  

 First, the downscaled sequences should be consistent with historical observations.  

 Second, the downscaled sequences should capture climatic mean and variability 

trends.   

 Third, spatial and temporal correlations and interdependencies between the 

atmospheric fields that largely drive hydrological processes should be represented.  
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 Lastly, to ensure that hydrological assessments at different temporal scales (e.g., 

annually, monthly, and daily) using the same downscaled products are consistent, the 

smoothness of these products across these time scales should be ensured. 

These criteria formed the guiding principles for a new statistical downscaling method 

discussed next. 

 

2. Joint Variable Spatial Downscaling (JVSD) 

JVSD aims to produce high resolution gridded hydrological datasets suitable for regional 

watershed modeling and assessments. The method is applicable to multiple atmospheric 

fields, but it is presented here for precipitation and temperature, as these two variables 

represent the principle atmospheric forcing that drives watershed response.  

JVSD conceptually follows the general approach introduced by Wood et al., 2004 

(Bias Correction and Spatial Downscaling—BCSD), with several new features. First, instead 

of removing and replacing the variable long term trends before and after the bias correction 

step, JVSD uses a differencing process to create stationary time series and joint frequency 

distributions (for temperature and precipitation) between GCM control and future runs. Bias 

correction is then based on quantile-to-quantile mapping of these stationary frequency 

distributions.  The bias corrected sequences are recovered by inverting the differenced series. 

For spatial disaggregation, JVSD also uses the historical analogue approach.  However, 

historical analogues are identified simultaneously for all atmospheric fields being 

downscaled, and for all GCM cells that cover the assessment region. This feature ensures the 

temporal and spatial coherence of the downscaled climatic fields. Finally, a technique to 

expand the range of the historical analogues is implemented to handle future data values that 

fall outside the historical range.       
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JVSD is implemented as shown in Figure 2 as a two step process: bias correction and 

spatial downscaling. 

 

2.1 Bias Correction  

GCM outputs contain significant biases that must be corrected before any meaningful 

assessment can be carried out. Figure 3 compares the frequency distributions of GCM 

simulated (CGCM3.1, run1) temperature and precipitation versus observed values aggregated 

over the same ACF cells for the historical period 1950-1999.  Biases exist not only in the 

mean of these distributions but throughout the distributional range, and they are uneven at 

different quantiles. 

The JVSD bias correction process is presented using the following notation:  

 TS1 and TS2: Monthly precipitation and temperature time series of GCM future runs on 

individual GCM grids:  

  
)NF,1,2,(t     _GCM          :1 montht PTS

      

  
)NF,1,2,(t     _GCM          :2 montht TTS

      

where, 
monthNF  is the length of the monthly time series. 

 TS3 and TS4: Monthly precipitation and temperature time series of GCM control runs on 

individual GCM grids. GCM control runs refer to a historical  time period, such as the 

entire 20
th

 Century or some portion of it. In this article, the term ―control runs‖ refers to 

the 20c3m (20
th

 Century) runs. 

  
)NC,1,2,(t     _CON          :3 montht PTS

     

  
)NC,1,2,(t     _CON          :4 montht TTS

     

where, monthNC  is the length of the monthly time series. 
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 DTS5 and DTS6:  Daily observed precipitation and temperature time series on individual 

observational scale grids:  

  
)NO,1,2,(td     _OBS          :5 daytd PDTS
      

  
)NO,1,2,(td     _OBS          :6 daytd TDTS

      

where dayNO  is the length of the daily observed time series. 

Step 1: Upscaling 

DTS5 and DTS6 are aggregated into two new monthly sequences TS5 and TS6 over the 

GCM spatial resolution grids.   

The aggregation process  first performs spatial averaging over each GCM cell and then 

performs temporal averaging to monthly time scales. 

This process can be carried out using other spatial averaging schemes such as kriging 

(Drignei, 2009).  The concept of spatial upscaling is illustrated in Figure 4.  

Step 2: Differencing 

Differencing aims to remove seasonalities and deterministic trends, and create stationary time 

series. Differencing can be applied at various lags and orders.  For example, a 12-month 

differencing process applied to the monthly time series (TS1, TS2, TS3, TS4, TS5, and TS6) 

on each GCM cell can be expressed as shown below:  

  
)NF,1,2,(t     _GCM_GCMS          :1 montht12t

' PPTS
      

  
)NF,1,2,(t     _GCM_GCMS          :2 montht12t

' TTTS
      

  
)NC,1,2,(t     _CON_CONS          :3 montht12t

' PPTS
       

  
)NC,1,2,(t     _CON_CONS          :4 montht12t

' TTTS
        

  
)NC,1,2,(t     _OBS_OBSS          :5 montht12t

' PPTS
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)NC,1,2,(t     _OBS_OBSS          :6 montht12t

' TTTS
         

where, the differencing operator D  with lag D is defined as  

  DtttD TSTSTS
     (4) 

For D = 12 months, the operator simply subtracts the series values one year apart (Figure 5). 

If trends persist, higher order differencing may also be used.  

The effect of 12-month differencing of GCM temperature and precipitation outputs is 

shown on Figure 6.  The top plots of this figure show contour lines of the joint empirical 

temperature-precipitation cumulative frequency curve of the control (CON) and future runs 

(from the Canadian GCM—CGCM3.1/ run1).  Future runs are divided into the first 50-year 

period (FUT1) from 2000 to 2049, and the second 50-year period (FUT2) from 2050 to 2099.   

Thus, all sample sizes (i.e., CON, FUT1, and FUT2) are 50-year long. These plots support the 

following observations:  

(1) The joint frequency distributions of temperature and precipitation are different in 

the control and future runs; and  

(2) The relationship of the joint frequency distributions (of control versus future data) 

is appreciably different in the first versus the second 50-year period, indicating 

that the joint frequency distribution is non-stationary.  

These differences and nonstationarities bias the results of all existing downscaling 

methods that are commonly based on quantile-to-quantile mapping of these or the associated 

marginal statistics.      

On the other hand, the bottom two plots of Figure 6 show the joint cumulative 

frequency distribution (of temperature and precipitation) after a 12-month differencing of the 

original sequences.  These plots clearly show that the differenced sequences exhibit very 

good correspondence between control and future runs, for both future periods.  Thus, the joint 

statistics of the 12-month differenced series are stationary and can serve as pivotal quantities 
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for the quantile-to-quantile bias correction process. This result and conclusion has been tested 

and shown to hold for all 13 GCMs available through IPCC. 

To detect the possible existence of higher order nonstationarities, higher order 

differencing and other lags were also tested, but they did not yield any significant 

improvements over 12-month, single differencing.     

Step 3:  Joint Frequency Mapping 

In keeping with the previous discussion, the bias correction process consists of (1) creating a 

differenced series of future temperature and precipitation; (2) finding the joint frequency of 

the contemporaneous differenced data values; (3) considering that this joint frequency is the 

same in the future differenced series as it is in the control differenced series; and (4) mapping 

each joint frequency point of the GCM Control distribution to a corresponding point on the 

joint frequency distribution of the observed differenced series (OBS).  The last step is 

illustrated in Figure 7.  The schematic shows two corresponding pairs of GCM and OBS 

joint iso-probability curves, and the nearest neighbor mapping of a GCM point to a point on 

the corresponding OBS iso-probability contour.  The nearest neighbor is the one which 

minimizes the Euclidean distance between the GCM point and all points on the OBS 

frequency contour.  

The cumulative frequency distribution functions in the above procedure are developed 

empirically for the observational as well as the GCM data. These empirical distributions are 

used in the joint frequency mapping step directly.  No analytical approximations are derived 

for this step, although a copula type procedure (Nelsen, 1999) could be employed.  Such an 

analytical approximation would be necessary if the ranges of these distributions are 

significantly different.  However, the frequency distributions are derived herein for the 

differenced data, and it turns out that the extreme values are fairly commensurate.  Thus, 

simple linear extrapolation is used occasionally to identify the bias corrected values.  
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The mapping of a point on the GCM joint cumulative distribution function (CDF) 

onto a point of the OBS joint CDF (of differenced temperature and precipitation values) can 

be performed in several ways, two of which are examined below.  The mapping ―goodness‖ 

criterion is how well the mapped GCM joint CDF corresponds to the OBS CDF.  The first 

mapping procedure ensures that the mapped points have the same GCM and OBS CDF 

values, and finds the ―nearest neighbors‖ on the T-P space.  The second procedure is 

implemented as follows:  A (T,P) point on the GCM joint CDF is associated with a joint CDF 

value as well as two marginal CDF values, one for temperature and a second for 

precipitation.  The mapping is then carried out using the nearest neighbor concept in 

probability space.  More specifically, the two points are selected to have the same joint CDF 

value (on the GCM and OBS CDFs) and the shortest distance between their marginal CDF 

values (in a Euclidian measure sense). 

Figure 8 presents a comparison between the two approaches CSIRO-MK3.5 GCM 

(Australia).  The top graph compares the OBS versus the mapped GCM joint CDFs for the 

first approach by displaying 9 iso-probability contour lines from 0.1 to 0.9 (in 0.1 

increments).  The second graph displays the same results for the second approach.  The figure 

shows that both approaches generally represent well all CDF regions, although the second 

approach is somewhat more reliable.  The results presented in this article use the first 

approach.   

Step 4:  Series Reconstruction 

The bias corrected monthly temperature and precipitation series for each GCM cell (denoted 

TS7 and TS8) are obtained by inverting the differencing operation on the bias corrected 

series:  

 
)NF,1,2,(t    C  C  _C_C  :7 monthD-ttt

1

t SP_SP_SPPTS D   (5a) 
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)NF,1,2,(t     C  C  _C_C   :8 monthD-ttt

1

t ST_ST_STTTS D     (5b) 

2.2 Spatial Downscaling  

The JVSD spatial downscaling component is based on matching the bias-corrected 

temperature and precipitation patterns with similar observed patterns (historical analogues) 

over the assessment region (e.g., the ACF river basin). This process has the following 

distinguishing features compared to existing methods:  

(1) Pattern matching is performed simultaneously for temperature and precipitation fields;  

(2) Pattern matching is performed simultaneously for all GCM cells that cover the region 

of interest (e.g., the ACF river basin), thus maintaining the climatic coherence and 

plausibility of the temperature and precipitation fields; 

(3) Future temperature and precipitation fields that fall outside the historical range are 

accommodated by expanding the range of historical analogues as described in the 

following section.     

The spatial downscaling procedure is summarized below. 

Step 5:  Data Range Adequacy Test 

In this step, the monthly temperature and precipitation values of the relevant GCM cells are 

checked to determine if they fall within the historical observed range of the monthly values.  

If they fall within the historical range, the downscaling process continues to Step 7; 

otherwise, the process continues to Step 6. 

Step 6:  Historical Analogue Range Expansion 

This step is invoked when the future GCM patterns fall outside the historical range, a case 

particularly relevant to a changing climate. To expand the historical analogue range, 

upscaling of the historical data in Step 4 is performed for periods smaller than a month, e.g., 

d = 15, 10, 5, or 1 days. Because these periods entail fewer days than those in a month, their 
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averages are expected to exhibit higher (than monthly) variability and a wider data range. 

This process aims to identify the largest interval d which generates historical analogues 

containing the future T and P values.  The data range expansion is carried out for the calendar 

month to be downscaled.  However, if this is not sufficient, the data range is expanded to 

include 15 days from the previous and 15 days from the following months, expected to 

exhibit a similar climatic behavior. 

The process is illustrated in Figure 9.  In the top plot, the maximum  and minimum 

historical monthly precipitation averaged over 30, 10, 5, and 1 days are plotted in solid lines, 

and the corresponding standard deviations in dashed lines. In the bottom plot, the same 

quantities are plotted for the historical temperature. These plots show the data range 

expansion as the averaging interval decreases. 

Step 7:  Historical Analogue Matching 

Next, the nearest point 
ii TOBSPOBS _,_  in the historical sequences TS5 and TS6 to a 

particular point ii TGCMPGCM _,_  in the future GCM sequences TS7 and TS8 is 

determined by minimizing the Euclidean distance:  

  Ai

iiii TGCMTOBSPGCMPOBS
222

____R

     (6) 

where A is the set of cells that cover the region (basin) of interest; α  and β are weighting 

coefficients if one wishes to emphasize matching one of the variable over the other; and i is 

the cell index on the GCM grid. 

Once the nearest historical analogue point is identified, the T-P values can be spatially 

downscaled based on the historical T-P values over the observational cells.  The downscaled 

temperature and precipitation sequences are denoted TS9 and TS10:  
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where j is the cell index of the observational (high resolution) grid. 

Step 8:  Temporal Downscaling 

Daily (or other duration) temperature and precipitation sequences DTS9 and DTS10 can now 

be constructed by suitable temporal upscaling of the historical analogue fields.  If the nearest 

historical analogue was found from the monthly historical observed fields, then, the 

downscaled daily sequences are directly extracted from the corresponding month.  On the 

other hand, if the nearest historical analogue required expansion of the historical range (using 

the process outlined in Step 6), then, the downscaled daily sequences are constructed by 

assembling several nearest historical analogues the total duration of which equals one month.  

In the assessments carried out for the ACF river basin, data range expansion was not 

necessary beyond the 15 day interval.   

3. Downscaling Results and Comparisons 

The geographic focus of the study is the Apalachicola-Chattahoochee-Flint (ACF) river basin 

located in the southeast US as shown in Figure 10. The ACF basin begins in north Georgia 

(mostly within a sub-tropic region) and flows into the Gulf of Mexico, near Apalachicola, 

Florida. It drains an area of about 19,600 square miles. Based on its hydrological 

characteristics and the locations of major storage projects, the ACF basin comprises seven 

watersheds (sub-basins): (1) the Chattahoochee headwater reach extending up to and 

including Lake Lanier and Buford Dam; (2) the Chattahoochee reach from Lake Lanier up to 

and including West Point Lake and Dam; (3) the Middle Chattahoochee reach from West 

Point up to and including Lake Walter F. George and Dam; (4) the Lower Chattahoochee 



17 

reach from Lake W.F. George up to and including Lake Seminole and Jim Woodruff Lock 

and Dam; (5) the Flint headwater reach up to Montezuma; (6) the Flint reach from 

Montezuma up to Albany; and (7) the Flint reach from Albany to Bainbridge. Table 1 lists 

the characteristics of all ACF sub-basins. More detailed descriptions of ACF basins can be 

found in a recent technical report (Georgakakos et al., 2010). 

In this section, JVSD is evaluated by comparison with observed historical data and 

other statistical and dynamic downscaling methods. 

3.1 Seasonal Comparison with Observed Data 

The climatology maps of precipitation and temperature in the southeast US (the region where 

the ACF basin is located) are shown in Figures 11 and 12.  The results presented here are 

from the Canadian model CGCM3.1, run1. Results from all other GCMs and scenarios can be 

found in the technical report by Georgakakos et al., 2010. Monthly precipitation and 

temperature data are aggregated by seasons (DJF, MAM, JJA, and SON) for three 50-year 

periods: (1) 01/1950 to 12/1999 using both observation data as well as data from the CMIP 

pilot project called 20th Century Climate in Coupled Models (20CM3); (2) 01/2000 to 

12/2049 for the CGCM A1B scenario, and (3) 01/2050 to 12/2099 again for the CGCM A1B 

scenario. The first column is constructed from observed, high resolution data from the 1/8 

degree spatial resolution dataset (Maurer et al., 2002) for the period 1950-1999. The second 

column shows the JVSD results with input from the coarse resolution GCM data from the 

20CM3 experiments (1950-1999). The third (2000-2049) and fourth columns (2050-2099) 

are also generated by JVSD with input from the A1B CGCM3.1 scenario runs.  

The important comparison in Figures 11 and 12 is between the first two columns 

(observations versus JVSD).  The figures show that JVSD results compare favorably with 

observed precipitation and temperature data in that they reproduce fairly well the seasonal 

spatial distributions and coherence. (In generating the JVSD results, the corresponding 
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historical month being downscaled has, of course, been excluded from the historical analogue 

data set.) Furthermore, specifically for the CGCM A1B run shown, the results in columns 3 

and 4 indicate:  

(1) Temperature exhibits increasing trends over the southeast and the ACF basin for 

all seasons; Temperature increases are more significant in the 2050 – 2099 time 

period. The most pronounced temperature increase appears to take place in spring 

and fall.  The A2 scenario results (not shown) are similar but temperature 

increases are even greater in the second half of the 21
st
 century. This observation 

holds true for most GCM scenario results and will be quantified further in a later 

section.   

(2) Precipitation exhibits an increasing trend in winter and a mild declining trend in 

spring and summer.   

Similar analysis (not shown) has been carried out using the BCSD method. The 

BCSD datasets are obtained from the Program for Climate Model Diagnosis and 

Intercomparison website (http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/). 

Generally, BCSD performs well, showing similar overall trends for seasonal temperature and 

precipitation as those of the observed data and JVSD. However, the following differences are 

noted between the two methods:  

(1) The BCSD precipitation fields exhibit less spatial variability and milder changes 

than those of JVSD.  The reasons for these differences are  that (i) the BCSD 

downscaled values for nearby cells are calculated based on the same upscaled 

information (through a variant of the inverse distance weight approach) and (ii) 

JVSD is based on historical analogues that have been observed over the entire 

region of interest, not separately for individual cells. (More quantitative 

comparisons of these differences are forthcoming later in this section.) 

http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/
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(2) BCSD predicts that the highest temperature increases will occur during spring and 

fall as does JVSD.  However, summer temperature increases (July and August) are 

higher under BCSD than under JVSD. 

Furthermore, the JVSD seasonal joint temperature and precipitation CDFs were 

compared with their observed counterparts (Maurer et al., 2002) for each of the seven ACF 

sub-basins over the historical period 01/1950 - 12/1999 (control period). The results (Figure 

13) show that JVSD represents the joint relationships fairly well over the entire frequency 

range, with discrepancies appearing at the extreme value regions which are characterized 

only by a few data points.   

The performance of downscaling methods varies across seasons, stations, and indices 

(Fowler and Blenkinsop, 2007).  Many researchers have concluded that the accuracy of 

statistical downscaling methods has a geographical and seasonal component (Huth, 1999).  In 

addition, the GCM skill in simulating regional climate may vary for different locations and 

scales.  In general, GCMs are more likely to capture the large scale climate features, and the 

relationships between climate variables are likely to be better simulated in locations where 

the topographic features are not too different from those assumed in the GCMs.  

A JVSD strength is that it can represent the co-variability between temperature and 

precipitation.   In places and seasons where there is no significant dependence between these 

two variables, the JVSD and BCSD bias correction procedures are equivalent.  However, 

where such dependence exists, JVSD generates more representative downscaled fields.  To 

demonstrate this feature,  the joint distributions of temperature and precipitation for the 

observed as well as the BCSD and JVSD downscaled data are compared for  Buford, 

Woodruff, and the entire ACF. Figure 14 shows this comparison for Buford and the GFDL 

GCM.  This figure shows that in DJF and SON, both BCSD and JVSD represent the joint 

temperature-precipitation relationship comparably well, although BCSD exhibits some 
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discrepancies in the joint distribution tails.  However, in MAM and JJA, JVSD performs 

clearly better. The underlying reason for these performance differences is illustrated on 

Figure 15 which depicts the monthly correlation coefficients between temperature and 

precipitation for four GCMs and the observations, BCSD downscaled data, and JVSD 

downscaled data (over the 1950-1999 historical period).  The figure shows that in DJF and 

SON correlations are negligible, while in MAM and JJA correlations are significant.  Thus, 

JVSD is more preferable than BCSD in places and seasons where temperature and 

precipitation exhibit strong co-variability. 

Next, the seasonal coefficient of variation (CV) for each ACF watershed is computed 

and compared for both the observational and downscaled datasets (from JVSD as well as 

BCSD). The seasonal watershed CV is the spatial mean of the seasonal coefficient of 

variation. The seasonal CV at a particular grid cell is defined as the ratio of the standard 

deviation of the cell seasonal values to the mean seasonal value. Then, the watershed CV is 

obtained as the spatial mean of all seasonal CVs over all watershed grid cells.  Table 2 shows 

that the JVSD watershed CVs are more representative of the historical CVs than those of 

BCSD, especially for watershed precipitation. It also shows that BCSD underestimates 

precipitation variability within each watershed.  

Lastly, the spatial inter-grid variability is compared for the same three datasets (i.e., 

the observations, JVSD, and BCSD). Several descriptive statistics exist to characterize the 

spatial patterns of gridded data including the covariance matrix (measurement of spatial 

dispersion), mean correlation coefficient (measurement of spatial correlation), and Ripley's K 

and L functions (measurements of spatial homogeneity of point data). Here, this variability is 

compared using the distribution of the pair-wise correlation between any two grid points 

within a watershed (Gissila et al., 2004).  The temperature field (not shown) exhibits high 

grid point correlations (greater than 0.99), indicating that the monthly temperatures are highly 
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homogeneous within each watershed.  Both JVSD and BCSD reproduce this homogeneity. 

However, for reasons explained below in relation to precipitation, in geographic areas where 

the actual temperature field exhibits significant spatial heterogeneity, BCSD would tend to 

over-estimate the inter-grid cross correlations.  

Box-plots of these pair-wise correlation coefficients across the ACF watersheds are 

shown in Figure 16.The historical correlation distributions vary between 0.75 and 0.9.  The 

plots show that the JVSD distributions match very closely the historical statistics, while 

BCSD exhibits a significant bias toward homogeneity.  

Furthermore, Figure 17 compares the spatial precipitation correlation between 

observations, BCSD, and JVSD for four GCMs, various grid cell distances, and months.  

These are correlations of the actual values of a particular cell pair over the 1950 to 1999 

period and month of the year.  The graphs clearly show the BCSD spatial correlation bias.  

For adjacent cells, the BCSD correlation is nearly 1.  Even for pairs at 15 to 20 cell distances 

apart, the spatial correlation continues to be more than 0.9 and exhibits no distinct monthly 

pattern.  In comparison, the spatial correlations of the observations and JVSD values have a 

clear monthly pattern and are consistent.  As already indicated, the reason for this BCSD 

behavior is that the factors used to downscale nearby values are calculated based on upscaled 

information at the same GCM grid cells (using a general inverse distance weighting 

approach).  This process over-estimates the spatial correlation, because the inverse distance 

weights for nearby cells are very similar. 

While this distributional bias is not critical with respect to temperature, 

misrepresenting the spatial precipitation variability is more of a concern, especially if 

hydrologic assessments are based on distributed (or quasi-distributed) watershed models. The 

plots also show that the southern ACF watersheds (i.e., those that are situated below the 

geologic fall line that runs across Georgia) have larger inter-grid precipitation variability than 



22 

the two northern watersheds (Buford and West Point).  A likely reason for this is that 

convective events dominate southern watershed precipitation over a longer season.     

3.2 Comparison with Dynamic Downscaling Methods 

In this section, JVSD and BCSD are compared with the dynamic downscaling methods used 

in the North American Regional Climate Change Assessment Program (NARCCAP).      

High resolution climate scenarios have been produced by NARCCAP using regional 

climate models (RCMs).  The RCMs are nested within coupled Atmospheric-Ocean GCMs 

for the historical period 1971-2000 and for the future period 2041-2070 (NARCCAP, 2010).  

Several RCM/GCM combinations have been run and some of the products are available 

through the ESG (Earth System Grid; http://www.earthsystemgrid.org/) data distribution 

center. In the comparison presented here, results from one typical RCM/GCM combination 

corresponding to the Canadian GCM3 run4 data (cccma_cgcm3_1 sresa2, Run 4) are 

selected.    

As illustrated in Figure 18, the results from CGCM3/SRESA2/RUN4 were 

downscaled using JVSD, BCSD, and CRCM/CGCM3 dynamic methods. The resulting 

precipitation and temperature fields are aggregated over the ACF watersheds, and 

comparisons are made among the aggregated time series.  

It is noted that the CGCM3 experiment provides boundary conditions for the CRCM 

run (Randel, 2007) without any bias correction. Therefore, the downscaled data inherit the 

original GCM biases.  To account for this inconsistency, JVSD was implemented and 

compared with CGCM3 with and without bias correction.  

To facilitate the comparison, the data values are expressed in frequency curve form 

(Figures 19 and 20).  The graphs comprising these figures correspond to the ACF watersheds 

and include four curves corresponding to the dynamically downscaled data (blue line), BCSD 

downscaled data (pink line), JVSD downscaled data without bias correction (cyan line), and 

http://www.earthsystemgrid.org/
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JVSD downscaled data with bias correction (green line).  (BCSD data without bias correction 

is not available.)   The pair-wise statistical differences between these curves were assessed 

using the Kolmogorov-Smirnov test as reported in Table 3.   

First, the results show that there is no significant statistical difference between 

dynamic downscaling (DDS) and JVSD with no bias correction.  This conclusion applies for 

both temperature and precipitation at 0.05 and 0.01 significance.  (The only exception is DDS 

and JVSD precipitation for the George watershed which is marginally different at the 0.05 

significance level, but not at 0.01.)  A plausible explanation for this interesting finding is that 

JVSD generates spatially coherent temperature and precipitation fields for the entire ACF, 

much like a dynamic downscaling scheme also does. Furthermore, temperature and 

precipitation over the ACF geographic region are fairly uniform.  

Second, comparing JVSD with bias correction and DDS indicates that the former is 

significantly different from the latter for both temperature and precipitation at 0.05 and 0.01 

significance levels.  (Buford temperature is the only exception where the two frequency 

distributions cannot be assessed as different at 0.01 significance, but the test statistic is 

marginal.)  This finding combined with the favorable JVSD(BC) comparison with observed 

data (in previous sections) leads to the conclusion that dynamic downscaling without some 

form of bias correction may not be adequate for climate change assessments.  This conclusion 

is corroborated by Wood et al., 2004, who assess the seasonal hydrologic response in the 

Columbia River Basin using dynamically downscaled climate scenarios with and without bias 

correction.   

Third, comparing BCSD and JVSD with bias correction indicates that significant 

precipitation differences exist for all watersheds at the 0.05 significance level, while only 

Buford, West Point, and Woodruff remain clearly significant at the 0.01 level.  Temperature 

distributions, on the other hand, are not found to be statistically different at 0.05 or 0.01, with 
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the exception of Buford.  The statistical differences between JVSD(BC) and BCSD result 

from the several differences between these two methods: joint variable downscaling versus 

marginal distribution downscaling, coherent basin-wide versus individual grid downscaling, 

and different handling of extreme distribution values. 

4. ACF Climate Change Assessments 

This section assesses the ACF precipitation and temperature change implied by the GCM 

scenario runs.  In this regard, monthly temperature and precipitation climatologies of all 13 

GCM A1B scenarios for the seven ACF sub-basins are first shown in Figure 21. All sub-

basins show increasing temperature trends, with higher increases during spring and fall. 

Precipitation is projected to increase during late fall and winter and decrease during spring. 

March precipitation over the Buford watershed is an exception, showing a mild increase.  The 

change direction over the first and second halves of the century is generally similar, with the 

second half experiencing somewhat larger changes.  These observations apply also to the A2 

scenarios (not shown). 

 The previous results provide information on mean monthly trends.  Critical climate 

change impacts, however, are also associated with changes of other distributional statistics 

(e.g., extreme precipitation and temperature values). To assess such changes, Figures 22 and 

23 present monthly box plots of the historical and future precipitation and temperature 

scenarios (A1B and A2) for two ACF watersheds, Buford (at the ACF headwaters) and 

Woodruff-Bainbridge (before the river enters into Florida). In each figure, the historical box-

plots are denoted ―H1 through H12‖ while the two future scenarios are denoted ―FF1 through 

FF12‖ (for the first 50 years of the 21
st
 century) and ―FS1 through FS12‖ (for the second 50 

years). The future box-plots include data from all 13 future scenarios, while the historical 

box-plots include only historical data.  These figures indeed show that climate change 
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impacts are not uniform across the months of the year. More specifically, these figures 

support the following observations: 

(1) Buford Precipitation: Figure 22 shows that mean precipitation increases during December 

through March, decreases during May through August, and remains stable in late spring 

(April and May) and early fall (September and October).  The largest increase occurs in 

March, while the largest decrease occurs in July and August.   

 The upper quartile (UQ) of the monthly precipitation distribution increases during 

December through June, with the largest increase occurring in March and April (exacerbating 

potential flooding impacts).  UQ decreases in October and November. 

 The lower quartile (LQ) of the monthly precipitation distribution increases in January, 

February, and October, and decreases in March through August.  July and August register the 

largest such decrease, raising concerns for summer water availability.            

(2) Buford Temperature: Mean monthly temperature increases in all months of the year with 

the most pronounced increases taking place from January through May and October through 

December. The largest increases, in the range 2 to 2.5 
o
C, are associated with the A2 climate 

scenarios in the second half of this century.   

 Likewise, the monthly upper temperature quartile increases for all months, with 

March and September registering the largest change (of approximately 3 
o
C) for the A2 

scenarios and the second half of the century. 

 The monthly lower temperature quartile also increases for all months, with the largest 

increases noted in February and March (of approximately 2 
o
C).     

 Other temperature statistics of interest have also been computed (e.g., consecutive 

summer days with temperature higher than a certain threshold) and show similar intensifying 

trends.  These are expected to have direct impacts on human communities, agriculture, and 

ecosystems, and comprise the scope of continuing assessments (Georgakakos et al., 2010).    
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(3) Woodruff-Bainbridge Precipitation:  Unlike Buford, the Woodruff-Bainbridge watershed 

does not show any mean precipitation increase in spring, but it does register increases in 

November and December (Figure 23).  Notable decreases occur in February, March, and 

July.   

  The monthly upper mean precipitation quartile increases for all months with the 

largest increase occurring in February through May. The monthly lower mean precipitation 

quartile shows a decreasing trend from January through August, with the most marked 

decline noted in June, July, and August.  On the other hand, LQ is increasing in September, 

October, and December.   

 The A1B and A2 scenarios exhibit similar trends, with the latter somewhat 

exacerbated for the second 50-year period.       

(4) Woodruff-Bainbridge Temperature: All three temperature statistics increase for all 

months of the year, all scenarios, and both 50-year future periods.  The largest mean 

temperature increases occur from January through May and from October through December 

and are in the order of 2.5 – 3 
o
C.  The largest UQ increases are in the order of 3 to 3.5 

o
C and 

occur from January through May and in September.  Lastly, the largest LQ increase (2.5 – 3 

o
C) occurs in February.       

 Thus, the precipitation and temperature changes predicted for Woodruff-Bainbridge 

are similar to those of Buford, raising alarming concerns with respect to summer water 

availability and the impacts of a hotter climate on people, crops, and ecosystems. 

      

5. Conclusions 

This article introduces a new statistical downscaling technique, named Joint Variable Spatial 

Downscaling—JVSD, for the generation of high resolution gridded datasets suitable for 

regional watershed modeling and assessments. JVSD follows the general two-step approach 
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introduced by Wood et al., 2004, as part of the BCSD downscaling method, but it includes 

several distinguishing features including (1) joint downscaling of atmospheric fields; (2) 

identification of a constant pivotal quantity reducing the biases introduced by percentile-to-

percentile mapping; (3) preservation of sub-grid correlations and variability; and (4) physical 

coherence  of the downscaled sequences over the entire region of interest. 

JVSD as well as all other existing statistical downscaling methods assume that the 

spatial pattern of finer scale precipitation and temperature within a large GCM grid and the 

temporal distribution of (daily) precipitation or temperature within a month will remain the 

same.  

Comparisons with observed historical data, BCSD, and dynamic downscaling 

methods are favorable and demonstrate that JVSD has distinct advantages over existing 

methods.  JVSD can also be used to post-process dynamic downscaling results to correct for 

remaining biases.      

Application of the method to the Apalachicola-Chattahoochee-Flint (ACF) river basin 

(for all IPCC GCM scenarios) leads to the following conclusions:  

Mean monthly temperature exhibits increasing trends over the ACF basin for all seasons and 

all A1B and A2 scenarios. Most significant are the A2 temperature increases in the 2050 – 

2099 time periods.  The most pronounced temperature increase is projected to occur in 

winter, spring, and fall. Temperature highs and lows also increase.  In the southern ACF 

watersheds, mean precipitation generally exhibits a mild decline, except in late winter when it 

shows an increase. For the northern ACF watersheds, mean precipitation increases are noted 

in winter (as in the south) but also early spring. In addition to mean trends, the precipitation 

distribution ―stretches‖ with higher highs and lower lows.  It is notable, however, that 

southeast US and ACF precipitation in summer and early fall is impacted by hurricane-

induced tropical storms which are not well represented in the current GCMs.  
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The projected changes are expected to impact human communities, agriculture, and 

the regional ecology.  Such impacts are currently being assessed through a coupled climate-

hydrology-water resources modeling framework (Georgakakos et al., 2010) to be published 

elsewhere.  The assessment presently focuses on impacts relevant to monthly time scales.  

However, assessments for weekly and daily time scales are also planned.                   
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Figure 1: Spatial Resolutions of the Canadian GCM3.1 (blue) and Observational Data Sets (black) over the 

Southeast US 
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Figure 2: Joint Variable Spatial Downscaling (JVSD) Method Flow Chart 

 

 

 

 

 

Historically Observed

Precipitation/Temperature  Fields
on OBS Grid 

GCM Control Run Data 

Precipitation/Temperature Fields 
on GCM Grid 

GCM Future Run Data 

Precipitation/Temperature Fields 
on GCM Grid 

Input

Downscaled Future GCM 

Precipitation/Temperature Fields 
on OBS Grid 

Output

Upscale Historical Time Series 

on GCM Grid

Difference

Observed, GCM Control, and 
GCM Future Time Series

Bias Correction

Correct Biases

for Differenced GCM Future 
Time Series

Reconstruct Bias-Corrected

Future GCM Time Series

Expand Historical Data into 

15, 10, or 5 day Sequences 
until Reconstructed Sequences 

Fall within the Range 

Spatial Downscaling

Within Upscaled 

Monthly Historical Data?

Find the Nearest Historical

Analogues Over the Region 
and Create a Monthly Sequence  

Downscale GCM Future Data on

OBS Grid Using the Historical
Analogue Sequence

Find the Nearest Monthly 

Historical Analogue 
Over the Region of Interest  

Downscale GCM Future Data on 

OBS Grid Based on the 
Historical Analogue

Yes

No

1

2



36 

 

Figure 3: Typical Cumulative Frequency Curves of GCM Simulated and Observed Variables 

 

 

 

 

 

Figure 4: Schematic of Spatial Upscaling, From Observational Scale Grids (OBS) to GCM Scale Grids (GCM); 

Also Shown are the Main Sub-basins of the ACF River Basin 
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Figure 5:  Example of Twelve-Month Differencing of the Original Time Series 

 

 

Figure 6:  Bivariate Empirical Cumulative Frequency Curves for Original (Top) and Differenced (Bottom) 

Time Series of Temperature and Precipitation  
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Figure 7: Joint Frequency Distribution Mapping 
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Figure 8: Comparison between two CDF mapping approaches for the CSIRO-MK3.5 GCM (Australia).  The 

top graph compares the OBS versus the mapped GCM joint CDFs for the nearest neighbor approach in T-P 

space (9 iso-probability contours from 0.1 to 0.9 in 0.1 increments).  The second graph displays the same results 

for the nearest neighbor approach in probability space.                   
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Figure 9: Data Range Expansion Example 
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Figure 10: The Apalachicola-Chattahoochee-Flint (ACF) River System 
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Figure 11: Spatial temperature distributions over the ACF basin and the southeast US. Monthly temperature 

fields are aggregated by season (DJF, MAM, JJA, and SON in rows 1, 2, 3, and 4 respectively).  The columns 

depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using input from the 

20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD downscaled data using input from the 

CGCM3.1-run1 A1B Scenario for the period 01/2000-12/2049 (Column 3); and JVSD downscaled data using 

input from the CGCM3.1-run1A1B Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure 12: Spatial precipitation distributions over the ACF basin and the southeast US. Monthly precipitation 

fields are aggregated by season (DJF, MAM, JJA, and SON in rows 1, 2, 3, and 4 respectively).  The columns 

depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using input from the 

20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD downscaled data using input from the 

CGCM3.1-run1A1B Scenario for the period 01/2000-12/2049 (Column 3); and JVSD downscaled data using 

input from the CGCM3.1-run1 A1B Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure 13: An example of joint CDFs of precipitation and temperature for each watershed and season 

corresponding to OBS and JVSD for Buford watershed from CGCM3.1 model. 
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Figure 14: Joint CDF between precipitation and temperature for Buford  watershed from observation, BCSD 

downscaling (left panel),  and JVSD (right panel). 

 

 

 

Figure 15: Monthly correlation coefficients between precipitation and temperature for Buford; observations 

(red), BCSD (blue), and JVSD (green). 
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Figure 16: Box-plots of the pair-wise correlation coefficients of precipitation across the ACF sub-basins: 

(1)Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6)Albany, and (7) Bainbridge. 
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Figure 17: Spatial Correlation Comparison between Precipitation Observations (red), BCSD (blue), and JVSD 

(green) for four GCMs, various Grid Cell Distances, and Months.  The cell pairs for the first four panels are 

selected from the Buford watershed. The cell pairs in the last two panels include one cell from the Buford 

watershed and a second cell from the West Point watershed.  
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Figure 16: Comparison Process of JVSD with Dynamic Downscaling Methods from the NARCCAP Dataset 

(CRCM/CGCM3) for the Future Period 2041-2070.  
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Figure 18: Comparisons of downscaled precipitation frequencies for ACF watersheds based on NARCCAP 

methods, BCSD, JVSD with no bias correction, and JVSD with bias correction. 
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Figure 19: Comparisons of downscaled temperature frequencies for ACF watersheds based on NARCCAP 

methods, BCSD, JVSD with no bias correction, and JVSD with bias correction.  
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Figure 20: Climatologies of spatially aggregated precipitation and temperature for seven ACF watersheds: (1) 

Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) Albany, and (7) Bainbridge; Lines in 
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Red–Observations (1950-1999); Green–JVSD downscaled (2000- 2049); Blue–JVSD downscaled (2050-2099) 

under A1B Scenarios. 
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Figure 21: Box Plots of Monthly Historical vs. Future (A1B and A2) Watershed Precipitation and Temperature, 

Buford: H denotes the historical period (1950-1999); FF the first future period (2000-2049); and FS the second 

future period (2050-2099). 
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Figure 22: Box Plots of Monthly Historical vs. Future (A1B and A2) Watershed Precipitation and Temperature, 

Woodruff: H denotes the historical period (1950-1999); FF the first future period (2000-2049); and FS the 

second future period (2050-2099). 

 

 

Table 1: General Characteristics of the ACF Sub-basins 

ACF Sub-

basins 

Latitude 

(Centroid) 

Longitude 

(Centroid) 

Area 

(km
2
) 

Mean 

Elevation 

(m) 

Min. 

Elevation 

(m) 

Max. 

Elevation 

(m) 

Buford 34
o
31’ -83

o
48’ 2694 454 320 1250 

West Point 33
o
40’ -84

o
44’ 5189 270 137 455 

George 32
o
20’ -85

o
01’ 4787 143 46 396 

Woodruff 31
o
13’ -84

o
58’ 2141 64 22 167 

Montezuma 32
o
55’ -84

o
24’ 4507 213 85 394 

Albany 32
o
01’ -84

o
11’ 2605 115 53 235 

Bainbridge 31
o
25’ -84

o
24’ 1875 72 23 173 
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Table 2: Watershed coefficient of variability (CV) in seasonal precipitation and temperature for the ACF 

watersheds 

 

Watershed Season 

  

Precipitation 

  

  

Temperature 

  

   OBS  JVSD BCSD OBS JVSD BCSD 

Buford DJF 0.447 0.449 0.358 0.514 0.465 0.511 

 MAM 0.510 0.515 0.379 0.191 0.198 0.188 

 JJA 0.561 0.546 0.388 0.090 0.146 0.087 

 SON 0.553 0.561 0.456 0.442 0.432 0.440 

West Point DJF 0.446 0.453 0.389 0.379 0.344 0.389 

 MAM 0.534 0.531 0.442 0.169 0.176 0.442 

 JJA 0.524 0.506 0.422 0.078 0.129 0.422 

 SON 0.612 0.616 0.544 0.358 0.345 0.544 

George DJF 0.455 0.467 0.411 0.298 0.270 0.411 

 MAM 0.552 0.538 0.464 0.153 0.159 0.464 

 JJA 0.556 0.525 0.438 0.064 0.112 0.438 

 SON 0.689 0.703 0.592 0.301 0.289 0.592 

Woodruff DJF 0.474 0.463 0.432 0.260 0.244 0.251 

 MAM 0.577 0.533 0.493 0.138 0.140 0.136 

 JJA 0.539 0.497 0.439 0.054 0.096 0.053 

 SON 0.692 0.686 0.616 0.267 0.258 0.263 

Montezuma DJF 0.461 0.479 0.396 0.329 0.304 0.329 

 MAM 0.526 0.522 0.442 0.159 0.166 0.158 

 JJA 0.569 0.539 0.425 0.073 0.122 0.071 

 SON 0.645 0.660 0.425 0.327 0.316 0.326 

Bainbridge DJF 0.486 0.480 0.561 0.274 0.251 0.268 

 MAM 0.553 0.530 0.422 0.142 0.147 0.141 

 JJA 0.547 0.496 0.467 0.059 0.106 0.056 



56 

  SON 0.708 0.703 0.596 0.279 0.269 0.277 
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Table 3: Evaluation of statistical differences among BCSD, JVSD(bias corrected), JVSD, and dynamic 

downscaling (DDS); ACF precipitation and temperature; ―DIFF‖ denotes statistical difference and ―-― denotes 

no statistical difference. Number of data values N=384. 
 

K-S Test Statistic =
1 2max | ( ) ( ) |

x
F x F x  

Precipitation               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS 0.0599 0.0599 0.1094 0.0625 0.0547 0.0859 0.0859 

JVSD(BC)-DDS 0.1224 0.1276 0.1589 0.1432 0.1615 0.1406 0.1458 

BCSD-JVSD(BC) 0.1484 0.1294 0.1190 0.1124 0.1164 0.1192 0.1246 

Temperature               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS 0.0703 0.0651 0.0729 0.0781 0.0703 0.0755 0.0651 

JVSD(BC)-DDS 0.1146 0.1328 0.1328 0.1380 0.1406 0.1510 0.1380 

BCSD-JVSD(BC) 0.1216 0.1068 0.0807 0.1016 0.0703 0.0755 0.0625 

Significant level 0.05 (K0.05 =
1
2

1 1 1
[ ( ) ln( )]

2 2N N
 0.098) 

Precipitation               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS - - DIFF - - - - 

JVSD(BC)-DDS DIFF DIFF DIFF DIFF DIFF DIFF DIFF 

BCSD-JVSD(BC) DIFF DIFF DIFF DIFF DIFF DIFF DIFF 

Temperature               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS - - - - - - - 

JVSD(BC)-DDS DIFF DIFF DIFF DIFF DIFF DIFF DIFF 

BCSD-JVSD(BC) DIFF DIFF - DIFF - - - 

Significant level 0.01 (K0.01 = 
1
2

1 1 1
[ ( ) ln( )]

2 2N N
0.117) 

Precipitation               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS - - - - - - - 

JVSD(BC)-DDS DIFF DIFF DIFF DIFF DIFF DIFF DIFF 

BCSD-JVSD(BC) DIFF DIFF DIFF - - DIFF DIFF 

Temperature               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS - - - - - - - 

JVSD(BC)-DDS - DIFF DIFF DIFF DIFF DIFF DIFF 

BCSD-JVSD(BC) DIFF - - - - - - 
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