VS2DH Version 3.3

Data Input Formats

Line	Variable	Description
	[Line group	A read by SETUP]
A-1	TITL	80-character problem description
		(formatted read, 20A4).
A-2	TMAX	Maximum simulation time.
	STIM	Initial time (usually set to 0).
	ANG	Angle by which grid is to be tilted
		(Must be between -90 and +90 degrees,
		ANG = 0 for no tilting, see Healy (1990)
		for further discussion), degrees.
A-3	ZUNIT	Units used for length (A4), "m" for meters.
	TUNIT	Units used for time (A4), "sec" for seconds
	CUNX	Units used for heat (A4), "J" for
		Joules.
Note: Line A-3 9-12, respective		he unit designations must occur in columns 1-4, 5-8,
A-4	NXR	Number of cells in horizontal or radial
		direction.
	NLY	Number of cells in vertical direction.
A-5	NRECH	Number of recharge periods. (NOTE: set
		NRECH to a negative number (-1 times
		actual number of recharge periods) to
		output binary values of head and
		concentration at selected observation
		times to file fort.12. Selecting this option
		allows the simulation to be restarted at
		any observation time; however, it may
		require a large amount of disk storage
		space.)
	NUMT	Maximum number of time steps. (NOTE: if
		enhanced precision in print out to file 9
		and file 11 is desired set NUMT equal to
		a negative number. That is, multiply actua
		maximum number of time steps by $-1)^{l}$
A-6	RAD	Logical variable = T if radial coordinates
		are used; otherwise = F .

¹A note on output file names: in these instructions, files are referred to as "file n" where n may be 6, 7, 8, 9, or 11 and refers to Fortran unit numbers associated with output statements within the pro-

gram. Actual file names are assigned by the user within the namelist file. The first line in that file gives the data input file for which these instructions apply (commonly vs2dh.dat); lines 2 through 6 of the namelist file list names for file 6, file 7, file 8, file 9, and file11.

File 6 is the main output file (commonly named vs2dh.out). File 7 is an auxiliary file that is currently unused. File 8 contains pressure heads and temperatures for all nodes in the model grid at selected observation times (variables.out). File 9 lists selected mass balance components at all or selected times (balance.out). File 11 contains heads, moisture content, saturations, and temperatures at selected observation points for all or selected times (obsPoints.out). Line A-6A is present only if TRANS = T.

Line	Variable	Description
A-6	ITSTOP	Logical variable = T if simulation is to terminate after ITMAX iterations in one time step; otherwise = F.
	TRANS	Logical variable = T if energy transport is to be simulated.
A-6A	CIS	Logical variable = T if centered-in-space differencing is to be used; = F if backward-in-space differencing is to be used for transport equation.
	CIT	Logical variable = T if centered-in-time differencing is to be used; = F if backward-in-time or fully implicit differencing is to be used.
A-7	F11P	Logical variable = T if temperature, head, moisture content, and saturation at selected observation points are to be written to file 11 at end of each time step; otherwise = F
	F7P	Logical variable = T if fluxes through selected boundary faces are output to file07.out for each time step. Boundary faces are specified on input lines B-26 to B-28; otherwise = F.
	F8P	Logical variable = T if output of pressure heads (and temperatures if TRANS = T) to file 8 is desired at selected observation times; otherwise = F.
	F9P	Logical variable = T if one-line mass balance summary for each time step is to be written to file 9; otherwise = F.
	F6P	Logical variable = T if mass balance is to be written to file 6 for each time step; = F if mass balance is to be written to file 6 only at observation times and ends of recharge periods.

A-8	THPT	Logical variable = T if volumetric moisture contents are to be written to file 6;
	SPNT	otherwise = F . Logical variable = T if saturations are to be
	PPNT	written to file 6; otherwise = F. Logical variable = T if pressure heads are to
	HPNT	be written to file 6; otherwise F. Logical variable = T if total heads are to be written to file 6; otherwise = F.
	VPNT	Logical variable = T if velocities are to be written to file 6; otherwise =F.
Line	Variable	Description
A-9	IFAC	 = 0 if grid spacing in horizontal (or radial) direction is to be read in for each column and multiplied by FACX. = 1 if all horizontal grid spacing is to be constant and equal to FACX. = 2 if horizontal grid spacing is variable, with spacing for the first two columns equal to FACX and the spacing for each subsequent column equal to XMULT times the spacing of the previous column, until the spacing becomes constant at XMAX. Constant grid spacing in horizontal (or radial) direction (if IFAC=1); constant multiplier for all spacing (if IFAC=2), L.
Line set A-10 is pr If IFAC = 0 ,	esent if IFAC = 0 or 2 .	
A-10	DXR	Grid spacing in horizontal or radial direction. Number of entries must equal NXR, L.
If IFAC = 2, A-10	XMULT	Multiplier by which the width of each cell is increased from that of the previous cell.
	XMAX	Maximum allowed horizontal or radial spacing, L.
A-11	JFAC	 = 0 if grid spacing in vertical direction is to be read in for each row and multiplied by FACZ. = 1 if all vertical grid spacing is to be constant and equal to FACZ. = 2 if vertical grid spacing is variable,

with spacing for the first two rows equ	ıal
to FACZ and the spacing for each	
subsequent row equal to ZMULT time	S
the spacing at the previous row, until	
spacing equals ZMAX, whereupon spa	acing
becomes constant at ZMAX.	
Constant grid spacing in vertical direction	on
(if JFAC=1); constant multiplier for al	1
spacing (if JFAC=0); or initial vertical	[
spacing (if JFAC=2), L.	

Line	Variable	Description
1	esent only if $JFAC = 0$ or 2.	
If JFAC = 0 , A-12	DELZ	Grid spacing in vertical direction; number of entries must equal NLY, L.
If JFAC = 2 ,		1 <i>7</i>
A-12	ZMULT	Multiplier by which each cell is increased from that of previous cell.
	ZMAX	Maximum allowed vertical spacing, L.
	A-14 are present only if $F8P = 7$	
A-13	NPLT	Number of time steps to write pressure Heads and temperatures to file 8 and heads, temperatures, saturations, moisture contents, and/or velocities to file 6.
A-14	PLTIM	Elapsed times at which pressure heads and temperatures are to be written to file 8, and heads, temperatures, saturations, veloci ties, and/or moisture contents to file 6, T.
Line sets A-15 to A	A-16 are present only if F11P =	T.
A-15	NOBS	Number of observation points for which heads, temperatures, moisture contents, and saturations are to be written to file 11. (NOTE: Set NOBS equal to a negative number {-1 times number of observation points} if output to file 11 is desired only at selected output times rather than at each time step.
A-16	J,N	Row and column of observation points. A double entry is required for each observation point, resulting in 2xNOBS values. No comments allowed.
Lines A-17 and A-	18 are present only if $F9P = T$.	

FACZ

A-17	NMB9	Total number of mass balance components written to file 9.Must be less than 73. (NOTE: Set NMB9 equal to a negative number {-1 times number of components} if output to file 9 is desired only at selected output times rather than at each time step.
A-18	MB9	The index number of each mass balance component to be written to file 9. (See table 7, from p. 66, in Healy (1990) listed at end of these instructions.
Line	Variable	Description
	[Line group B read	by subroutine VSREAD]
B-1	EPS	Head closure criterion for iterative solution of flow equation, L.
	HMAX	Relaxation parameter for iterative solution. See discussion in Lappala and others (1987) for more detail. Value is generally in the range of 0.4 to 1.2.
	WUS	Weighting option for intercell relative hydraulic conductivity: WUS = 1 for full upstream weighting. WUS = 0.5 for arithmetic mean. WUS = 0.0 for geometric mean.
	EPS1	Temperature closure criterion for iterative solution of transport equation, °C.
	EPS2	Velocity closure criterion for outer iteration loop at each time step, L/T.
B-3	MINIT	Minimum number of iterations per time step.
	ITMAX	Maximum number of iterations per time step.
B-4	PHRD	Logical variable = T if initial conditions are read in as pressure heads; = F if initial conditions are read in as moisture contents.
B-5	NTEX	Number of textural classes or lithologies having different values of hydraulic conductivity, specific storage, and/or constants in the functional relations among pressure head, relative conductivity, and moisture content, must be less than 11.
	NPROP	Number of flow properties to be read in for each textural class. When using Brooks

	and Corey, van Genuchten or Rossi-
	Nimmo functions, set
	NPROP = 6; when using Haverkamp
	functions, set NPROP =8. When using
	tabulated data, set NPROP = 6 plus
	number of data points in table. [For
	example, if the number of pressure heads
	in the table is equal to N1, then set
	NPROP=3*(N1+1)+3]
NPROP1	Number of transport properties to be read in
	for each textural class. For VS2DH set
	NPROP1 = 6.

Line	Variable	Description
B-5A	HFT	Hydraulic function type, 0 for Brooks-
		Corey; 1 for van Genuchten; 2 for
		Haverkamp; 3 for tabular data; and 4 for
		Rossi-Nimmo.
Line sets B-6	, B-7, and B-7A must be repeat	ted NTEX times
B-6	ITEX	Index to textural class.
B-7	ANIZ(ITEX)	Ratio of hydraulic conductivity in the z-coordinate direction to that in the x-coordinate direction for textural class ITEX.
	HK(ITEX,1)	Saturated hydraulic conductivity (K) at 20 °C in the x-coordinate direction for class ITEX, L/T.
	HK(ITEX,2)	Specific storage (S_s) for class ITEX, L^{-1} .
	HK(ITEX,3)	Porosity (f) for class ITEX.

Definitions for the remaining sequential values on this line are dependent upon which functional relation is selected to represent the nonlinear coefficients. Five different functional relations are allowed: (0) Brooks and Corey, (1) van Genuchten, (2) Haverkamp, (3) tabular data, and (4) Rossi-Nimmo. In the following descriptions, definitions for the different functional relations are indexed by the above numbers. For tabular data, all pressure heads are input first (in decreasing order from the largest to the smallest), all relative hydraulic conductivities are then input in the same order, followed by all moisture contents. See Healy (1990) and Lappala and others (1987) for additional details.

HK(ITEX,4)

- (0) h_b , Brooks-Corey bubbling pressure head (must be less than 0), L.
- (1) α , van Genuchten alpha. NOTE: α is as defined by van Genuchten (1980) and is the negative reciprocal of α ' used in earlier versions (prior to version 3.0) of VS2DT, L.
- (2) A', Haverkamp parameter (must be less than 0.0), L.
- (3) Largest pressure head in table.

	(4) Ψ_0 , Rossi-Nimmo parameter.			
HK(ITEX,5)	(0) Residual moisture content (θ_r)) Residual moisture content (θ_r).		
	(1) Residual moisture content (θ_r)).		
	(2) Residual moisture content (θ_r)).		
	(3) Second largest pressure head			
	(4) Ψ_D , Rossi-Nimmo parameter.			
HK(ITEX,6)	(0) λ , Brooks-Corey pore-size dis	stribution index.		
	(1) n, van Genuchten parameter, others (1987).	B' in Healy (1990) and Lappala and		
	(2) B', Haverkamp parameter.			
	(3) Third largest pressure head in	table.		
	(4) λ , Rossi-Nimmo parameter.			
HK(ITEX,7)	(0) Not used.	· · · · · · · · · · · · · · · · · · ·		
	(1) Not used.			
	(2) α , Haverkamp parameter (mu	st be less than 0.0), L.		
	(3) Fourth largest pressure head in			
Line	Variable	Description		
	(4) Not used.			
HK(ITEX,8)	(0) Not used.			
	(1) Not used.			
	(2) β , Haverkamp parameter.			
	(3) Fifth largest pressure head in	table.		
	(4) Not used			

(4) Not used.

For functional relations (0), (1), (2), and (4) no further values are required on this line for this textural class. For tabular data (3), data input continues as follows:

HK(ITEX,9)	Next largest pressure head in table.
HK(ITEX,N1+3)	Minimum pressure head in table.
	Here N1 = Number of pressure heads in table; NPROP = $3*(N1+1)+3$).
HK(ITEX,N1+4)	Always input a value of 99.
HK(ITEX,N1+5)	Relative hydraulic conductivity corresponding to first pressure head.
HK(ITEX,N1+6)	Relative hydraulic conductivity corresponding to second pressure head.
•	
•	
•	
HK(ITEX,2*N1+4)	Relative hydraulic conductivity corresponding to smallest pressure head.
HK(ITEX,2*N1+5)	Always input a value of 99.
HK(ITEX,2*N1+6)	Moisture content corresponding to first pressure head.
HK(ITEX,2*N1+7)	Moisture content corresponding to second pressure head.
HK(ITEX,3*N1+5)	Moisture content corresponding to smallest pressure head.
. , .	Always input a value of 99.

Regardless of which functional relation is selected there must be NPROP+1 values on line B-7.

Line B-7A is present	z only if TRANS = T.	
B-7A	HT(ITEX,1)	Longitudinal dispersivity (α_L), L.
	HT(ITEX,2)	Transverse dispersivity (α_T), L.
	HT(ITEX,5)	Heat capacity of dry solids (C_s), Q/L ³ °C.
	HT(ITEX,9)	Thermal conductivity of water- sediment at residual moisture content, $K_T(\theta_r)$, Q/LT°C.
	HT(ITEX,10)	Thermal conductivity of water- sediment at full saturation, $K_T(\phi)$, Q/L°C.
	HT(ITEX,11)	Heat capacity of water (C_w), which is the product of density times specific heat of water, Q/L ³ °C.

Line	Variable	Description
B-8	IROW	If IROW = 0, textural classes are read for each row. This option is preferable if many rows differ from the others. If IROW = 1, textural classes are read in by blocks of rows, each block consisting of all the rows in sequence consisting of uniform properties or uniform properties separated by vertical interface.
Line set B-9 i	is present only if $IROW = 0$	
B-9	JTEX	Indices (ITEX) for textural class for each node, read in row by row. There must be NLY*NXR entries.
Line set B-10	is present only if IROW =	1.
As many grou	ups of B-10 variables as are	needed to completely cover the grid are required. The have $IR = NXR$ and $JBT = NLY$.
B-10	IL	Left hand column for which texture class applies. Must equal 1 or IR (from previous line set)+1.
	IR	Right hand column for which texture class applies. Final IR for sequence of rows must equal NXR.
	JBT	Bottom row of all rows for which the column designations apply. JBT must not

Line	Variable	Description
		A-2).
		simulation beginning at time STIM (line
		file fort.13 for continuation of a previous
		concentrations are read unformatted from
		HMIN. If IREAD=3 initial heads and
		all pressure heads above this are set to
		until a pressure head of HMIN is reached.
		free-water surface at a depth of DWTX
		an equilibrium profile is specified above a
		FACTOR. If IREAD = 2 initial conditions are defined in terms of pressure head, and
		user-designated format and multiplied by $EACTOP$. If $IPEAD = 2$ initial can difference
		initial conditions are read from file IU in
		equal to FACTOR. If $IREAD = 1$, all
		determined by the value of PHRD are set
		of pressure head or moisture content as
B-11	IREAD	If IREAD = 0 , all initial conditions in terms
	-	aterial. One line will represent the set for this example.
Note: As an e	example, for a column of unifo	orm material: $IL = 1$, $IR = NXR$, $JBT = NLY$, and JRD
	JRD	Texture class within block.
		value until $IR = NXR$.
		be increased from its initial or previous

Line	Variable	Description
B-11	FACTOR	Multiplier or constant value, depending on value of IREAD, for initial conditions.
Line B-12 is	present only if IREAD = 2 ,	
B-12	DWTX	Depth to free-water surface above which an equilibrium profile is computed, L.
	HMIN	Minimum pressure head to limit height of equilibrium profile, L. Must be negative.
Line B-13 is 1	read only if IREAD =1,	
B-13	IU	Unit number from which initial head or moisture content values are to be read.
	IFMT	Format to be used in reading initial values from unit IU. Must be enclosed in quotation marks, for example '(10X,E10.3)'.
B-14	BCIT	Logical variable = T if evaporation is to be simulated at any time during the simulation; otherwise = F.
	ETSIM	Logical variable = T if evapotranspiration (plant-root extraction) is to be simulated at any time during the simulation.

Note: The reader is cautioned on the use of evaporation and evapotranspiration in VS2DH. These processes can influence and be influenced by soil temperature. As described in Lappala and others (1987) and implemented inVS2DH, these processes are simplistically assumed to be isothermal. Users should evaluate the ramifications of this assumption in their applications. If these processes are an integral component of an application, then use of another numerical model that treats evaporation and evapotranspiration in a more realistic fashion may be warranted.

Line B-15 is pres	sent only if BCIT = T or ETSIM =	= 1.
B-15	NPV	Number of ET periods to be simulated.
		NPV values for each variable required
		for the evaporation and/or
		evapotranspiration options must be entered
		on the following lines. If ET variables are
		held constant throughout the simulation
		code, NPV = 1.
	ETCYC	Length of each ET period, T.
Line B-16 to B-1	8 are present only if $BCIT = T$.	
B-16	PEVAL	Potential evaporation rate (PEV) at
		beginning of each ET period. Number of
		entries must equal NPV, L/T.

To conform with the sign convention used in most existing equations for potential evaporation, all entries must be greater than or equal to 0. The program multiplies all nonzero entries by -1 so that the evaporative flux is treated as a sink rather than a source.

Line	Variable	Description
B-17	RDC(1,J)	Surface resistance to evaporation (SRES) at beginning of ET period, L ⁻¹ . For a uniform soil, SRES is equal to the reciprocal of the distance from the top active node to land surface, or 2/DELZ(2). If a surface crust is present, SRES may be decreased to account for the added resistance to water movement through the crust. Number of entries must equal NPV.
B-18	RDC(2,J)	Pressure potential of the atmosphere (HA) at beginning of each ET period; may be estimated using equation 6 of Lappala and others (1987), L. Number of entries must equal NPV.
Lines B-19	to B-23 are present only if $ETSIM = T$.	
B-19	PTVAL	Potential evapotranspiration rate (PET) at beginning of each ET period, L/T. Number of entries must equal NPV. As with PEV, all values must be greater than or equal to 0.
B-20	RDC(3,J)	Rooting depth at beginning of each ET

		period, L. Number of entries must equal NPV.
B-21	RDC(4,J)	Root activity at base of root zone at
		beginning of each ET period, L^{-2} .
		Number of entries must equal NPV.
B-22	RDC (5 , J)	Root activity at top of root zone at beginning
		of each ET period, L^{-2} . Number of entries
		must equal NPV.

Note: Values for root activity generally are determined empirically, but typically range from 0 to $3x10^4$ m/m³. As programmed, root activity varies linearly from land surface to the base of the root zone, and its distribution with depth at any time is represented by a trapezoid. In general, root activities will be greater at land surface than at the base of the root zone. B-23 RDC(6,J) Pressure head in roots (HROOT) at beginning of each ET period, L. Number of entries must equal NPV. Lines B-24 and B-25 are present only if TRANS = T and if IREAD on line B-11 is not equal to 3. B-24 IREAD If IREAD If IREAD If IREAD = 0, all initial temperatures are set equal to FACTOR. If READ = 1, all initial temperatures are read from file IU in user

designated format and multiplied by

FACTOR.

Line	Variable	Description
B-24	FACTOR	Multiplier or constant value, depending on value of IREAD, for initial temperatures.
Line B-25 is	present only if IREAD = 1 .	
B-25	IU	Unit number from which initial temperatures are to be read.
	IFMT	Format to be used in reading initial temperature values from unit IU. Must be enclosed in quotation marks, for example
		(10X, E10.3)'.
	B-28 are present only if F7P =	
B-26	NUMBF	Number of boundary faces for which fluxes will be calculated and output to file file07.out.
	MAXCELLS	Maximum number of cells on any boundary face.
Lines B-27 ar	nd B-28 must be repeated NUM	IBF times.
B-27	IDBF	Boundary face identifier (integer).
	NUMCELLS	Number of finite difference cells on this boundary face.
B-28	J,N	Row and column number of each cell on this boundary face. (NOTE: Line B-28 must be repeated

NUMCELLS times for each boundary face.)

[Line group C read by subroutine VSTMER, NRECH sets of C lines are required]

C-1	TPER DELT	Length of this recharge period, T.
C-2	TMLT DLTMX DLTMIN TRED	Length of initial time step for this period, T. Multiplier for time step length. Maximum allowed length of time step, T. Minimum allowed length of time step, T. Factor by which time-step length is reduced if convergence is not obtained in ITMAX iterations. Values usually should be in the range 0.1 to 0.5. If no reduction of time-step length is desired, input a value of 0.0.
C-3	DSMAX	Maximum allowed change in head per time step for this period, L.
	STERR	Steady-state head criterion; when the maximum change in head between successive time steps is less than STERR, the program assumes that steady state has been reached for this period and advances to next recharge period, L.
C-4	POND	Maximum allowed height of ponded water for constant flux nodes. See Lappala and other (1987) for detailed discussion of POND, L.
C-5	PRNT	Logical variable = T if heads, temperature, moisture contents, and/or saturations are to be printed to file 6 after each time step; = F if they are to be written to file 6 only at observation times and ends of recharge periods.
C-6	BCIT	Logical variable = T if evaporation is to be simulated for this recharge period; otherwise = F.
Line	Variable	Description
C-6	ETSIM	Logical variable = T if evapotranspiration (plant-root extraction) is to be simulated for this recharge period; otherwise = F.
	SEEP	Logical variable = T if seepage faces are to be simulated for this recharge period; otherwise = F.

C-7 to C-9 cards are present only if SEEP = T,

C-7 NFCS Number of possible seepage faces. Line sets C-8 and C-9 must be repeated NFCS times. C-8 Number of nodes on the possible seepage JJ face. **JLAST** Number of the node which initially represents the highest node of the seep; value can range from 0 (bottom of the face) up to JJ (top of the face). C-9 J,N Row and column of each cell on possible seepage face, in order from the lowest to the highest elevation; JJ pairs of values are required. C-10 **IBC** Code for reading in boundary conditions by individual node (IBC=0) or by row or column (IBC=1). Only one code may be used for each recharge period, and all boundary conditions for period must be input in the sequence for that code. Line set C-11 is read only if IBC = 0. One line is required for each node for which new boundary conditions are specified. C-11 IJ Row number of node. NN Column number of node. Node type identifier for boundary NTX conditions. = 0 for no specified boundary (needed for resetting some nodes after initial recharge period); = 1 for specified pressure head; = 2 for specified flux per unit horizontal surface area in units of L/T; = 3 for possible seepage face; = 4 for specified total head; = 5 for evaporation; = 6 for specified volumetric flow in units of L^3/T . = 7 for gravity drain. (The gravity drain boundary condition allows gravity driven vertical fow out of the domain assuming a

Line	Variable	Description
C-11	PFDUM	Specified head for $NTX = 1$ or 4 or specified
		flux for NTX = 2 or 6. If codes $0, 3, 5, \text{ or } 7$

unit vertical hydraulic gradient. Flow into

the domain cannot occur.)

	are specified, the line should contain a
	dummy value for PFDUM or should be
	terminated after NTX by a blank and a
	slash (/).
NTC	Node type identifier for transport boundary conditions.
	= 0 for no specified boundary;
	= 1 for specified temperatures;
CF	Specified temperature for $NTC = 1$ or NTX
	= 1, 2, 4, 6, or 7. Present only if
	TRANS = T.

C-12 is present only if IBC = 1. One line should be present for each row or column for which new boundary conditions are specified, C-12 JJT Top node of row or column of nodes sharing

C-12	JJT	Top node of row or column of nodes sharing same boundary condition.
	JJB	Bottom node of row or column of nodes having same boundary condition. Will equal JJT if a boundary row is being read.
	NNL	Left column in row or column of nodes having same boundary condition.
	NNR	Right column of row or column of nodes having same boundary condition. Will equal NNL if a boundary column is being read in.
	NTX	Same as line C-11.
	PFDUM	Same as line C-11.
	NTC	Same as line C-11.
	CF	Same as line C-11.
C-13	for each recharge period	period. Must be included after line C-12 data I. Two C-13 lines must be included after final ust always be entered as -9999999 /.

Table 7.--Index of Mass-Balance Components for Output to File 9

Index

Nun	nber Component
1	Flow in across specified head boundaries
2	Flow in across specified head boundaries
3	Flow in across specified head boundaries
4	Flow out across specified head boundaries
5	Flow out across specified head boundaries
6	Flow out across specified head boundaries
7	Flow in across specified flux boundaries

- 7 Flow in across specified flux boundaries8 Flow in across specified flux boundaries
- 9 Flow in across specified flux boundaries
- 10 Flow out across specified flux boundaries
- 11 Flow out across specified flux boundaries
- 12 Flow out across specified flux boundaries
- 13 Total flow in
- 14 Total flow in
- 15 Total flow in
- 16 Total flow out
- 17 Total flow out
- 18 Total flow out
- 19 Evaporation
- 20 Evaporation
- 21 Evaporation
- 22 Transpiration
- 23 Transpiration
- 24 Transpiration
- 25 Evaporation + Transpiration
- 26 Evaporation + Transpiration
- 27 Evaporation + Transpiration
- 28 Change in fluid stored in domain
- 29 Change in fluid stored in domain
- 30 Change in fluid stored in domain
- 31 Fluid volumetric balance
- 32 Fluid volumetric balance
- 33 Fluid volumetric balance
- 34 Energy flux in across specified pressure head boundaries
- 35 Energy flux in across specified pressure head boundaries
- 36 Energy flux in across specified pressure head boundaries
- 37 Energy flux out across specified pressure head boundaries
- 38 Energy flux out across specified pressure head boundaries
- 39 Energy flux out across specified pressure head boundaries

-total for simulation -total for time step -rate for time step -total for simulation -total for time step -rate for time step

-total for simulation -total for time step -rate for time step -total for simulation -total for time step -rate for time step

-total for simulation -total for time step -rate for time step -total for simulation -total for time step -rate for time step

-total for simulation -total for time step -rate for time step -total for simulation -total for time step -rate for time step

-total for simulation -total for time step -rate for time step -total for simulation -total for time step -rate for time step

-total for simulation -total for time step -rate for time step

-total for simulation -total for time step -rate for time step -total for simulation -total for time step -rate for time step

- 40 Energy flux in across specified flux boundaries
- 41 Energy flux in across specified flux boundaries
- 42 Energy flux in across specified flux boundaries
- 43 Energy flux out across specified flux boundaries
- 44 Energy flux out across specified flux boundaries
- 45 Energy flux out across specified flux boundaries
- 46 Conductive/Dispersive flux in across specified flux boundaries
- 47 Conductive/Dispersive flux in across specified flux boundaries
- 48 Conductive/Dispersive flux in across specified flux boundaries
- 49 Conductive/Dispersive flux out across specified flux boundaries
- 50 Conductive/Dispersive flux out across specified flux boundaries
- 51 Conductive/Dispersive flux out across specified flux boundaries
- 52 Total Energy flux in
- 53 Total Energy flux in
- 54 Total Energy flux in
- 55 Total Energy flux out
- 56 Total Energy flux out
- 57 Total Energy flux out
- 58 Energy flux out through evapotranspiration
- 59 Energy flux out through evapotranspiration
- 60 Energy flux out through evapotranspiration
- 67 Change in Energy stored in domain
- 68 Change in Energy stored in domain
- 69 Change in Energy stored in domain
- 70 Energy balance
- 71 Energy balance
- 72 Energy balance

-total for simulation -total for time step -rate for time step -total for simulation -total for time step -rate for time step

-total for simulation -total for time step -rate for time step -total for simulation -total for time step -rate for time step

-total for simulation -total for time step -rate for time step -total for simulation -total for time step -rate for time step

-total for simulation -total for time step -rate for time step

-total for simulation -total for time step -rate for time step

-total for simulation -total for time step -rate for time step