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INTRODUCTION
In regional hydrologic regression we want to relate aflow characteristic, such as the 50-year peak or 7-

day 10-year low flow, to basin characteristics that can be readily determined at an ungaged site. The
purpose of the regression is usually to predict the flow characteristic at an ungaged site. The chart below

gives agenera idea of the steps needed to arrive at afinal model.

Input data: Observed flow and basin characteristics

at n sitesin aregion.

Exploratory data analysis. Look for obviousdata errors,
possible transformations of variables, identify outliers, identify
subregionsto analyze separ ately, identify possible explanatory

variables.

Variable selection: Use an all possible variables selection
techniqueto identify a few good candidates for the final

eguation.

Use GL Sregression to compute coefficients for final model.
(GLSNET). Report resultsand error analysis and
network analysisfor future data collection needs.
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Purpose and Scope

The purpose of this document isto provide guidelines and examples of how to create a Watershed Data
Management (WMD) file containing the necessary datato do aregional regression of aflow characteristic
with basin characteristics and how to use GLSNET to perform aregional regression using the generalized-
least squares method described in Tasker and Stedinger (1989). The next section describes how to create a
Watershed Data Management (WDM) filefor GLSNET. It isfollowed by asection that describesthe GLS
regression procedure. Finally, the procedure for analyzing the network for future data collection is
described. Thus this document deals with the first and last box of the above chart. The second and third
boxes of the chart can be approached using other software such as STATIT, SAS, or MINITAB.

DATA MANAGEMENT FOR GENERALIZED LEAST SQUARES (GLS)

WDM Files

A WMD fileis used to store and manage the data required for the GLS analysis. The program
IOWDM (Input and/or Output for aWDM file) is used to store basin characteristics, n-day high- and low-
flow annual time series, and time series or tables of annual peak flows. The program ANNIE is used to
add or modify basin characteristics, add or modify time-series data, and modify table data. The ANNIE
program is also used to examine the contents of aWDM file. The ANNEX option inthe GLSNET
program is used to compute low flows at partial-record sites.

A WDM fileisabinary, unformatted, direct-accessfile. It cannot be examined using atext editor. If
thefileis opened by an editor, it will be corrupted if it is saved or filed. Some editors will corrupt the file
even when thefileis not saved or filed. It isrecommended that the suffix wdm be used in naming WDM
files to make them easy to identify.

Datain aWDM file are arranged in data sets. A WDM file may contain asingle data set or as many as
32,000 data sets. A data set contains a collection of data values, such as the annual time series of 7-day
low flows at a station and selected attributes describing basin characteristics of the station and time series.
There are over 300 attributes that can be used to describe a data set. See Appendix B, table B.1 for a
detailed description of the available attributes and table B.2 for the relationship between WATSTORE
basin and streamflow characteristics and WDM attributes.

Table 1 contains asummary of the stepsfor identifying and preparing the datafor a GLSNET analysis.
Thefirst step isto identify the data needs. What are the boundaries of the study area? Which stations are
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reguired and which can be ignored? Which basin characteristics are required, and which basin

characteristics may be important?

Table 1. Steps in identifying and preparing data
for GLSNET

1. Identify data needs
« areaor region of interest
e annual peaks
« annual high and/or low flows
* basin characteristics and attributes
2. Acquire data
 USe aconsistent naming convention
« WATSTORE
« NWIS
* other
3. UselOWDM
* build WDM file
* input data
4. UseANNIE
add additional attributes
list and plot attributes to examine and verify
list and plot time series to examine and verify
modify data as required

Identifying and Preparing Data for GLSNET

Step 2 isto acquire the data that has been identified. Using a consistent and descriptive naming
convention will simplify the task of file management. Appendix C contains descriptions of the data
formats that will be processed by IOWDM. Appendix D contains example Job Control Language (JCL)
for retrieving data from the WATSTORE data base.

Input to a WDM File Using IOWDM

Step 3isto use IOWDM to build the WDM file and enter the data. All of the stations to be analyzed
by GLSNET will be stored in asingle WDM file. Figure 1 contains an example of building aWDM file
and adding basin characteristics and 7-day low flows to thefile.

Adding Attributes Using ANNIE

Step 4 inidentifying and preparing datafor GLSNET isto use ANNIE to add any additional attributes
that may beimportant to the data sets. Figure 2 contains an example of adding the characteristic percent of

basin underline by Devonian to the data sets as attribute UBC024.

GLS Manual 4 DRAFT



Using ANNEX to Compute Low Flows at Partial-record Sites
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Figure 1. Example of building a WDM file and adding basin characteristics and 7-day low flows using IOWDM.

# screen

1 Opening screen (File)

No data sets
X First data set

All data sets
X New

Fi nd

Exi sti ng
X Ti nme

Tabl e

s

2 File (Build)
3 Build (va.wdnm
4* File (Return)
5* Openi ng screen (Input)
6 | nput (Basin)
7 Basi n (Source)
8 Sour ce (va. bcd)
o* Basi n (Options)
10 Options: Confirm processing:
Dat a- set status:
Dat a- set type:
First dsn:
I ncrenent:
11* Basi n (Process)
12 Process (Location)
13 Location: TSTYPE = bl ank

| STAI D STAI D STANMA STFI PS DSCCDE AGENCY
TSTYPE = LOO7

14 Locati on:

15 Process (Conti nue)

16* Return

17* | nput (n-day)

18 N- Day (Source)

19 Sour ce (va. ndy)

20* N-Day (Options)

21 Options: Confirm processing:

Dat a- set st at us:

No data sets
X First data set

Each station

All data sets
X New

Fi nd

Ent er

First dsn: 36

M nor
Maj or

21.a Options: cursor

21.b Options: Find turned on

22% N-day (Process)

23 Process (Locati on)

24 Location: TSTYPE
SEASBG
SEASND:

25 Process (Conti nue)

26* N-day (Return)

27 | nput (Return)

28* Opening screen (File)

29 File (Sunmarize)

30 Summar y

31* File (Return)

32 Opening screen (Return)
Keyst r okes:

F File
B Bui | d
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nane for new wdmfile
accept screen

Return to Opening screen fromFile menu

I nput

Basin characteristics data for
Source of basin characteristics
nanme of file containing basin characteristics data

accept
Options for

accept as is

Process the basin characteristics file

Location description for first station in input file
down to TSTYPE field

set TSTYPE to LOO7 for 7-day |low flows

nove cursor

accept

Conti nue processing basin characteristics file

Return from Basin characteristics format to I nput screen
N-day data for
Source of n-
nane of file containing n-day data

accept
Options for
Move cursor
Move cursor
sel ect Find
accept
Process the
Locati on
accept

Conti nue processing n-day file

Return from N-day format to Input screen
Return fromInput to Opening Screen

File to get a sunmary of contents of wdmfile

basi n characteristics processing

day data

n- day processing

to data-set status col um

to Find option under data-set status
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n-day file
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processi ng

processi ng
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Figure 2. Example of adding additional attributes to data sets using ANNIE.

# screen

1 Openi ng screen (File)

2 File (Open)

3 pen (va.wdm

4* File (Return)

5* Openi ng screen (Data)

6 Data sets (Attributes)

7 Attributes (Select)

8 Sel ect (Find)

9 Fi nd (Execute)

10 Execute - search criteria
11 Execute - 36 data sets checked match & added
12* Find (Return)

13* Sel ect (List)

14* list of dsn

15* Sel ect (Return)

16 Attribute (Mdify)

17 Modi fy:  which attribute, blank
18 . ubc024

19 Modi fy: for dsn 1, ubc024 none
20 . 80

21 Modi fy: for dsn 36, ubc024 none
22 : 0.0

23 Modi fy:  which attribute, blank
24 . done

25* Attribute (Return)

26* Data sets (Return)

27* Opening screen (Return)

Keyst r okes:

File

Open the wdmfile

name of the wdmfile

accept

Return to Opening Screen fromFile nmenu

Data sets

Attributes

Select the data sets to be worked with

use Find nmethod of Selecting data sets

Execute with no search criteria will find all data sets
summary of search criteria, Accept to continue

found 36 data sets, Accept to continue

Return to the Select nenu from Fi nd

List the dsn of the selected data sets

data sets 1-36 were sel ected, Accept to continue

Return to the Attribute menu from Sel ect

Modi fy or Add attribute(s) in the selected data sets
Modi fy or Add attribute ubc024 in/to the selected data sets
there is no data value for ubc024 in dsn 1, set it to 80

there is no data value for ubc024 in dsn 36, set it to 0.0
ubc024 nodified/ added for all selected data set, DONE here
Return to Data set nenu fromAttri bute

Return to Opening screen fromData sets

Return to operating system
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LOW-FLOW FREQUENCY ESTIMATION AT UNGAGED SITES USING BASE-FLOW
MEASUREMENTS

Introduction

Estimates of low-flow statistics (such asthe 7-day 10-year low flow) are needed at ungaged sites for
water-quality management. Experience has indicated that these low-flow characteristics currently cannot
be accurately estimated by regression on drainage-basin characteristics. An aternative isthe use of base-
flow measurements at the ungaged site and concurrent daily flows at a nearby gaged site to establish
relation between low flows at the two locations. Traditionally the 7-day 10-year low flow (or other low
flows of interest) at the ungaged site is estimated by using the computed 7-day 10-year low flow at the
nearby gaged site and the established regression relation. Thistechnique is shown to be biased. An
aternative estimator is proposed that utilizes the same regression relationship to estimate the mean and
standard deviation of the annual events at the ungaged site in order to estimate the 7-day 10-year low flow.
When applied to an actual data set, the new estimator appears to be unbiased in log space and to have the
minimum mean sguare error among the five estimators considered.

Water-quality management often requires estimation of low-flow streamflow characteristics at sites
without long or perhaps any daily flow records. In particular, the annual minimum 7-day consecutive low
flow, which on average will be exceeded in 9 of 10 years, or in 19 of 20 years, is often employed asa
design flow. Thomas and Benson (1970) found that such 7-day 10-year or 20-year low-flow values cannot
be accurately estimated as afunction of basin characteristics such as drainage area, stream channel length,
or the percentage of the drainage areain forest or lakes. More recent reports, such as Arihood and
Glatfelter (1986) and Bingham (1982), that utilize basin characteristics indicative of geology have
achieved greater accuracy in estimating low-flow statistics. However, an aternative to the basin
characteristics approach is still needed to improve the accuracy of low-flow estimation. One alternative
traditionally used was suggested by Riggs (1965, 1972). In this approach, base-flow measurements
(instantaneous values) are obtained at the site in question and correlated with concurrent daily flows (a 24-
hour average) at a nearby gaged site for which along flow record isavailable. Ideally the watershed for
the nearby gaged site should be of similar drainage area size and geologic characteristics and have similar
base-flow recession characteristics. The base-flow measurements and the concurrent daily flows at the
gaged site can be used to establish arelationship between the flows at the two sites. That relationship, and
the long-term flow record at the gaged site, can then be used to estimate the low-flow frequency
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relationship at the ungaged site. Riggs (1965, 1972) focused on graphical procedures. Hardison and Moss
(1972) and Gilroy (1972) substituted analytical regression procedures for establishing alinear relationship
between the logarithms of the flows and for estimating the accuracy of the d-day T-year low-flow estimate
for the ungaged sites. In thisreport, deficiencies with their approach are discussed. Animproved
estimator is developed and afirst-order estimate of its variance provided. The performance of this new
estimator and four other estimators is examined using data from several stations. The new estimator is

extended to allow use of concurrent daily flow values and one or more gages.

The Basic Problem

The analysis hereis based on alinear model describing the relationship between the logarithms of the
annual minimum d-day low flows, yt, at the ungaged site and those, xt, at a nearby gaged site:

y; = a+pBx,+e g UN(O 02) . Q)

With this model, the &t are independent residual errors that are assumed to be uncorrelated with the x;.

Letting Ly, Hy, 0)2(, 03, and pxy denote means, variances, and correlations of y and x, (1) implies that

Hy = O + Bpx 2
and

a; = o, + L. €)
Equation (2) can also be written

o = Hy - Bux. (4)
Multiplying both sides of (1) by x and taking expectations yields the additional relationship

0,y,0, = B

or

B = pxyOy/Ox. )
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In order to use the model in (1) and annual d-day minima at the gaged site to estimate the distribution
of d-day low flows at the ungaged site, estimators of the parametersa, 3, and crg of the model in (1) are
required. However, no record of d-day low flows at the ungaged site is available for this purpose. To
overcome this difficulty, the logarithms of concurrent base-flow measurements y, and daily flows X, are
used to estimate those parameters. Such observations should be separated by significant storm events so as
to represent reasonably independent observations of the low-flow processes. Thus, one would base their

analysis on the assumption or approximation that the relationship between §/t and >~<t can be described by
Ji = a+Bx +e € ON(0,02) (6)

wherea, (3, and 02 have the same values as the model in (1).

In a subsequent section, this approximation is evaluated by comparing values of a and 3 based on
base-flow measurements (equation 6) and annual 7-day minima (equation 1) at several sites. Although the
o and 3 values vary significantly for given pairs of stations, on the average the assumption of similar a and
[3 values was reasonable. The assumption that the relationship between instantaneous base flowsisthe
same as the relationship between the minimum 7-day annual flows at the two sitesis anecessary oneif the
proposed method is to be employed; it allows concurrent base-flow measurements to be used to construct a
model that also relates annual minimum d-day low flows at the two sites. While this approximation
appears reasonable for 7-day means, it may not be satisfactory for durations significantly longer than 7
days.

The derivations to follow use the definitions:

n
m, = % Z X4 sample mean of the logarithms of annual d-day flows
t=1 at the gaged site
L
m;/ = % z )~/t sample mean of the logarithms of base-flow measurements
t=1 at the ungaged site
L
m. = % Z ;(t sample mean of the logarithms of concurrent daily flows
t=1 at the gaged site
1 n
5)2( = -1 z (X, —m,) 2 sample variance of the logarithms of annual d-day low flows
t=1 at the gaged site
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L

55 = (Lil) z (Y- m§/) 2 sample variance of the logarithms of the base-flow measurements
t=1 at the ungaged site
L
S)g( = (Lil) z (;(t - m;() 2 sample variance of the logarithms of concurrent daily flows at the
t=1 gaged site (7)

n = number of yearsrecord at the gaged site
L = number of base-flow measurements and concurrent daily flows

and also

L
b= [Gri-mg) e-m)]1/ (£ (L-1))

L
s2 = Y (-a-bx)” ®

Herea, b, and sg are the ordinary least squares estimators of the a, 3, and oi in (6). Furthermore, assume
that the g in (6), corresponding to the base-flow measurements, are independent.

Theissue is how to estimate the logarithm of the d-day T-year low flow

YT =y + Kyoy ©)
at the y-site (ungaged site) given the logarithm of the d-day T-year low flow

XT = Hx + KxOx (10)

at the x-site (gaged site). Here Ky and Ky are the appropriate frequency factors for the two sites for the
computed skew values at the T-year recurrenceinterval. If the logarithms of the d-day low flows at both
sites are assumed to have the same standardized distribution, then Ky = Ky.

A tempting estimator of YT suggested by Riggs (1965, 1972) and Hardison and Moss (1972) is

~ (R ,\
YT( )= a+bXy. (11

- (R) -
Itwasassumedthat Y1  would be unbiased. However, if X1 = X, and with the assumptions and

approximation employed here
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a,Eb[\?T(R)J _ aEb[a+bXT]

=a + B [ux + Ky 0x]

= (Hy - Bux) + pxy(0y/0x) [Kx + Kx0x]

= Hy + pxyKxoy. (12)

~ (R . . . .
Y1 will bean unbiased and consistent estimator of Y - only if

Ky = pxy K.

Thisisunlikely. If Ky and Ky are approximately equal (implying the skew coefficients are approximately
equal), then \?T(R) isonly unbiased if pyy = 1, given the other assumptions. In a subsequent section of
this paper, it is shown that Ky and Ky are approximately equal for watershedsin similar hydrologic
environments.

A reasonable, consistent, and simple estimator of Y can be obtained by using the base flows to
calculate the estimators aand b of a and 3. These values can be used with my and 5)2( to estimate py and

0)2, viaequations (2) and (3). Our moment estimators are

ﬁy = a+bm, (133
2

"2 _ 22,2 Sx

o2 = p22+sdl1-— X | (130)

o { <L—1>s4

The extrafactor in brackets in (13b) is employed to obtain an unbiased estimator of 05 as shown

below. Clearly, for independent base-flow observations and annual d-day low-flow measurements at the

x-site
Elugl = iy =Br) +B(K) =1, (144)
For fixed {Xq,.., Xy}

2
E[o]] = [[32+Var(b)]0>2(+02{1— OX}

N2
(L-1) s
o_2
= BP0 +02+02| Var(b) -———— | = . (14b)
(L-1)s y
X
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. 2. : . ~
Thus, oy isalso unbiased given that for every set { Xq,... X} ,
2

oe
Var(b) = — (15)
provided the residualsin (6) are independent.
Finally, our moment estimator of YT is
~ (M) N
Yr =t Kyoy (16)

where Ky can be estimated by K.

Precision of YT(M)

Use of (133, b) to estimate the mean py and variance 03 of the annual minimum d-day flows at the
y-siteto facilitate estimation of Y1 = py + Kyoy istheoretically the most attractive alternative considered.
A first-order estimate of the variance of that estimator can be derived assuming that the residualsin (6) are

normally distributed. Tofirst order

2
. (M .. K 2 K -
Var[YT )J = Var[{i,] +40yZVar[0§] +0§:COV[uy, 032,] (27)
y
where
2 2
. 1 (H—my) 2 PxO
Var[j] :0§{+ + (28)
L _ 2 On O
(L 1)s)~(

which neglects the second order term Var(b)Var(my). Tofirst order in /L and 1/n
[1-02/ ((L-1) s)g()] Var (s?) OVar (sd) (29)

where terms such as Var(b?)-Var (s>2() can be neglected. Also, to first order (b2-B2) = (b+p)(b-B) O
2B(b-B) so that E[(b2-B2)2] 04B2 Var(b) yielding

Var[ &) ] Dac’B?var (b) +BVar () +Var (D). (30)
Finally,
Cov (i, 65) 020> [Cov (a b) +p Var(b)] = 2Bc’Var (b) (M, — M) - (31)
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Combining these results and al so assuming that the x; are themselves independent and normally distributed

yields

2 2
P- _m)'z) oe 820-2
Var YT D— 57—+
(L-1)s n
X
2 4 2 4_4 4 2 2
548 2B"0, 207 2Bo; (K, — m;(Kyoe)
+ 74 ZD ] 2 + n + L 0 + ] 5
o0 % O 9%
2
o2 o e-m)? k7, 2p%%) 2BK,(n -m) ol
O L+ +- Yo%+ + 0
(L-1) 5 <2 202 ¢ & o S 0
X y X Yy X

B0 [ B K OZD
(n-1) 0 20y D

(32)

While (32) should be quite adequate for assessing the relative precision or sampling variability of
\?iM) ,itisonly afirst-order (in 1/n and 1/L) estimate derived assuming the residualsin (6) aswell asthe
Xt are independent and normally distributed. Moreover, it does not incorporate the error introduced into
the analysis by the assumption that the modelsin (1) and (6) have the same parameter values. However,

equation (32) does allow the analyst to directly estimate the variance of d-day T-year low flows.

Possible Accuracy Improvements

Two particular variables are sometimes subject to a hydrologist's control; these are pxy, the cross
correlation of the flows, and L, the number of concurrent measurements upon which the estimates of a, 3,
and 02 are based. By sdlecting a gage site whose low flows are highly correlated with the flows at the
ungaged site of interest, the hydrologist can hope to obtain apair of stationswith ahigh pyy. L isclearly
an indication of the effort invested to obtain concurrent measurements. Figure 1 illustrates, using the first-

order approximation in (32), alikely relationship between the standard error of estimate (in percent)

SE = 100 exp{ (23) Var[YT ]} —1]1/2 (35)
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and values of pyy and L. In this example, representative values of n =25 or 50, Ky = -1.3, py m.,
oy = 0x = 0.35, and o, = 0.25 wereused. Notethat oi = (1- p)z(y) 05 . Thechoiceof Ky =-1.3implies

that the standard errors shown in figure 1 are comparable to those for the 10-year event.

FIGURE 1 HERE

Figure 1 shows that for small L, the standard error decreases rapidly as L increases. AsL becomes
larger, the accuracy of \?T is ultimately determined by the precision of my and 3)2( the estimators of the
moments of the flows at the gaged site. The standard error of the gaged site estimator of Y is 22 percent
for n =25, and 16 percent for n = 50. These humbers provide a standard with which to compare the values
infigure 1. Inthis particular example, the precision of \?iM) increases slowly beyond L = 20.

One can also seein the figure that for small L, the accuracy of \?T is highly sensitive to pxy: higher
correlations yield more accurate estimators. This occurs because for fixed 05, large pxy yields relatively
small 02 meaning that a, (3, and og are relatively more accurate than they would be if pxy were smaller.

In generd, Var [\?iM)] decreases with increasing pxy. However, as can be seen in figure 1a
corresponding to n = 25, the variance of \?T for p = 0.50 actually becomes dightly less than the variance
for p=0.70 or 0.90 when L islarge. Thismakes sensein that our estimator of YT, for small pxy, depends
as much or more on the parameters of the regression model and the estimated residual variance as it does
on my and s>2( , the sample moments of x¢; see equations (13), (2), or (3). This explains mathematically

why, with large L, it can happen that

Var [\?iM)\ p=05| <va [\?iM)\ p=07].

Figure lahere

Such reversals of precision are probably an illusion because they occur in instances when the basic
approximation upon which the analysisis based is probably not satisfactory. The theory leading to our
best estimator \?iM) was based on the approximation that the parameters a, 3, and og of the modelsin
(1) and (6) were essentially the same. This assumption is probably true when pxy = 1, but becomes an
increasingly less precise description of redity as pxy decreases. For pxy =3 =0, the modelsin (1) and (6)

become
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o+e Ele] = E[e] =0

Yt
Vi = O +E, Var [g] = Var [§] =02

implying that both y, and 37t have the same mean a and variance O'g. We have argued above that it should

be the case that

Elyd <E[V{

because y, are annual minimawhereas 37t are only small values, the majority of which will exceed the
minimafor their year.

Another way of viewing the origin of this problem is by noting that when pxy approaches unity, the
model in (6) allows low flows >~<t at the x-gage to be mapped fairly precisely into the corresponding flows
37t at they-gage. It isthen areasonable approximation to assume that the annual low flow y; at the y-gage

occurred concurrently with the annual flow x; at the x-gage and that
yt=0o+Bxt+e

wherea, (3, and og can be estimated using low base flows and concurrent daily flows. However, when
Pxy assumes small or even modest values, then it will frequently occur that yt does not occur concurrently
with xt. Then concurrent base-flow and daily-flow measurements at the two sites do not provide areliable
means of estimating the relationship between the annual minima. In retrospect, it would be our
recommendation that these regression procedures not be employed to estimate the distribution of annual
minimaat ungaged sites unless pyy exceeds about 0.70. For half of our station pairs, the sample estimates

of the cross correlations failed to meet this criterion.

A Multivariate Estimator

Description of Technique
Because the explanatory power of the relationship, (1) or (6), relating flows at the two sitesis so

important to the validity of the analysis, it may be possible and worthwhile to use multivariate models

Kk
Y=oty Bixjete (36)
=1
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where xj, ..., Xk are annual minimum d-day low flows. Again assumethat 8 = (a, Bj, ..., Pk) T can be

estimated by analysis of concurrent base-flow measurements; thus, corresponding to (6) one has

k
Vo= o+ Y BXite (37)
i=1

where in both cases
2
e, ON (0, oe) .

By including more than one station in the regression model to explain the value of f/t ory,, it may be

2

possibleto substantially reduce o o

meaning that the explanatory variables { X, ..., X, ¢ explain more of
the variation of y,, and the effective py isincreased.

For convenience, let the multivariate model be written

Y, = % Be (389)
where xt = (1, Xit, ..., Xkt)T. Let

b=(a by, ... b)T (380)
be the least squares estimator of . Findly, let

mX = (1! lel ey ka)T

(38c)

L
S.. = z (S(t—m;() (X —m

XX

L
S = D (mmg) (v, -my)
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With this notation

b = [S)?;(] _15)*'(;/ (39a)

and the residual mean square error is

L
oL . O
£ =0y Gi-m)’-b's;/(L-2) (39)
L=

O
Using the multivariate regression model, the estimators of yt's mean and variance in (13) become
Ao T
Hy = m,b (40a)
and

A2 _ T 2 -1
o, = bV, b+s {1-tr[V,(S,,) 1} (40b)

where tr[.] corresponds to the trace of the indicated matrix and should correspond to arelatively small
correction.

As before,

E[l"iy] -

|
=
<

and

E [6)2,] 0)2/

due to the correction employed in the 03, termin (40b); for modest L, the correction tr [VXX (S;&) _1] ,
which is of the order (L-1)"1, may be omitted.

With these estimators, \?T(M) would still be given by (16) and its variance by (27) with the
appropriate values of Var [ﬁy] , Var [6)2,] , and Cov [ﬁy, 6)2,] . Ananaysis similar to that leading to (29),
(30), and (31) yields first-order approximations for those quantities assuming the pertinent random

variables are normally distributed.
A - T
Var[i,] OoZu! [S.] ' +B [V, /B

PREIPN -1
Cov[ i, &,] 020287 [S.] MV
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Var [65] 0o4{2/ (L-k) +4B"VL [S. 17V, B +B AR/ (n-1) (41)

where

n n
A= D D BB (VinVig +ViVig)
hT1kT1

inwhich Vjj are the elements of Vxx (see Zellner, 1971, p. 389). Herek isthe number of explanatory
variables in the regression model; here S;&/ (L —1) and Vxx have been substituted for the respective
population moments. Note the first row and column of Vyy are zero because of the definition in equation
38a. Asbefore, these expressions neglect the error introduced by using 37t and >~<t to estimate the

relationship between y; and Xt.

GLS REGIONAL REGRESSION USING GLSNET

Model Description and Assumptions

Consider aregion in which we have data for n gaging stations as follows:
At each gaged site we estimate a streamflow characteristic, such as the logarithm of the 50-year peak

flow,

yi = ¥ +n,, D
inwhich Y isthe true (but unknown) log of the 50-year peak, and ; isarandom error. If y; isan unbiased
estimate of J;, then n; (sometimes called time sampling error) has mean zero and variance that isa
function of how many years of data are available at the site and the standard deviation of annual peaks. In
addition, we have k basin characteristics, such aslog of drainage area, that are measured with negligible
error.

If we arewilling to assume that (within the region defined by the basin characteristics at the n stations)
Y is approximately linearly related to the basin characteristics (x’s), then the model formulation can be

written

W = By * ByXqj +BXgi- ¥BX g (=120 n>k), (2

in which € isamodel error assumed uncorrelated from observation to observation, with mean zero and

constant variance, y2. Substituting into equation 1,
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Yi = BotByXq +BoXy +o +BXy +N; FE;. ©)

In matrix notation

Y = XB+uv, %
in which
Y1 1 Xg3 Xpq 00 Xpq Bo gty
y = Y2 x=| 1 X12 X22 - Xk2 B = B, v =272 (g
yn 1 X1n X2n an I3k 8n+nn

in which E[0]=0, and E[uUL "]=A. Now the GL S estimator of [3is

b= (XTAIX) XA ©6)
The problem with this estimator is we do not know /A and must estimate it from thedata. In OLS, A is
estimated as 62|, which would not be bad if all stationsin that region had approximately the same lengths
of record, or if the variance of n; is small relative to the variance of €; at every station in the region.
In most studies this assumption may be hard to justify, so we try to make a better estimate of A. We
will denote this estimated covariance matrix /\, and the GL S estimator, b, will be referred to as an

Estimated Generalized Least Squares (EGLS) estimator.

EGLS Regression

Toillustrate how A is estimated, we use an example. Suppose that y; is the log of the 50-year peak
estimated from m; years of record and that the annual peaks follow aLog-Pearson Type I11 distribution at
al sites. Further, to minimize notation, assume that the skew coefficient at all sitesis zero. The elements

of A would be given by:

2 0. 2
o THELTOSKD . >0 (for i=j)

or : (7)

Pi;0;0;M;; (1+05K?)

>
1
I

mm fori #j)

GLS Manua 21 DRAFT



In this equation we know K (Log-Pearson Type |l standard deviate for zero skewness and 50-year
recurrence interval), my (record length at station i), and my; (concurrent record length for stationsi and j),
but we must estimate 0; (standard deviation of annual peaks at station i), pj; (cross correlation of annual
peaks at stations i and j), and y? (variance of model error) from the data. Furthermore, we cannot use 5
(the sample estimate of 0;) as an estimate of 0; without introducing bias, and the use of rj; (sample cross
correlations) for pj; often causes numerical problems. Therefore, we estimate 0; and pj; as follows:

The standard deviation of annual peaks, 0, is estimated from aregional regression of the form
In(s;) = by+byXq; +bXo +.00 +By X (8

The cross correlation coefficient, pjj, is estimated by developing an empirical relationship between

sample cross correlations, rjj, and distance between stations of the form

d;
ad; +1

9

Now the only parameters left to find in the EGLS model is the model error variancey?. Thisvalueis

rj = O[

determined by a numerical search method so that

(Y-Xb)TAL(Y-Xb) = n-k. (10)
Finally, in order to estimate al the quantities we need, we have to run two different regressions. First,
asexplained, aregional regression of In(s) is performed to get §;, and then the final regression of Y to find

bandy.

Leverage in GLS Regression

Recall that in OL S regression the leverage of sitei isthe ith diagonal element of

H=X (X' X)1X". (11)
The analogous statistic in GL S regression isthe ith diagonal element of

H*=X (X' A X)X AL (12
The sum of h*j;=p’ and the average h*j;=(p’/n), and a high leverage site would be one in which h*;;>(2p/n)

as arule of thumb.
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Cook’s D Statistic in GLS Regression

A GLSversion of Cook’sD is

2 )
o = oM (13)
| ' . 27
p (Vi -h')
where h';; are diagonal elements of
H = XX AX)X. (14)

D’jislargeif it exceeds about (4/n).

Adjustment for Historical Information

The formulas above assume we have just systematically recorded data at each site. In reality, we often
have additional information about unusually large floods that might have occurred outside the record. This
historical information can be used to improve the estimate of T-year floods at gaged sites. To incorporate
this additional information into the EGL S regression method, we compute an effective record length at the
site with historical information to reflect the additional accuracy introduced by the historical information
(see graph below). The GLSNET program in ANNIE makes this adjustment automatically if the number
of historical peaks and the historical period are stored in the WDM file as attributes.
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Curves based on data from Stedinger and Cohn, 1986

08 Definitions:
] Neis effective record length
Sissystematic record length
H ishistorical period
p is non-exceedance prob
of threshold
0.6 —
(]
L
(72 _
o 0.4
Z (
0.2 —
For 100-year peak and p
between 0.9 and 0.999
00 | | |
0 2 4 6 8

Ln{p/[1-p]}

Average Mean Squared Error of Prediction

One measure of how good the regression model isfor prediction is the average mean squared
prediction error, where the average is taken over prediction siteswith X variablesidentical to the observed
data. Thisisagood measure when the observed data have been collected at a representative set of sitesin

theregion. It iscomputed as

-1

o -1

SEP = Dn 2 A1 ,
AMSEP = Dz i+ (XA X)X (15)

=1

Prediction Interval

Users of the regression model are probably more interested in ameasure of error in a particular

prediction rather than an average prediction. A good measure of the error of a particular prediction isthe
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confidence interval of aprediction, or prediction interval. Let Xy represent the usual row vector of basin
characteristics at a prediction site. As usual, Xg isaugmented by a 1 asthe first element. The predicted
vaueis Jg = Xgh. A 100(1-a) prediction interval would be

Vo= T<YypsVo+T, (16)

where

-1
L2 A1 O
T=t, 'Jﬂ0+X0(XA X) X' oy @an
-, n—p
2
wherety o npy isthecritical value from at distribution for n-p’ degrees of freedom.

If alog transform had been made so that y5=10910(dp), then the prediction interval would be
10" T<qy< 10" T, (18)

Extrapolation Beyond Sample Data

In making predictions from aregression model, one should be very careful about extrapolating beyond
the region of the original sample data. As noted earlier, it is possible in multiple regressions to be within
the range of every X variable without being within the region of the sample data. All the original data are
contained in an ellipsoid defined by

-1 1
N a2 X (XA X)) x', (19)
where h' 4 isthe maximum of the diagonal elementsof H' (see 2.15). For aprediction at anew site Xg, if
h oo computed by xo(X’ A1X)Ix’ o is greater than b’ .., then the prediction point is outside the ellipsoid of
the original sample data and is an extrapolation.
The calculations needed to compute prediction intervals and to test to seeif apredictionisan

extrapolation are tedious and time consuming. However, they can be easily made with a small computer

program that could be given to the user as part of the report.

Computer Output

The program prints summary regression results for three separate regressions: (1) the regression of

log of standard deviation of flows on basin characteristics, (2) the regression of mean of flows on basin
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characteristics, and (3) the regression of the T-year quantile on basin characteristics. These regression

summariesinclude estimates of the regression coefficients along with their standard error, T statistic, and P

value for testing the hypothesis that the coefficient is zero.

Following the final regression summary, atableis printed to help one analyze the results. Thistable

includes the following information for each observation.

Column
1
2

GLS Manual

Station number.
Observed value of the flow statistic.

This value serves as the observed response, y;, and is calculated as

yi = Witk

where [1; isthe sample mean (usually inlog units), k; isthe Log-Pearson Type 1l standard

deviate, and s is the sample standard deviation (also usually inlog units). The value of k;

is afunction of the skew coefficient at site i and the recurrence interval of interest. Itis

computed internally in the program.

Predicted value of y;, computed as xjb where x; isarow vector of basin characteristics and

b isacolumn vector of estimated regression coefficients.

Variance of the predicted value of y;, computed as
9+ x (XTATIX) T
where 9i2 isthe estimated model error variance at sitei (column 8).
Residual, rj (column 2 - column 3)
i =Yi-xb
Weighted average of predicted and observed values of y at sitei

ohted _ iy renxb
(weighted y;) = W

where n; isthe actual record length and en; is the equivalent record length of the

regression estimate (column 10).
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10

11

GLS Manual

Standardized residual, rs;, isthe residual r; divided by the square root of its variance. Itis

caculated as

rs;
2T ]

where A; isthe ith diagonal of A.

If the residuals are approximately normal, then about one-sixth of the rg’s will fall above
1 and about one-sixth of the rs’swill fall below -1, and about 95 percent of the rs’s will
fall between -2 and +2.

Model error variance, V|2 is ameasure of the error inherent in the model that cannot be

changed by collecting more data.
Estimated sampling error variance, ii , calculated as

1 -1
X) xiT.

5= x (X'A

Sampling error is the error in predicting y; due to estimating the true regression
parameters, 3, with b. The variance of a prediction (column 4) is the sum of model error
variance (column 8) and sampling error variance (column 9).

Equivalent years of record, en; (Hardison, 1971), expresses the accuracy of prediction in

terms of the number of years of record required to achieve results of equal accuracy. Itis
calculated as

.2 ki2 2
§ | 1+kg; +? (1+0.759;)

2 2
where g; is the coefficient of skewness at sitei.

The hat diagonals, h;;, are related to the “distance” between the row vector, x;, of basin

characteristics and the row vector, X, of basic characteristic means. They are the diagonal
elements of

_ -1 ~-1
H=X(X'A"X) XA

The sum of all nvalues of h;j isp, and values greater than 2p/n are considered “large.”
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12 This statisticisa GLS version of “Cook’s D.” It summarizes the influence of each

observation on the final regression result. It depends on both the “leverage,” b, and the
residual, rj, and is calculated by

* 2
hyiri

D. =

P (A, _h:i)z

-1
* * ,\—1
where h:. istheith diagonal elementof H = X (XA "X) X'.

Values of D; greater than 4/n are often considered to be particularly influential and their
validity should be examined. A large value of D; does not mean that the ith observation
should be deleted. It doesindicate that deletion of this observation will have a greater

effect on the regression result than observations with smaller values of D;.

Finally, the averages for sampling error variance (column 9), model error variance (column 8), and
equivalent years of record (column 10) are printed. These average values summarize the strength of the
regression model. The square root of the average model error variance is comparabl e to the standard error
of estimate; and, if the dependent variable isin log units, it could be converted to a percent error. An
overall measure of predictive ability is the average equivaent years of record. Another measure of overall
predictive ability isthe average variance of prediction (sum of average sampling error variance and
average model error variance).

In the example output shown on the next two pages, the dependent variable was the log (base 10) of
the 100-year peak (Qqq0). Thefinal equation could be written as

log Q109 = 1.77291 + 0.70472 log(area) + 0.33609 log(slope) + 1.54420 log (I94., - 1.0)
or

Q100 = 59.3(area)’ "%°(slope) 3361 5. -1.0) -4,
The average equivaent years of record would be 4.1. The standard error of the model would be (.2356)1/ 2

or .189. Thisstandard error could be expressed as a percent by the formula

SE = 100 [exp(0.0356*5.3019)-1] Y2 = 46%.
The average standard error of prediction would be

SE, = (0.0356 + 0.0070)Y/2 = 0.206 log units,
In percent, SE, = 100 [exp(.226)-1] Y2 = 50%.
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Note: The constant 5.3019 in the above formulais ( nI0)2. It converts the units from squared common logs

to squared natural logs. If the dependent variable wasin natural (base €) units, then this factor would be 1.

NETWORK ANALYSIS USING GLSNET

Identifying Stream Gages to Operate for Regional Information

The problem of identifying at which sites to collect future streamflow datais formulated as a
mathematical program to optimize regional information subject to a budget constraint. An approximate
solution is obtained using a step-backward technique that identifies gaging station sites, either existing or
new, to discontinue data collection, or not start data collection, respectively, if the budget is exceeded. The
method allows a network manager to design a nearly optimal streamflow data network for collecting

regional information. The method isillustrated by a network of stream gagesin Illinois.

Formulation of the Network Analysis Problem

1. Decision variables:

1, if gageiisoperated

u = 20
: {0, if gagei is not operated (20)
2. Objective function:
minimize Z =f{u;} (21)
2. Congtraints:
Z cost;u; < BUDGET (22)
Objective: Minimize the sum of squared prediction errors of aregiona regression model over a
representative set of sites.
The mean square error of aprediction at agiven site, Xy, is
MSE=Yi® + i XA U)X} X (23)

where the inverse covariance matrix /\ is written as /\(u) to show that it isafunction of the decision
variables u.

Let the set R denote a representative set of sitesin the region. The objective function is
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minZ = kZRM SE, (24)

An approximate solution for the mathematical program is obtained by the following algorithm:
1. Sety;=1for all stations.

2. For all stationsin which u;=1, find station j such that (Z(j)-Zj)/Cj issmallest and set Uj =0.
3. Check constraint, if 2C;u;>Budget, go to 2, otherwise stop.

Computer Output

The NETWORK optionin GLSNET produces an output file and, optionally, a TELAGRAF plot file.
The output file (see the example that follows) shows at each step the expected sampling mean sgquare error
at the end of the specified planning horizon. At each step the calculations are made assuming that al the
stations are operated during the entire planning horizon except the ones indicated in the column
"discontinued stations' for al steps down to the current step. The plot fileisaplot of the "average
sampling error" column against the "cost" column.

Note that if all "costs' are 1, asin the example, the "cost" is actually the number of stations operated
during a planning horizon. The units of "average sampling error” often are squared log units that are
difficult to interpret in a practical sense. However, one may convert these units to more meaningful units.
For example, one could convert “average sampling error” at end of planning horizon to the expected

percent increase in equivalent years of record, Ang, by the formula

2 2
S —

An, = 100 "0 (25)
St St

where srzn is the average mean square model error, s isthe current average mean sguare sampling error,
and sf2 is the future average mean square sampling error. For example, in step 24 of the NETWORK
program, cost is 17 and sz is0.00479. From the GL S output, srzn i50.0356 and sﬁ i$0.0070. Therefore,
for acost of 17, Angisgiven by

0.0356 + 0.0048
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APPENDIX Il - NOTATION

The following symbols are used in this paper:

a = sample estimator of a

b = sample estimator of 3

BIAS = average bias of jth estimator over the data set

ky = frequency factor for gaged x site

Ky = frequency factor for ungaged y site

L = number of concurrent base-flow and daily flow measurements

My = sample mean of logarithms of gaged annual low flows

m- = sample mean of logarithms of concurrent daily flows observed at gaged site
My = sample mean of logarithms of concurrent annual low flows at y-site

mg = sample mean of logarithms of concurrent base flows observed at gaged site
n = number of years of record at gaged site

r = sample estimator of pxy

RMSE] = average root mean square error of jth estimator over the data set

Se? = sample estimator of o¢?

Sx2 = sample variance of logarithms of gaged annual low flows

S 2 = sample variance of logarithms of concurrent daily flows observed at gaged site
syz = sample variance of logarithms of annual flows at y-site

59 2 = sample variance of logarithms of concurrent base flows observed at ungaged site
SE = standard error of estimate (in percent) as defined in equation (35)

Xt = logarithm of annual low flows at gaged site

X = logarithm of concurrent daily flows at gaged site

XT = value of logarithm of T-year d-day low flow at gaged site

Vi = |logarithm of annual low flows at ungaged site

§/t = logarithm of concurrent base flows at ungaged site
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YT = value of logarithm of T-year d-day low flow at ungaged site

YT = estimator of logarithm of T-year d-day low flow based upon Gilroy's variance estimator

\?T(H) = estimator of logarithm of T-day d-day low flow based upon Hirsch's MOVE.1 technique
applied to X1

\?T(M) = recommended moment estimator of logarithm of T-year d-day low flow

\?T(R) = regression estimator of logarithm of T-year d-day low flow

\?T(S) = mean-scaling estimator of logarithm of T-year d-day low flow

Y7T = logarithmic value of 7-day T-year low flow estimates at ungaged sites

o = constant in regression model

B = dope parameter in regression model

&t =residual error for observation t in regression model

Hy = mean of logarithms of annual low flows at gaged site

Hy = mean of logarithms of annual low flows at ungaged site

ﬁy = estimated mean of logarithms of annual low flows at ungaged site

porpyxy = cross-correlation between logarithms of annual low flows at gaged x and ungaged y sites

0e? = variance of residual errors et in regression model

Ox? = variance of logarithms of annual low flows at gaged site

o 2 = variance of logarithms of concurrent daily flows at gaged site

oy2 = variance of logarithms of annual low flows at ungaged site

0)7 2 = variance of logarithms of base flows at ungaged site

6y2 = estimated variance of logarithms of annual low flows at ungaged site
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