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PREFACE

This report describes modifications to a three-dimensional solute-trangpmtel
(MOC3D) developed by th&).S. GeologicalSurvey (USGS). These modifications expand the
capabilities oMOC3Dto simulate (a) age of water in an aquifgr) effects of double porosity on
concentrations of a singkolute,and (c) effects of decay and zero-ordeowth reactions on a
single solute. These modifications are incorporatedht@@3D version 3.0.

Although extensive testing oMOC3D indicates thatthis model will yield reliable
calculationsfor a wide variety of field problems,the user iscautioned that the accuracy and
efficiency of the model can be appreciably affected certain combinations of values for
parameters and boundary conditions.

The codefor MOC3D is availablefor downloading overthe Internetfrom a USGS
software repository.The repository is accessible frothe USGS Water Resources Information
web page atURL http://water.usgs.gov/ The publicanonymous FTHRite is on théWNater
Resources Information serv@vater.usgs.gov or 130.11.50.175)tle /pub/software directory.
As the model code is revised opdated, new versions or releasdl be made available for
downloading from these repositories.
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Age, Double Porosity, and Simple Reaction Modifications for the
MOC3D Ground-Water Transport Model

Daniel J. Goode

ABSTRACT

This report documents modifications for tI©C3D ground-water transport model to
simulate (a) ground-water age transport; (b) double-porosity exchange; and (c) simple but flexible
retardation, decay, and zero-order growth reactions. These modifications are incorporated in
MOC3Dversion 3.0.MOC3D simulates the transport of a single solute using the method-of-
characteristics numerical procedure. The age of ground water, that is the time since recharge to the
saturated zone, can be simulated using the transport model with an additional source term of unit
strength, corresponding to the rate of aging. The output concentrations of the model are in this
case the ages at all locations in the model. Double porosity generally refers to a separate immobile-
water phase within the aquifer that does not contribute to ground-water flow but can affect solute
transport through diffusive exchange. The solute mass exchange rate between the flowing water in
the aquifer and the immobile-water phase is the product of the concentration difference between the
two phases and a linear exchange coefficient. Conceptually, double porosity can approximate the
effects of dead-end pores in a granular porous media, or matrix diffusion in a fractured-rock
aquifer. Options are provided for decay and zero-order growth reactions within the immobile-
water phase. The simple reaction terms here extend the original model, which included decay and
retardation. With these extensions, (a) the retardation factor can vary spatially within each model
layer, (b) the decay rate coefficient can vary spatially within each model layer and can be different
for the dissolved and sorbed phases, and (c) a zero-order growth reaction is added that can vary
spatially and can be different in the dissolved and sorbed phases. The decay and growth reaction
terms also can change in time to account for changing geochemical conditions during transport.
The report includes a description of the theoretical basis of the model, a detailed description of
input requirements and output options, and the results of model testing and evaluation. The model
tests illustrate use of these modifications and demonstrate that accurate solutions can be obtained
for these simple cases. Two test cases have no dispersion, illustrating the suitability of this
method-of-characteristics model for simulation of advection-dominated transport in ground water.



INTRODUCTION

Konikow and others (1996) describe
MOC3D, a general purpose three-dimensional
numerical model of solute transport in ground
water. MOC3Dfunctions as a package in
MODFLOW (Harbaugh and McDonald, 1996)
and uses fluxes and other flow information
computed byMODFLOW. MOC3Dcan be
applied to a wide variety of field problems.
However, the user should first become aware
of the assumptions and limitations inherent in
the model, as described by Konikow and
others (1996) MOC3Dis a general tool that is
applicable to a wide range of field problems
involving solute transport. However, the
model results could be inaccurate or model
operation inefficient in some situations.

cell, rather than layer by layer. This may allow
simulations that approximate spatial changes in
sorption coefficients due to spatial variability in
aquifer composition or geochemistry. The
decay coefficient also is modified so that it can
vary spatially in three dimensions.
Furthermore, separate decay coefficients may
be used for the dissolved and sorbed phases.
This modification may allow a more accurate
approximation of biodegradation of organics,
in which the degradation rate may be
substantially different in the sorbed and
dissolved phases. A new reaction, a zero-
order growth reaction, is added in this version
(3.0) ofMOC3D. Zero-order loss can be
simulated by use of a negative growth rate.
The zero-order growth rate can vary spatially
in three dimensions in the model domain.
Finally, the decay coefficients and the zero-

Konikow and others (1996) provide guidelines order growth rates can change in time; new

for recognizing and avoiding these types of
problems. Kipp and others (1998) add the
capability to solve the dispersion and fluid-

source parts of the transport equation implicitly

to MOC3D (version 2).

values are optionally read at the beginning of
eachMODFLOWflow-model stress period
(Harbaugh and McDonald, 1996).

This report also documents
modifications taMOC3D for simulation of

The types of reactions incorporated into ground-water age (Goode, 1996, 1998) and

versions 1 and 2 dflOC3Dare restricted to
those that can be represented by a first-order
rate reaction, such as radioactive decay, and

double porosity. The ground-water age,
defined as the time since recharge to the
saturated zone, can be directly simulated by

those that can be represented by a retardation yse of a solute-transport equation with a zero-

factor, such as instantaneous, reversible,
sorption-desorption governed by a linear
isotherm and constant distribution coefficient
(Kg). The retardation factor is assumed to be
uniform in each model layer, and the decay
coefficient is assumed to be uniform
throughout the entire model domain.

order source term of unit strength. The output
concentrations in this case are the volume-
weighted-average ages. Double porosity
generally refers to an immobile-water phase
that does not contribute to ground-water flow
but may affect solute concentrations by
diffusive exchange. This conceptual model

Furthermore, decay is assumed to occur at thecan approximate the effects of dead-end pores
same rate in the dissolved and sorbed phases,in granular porous media or of a low-

as would be the case for radioactive decay.
In this report, modifications for
MOC3Dthat provide flexibility in
approximating concentration changes due to
geochemical reactions are presented. The

retardation factor is modified so that it can vary

spatially throughout the model domain, cell by

2

permeability rock matrix in a fractured-rock
aquifer. The double-porosity model is
compatible with age transport, but decay and
zero-order growth reactions are not compatible
with age transport.

This report, in conjunction with the
reports describing versions 1 (Konikow and



others, 1996) and 2 (Kipp and others, 1998), governing equation for solute transport in three
fully documents version 3.0 MOC3D. The dimensions in an incompressible fluid flowing
report includes a description of the numerical through a porous medium as (Bear, 1979, p.
methods used to solve the solute-transport 239-243; Goode and Konikow, 1989;
equation. The data requirements, input format Konikow and others, 1996)

specifications, program options, and output 3(eC) d(p.C) @
formats are all structured in a general manner + b=l 4 —
that should be compatible with the types of x 4 X,

(ecv)

data available for many field problems. The o0 scO

computer code is written in FORTRAN and Tx EfDu wH > Cw

has been developed in a modular style, similar ' j

to theMODFLOWmodel. Where possible, +AeC+ApC-2=0 , (1)

these modifications use availaM®©C3D

modules andMODFLOWoutput modules. whereg is porosity C is volumetric
AcknowledgmentsThe author concentratiog (mass of solute per unit volume

appreciates the helpful review comments of water, ML), pp is the bulk density of the

provided by USGS colleagues Barbara A. aquifer material (mass of solids per unit

Bekins and James E. Landmeyer. volume of aquifer, ML), C is the mass

concentration of solute sorbed on or contained

THEORETICAL BACKGROUND within the solid aquifer material (mass of
solute per unit mass of aquifer material, I\lljl,\/l

AND GOVERNING EQUATIONS V is a vector of interstitial water velocity

Mathematical equations that describe  components (LT), D is a second-rank tensor
ground-water flow and transport processes  of dispersion coefficients (L"), Wis a
may be developed from the fundamental volumetric water sinkVi<0) or water source
principle of conservation of mass of water or  (W>0) rate per unit volume of aquifer {JT C’
of solute. A statement of conservation of massis the volumetric concentration in the
(or continuity equation) may be combined with sink/source water (M), A is the decay rate

a mathematical description of the relevant (T™) for the dissolved phasg, is the decay
process to obtain a differential equation rate for the sorbed phase, and a source or
describing flow or transport (see, for example, growth rate per unit aquifer volume (ML?).
Bear, 1979; Freeze and Cherry, 1979; The decay terms in equation 1 often

Domenico and Schwartz, 1990). Transport represent radioactive decay of the free and
eqguations are presented here for two cases: sorbed solute. A radioactive decay rate is

solute transport and ground-water age usually expressed as a half-lifg,{). The
transport. half-life is the time required for the
concentration to decrease to one-half of the
Governing Equation for Solute original value and is related to the decay rate as
Transport (
_(In2)
The principle of conservation of mass bz = A (2)

requires that the net mass of solute entering
and leaving a specified volume of aquifer
during a given time interval must equal the
accumulation or loss of mass stored in that
volume during the interval. This relation may
be expressed mathematically in a general

In the case of radioactive decay, the decay rate
is the same for all phases. In limited cases, the
decay term also can adequately represent
chemical decomposition or biodegradation
(Bekins and others, 1998). However, if a



sorbed phase also is present in these latter
cases, the decay process may occur at
different rates in the dissolved and sorbed

mathematical form is identical to that used to
model kinetic sorption (Valocchi, 1985),
provided the adsorption and desorption rate

phases. A negative decay rate corresponds tocoefficients are equal. The double-porosity

first-order growth; in this case, the doubling
time (,,) is given by

(In2)

-A
The source teri is further defined to

include zero-order growth in either the
dissolved or sorbed phases, as well as
exchange with an immobile phase. The zero-
order source terms represent internal
production of the solute without water and are
characterized by mass production or growth
rates. For the case of production in the water,
> =¢Z, whereZ is a zero-order growth rate
per unit water volume (MET™) for the
dissolved phase. Likewise, for production in
the sorbed phaseg, = p,Z', whereZ' is the
zero-order growth rate per unit rock mass
(MM'L™) for the sorbed phase. Negative
values ofZ and Z' correspond to zero-order
loss and may be applicable for some cases of
biodegradation (Bekins and others, 1998).

3)

t2><

Such zero-order loss coefficients are nonlinear

in that their values become zero when the
solute concentration drops to zero.

Another internal source accounts for
exchange between the water in the aquifer an
a separate mass of immobile water. An
approximate linear exchange model is assume

here such that the mass flux rate is the product

of a linear exchange coefficiet(T™), and
the concentration difference between the
immobile water and the flowing water:

s=pc-c).

where C is the concentration in the immobile-
water phase. This immobile water can

4)

conceptually correspond to dead-end pores in a

granular aquifer (Coats and Smith, 1964) or to
matrix diffusion in a fractured-rock aquifer
(Bibby, 1981). Furthermore, this

model can also simulate certain solute sources.
The linear exchange coefficient may
correspond to the dissolution rate coefficient of
a separate-phase source. An artificially high
linear exchange coefficient and porosity will
cause the concentration in the mobile phase to
be essentially fixed &t.

Combining these separate source terms
and substituting into equation 1, the governing
equation becomes

aeC) , 3p,C) , 0.
o a0
U U - —
—iBED”£ +AeC+Ap,C
o0 o

—eZ—pr'—B(é—C)=O

(scv)-y oW

()

The governing equation for mass
conservation in the immobile-water phase is

zdC (6)

o +/T§C~Z—EZ+IB(C~:—C)=O :

where¢ is the porosity,x is the decay rate

(T, and Z is the zero-order growth rate

d (ML3T™?), each for the immobile-water phase.

A simpler “flow-equation-removed”

Jorm of the governing equation is derived by

removing velocity divergence termag{gv)/d,
(Konikow and Grove, 1977; Goode, 1990,
1992; Konikow and others, 1996), leaving

00 oD
a_c+a(pr)+V§_0>qB€Ddx,H
ot ot 74 €
_3[w(c -0 4 ac+ PAC
& &
~z-22 _FBlg_c)=0 (7
& &



The governing equation can be further

simplified for the case of reversible, a9C + M&X€_ 10 - D. @D
instantaneous, equilibrium sorption of the ot R ox &R ok Eﬁ } ox H
solute governed by a linear isotherm. For this .
case, the sorbed concentrati@, is given by _Zw(c -¢) +£[A + (Rf _1);\]

_ g

C=K,C |, 8) R R

-1)Z .

whereKg is the sorption coefficient, or _ L (Rf ) _B (C - c) =0, (12)
distribution coefficient, which is assumed to be R R Ry

constant in time. The accumulation in the

Z=2
sorbed phase can be expressed as where I K, The growth term for the

i sorbed phase is in terms of an equivalent
9(P,C) _  9(pC) _ K oC (9) dissolved-phase rate. This is the form of the
ot 4 ot L T governing equation solved in this version (3.0)

if it is assumed that the aquifer bulk density is of MOC3D. This governing equation is

N o . coupled to the immobile-water phase
constant in time. Substituting equations 8 and : .
: ) : governing equation 6 through the exchange
9 into equation 7 gives

term (¢ - c).
QJ, pb_KdD6C + i@ Converting equation 12 from an
€ EE Ox, Eulerian to a Lagrangian framework through
50 a0 the material derivative yields a simpler form of
75@” it the governing equation (for example, see
_ox 28 H _ Z[W(C’ - C)] Konikow and Bredehoeft, 1978, p. 6) for the
€ € concentration of a reference point moving with
- the retarded velocit
+ CD + PoKsA L i PZ’ ME)
R R a1 00, O
ﬁ(~ ) dt fRf@ﬁBED”@(jE
-=|C-C]=0 . (10)
wW(C' -C —
¢ . | _zw(c -c)] +£[A +(R -1)2]
The terms controlling sorption can be eR; R
combined into a single parameter, the ( —1)2
retardation factorR), which is defined as _z R _B ((”; - C) =0 . (13)
K R R R
R =1+52d (11) | -
£ Although this concentration is now that of a
Rf may vary slightly in time if the porosity moving point in space, the same symiilis
changes due to transient flow effects. This  retained for convenience. y
possible slight variability is ignored and the Boundary and initial conditions, and

retardation factor is assumed to be constant in internal sources associated with water sources,
time. Substituting equation 11 into equation ~are described by Konikow and others (1996).

10 viel i i
0 yields Governing Equation for Ground-

Water Age Transport

A special form of the solute transport
eqguation can be used to simulate ground-water



age transport. Dropping the decay and Boundary and initial conditions for
sorption reactions from the governing equation age-transport simulation based on equation 15
12 developed above leaves a governing are consistent with the normal form of the
equation that includes zero-order growth in the solute-transport equation (Goode, 1996). In
dissolved phase and double-porosity exchangegeneral, the age of incoming water is zero, but
non-zero values can be specified as

iD ! @D appropriate. The standard 'natural’ outflow
aoC +V£ B O% : 178 B condition implies that age is carried out of the
ot o, € aquifer with discharging water and no
dispersion occurs across boundaries. The
_zw(c -C)] initial age of water in the aquifer and in the
£ immobile-water phase, if present, must be
~ specified. At very large times, the solution is
—Z- E(C - C) =0 . (14) 1ot sensitive to the initial condition, but it is

£
Ground-water age can be simulated by an
advection-dispersion transport equation of the
form (Goode, 1996, 1998)

mathematically required.

The numerical methods described
below are given in terms of solute
concentrations. These same methods are used

o oAU for the age-transport equation. In this case, the
0A A : ok B particle and node concentrations are particle
—+V —- dx'—’ and node ages. Furthermore, the decay and
ot o, € growth reaction terms are not used for the age-

z[w( A - A)] transport numerical solution.
£
~ NUMERICAL METHODS
—1—E(A—A):O , (15) _ _ _
£ The notation and conventions used in

whereA (T) is the volume-average ground- this report and in th1OC3D version 3.0

water age in the aquifer, or time since rechargecode to describe the grid and to reference (or to
A’ (T) is the age of water in external sources, number) nodes are described by Konikow and
and A (T) is the age of water in the immobile- others (1996). The indexing notation used

water phase. By examination, the age- here is consistent with that used in the

transport equation is identical to the solute- FORTRAN code foMODFLOWby

transport equation under the following McDonald and Harbaugh (1988), although not

conditions: necessarily the notation used in the text of their
report.

» all concentrations are replaced with

corresponding ages .
P gag Solute-Transport Equation

» the zero-order growth rate has unit (1)

value, and Method of Characteristics

» decay and sorption reactions are not
present.

The most common application of this equation

is for steady-state conditions in which the time

derivative term is zero. A steady-state solution

does not exist if both andD are zero.

As described by Konikow and others
(1996), the advective part of the transport
solution is computed by a system of moving
particles that track ‘retarded’ solute motion in
the aquifer. The remaining processes affecting



concentrations are left in a partial differential
equation describing the concentrations of those
moving particles. Equation 13 can be
rearranged to express the temporal change in
concentration as

ac_ 1 ot acO 3w(c-C)

ci=cCl e’ , (17)
where A, :%[}\ +(R, —1))T]

is an effective decay rate am;) is the particle

— = ——£D; _H+ concentration at the start of the move interval

dt R X, 2 (and before advection). All terms in equation
C — 17 are evaluated for the finite-difference cell
‘—[/\ + (Rf ‘1)/\] where the particle is located after moving, at

the end of the transport time stepRIE 1 (no
retardation), or ifA = A, the effective decay
R R &R, rate is simplyA.

As noted by Goode and Konikow

Integration of the transport problem for (1989), the exponential formulation of
one transport time step involves first moving equation 17 has no associated numerical

particles to new locations and then adjusting  g¢apjjity restrictions. However, if the half-life
particle concentrations according to equation s on, the order of the transport time increment
16 (Konikow and others, 1996). The approach gmajler, some accuracy will be lost because

taken to co_uple advection and other transport of the explicit de-coupling of decay and other
processes is to compute node concentrations transport processes.

on a finite-difference grid from the particle
concentrations, and use these node Node Concentrations
concentrations to compute the concentration
gradients and changes in equation 16. These
computed concentration changes are then
applied to individual particles, and the time-
step cycle is complete.

(é - c) . (16)

After all particles have been moved, the
concentration at each node is temporarily
assigned the average concentration of all
particles then located within the volume of that
cell; this average concentration is denoted as

Decay Cﬁ??’b
Decay is simulated by reducing the

N
d s+l o ot 4l
particle concentrations during advection. Z Cpé(Jp =iy =Lk = k)

During the advective step, the particle Ciy =25 (18)
concentration has not yet been adjusted for > 5(j;+1 =gt =ikt = k) '
dispersion and sources. However, the change p=1

in particle position accounts for advection up towhere thed function is 1 if the particle is

time increment+At. An analytical solution for ~ Within the cellj,ik and is zero otherwise. The
concentration during decay, ignoring all other Me index is labeledddv’ because this
processes, is used to compute new particle  emporarily assigned average concentration
concentrations after decay. The loss of solute "€Presents the new time level only with respect
mass during a given transport time increment to advective transport and decay. With respect

. to the finite-difference grid, the effect of
(At) because of decay processes is accounted . : . .
for by computing the decayed particle advective transport is to move particles with

_ 3 differing concentrations into and out of each
concentrationC,, as cell.



Finite-Difference Approximations

The divergence of dispersive flux is
normalized by the retardation factor and
porosity to yield the rate of change in
concentration. In addition, in a quasi-3D
approach, changes in saturated thickness are
incorporated for horizontal flux terms.
Standard finite-difference methods are applied
to the governing partial differential equation.
Hence, derivatives in the governing equation
are approximated by differences. For the time

CJHllk _Cjt,i,k
At

where subscripin is a summation index for

the dispersion term. Thgk subscripts in
equation 19 denote the spatial finite-difference
grid indexing, as described by Konikow and
others (1996). The superscript “*” indicates
that the terms depend on the average of the
concentration at the old time level and the
concentration at the new time level after
advection and decay:

t adv
_Cli*C

J,0,k

2

These averaged concentrations are used to
calculate the solute flux terms indicated by the
superscript “*.”

Clix (20)

derivative, the rate of change in time is
approximated by the difference between
concentrations at two time levels divided by the
transport time increment. Similarly, the spatial
derivatives are replaced by differences between
adjacent nodes (cell centers) in the finite-
difference grid. The rate of change in
concentration due to dispersion, water sources,
zero-order sources, and exchange with an
immobile-water phase can be written as (after
Konikow and others, 1996)

(19)

The components of the dispersive flux
in each direction across cell faces are calculated
by use of centered-in-space finite-difference
approximations. A detailed description of
these finite-difference approximations is given
by Konikow and others (1996).

In the method-of-characteristics
approach, the change in concentration during
each transport time increment is computed for
each cell in the model, and then that change in
concentration is applied to each particle within
that cell at the end of the time increment.
Version 3.0 oMOC3Ddocumented in this
report has two optional methods for computing
that change in cell concentration during a time
increment: a fully explicit method (Konikow



and others, 1996) and an implicit method

(Kipp and others, 1998). These methods étﬂDl +ﬂ +£~D:

retain an explicit de-coupling of advection and t 2 2¢ H

decay from the other transport processes ~ ~

affecting concentrations. Incorporation of the c. 7 - ﬂét + i(zc* - (;t) (22)

modified and added reaction terms in these At 2 2¢ '

alternate methods are described below. from which the concentration at the new time
The procedure to change particle level is computed. The average of the new and

concentrations depends on the sign of the total | time level concentration is used to compute
change in concentration (Konikow and others, ihe mass flux to the flowing water phase.

1996). For a positive change, or increasing The change in concentration due to
concentrations, the change in concentration is gispersion and sources is computed as

concentration change is negative, the ratio of  the minor modification that the retardation
the new concentration to the old concentration factor is allowed to vary from cell to cell and is

is used to scale all particle concentrations, thus indexed by all three spatial indiciisk.
resulting in proportional changes in individual The additional change in concentration
particle concentrations. due to zero-order sources and double-porosity
Explicit-Dispersion Method exchange4C) is
, , At =
Following Konikow and others AC = —[Z + (Rf —1)2
(1996), all terms on the right-hand side of R
equation 19 are evaluated by use of known B (= . 0
concentrations in the flowing wategy, + o (C“l +C' - 2C*)D
£

. (23)

Numerical mass conservation between the
flowing and immobile-water phases is
maintained by use of the same expression for
exchange flux in both finite-difference
expressions. This change in concentration is
added to the concentration changes from
dispersion and sources and used to modify cell
and particle concentrations as described above
(see Konikow and others, 1996).

For the case of explicit dispersion and
source calculations, a new stability criterion is
used for the double-porosity calculations. As

which is the average of the concentration at the
previous time level and the concentration at the
new time level after advection and decay only.
The only other unknown is the concentration in
the immobile-water phas€;. This
concentration is computed first at the new time
level by use of a centered-in-time finite-
difference method.

A centered-in-time finite-difference
approximation for the concentration in the
immobile-water phase can be written (in this
and following equations, the node indg)
is implicit for all terms)

~

C*-C' =~ A= N with the stability criteria developed for sources
— Z _ Ct+1 + C’[ i .
AL E( ) (Konikow and others, 1996; Konikow and
I 3 5 Bredehoeft, 1978), this criteria limits mass
+?(ZC* -C'" - Ct) , (21)  fluxin one transport time step due to double-

€ porosity exchange to total mass available in the
Grouping unknown terms at the new time level cell. This condition can be expressed as
on the left-hand side gives



At =
AB 10 (24) JC:—[Z+(Rf -1)Z
R, Ry
Solving equation 24 fofit at all nodes yields LB (ém N Tou 2950) . (26)
the criterion 2™
' D(e R, )j » 0 where@is the implicit time-weighting
Ats Min, DTD (25)  coefficient. Fully-implicit integration for the
H Pix H flowing-water phase concentration

corresponds t@= 1 and Crank-Nicolson
(centered-in-time) integration corresponds to
6= 0.5 (Kipp and others, 1998). The
immobile-water concentration is unknown.
However, this unknown term can be written in
terms of only known concentrations and the
new flowing-water concentration. Substituting
this form into equation 24 yields an implicit
equation in terms of the new concentration in
the flowing water alone.

Because the exchange process with the
immobile-water phase is occurring
simultaneously with dispersion and injection,
this new stability requirement is combined with
dispersion and injection stability requirements.
Thus, the limiting time-step size is determined
from limiting by dispersion and double-
porosity exchange, or by injection and double-
porosity exchange, whichever is more
restrictive. This stability limit is not needed for o L

T : ) A centered-in-time finite-difference
the implicit-dispersion method (Kipp and L o
) approximation for the concentration in the
others, 1998). Hence, larger time steps can be . .
: T . immobile-water phase can be written as
taken using the implicit-dispersion method ~ ~
when dispersion or injection rates are high. ctt-¢

At

~

:2_%(ét+1+ét)

Implicit-Dispersion Method
Following Kipp and others (1998), all +%[2(C* + 95C) -C" - Ct] . (27

terms on the right-hand side of equation 19 are

evaluated by use of a time-weighted average ofGrouping unknown terms at the new time level

old and new concentrations. The known and rearranging results in
concentration in the flowing wateCy, is the i B6
average of the concentration at the previous C ™ = i 5 D5C
time level and the concentration at the new time g 1 + ﬂ + £~
level after advection and decay only. Kipp and Hat 2 2
others (1998) describe the procedures to build - .
an implicit matrix equation for concentrations PnC RN S
at the new time level. The additional transport BE 2 2§H At
processes here affect only the diagonal matrix .

. . _ A - . . |:|
tgrms and t_he forcing ve_ctor on the right-hand A& +£~(ZC B C‘)D - (28)
side. Leaving out the dispersion and source 2 28 i

terms already described by Kipp and others
(1998), an implicit finite-difference equation ~ The average of the new and old time level
for the change in concentration in the flowing concentration is used to compute the mass flux
water phase is to the flowing-water phase.
The equation for the immobile-phase
concentration can be directly substituted into

10



the finite-difference equation for the mobile right-hand side of equation 28 is substituted
phase to yield a single implicit equation. The into equation 26 and rearranged, yielding

o = e DﬁDl ALED + 27 4 (R -1z + B (6 -2c)

Rfs“l EIZ& 2 2% R [ 2¢™
- -1 ~
U O L U 0. 0
p -1 +A+£~ [Z+§C*+ ! _ﬂ_i ‘0. (29)
26 HAt 2 28H g & Hat 2 280 [

The change in concentration due to to the methods used for decay in the solute-
dispersion and sources is computed as transport equation.
described by Kipp and others (1998), with the At the beginning of each transport time
minor modification that the braced term in front step, the age of each particle is increased by
of &C in equation 29 is subtracted from the At, the length of the transport time step.
diagonal coefficient of the conductance matrix. Advection, dispersion, water source, and
The remaining terms on the right-hand side of double-porosity processes are all simulated by
eguation 29 are added to the forcing vedbor (  use of the methods described here and in
as defined by Kipp and others, 1998, p. 10). previousMOC3D documentation (Konikow
After the concentration change for the and others, 1996; Kipp and others, 1998).
flowing-water phase is computed implicitly, Other than activating the age transport option,
the concentration in the immobile-water phase the only other input used is a conversion factor
is computed from equation 27. Numerical for the ages. By use of this conversion factor,
mass conservation between the flowing and the ages in the transport model can be in years
immobile-water phases is maintained by use ofeven though the internal flow and transport
the same expression for exchange flux in both model time unit is seconds, for example.
finite-difference expressions.

Ground-Water Age Transport COMPUTER PROGRAM

Equation

General Program Features
The ground-water age transport g

equation is solved by use of the numerical The integration of th1OC3D

methods for the solute transport equation, as transport program with tidODFLOW
presented above, and by Konikow and others ground-water flow model is described by
(1996) and Kipp and others (1998). Inthis  Konikow and others (1996) and Kipp and
context, the concentration of particles and others (1998). ImplementifdOC3Drequires
nodes in the model corresponds to the age.  the use of a separate “name” file similar to the
Rather than compute the contribution of the  file used INMODFLOW. The principal
zero-order source term (1) by use of the finite- MOC3Dinput data (such as subgrid
difference grid, this term is added directly to  dimensions, hydraulic properties, and particle
particle ages in the age-transport model, similainformation) are read from the maMiOC3D

11



data file. Other files are used for observation (Harbaugh and McDonald, 1996). The only
wells, concentrations in recharge, and several changes to the flow-model programs are

input and output options. Three additional file modification of the main routine to call

types are used to activate the optional methodssubroutines foMOC3D and to pass necessary
documented in this report. Detailed input data arrays and parameters for the optional methods
requirements and instructions for td©C3D presented here.

name file and for the new optional packages The primary MOC3D subroutines that
are presented in appendix A. Also, a sample are modified for the methods presented here
input dataset for a test problem is included in are listed in table 1. One change made

appendix B. throughout the model is that the original array
MOC3Doutput is routed to a main for layer-by-layer retardation factors has been
listing file, separate from tHdODFLOW expanded to a cell-by-cell array to

listing file. Options are available for writing accommodate the new spatially variable
specific data to separate output files, which  retardation factor option. This modification is

will facilitate graphical post-processing. transparent to the user.

Appendix C contains output from the sample The subroutines added MOC3D for

dataset described in appendix B. age, double porosity, and simple reactions are
listed in tables 2, 3, and 4, respectively. The

Program Segments naming and function of these subroutines

generally follows conventions used in

MOC3D and the modifications MODELOW-96andMOC3D,

presented here are compatible with the version
of MODFLOWdesignated aslODFLOW-96

Table 1. Primary MOC3D 3.0 subroutine files
modified for age, double porosity, and simple

reactions
Subroutine Changes from version 2.0 Table 2. MOC3D 3.0 subroutines for AGE
MOC_MAING Pass new variables and Subroutine  Description
glrjrgryosut%g;(!sggﬁ o AGEGDF Read time-unit conversion
subroutines to compute factor .
changes in concentration =~ AGE6AP  Add change in age for 1
for age, double porosity, transport time step to all
and simple reactions particles and all nodes
MOC6 Call new subroutines to read
options and parameters for
modifications
MOVEG6 Age added, decay and

retardation modified

12



Table 3. MOC3D 3.0 subroutines for Double Table 4. MOC3D 3.0 subroutines for Simple

Porosity (DP) Reactions (DK)
Subroutine  Description Subroutine  Description
DP6DF Read double-porosity reaction DK6DF Read reaction options
and printing options DKGAL Allocate space in "X" array
DP6AL Allocate space in "X" array DK6RP Read parameters for simple
DP6RP Read parameters for double reactions
porosity DK6DK Compute effective decay rate
DP6AP Solve double-porosity coefficient for individual
concentration equation for model cell
explicit-dispersion method DKGAP Compute changes in
DPG6IAP Formulate double-porosity concentration due to zero-
concentration equation for order growth reactions for
implicit-dispersion method explicit-dispersion method
DP6IUP Update double-porosity DKG6IAP Add zero-order growth terms
concentration for implicit- to conductance matrix and
dispersion method forcing vector for implicit-
SDP6C Print or save double-porosity dispersion method
concentrations DK6MB Reaction mass balance
DP6MB Double-porosity mass balance
DP6ST Compute stability limits for

double-porosity equation
for explicit-dispersion
method

version 3.0 oMOC3D utilizing the modified
MODEL TESTING AND algorithms for retardation and decay. Tests of
EVALUATION general solute-transport simulation capabilities
of MOC3D are presented by Goode and
The results of the numerical model are  Konikow (1991), Konikow and others (1996),
compared to analytical solutions to illustrate theand Kipp and others (1998). Hornberger and

relative accuracy of the model and to provide  Konikow (1998) describe a graphical user-
examples of the model capabilities. Because ofnterface foMOC3D.

the idealized features of these problems, care

should be taken in transferring the results of Decay and Sorption in One-
these tests to real-world problems. However, Dimensional Steady Flow
these results indicate that the model can
accurately solve the ground-water transport
equations described in this report with
adequate spatial and temporal discretization. |
addition to the tests discussed here, the test
simulations described by Konikow and others
(1996) have all been successfully re-run with

Wexler (1992) presents an analytical
solution for one-dimensional solute transport
in a finite-length aquifer system having a third-
r%ype source boundary condition. The one-
dimensional governing equation is

13



oC oc

0°C
—=D,—-V—=-ARC .
The governing equation is subject to the
boundary conditions

oC

(30)

VC'=VC-D—, x=0 (31)
ox
and x =0, x=L (32)
oX
and initial condition
C=0, Gx<L . (33)

For this and the following test problems, it is
assumed that the length of the systems
equal to 12 cmC' =1.0, anadV = 0.1 cm/s.
The analytical solution is given by equations
52 and 53 of Wexler (1992, p. 17). The flow

equation is solved by use of a one-dimensional Source concentratior( )

grid having 122 cells (nodes) in the x
direction. The solute-transport equation is
solved in a 120-cell subgrid to assure a
constant velocity within the transport domain

and to allow an accurate match to the boundary

conditions of the analytical solution. The grid
spacing isAx = 0.1 cm. The numerical
solution is implemented by use of three initial
particles per cell (NPTPND = 3) and a
CELDIS factor of 0.5. The input parameters
for the model simulation are summarized in
table 5.

The effect of decay is evaluated by
specifying the decay rate As= 0.01 st
without retardation (fig. 1), which agrees well
with the analytical solution. Three different
cases with a retardation factorRf= 2 and
different values of decay coefficients for the

dissolved and sorbed phases yield numerically

identical solutions at= 180 s. Decay is not

reduced by the retardation effect, hence, these

appreciably lower dt= 180 s. These results
also agree well with the analytical solution.

Table 5. Parameters used in MOC3D simulation of
transport in a one-dimensional, steady-state flow
system.

[Abbreviations: cm?/s, square centimeters per
second; cm, centimeter; s, second; cm/s,
centimeters per second]

Parameter Value
Txx = Tyy 0.01 cn®/s
Porosity(g) 0.1
Dispersivity (a) 0.1 cm
PERLEN(length of stress 90 or 180 s

period)
Velocity (Vy) 0.1 cm/s
Initial concentration Qo) 0.0

1.0

Number of rows 1
Number of columns 122
Number of layers 1
DELR (4x) 0.1 cm
DELC (4y) 0.1 cm
ThicknessI) 1.0cm
NPTPND(Initial number of 3

particles per cell)
CELDIS 0.5
INTRPL (Interpolation 1

scheme)

cases have effective decay rate coefficients that

are one-half that of the base case without
retardation. If retardation is included and the

sorbed and dissolved phases decay at the same

rate as the base case, concentrations are

14
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Figure 1. Numerical (MOC3D) and analytical solutions for five cases for solute transport in a one-
dimensional, steady flow field with decay. Variables are time, t, retardation factor, R, dissolved phase
decay rate coefficient, A, and sorbed phase decay rate coefficient, A . Other parameters are listed in
table 5. [Abbreviations: s, second; s*, per second]

governing equation is subject to the boundary

Zero-Order Loss in One- condition
Dimensional Steady Flow c=c,, x=0 | (35)
The transport solution using tB¥ and the initial condition

package with zero-order loss (negative growth) B
is tested by comparing the numerical solution C=0, Gx<L . (36)
to an analytical solution for a one-dimensional The problem can be solved by use of
steady-flow case with no dispersion. The coordinate transformations, yielding
governing equation for this case is

oc vac z (R-1Z c=Hpl —xchip S ——XS

e 2 BT (39 R H R0z E

o R & R R;

X J—

The equation is nonlinear when the growth ﬁq + V[Z +(R, ‘1)2]@ - 37)
terms are negative because they become zero if
the concentration is zero. The hyperbolic whereH is the Heaviside step functio(y) =

1 fory >0 andH(y) =0 fory <0. This
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particular solution is for the case of negave
and Z, corresponding to zero-order loss. If
the growth terms are positive, the second
Heaviside function is removed.

The numerical model reproduces the
analytical solution very closely for five cases

with retardation and zero-order loss (fig. 2). A
slight difference is noted at the advancing
front, but this difference disappears as
concentrations at the front drop to zero,
numerically and analytically.

[ad il
Lr'—J t=90s, R, =1 Z=-0.01(mg/L)/s |
= t=180s, R, =2, Z =Z =-0.005 (mg/L)/s ]
o8- t=180s, R, =2, Z=0, Z=-0.01(mg/L)/s |
2 t=180s, R, =2, Z=-0.01 Z =0 (mg/L)ls
% | i
= 0.6 i
= L _
= L i
z | o MOC3D ]
& 04 ANALYTICAL | —
= L i
<

< | i
|—

= | i
o 0.2 I
& [ t=180s, R, =2 1
© [ z-Z=-001(mglL)s

0 \ |
0 2 4 6 8 10 12

DISTANCE, IN CENTIMETERS

Figure 2. Numerical (MOC3D) and analytical solutions for several different cases for solute transport in a
one-dimensional, steady flow field with zero-order loss and no dispersion. Variables are time, t,
retardation factor, R;, dissolved phase loss rate, Z, and sorbed phase loss rate, Z . Other parameters are
listed in table 5. [Abbreviations: s, second; mg/L, milligrams per liter]

Double-Porosity Exchange in One-
Dimensional Steady Flow

TheMOC3D extensions for double
porosity(DP) are tested by comparing the
numerical solution to an analytical solution for
a one-dimensional steady-flow case. The
physical system and model are generally the
same as the one-dimensional case considere

previously. The additional parameters for the
immobile-water phase are listed in table 6. The
initial concentration in the immobile phase is
assumed to be zero and the initial concentration
in the mobile phase is 20.0 in the first transport
subgrid cell. This numerical initial condition
approximates an instantaneous impulse
condition at the inflow boundary. Incoming

¢ water has a concentration of zero, in contrast to
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the case in the previous section. The linear aC

velocity interpolation option is selected. 0=VC- D&, x=0 (40)
The governing equations are
IC __9°C _oC By= aC
= -V=+E(C- and —=0, X=L 41
=p S -vEe s (C-c) and (38) . (41)

and the initial conditions:
: (39) C=0, C=0, Ox<L. (42

The analytical solution for the solute
concentration in the mobile phase for the case
of an impulse inflow condition is given in the
Laplace domain as (Valocchi, 1985)

écé—? = ﬁ(c—é)

subject to the boundary conditions

2Aexp§% %— SH 4i(fp + h)%
A a
C(x, p) = o ﬂ/ 2 ) (43)
1+ §+ 4—(fp+h
L( p )E
where é(x, p) is the Laplace transform of
C(x,t); pis the Laplace transform variabke =
M/eL® whereM is the total mass injected and ~ Table 6. Modified and additional MOC3D
. . . . parameters for double-porosity simulation.
is a unit length (1 cm in the present casely [s, seconds; mg/L, milligrams per liter]
the dispersivity and
h= (1- flwp (44) Parameter Value
(L-fp+w Immobilephaseporosity (£) 0.1
€ Exchange-rate coefficie(f) varies
f= et s and (45)  PERLEN(length of stress 60 s
period)
0= B (46) Initial concentrationCo)
v In first cell of transport  20.0 mg/L
The concentration in the (x,t) domain is subgrid [=2)
obtained by numerical inversion of the Laplace ~ In other cells 0.0
transform solution by use of the Stehfest Source concentratiorX) 0.0
algorithm (Stehfest, 1970; Moench and Ogata, Initial concentration C) in 0.0
1984).The same numerical model parameters immobile-water phase
used in the decay test case (table 5) are used INTRPL (Interpolation 1
for this case, with the additionBP parameters scheme)

listed in table 6.

17



The analytical anMOC3D solutions solution shows some minor deviations,

agree well over a range of exchange-rate especially at the peak concentrations for the
coefficient values (fig. 3). The numerical case of = 0.001 8.
0.5 ‘

0.4 -

A MOC3D g
ANALYTICAL

0.3

0.2

0.1

CONCENTRATION, IN MILLIGRAMS PER LITER

0 2 4 6 8 10 12
DISTANCE, IN CENTIMETERS

Figure 3. Numerical (MOC3D) and analytical solutions for several different cases for solute transport in a
one-dimensional, steady flow field with double porosity. The variable is the linear exchange coefficient,
B. Double-porosity parameters are listed in table 6 and other parameters are listed in table 5.
[Abbreviation: s, per second]

Age in One-Dimensional Steady
Flow Vd_A_ZW(O_A) —

1=0 ,and (47)
dx £

The age transport solution is tested by
comparing the numerical solution to an 0=VA, x=0. (48)
analytical solution for a one-dimensional

steady-flow case with no dispersion. Under  For the test problem here, the recharge tfm
steady-flow conditions, the steady-state age s set to zero over the first half of the domain

distribution is obtained by solving a governing and takes on a non-zero uniform value over the
equation with the time derivative term set to second half as

zero. Thus, the governing equation and W=0;, 0<x<L/2
boundary condition for this case are ’ S (49)
£

W=—°: Li2<x<L-
A(x=L/2)
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By integration, the analytical solution where In this case, the last two terms of (52) cancel,
W=0 is hencedA/dx = Q Thus, the analytical
A=x/V 0<sx<L/2 . (50)  solution for_ the age _iA(G cmsx <12 cm) =
, ] 60 s. The increase in age as water flows is
I_:or the properties used h_ere, the age Increasegyrecisely offset by the mixing of the water in
to A=60 sat x=L/2=6 cm. MOC3Dcannot solve a steady-state
To derive the solution for the last part  yangport equation directly, so the simulation is

from the flow-gquation-.removed form back to computed ages do not change appreciably with
the form in which the divergence of water flux gjmulation time. Minor fluctuations or
Is included as oscillations may continue to occur, but these
are artifacts of the discrete numerical method.
doA The input parameters for the model simulation
OA A g = (51) |
“dx ~WA' -¢=0. are the same as those shown in table 5 except

that the dispersivity is 0.0 and the simulation
For W representing recharge with age zero, period length is 180 s.

WA' = 0. By definition,W = dg/dxfor this The numerical solution agrees very

one-dimensional problem. Splitting the well with the analytical solution (fig. 4). This

derivative and substituting gives case illustrates that the numerical methods used

in MOC3Dare suitable for advective transport
dA problems in which dispersion is neglected.
g—+AW-£=0. (52) However, the model cannot solve steady-state

dx transport problems directly but must be run in

This expression can be integrated for the transient mode with constant conditions until

general case. A trivial solution is available for steady-state conditions are asymptotically

the case here by choosiwg= &/A(x = L/2). reached.
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Figure 4. Numerical (MOC3D) and analytical solutions for ground-water age transport in a one-
dimensional, steady flow field with no dispersion. Other parameters are listed in table 5.

SUMMARY AND CONCLUSIONS of ground water is defined relative to isolation

from the atmospheric source of the tracers. A
The spatially variable and temporally ~ useful tool in analysis of these age-dating

variable geochemical conditions in results is a model of the age of ground water

contaminated aquifers lead to complex patternswithin an aquiferMOC3D has been modified

of solute attenuation. These processes cannot to simulate ground-water age transport,

be accurately approximated using uniform and including the effects of double-porosity

constant reaction coefficients. To improve the exchange.

capabilities of the ground-water solute The modifications described here

transport modeMOC3Dto approximate these extend the capabilities MOC3D for

effects, simple reaction terms have been addedsimulation of solute transport in ground water.

to the governing equation and numerical These extensions allow simulation of age
methods, and the flexibility of existing reaction transport, effects of diffusive exchange with an
simulation has been improved. These immobile-water phase, and more flexible
modifications are incoporated in version 3.0 of retardation, decay, and growth reactions than
MOC3D. those allowed in the original version of the
Recent advances in environmental model. These extensions are tested by

tracers allows dating of ground water; the age comparing model output to analytical solutions
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for special cases. These tests indicate that the
model can generate accurate solutions to the
ground-water transport equation for these
special cases. These extensions do not alter

the basic algorithms used to solve the transport
eguation, hence the guidance given by
Konikow and others (1996) about applicability

1991, Testing a method-of-characteristics
model of three-dimensional solute transport in
ground waterin Lennon, G.P., ed., Symposium
on Ground Watér Proceedings of the
International Symposium, Nashville, Tenn.:
New York, American Society of Civil
Engineers, p. 21-27.
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APPENDIX A: ADDITIONAL DATA INPUT INSTRUCTIONS FOR AGE,
DOUBLE POROSITY, AND SIMPLE REACTIONS IN MOC3D (Version 3)

All input variables are read using free formats, except as specifically indicated. In free
format, variables are separated by one or more spaces or by a comma and optionally one or more
spaces. Blank spaces are not read as zeros.

MOC3D Transport Name File (CONC)
FOR EACH SIMULATION:

1. Data: FTYPE NUNIT FNAME

The name file consists of records defining the names and units numbers of the files. Each
“record” consists of a separate line of data. There must be a record for the listing file and for the
mainMOC3Dinput file.

The listing (or output) file (“CLST”) must be the first record. The other files may be in any
order. Each record can be no more than 79 characters.

FTYPE The file type, which may be one of the following character strings:

CLST  MOC3Dlisting file (separate from tfHdODFLOWIisting file) [required].

MOCor MOCIMP Main MOC3D input data file Specifyin/OC indicates
dispersion calculations will be explicit (as described by Konikow and
others, 1996) and specifyiDdOCIMP indicates dispersion calculations
will be implicit (as described by Kipp and others, 1998).

CRCH Concentrations in recharf@ptional].

CNCA Separate output file containing concentration data in ASCII (text-only) format.
Frequency and format controlled by NPNTCL and ICONBtional].

CNCB Separate output file containing concentration data in binary foapizbnal].

VELA  Separate output file with velocity data in ASCII format. Frequency and format
of printing controlled by NPNTVL and IVELFNbptional].

VELB  Separate output file with velocity data in binary forfoational.

PRTA  Separate output file with particle locations printed in ASCII format. Frequency
and format of printing controlled by NPNTRaptional].

PRTB  Separate output file with particle locations printed in binary fofomional.
OBS Observation wells input filppptional].

DATA  For formatted files such as those required by the OBS package and for array
data separate from the maMOC3D input data filgoptional].

DATA(BINARY) For unformatted input/output filgeptional].
*eeekx The following optional FTYPEs select modifications documented in this report ******
AGE Ground-water age simulation input filgptional].
DP Double porosity input filgoptionall.
DK Simple reactions (decay, zero-order growth, retardation) inpjiopteonal].
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NUNIT The FORTRAN unit number used to read from and write to files. Any legal unit
number other than 97, 98, and 99 (which are reservé&tidiyFLOW) can be
used provided that it is not previously specified inM@DFLOWname file.

FNAME The name of the file.

AGE Input File

Activating the AGE package results in the model concentration output corresponding to
ground-water ages. Age simulation is not compatible with most possible reaction terms in
MOC3D, except for the double porosity option. Ground-water age is simulated with the advection
dispersion transport equation by adding a uniform zero-order source term of unit (1) strength,
corresponding to the rate of aging.

FOR EACH SIMULATION, IFAGEPACKAGE USED:

1. Data: AGERS8 The aging rate (usually 1.0)

The aging rate (AGERS) is the ratio of model output age units to the simulation time units.
If AGER8=1.0, the computed ages will be in the same time units as the transport simulation.
AGERS can be used to convert output ages to a more convenient time scale. For example, for
output ages of years in a model simulation with time units of seconds, AGER8 =1/ (365 * 24 *
60 *60 ) =1/31,536,000 = 3.171 x40

Double Porosity (DP) Input File

Activating the double-porosity package allows simulation of linear kinetic exchange
between the flowing water and an immobile water phase. Within the double-porosity package,
options are provided to include decay and zero-order growth reactions. After a single line of
control parameters, double-porosity properties are listed. Input includes the initial concentration,
the porosity of the immobile phase, and the linear exchange coefficient. If optional reactions are
selected, those rate coefficients also must be provided. The exchange-rate coefficient and the
reaction-rate coefficients can optionally change each flow-model stress period.

FOR EACH SIMULATION, IFDP PACKAGE USED:

1. Data: IDPFO IDPZO IDPTIM IDPPS

IDPFO If IDPFO=1, activate first-order decay reaction in immobile water phase.
IDPZO If IDPZO=1, activate zero-order growth reaction in immobile water phase.
IDPTIM If IDPTIM=1, double porosity rate coefficients change each stress period.
IDPPS If IDPPS=1, print immobile-phase concentrations using aquifer-concentration

formats and frequency.

If IDPPS=2, save immobile-phase concentrations using aquifer-concentration
formats and frequency.

If IDPPS=3, print and save immobile-phase concentrations using aquifer-
concentration formats and frequency.
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FOR EACH LAYER OF TRANSPORT SUBGRID:

2. Data: DPCON(NSCOL,NSROW) Initial concentration C(t =0) (ML?)].
Module: U2DREL *

3. Data: DPPOR(NSCOL,NSROW) Porosity of immobile water phase [(-)].
Module: U2DREL *

FOR EACH SIMULATION (if IDPTIM=1, then FOR EACH FLOW-MODEL STRESS PERIOD)
FOR EACH LAYER OF TRANSPORT SUBGRID:

4. Data: DPXRAT(NSCOL,NSROW) Linear exchange coefficien8[1/T)].
Module: U2DREL *

IF IDPFO=1, OPTIONAL FIRST-ORDER DECAY REACTION IN DOUBLE POROSITY
5. Data: DPFO(NSCOL,NSROW) First-order decay reaction coefficient

[A (LUT)].
Module: U2DREL *

IF IDPZO=1, OPTIONAL ZERO-ORDER GROWTH REACTION IN DOUBLE POROSITY
6. Data: DPZO(NSCOL,NSROW) Zero-order growth reaction rat& [(ML3T™1)].
Module: U2DREL *

For simulations using a multi-layer transport subgrid, input consists of 1, followed by 2 and 3 for
each subgrid layer, followed by 4 and optionally 5 and 6 for each subgrid layer. If more than one
flow-model stress period is used, and IDPTIM=1, then datasets 4 and optionally 5 and 6 are
repeated for each subgrid layer, for each subsequent stress period.

Simple Reactions (DK) Input File

Activating the simple reactions package allows incorporation of simple but flexible reaction
terms into the basic transport solution. The original model includes decay and retardation, but
retardation is assumed to be uniform within each model layer. In the original model, decay is
assumed to occur at the same rate in the dissolved and sorbed phases and is uniform throughout the
model and constant during the entire simulation period. The DK package allows retardation factors
to be input cell by cell. Decay also can be controlled cell by cell. In addition, decay can occur at
different rates in the dissolved and sorbed phases, and the decay rates can change at the beginning
of each flow model stress period. Finally, a zero-order growth reaction also is included; it also can
be specified cell-by-cell and can optionally change at the beginning of each flow model stress
period. After the initial control parameters, the retardation factors for all layers are read, if that
option is activated (IDKRF=1). If read, these retardation factors overwrite the values read in the
main MOC input file. Next, decay coefficients and growth rates are read layer by layer: all of the
active decay and growth reaction terms for layer 1 are read, then the same parameters for layer 2,
and so on. This grouping is used because when the time-variable reaction rates are used, and the
retardation factor is not allowed to change in time. With the grouping used here, the decay and
growth input structure for the initial stress period is the same as that used during subsequent stress
periods.
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FOR EACH SIMULATION, IFDK PACKAGE USED:

1. Data: IDKRF IDKTIM IDKFO IDKFS IDKZO IDKZS

IDKRF If IDKRF=1, activate spatially variable retardation factor.

IDKTIM If IDKTIM=1, decay and growth reaction rates change in time at each stress period.
IDKFO If IDKFO=1, activate spatially variable decay for dissolved phase.

IDKFS If IDKFS=1, activate spatially variable decay for sorbed phase.

IDKZO If IDKZO=1, activate spatially variable zero-order growth for dissolved phase.
IDKZS IF IDKZS=1, activate spatially variable zero-order growth for sorbed phase.

FOR EACH LAYER OF TRANSPORT SUBGRID:

IF IDKRF=1, OPTIONAL SPATIALLY VARIABLE RETARDATION FACTOR
2. Data: DKRF(NSCOL,NSROW) Retardation factorig (-)].

Module: U2DREL *

FOR EACH SIMULATION (if IDKTIM=1, then FOR EACH FLOW-MODEL STRESS
PERIOD)
FOR EACH LAYER OF TRANSPORT SUBGRID:

IF IDKFO=1, OPTIONAL DECAY RATE FOR DISSOLVED PHASE
3. Data: DKFO(NSCOL,NSROW) Decay rate coefficient for dissolved phase

[A (L/T)].
Module: U2DREL *

IF IDKFS=1, OPTIONAL DECAY RATE FOR SORBED PHASE
4. Data: DKFS(NSCOL,NSROW) Decay rate coefficient for sorbed phase
[A (1/T)].
Module: U2DREL *

IF IDKZO=1, OPTIONAL ZERO-ORDER GROWTH RATE IN DISSOLVED PHASE
5. Data: DKZO(NSCOL,NSROW) Zero-order growth rate for dissolved phase
[Z (ML®TH)].
Module: U2DREL *

IF IDKZS=1, OPTIONAL ZERO-ORDER GROWTH RATE IN SORBED PHASE
6. Data: DKZS(NSCOL,NSROW) Zero-order growth reaction rate for sorbed

phase g (ML°T™)].
Module: U2DREL *

Repeat 3-6, as needed, for each layer of the subgrid.

IF IDKTIM=1, Repeat 3-6, as needed, for all layers, for each flow-model stress period. Note that
the retardation factor is constant in time and new values are not read for subsequent stress periods.
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APPENDIX B: ANNOTATED EXAMPLE INPUT DATASET FOR SAMPLE
PROBLEM

This example input dataset is for one of the solutions shown in figure 1 with retardation
and decay in both sorbed and dissolved phases. Parameter values are listed in table 5. Several of
the required data filedifite.nam finite.bas finite.bcf andfinite.sip are those required for
MODFLOW-96 and their formats are described by Harbaugh and McDonald (1996). Only files
that are changed from the original documentation (Konikow and others, 1996) are reproduced
here.

In the data files shown below, the right side of some data lines includes a semi-colon
followed by text that describes the parameters for which values are given. These comments
(including the semicolon) are not read by the program because in free format the code will only
read the proper number of variables and ignore any subsequent information on that line. This style
of commenting data files is optional, but users may find it helpful when viewing the content of data
files.

Following (enclosed in a border) are the contents di@®FLOWnName file for the
sample problem; explanations are noted outside of border:

File name: finite.nam

list 16 finite.lst ~ Designates main output file fMODFLOW
bas 95 finite.bas ~ Basic input data foIODFLOW
bcf 11 finite.bcf ~ Block-centered flow package
sip 19 finite.sip — Input for numerical solution of flow equation
conc 33 finite.mcn ~ Transport name file (turns transport “on”)

1 1 1

1 2 3

1 Ftype (that is, the type of file)
2 Unit number
3 File name (name chosen to reflect contents of file)
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Following (enclosed in a border) are the contents of the basic package input data file for the
MODFLOWSsimulation of the sample problem; explanations are noted outside of border:

File name:finite.bas

Finite: Compare to Wexler program and MOC3D BAS Input
NLAY NROW NCOL NPER ITMUNI

1 1 122 1 1
FREE

0 1 ;IAPART,ISTRT

95 1(2513) 3 ;IBOUND
-1111111111111111111111111
1111111111111111111111111
1111111111111111111111111
1111111111111111111111111
111111111111111111111-2

0.00 ; HNOFLO

95  1.0(122F5.0) 1 ;HEAD
12.1
180.0 1 1. ;PERLEN,NSTP,TSMULT -

L I Y A I Y A B |
O NN OO0 WN R

1

1

=

Two header lines of comments. For convenience and clarity, the second line is used to label names of
parameters on subsequent line of file.

Flow grid dimensions, number of periods, and time units.
Options line (new iMODFLOW-9§

Flags for buffer array and drawdown calculations.
IBOUND identifiers (first line) and array

Head value assigned to inactive cells

Initial head information

MODFLOW time-step information

a b wnN

0 N O

Following (enclosed in a border) are the contents di@€3D name file for the sample
problem; explanations are noted outside of border:

File name:finite.mcn

clst 94 finite.out ~ Designates main output file fdfOC3D
moc 96  finite.moc ~ Main input data file foMOC3D
obs 44 finite.obs ~ Input data file for observation wells
data 45 finite.oba ~ Outputfile for observation well data
cnca 22 finite.cna — Separate output file for conc. data (ASCII)
cncbh 23 finite.cnb — Separate output file for conc. data (binary)
dk 24  finite.dk ~ DK input data file (turns DK package "on")
1 7 1
1 2 3
1 Ftype
2 Unit number
3 File name
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Following (enclosed in a border) are the contents of the main input data file K©®8D
simulation for the sample problem; selected explanations are noted outside of border:

File name: finite.moc

One-dimensional, Steady Flow, DK Decay, Low Dispersion: MOC3D 3.0 Input <1
ISLAY1 ISLAY2 ISROW1 ISROW2 ISCOL1 ISCOL2 <1
1 1 1 1 2 121 -2
0 00 0.0;NODISP, DECAY, DIFFUS ~3
2000 3 ; NPMAX, NPTPND < 4
05 0.05 1; CELDIS, FZERO, INTRPL <4
000-1000; NPNTCL, ICONFM, NPNTVL, IVELFM, NPNTDL, IDSPFM, NPRTPL -5
0.0 ;CNOFLO ~ 6
0 0.0(122F3.0) ; initial concentration
0 L ; C'inflow
2 : NZONES to follow -7
110 ; IZONE, ZONCON -7
2 00 ; IZONE, ZONCON -7
0 0 ; IGENPT ~ 8
0 01 ; longitudinal disp.
0 01 ; transverse disp. horiz.
0 01 ; transverse disp. vert.
0 10 ; retardation factor
0 10 ; thickness
0 o1 ; porosity

1 Two header lines of comments. For convenience and clarity, the second line is used to label names of
parameters on subsequent line of file.

Indices for transport subgrid

Flag for no dispersion, decay rate, diffusion coefficient
Particle information for advective transport

Print flags

Value of concentration associated with inactive cells

Concentrations associated with fixed-head nodes (fixed head nodes are defined in the IBOUND array in the
MODFLOWBAS package)

8 Flag for “strong” sources or sinks

~No ok WD

Following (enclosed in a border) are the contents obténput data file for thé1OC3D
simulation for the sample problem; selected explanations are noted outside of border:

File name:finite.dk

1 01 1 0 O;idkrfidktim idkfo idkfs idkzo idkzs
CONSTANT 2.0
CONSTANT 0.01
CONSTANT 0.01

LI
A wWN

1 Options for DK package

2 Spatially-variable retardation factors

3 Spatially-variable decay coefficient for dissolved phase
4 Spatially-variable decay coefficient for sorbed phase
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APPENDIX C: SELECTED OUTPUT FOR SAMPLE PROBLEM

This example output was generated from the input datasets listed in appendix B for a case
of one-dimensional transport in steady-state flow with retardation and decay. The line spacing and
font sizes of the output files have been modified in places to enhance the clarity of reproduction in
this report. Some repetitive lines of output have been deleted where indicated by an.ejlipsis (

Some brief annotations were added in a few places in this sample output listing to help the
reader understand the purpose of various sections of output. These annotations are written in bold
italics to clarify that they are not part of the output file.

Following are the contents of thMOC3Dmain output file for the sample problem.

U.S. GEOLOGICAL SURVEY
METHOD-OF-CHARACTERISTICS SOLUTE TRANSPORT MODEL
MOC3D (Version 3.0) 1999/03/24

MOC BASIC INPUT READ FROM UNIT
LISTING FILE: finite.out UNIT 94

OPENING finite.moc
FILE TYPE: MOC UNIT 96

OPENING finite.obs
FILE TYPE: OBS UNIT 44

OPENING finite.oba
FILE TYPE: DATA UNIT 45 FILE INFORMATION

OPENING finite.cna
FILE TYPE: CNCA UNIT 22

OPENING finite.cnb
FILE TYPE: CNCB UNIT 23

OPENING finite.dk
FILE TYPE: DK UNIT 24 DK INPUT FILE

MOC BASIC INPUT READ FROM UNIT 96

2 TITLE LINES:
One-dimensional, Steady Flow, DK Decay, Low Dispersion: MOC3D 3.0 Input
ISLAY1 ISLAY2 ISROW1 ISROW2 ISCOL1 ISCOL2

PROBLEM DESCRIPTORS, INCLUDING GRID CHARACTERISTICS AND PARTICLE INFORMATION:
MAPPING OF SOLUTE TRANSPORT SUBGRID IN FLOW GRID:

FIRST LAYER FOR SOLUTE TRANSPORT = 1  LAST LAYER FOR SOLUTE TRANSPORT = 1

FIRST ROW FOR SOLUTE TRANSPORT = 1 LAST ROW FOR SOLUTE TRANSPORT = 1

FIRST COLUMN FOR SOLUTE TRANSPORT= 2 LAST COLUMN FOR SOLUTE TRANSPORT =121

UNIFORM DELCOL AND DELROW IN SUBGRID FOR SOLUTE TRANSPORT
NO.OF LAYERS= 1 NO.OFROWS= 1 NO.OF COLUMNS = 120
NO SOLUTE DECAY

NO MOLECULAR DIFFUSION
MAXIMUM NUMBER OF PARTICLES (NPMAX) = 2000
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INPUT FOR DK OPTIONS READ FROM UNIT 24
SPATIALLY-VARIABLE RETARDATION FACTOR
LAYER-CONSTANT RETARDATION FACTORS FROM MOC INPUT FILE WILL NOT BE USED
DECAY AND GROWTH RATES DO NOT CHANGE IN TIME
SPATIALLY-VARIABLE FIRST-ORDER DECAY
DISTINCT SPATIALLY-VARIABLE FIRST-ORDER DECAY FOR SORBED SOLUTE
SORBED MASS DECAYS AT DIFFERENT RATE THAN DISSOLVED
NO SPATIALLY-VARIABLE ZERO-ORDER GROWTH
NO DISTINCT SPATIALLY-VARIABLE ZERO-ORDER GROWTH FOR SORBED SOLUTE
SORBED MASS GROWS AT SAME RATE AS DISSOLVED

240 ELEMENTS IN X ARRAY ARE USED BY DK
14485 ELEMENTS IN X ARRAY ARE USED BY MOC
12 ELEMENTS IN X ARRAY ARE USED BY OBS

NUMBER OF PARTICLES INITIALLY IN EACH ACTIVE CELL (NPTPND) = 3
PARTICLE MAP (0" indicates particle location; shown as
fractions of cell distances relative to node location):
0------0------0
13 0 133
INITIAL RELATIVE PARTICLE COORDINATES
1 0.00000 0.00000 -0.33333
2 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.33333
CELDIS= 0.500
FZERO= 0.050
INTRPL=1; LINEAR INTERPOLATION SCHEME

NPNTCL= 0: CONCENTRATIONS WILL BE WRITTEN AT THE END OF THE SIMULATION
MODFLOW FORMAT SPECIFIER FOR CONCENTRATION DATA: ICONFM= 0

NPNTVL= O: VELOCITIES WILL BE WRITTEN AT THE END OF THE SIMULATION
MODFLOW FORMAT SPECIFIER FOR  VELOCITY DATA: IVELFM=-1

NPNTDL= 0: DISP. COEFFICIENTS WILL NOT BE WRITTEN

NPNTPL= 0: PARTICLE LOCATIONS WILL NOT BE WRITTEN

CONCENTRATION WILL BE SET TO 0.00000E+00 AT ALL NO-FLOW NODES (IBOUND=0).
INITIAL CONCENTRATION = 0.0000000E+00 FOR LAYER 1

VALUES OF C' REQUIRED FOR SUBGRID BOUNDARY ARRAY = 1

ONE FOR EACH LAYER IN TRANSPORT SUBGRID

ORDER OF C'VALUES: FIRST LAYER IN SUBGRID, EACH SUBSEQUENT LAYER,
LAYER ABOVE SUBGRID, LAYER BELOW SUBGRID:

SUBGRID BOUNDARY ARRAY = 1.000000

NUMBER OF ZONES FOR CONCENTRATIONS AT FIXED HEAD CELLS = 2

ZONEFLAG= -1 INFLOW CONCENTRATION = 1.0000E+00
ZONEFLAG = -2 INFLOW CONCENTRATION = 0.0000E+00

SINK-SOURCE FLAG = OFORLAYER 1
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LONGITUDNL. DISPERSIVITY = 0.1000000
HORIZ. TRANSVERSE DISP. = 0.1000000
VERT. TRANSVERSE DISP. = 0.1000000
RETARDATION FACTOR = 1.000000
INITIAL THICKNESS = 1.000000 FORLAYER 1
INITIAL POROSITY = 0.1000000 FORLAYER 1
SIMPLE REACTION (DK) PACKAGE INPUT

SPACE VAR. RETARD FCTR = 2.000000 FORLAYER 1 D K

FIRST-ORDER DECAY COEF. = 0.1000000E-01 FOR LAYER 1 INPUT

FIRST-ORDER SORBED DECAY = 0.1000000E-01 FOR LAYER 1

COORDINATES FOR 3 OBSERVATION WELLS:

WELL# LAYER ROW COLUMN UNIT
1 1 1 2 45
2 1 1 42 45
3 1 1 112 45

ALL OBSERVATION WELL DATA WILL BE WRITTEN ON UNIT 45

CONCENTRATION DATAWILL BE SAVED ON UNIT 22 IN ASCIl FORMAT
CONCENTRATION DATA WILL BE SAVED ON UNIT 23 IN BINARY FORMAT

TOTAL NUMBER OF PARTICLES GENERATED = 360
TOTAL NUMBER OF ACTIVE NODES (NACTIV)= 120

MAX. NUMBER OF CELLS THAT CAN BE VOID OF PARTICLES (NZCRIT)= 6
(IF NZCRIT EXCEEDED, PARTICLES ARE REGENERATED)

CALCULATED VELOCITIES (INCLUDING EFFECTS OF RETARDATION,

EFFECTIVE MEAN SOLUTE VELOCITIES IN COLUMN DIRECTION
AT NODES

IF PRESENT):

1
VELOCITY (COL) INLAYER 1ATEND OF TIME STEP 1IN STRESS PERIOD 1

1 2 3 4 5 6 7 8 9

1 5000E-02 5000E-02 5.000E-02 5000E-02 5000502 5000E-02 5.000E-02 5000E-02 500002

mm 12 13 14 15 16 117 18 119 120

1 5000E-02 5000E-02 5000E-02 5000E-02 5000E-02 5000502 5.000E-02 5.000E-02 5000502 5.000E-02

EFFECTIVE MEAN SOLUTE VELOCITIES IN ROW DIRECTION
AT NODES

1
VELOCITY (ROW) INLAYER 1 AT END OF TIME STEP 1IN STRESS PERIOD 1

1 2 3 4 5 6 7 8 9

1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
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M 112 13 114 115 116 117 118 119 120

1 0000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+H00 0.000E+00 0.000E+00 0.000E+00 0.000E+0

EFFECTIVE MEAN SOLUTE VELOCITIES IN LAYER DIRECTION
AT NODES

1
VELOCITY (LAYER) IN LAYER 1 AT END OF TIME STEP 1IN STRESS PERIOD 1

1 2 3 4 5 6 7 8 9 -

1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+H00 -

M 112 13 114 115 116 117 118 119 120

1 0000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+H0

STABILITY CRITERIA --- M.O.C.

MAXIMUM FLUID VELOCITIES: C-VEL= 5.00E-02 R-VEL= 1.00E-20 L-VEL= 1.00E-18
MINIMUM TIME TO TRAVEL THCK = 1.00E+18

TIMV = 1.00E+00 NTIMV = 181
MAX. C-VEL. IS CONSTRAINT AND OCCURS BETWEEN NODES ( 2, 1, 1)AND( 1, 1, 1)
TIMD = 1.00E+00 NTIMD = 181
THERE ARE NO FLUID SOURCES IN THE TRANSPORT SUBGRID
NUMBER OF MOVES FOR ALL STABILITY CRITERIA:
CELDIS DISPERSION INJECTION
181 181 1

CELDIS IS LIMITING
DISPERSION IS LIMITING

TIMESTEP 1INSTRESSPERIOD 1
NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP = 181
MOVE TIME STEP (TIMV)= 9.944751262665E-01

(NUMERICAL SOLUTION TO TRANSPORT EQUATION STARTS AT

THIS POINT)

NP = 360ATSTARTOFMOVE IMOV = 1

NP = 360ATSTARTOFMOVE IMOV = 2 ONE LINE PRINTED

NP = 360ATSTARTOFMOVE IMOV = 3 FOR EACH MOVE TO

NP = 360ATSTARTOFMOVE IMOV = 4

NP = 360ATSTARTOFMOVE IMOV = 5 TRACK PROGRESS
AND NUMBER OF
ACTIVE PARTICLES

NP = 360ATSTARTOFMOVE IMOV = 176

NP = 360ATSTARTOFMOVE IMOV = 177

NP = 360ATSTARTOFMOVE IMOV = 178

NP = 360ATSTARTOFMOVE IMOV = 179
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NP 360 AT START OF MOVE IMOV

360 AT START OF MOVE IMOV

180
181

SOLUTE BUDGET AND MASS BALANCE FOR TRANSPORT SUBGRID

VALUES CALCULATED AT END OF:
STRESSPERIOD 1 OUTOF 1
FLOWTIME STEP 1 OUTOF 1

TRANSPORT TIME INCREMENT 181 OUT OF 181

ELAPSED TIME = 1.8000E+02

CHEMICAL MASS IN STORAGE:
INITIAL: MASS DISSOLVED = 0.0000E+00 MASS SORBED = 0.0000E+00
PRESENT: MASS DISSOLVED = 4.1720E-02 MASS SORBED = 4.1720E-02

CHANGE IN MASS STORED = -8.3440E-02

CUMULATIVE SOLUTE MASS (L*3)(MVOL)

IN:

DECAY = 0.0000E+00
CONSTANT HEAD = 0.0000E+00
SUBGRID BOUNDARY = 1.8000E-01
RECHARGE = 0.0000E+00

WELLS = 0.0000E+00
RIVERS = 0.0000E+00
DRAINS = 0.0000E+00
GENL. HEAD-DEP. BDYS. = 0.0000E+00
EVAPOTRANSPIRATION = 0.0000E+00
FIRST-ORDER DECAY = 0.0000E+00
1-ORDER DECAY SORBED = 0.0000E+00

TOTAL IN = 1.8000E-01 ITEMIZED

BUDGETS FOR
ouT: SOLUTE FLUXES

DECAY = 0.0000E+00
CONSTANT HEAD = 0.0000E+00
SUBGRID BOUNDARY = -1.8359E-05
RECHARGE = 0.0000E+00
WELLS = 0.0000E+00
RIVERS = 0.0000E+00
DRAINS = 0.0000E+00
GENL. HEAD-DEP. BDYS. = 0.0000E+00
EVAPOTRANSPIRATION = 0.0000E+00 DK BUDGET
FIRST-ORDER DECAY = -4.7825E-02
1-ORDER DECAY SORBED = -4.7825E-02

TOTAL OUT =-9.5668E-02

SOURCE-TERM DECAY = 0.0000E+00

RESIDUAL = -8.9162E-04

PERCENT DISCREPANCY = 4.9534E-01 RELATIVE TO MASS FLUX IN
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