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PREFACE

This report describes modifications to a three-dimensional solute-transport model
(MOC3D) developed by the U.S. Geological Survey (USGS).  These modifications expand the
capabilities of MOC3D to simulate (a) age of water in an aquifer; (b) effects of double porosity on
concentrations of a single solute, and (c) effects of decay and zero-order growth reactions on a
single solute.  These modifications are incorporated into MOC3D version 3.0.

Although extensive testing of MOC3D indicates that this model will yield reliable
calculations for a wide variety of field problems, the user is cautioned that the accuracy and
efficiency of the model can be appreciably affected for certain combinations of values for
parameters and boundary conditions.  

The code for MOC3D is available for downloading over the Internet from a USGS
software repository.  The repository is accessible from the USGS Water Resources Information
web page at URL http://water.usgs.gov/. The public anonymous FTP site is on the Water
Resources Information server (water.usgs.gov or 130.11.50.175) in the /pub/software directory.
As the model code is revised or updated, new versions or releases will be made available for
downloading from these repositories.
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Age, Double Porosity, and Simple Reaction Modifications for the

MOC3D Ground-Water Transport Model

Daniel J. Goode

ABSTRACT

This report documents modifications for the MOC3D ground-water transport model to
simulate (a) ground-water age transport; (b) double-porosity exchange; and (c) simple but flexible
retardation, decay, and zero-order growth reactions. These modifications are incorporated in
MOC3D version 3.0.  MOC3D simulates the transport of a single solute using the method-of-
characteristics numerical procedure. The age of ground water, that is the time since recharge to the
saturated zone, can be simulated using the transport model with an additional source term of unit
strength, corresponding to the rate of aging.  The output concentrations of the model are in this
case the ages at all locations in the model.  Double porosity generally refers to a separate immobile-
water phase within the aquifer that does not contribute to ground-water flow but can affect solute
transport through diffusive exchange.  The solute mass exchange rate between the flowing water in
the aquifer and the immobile-water phase is the product of the concentration difference between the
two phases and a linear exchange coefficient.  Conceptually, double porosity can approximate the
effects of dead-end pores in a granular porous media, or matrix diffusion in a fractured-rock
aquifer.  Options are provided for decay and zero-order growth reactions within the immobile-
water phase.  The simple reaction terms here extend the original model, which included decay and
retardation.  With these extensions, (a) the retardation factor can vary spatially within each model
layer, (b) the decay rate coefficient can vary spatially within each model layer and can be different
for the dissolved and sorbed phases, and (c) a zero-order growth reaction is added that can vary
spatially and can be different in the dissolved and sorbed phases.  The decay and growth reaction
terms also can change in time to account for changing geochemical conditions during transport.
The report includes a description of the theoretical basis of the model, a detailed description of
input requirements and output options, and the results of model testing and evaluation.  The model
tests illustrate use of these modifications and demonstrate that accurate solutions can be obtained
for these simple cases.  Two test cases have no dispersion, illustrating the suitability of this
method-of-characteristics model for simulation of advection-dominated transport in ground water.
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INTRODUCTION

Konikow and others (1996) describe
MOC3D, a general purpose three-dimensional
numerical model of solute transport in ground
water.  MOC3D functions as a package in
MODFLOW (Harbaugh and McDonald, 1996)
and uses fluxes and other flow information
computed by MODFLOW.  MOC3D can be
applied to a wide variety of field problems.
However, the user should first become aware
of the assumptions and limitations inherent in
the model, as described by Konikow and
others (1996).  MOC3D is a general tool that is
applicable to a wide range of field problems
involving solute transport.  However, the
model results could be inaccurate or model
operation inefficient in some situations.
Konikow and others (1996) provide guidelines
for recognizing and avoiding these types of
problems.  Kipp and others (1998) add the
capability to solve the dispersion and fluid-
source parts of the transport equation implicitly
to MOC3D (version 2).

The types of reactions incorporated into
versions 1 and 2 of MOC3D are restricted to
those that can be represented by a first-order
rate reaction, such as radioactive decay, and
those that can be represented by a retardation
factor, such as instantaneous, reversible,
sorption-desorption governed by a linear
isotherm and constant distribution coefficient
(Kd).  The retardation factor is assumed to be
uniform in each model layer, and the decay
coefficient is assumed to be uniform
throughout the entire model domain.
Furthermore, decay is assumed to occur at the
same rate in the dissolved and sorbed phases,
as would be the case for radioactive decay.

In this report, modifications for
MOC3D that provide flexibility in
approximating concentration changes due to
geochemical reactions are presented.  The
retardation factor is modified so that it can vary
spatially throughout the model domain, cell by

cell, rather than layer by layer.  This may allow
simulations that approximate spatial changes in
sorption coefficients due to spatial variability in
aquifer composition or geochemistry.  The
decay coefficient also is modified so that it can
vary spatially in three dimensions.
Furthermore, separate decay coefficients may
be used for the dissolved and sorbed phases.
This modification may allow a more accurate
approximation of biodegradation of organics,
in which the degradation rate may be
substantially different in the sorbed and
dissolved phases.  A new reaction, a zero-
order growth reaction, is added in this version
(3.0) of MOC3D.  Zero-order loss can be
simulated by use of a negative growth rate.
The zero-order growth rate can vary spatially
in three dimensions in the model domain.
Finally, the decay coefficients and the zero-
order growth rates can change in time; new
values are optionally read at the beginning of
each MODFLOW flow-model stress period
(Harbaugh and McDonald, 1996).

This report also documents
modifications to MOC3D for simulation of
ground-water age (Goode, 1996, 1998) and
double porosity.  The ground-water age,
defined as the time since recharge to the
saturated zone, can be directly simulated by
use of a solute-transport equation with a zero-
order source term of unit strength.  The output
concentrations in this case are the volume-
weighted-average ages.  Double porosity
generally refers to an immobile-water phase
that does not contribute to ground-water flow
but may affect solute concentrations by
diffusive exchange.  This conceptual model
can approximate the effects of dead-end pores
in granular porous media or of a low-
permeability rock matrix in a fractured-rock
aquifer.  The double-porosity model is
compatible with age transport, but decay and
zero-order growth reactions are not compatible
with age transport.

This report, in conjunction with the
reports describing versions 1 (Konikow and
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others, 1996) and 2 (Kipp and others, 1998),
fully documents version 3.0 of MOC3D.  The
report includes a description of the numerical
methods used to solve the solute-transport
equation.  The data requirements, input format
specifications, program options, and output
formats are all structured in a general manner
that should be compatible with the types of
data available for many field problems.  The
computer code is written in FORTRAN and
has been developed in a modular style, similar
to the MODFLOW model.  Where possible,
these modifications use available MOC3D
modules and MODFLOW output modules.

Acknowledgments.  The author
appreciates the helpful review comments
provided by USGS colleagues Barbara A.
Bekins and James E. Landmeyer.

THEORETICAL BACKGROUND
AND GOVERNING EQUATIONS

Mathematical equations that describe
ground-water flow and transport processes
may be developed from the fundamental
principle of conservation of mass of water or
of solute.  A statement of conservation of mass
(or continuity equation) may be combined with
a mathematical description of the relevant
process to obtain a differential equation
describing flow or transport (see, for example,
Bear, 1979; Freeze and Cherry, 1979;
Domenico and Schwartz, 1990).  Transport
equations are presented here for two cases:
solute transport and ground-water age
transport.

Governing Equation for Solute
Transport

The principle of conservation of mass
requires that the net mass of solute entering
and leaving a specified volume of aquifer
during a given time interval must equal the
accumulation or loss of mass stored in that
volume during the interval.  This relation may
be expressed mathematically in a general

governing equation for solute transport in three
dimensions in an incompressible fluid flowing
through a porous medium as (Bear, 1979, p.
239-243; Goode and Konikow, 1989;
Konikow and others, 1996)
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where ε is porosity, C is volumetric
concentration (mass of solute per unit volume
of water, ML

-3
), ρb is the bulk density of the

aquifer material (mass of solids per unit
volume of aquifer, ML

-3
), C  is the mass

concentration of solute sorbed on or contained
within the solid aquifer material (mass of
solute per unit mass of aquifer material, MM

-1
),

V is a vector of interstitial water velocity
components (LT

-1
), D is a second-rank tensor

of dispersion coefficients (L
2
T

-1
), W is a

volumetric water sink (W<0) or water source
(W>0) rate per unit volume of aquifer (T

-1
), ′C

is the volumetric concentration in the
sink/source water (ML

-3
), λ is the decay rate

(T
-1
) for the dissolved phase, λ  is the decay

rate for the sorbed phase, and Σ is a source or
growth rate per unit aquifer volume (ML-3T-1).

The decay terms in equation 1 often
represent radioactive decay of the free and
sorbed solute.  A radioactive decay rate is
usually expressed as a half-life (t1 2 ).  The
half-life is the time required for the
concentration to decrease to one-half of the
original value and is related to the decay rate as

 
t1 2 = ln 2( )

λ
.                       (2)

In the case of radioactive decay, the decay rate
is the same for all phases.  In limited cases, the
decay term also can adequately represent
chemical decomposition or biodegradation
(Bekins and others, 1998).  However, if a
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sorbed phase also is present in these latter
cases, the decay process may occur at
different rates in the dissolved and sorbed
phases.  A negative decay rate corresponds to
first-order growth; in this case, the doubling
time (t2X) is given by

         t X2

2= ( )
−
ln 

λ  
.                        (3)

The source term Σ is further defined to
include zero-order growth in either the
dissolved or sorbed phases, as well as
exchange with an immobile phase.  The zero-
order source terms represent internal
production of the solute without water and are
characterized by mass production or growth
rates.  For the case of production in the water,
Σ = εZ, where Z is a zero-order growth rate
per unit water volume (ML-3T-1) for the
dissolved phase.  Likewise, for production in
the sorbed phases, Σ = ′ρbZ , where ′Z  is the
zero-order growth rate per unit rock mass
(MM-1L-1) for the sorbed phase.  Negative
values of Z and ′Z  correspond to zero-order
loss and may be applicable for some cases of
biodegradation (Bekins and others, 1998).
Such zero-order loss coefficients are nonlinear
in that their values become zero when the
solute concentration drops to zero.

Another internal source accounts for
exchange between the water in the aquifer and
a separate mass of immobile water. An
approximate linear exchange model is assumed
here such that the mass flux rate is the product
of a linear exchange coefficient, β (T-1), and
the concentration difference between the
immobile water and the flowing water:

Σ = −( )β C̃ C  ,                    (4)

where C̃  is the concentration in the immobile-
water phase. This immobile water can
conceptually correspond to dead-end pores in a
granular aquifer (Coats and Smith, 1964) or to
matrix diffusion in a fractured-rock aquifer
(Bibby, 1981).  Furthermore, this

mathematical form is identical to that used to
model kinetic sorption (Valocchi, 1985),
provided the adsorption and desorption rate
coefficients are equal. The double-porosity
model can also simulate certain solute sources.
The linear exchange coefficient may
correspond to the dissolution rate coefficient of
a separate-phase source. An artificially high
linear exchange coefficient and porosity will
cause the concentration in the mobile phase to
be essentially fixed at ̃C .

Combining these separate source terms
and substituting into equation 1, the governing
equation becomes
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The governing equation for mass
conservation in the immobile-water phase is

      ˜
˜

˜ ˜ ˜ ˜ ˜ ˜ε λε ε βdC

dt
C Z C C+ − + −( ) = 0    ,      (6)

where ̃ε  is the porosity, ̃λ  is the decay rate
(T-1), and Z̃  is the zero-order growth rate
(ML-3T-1), each for the immobile-water phase.

A simpler “flow-equation-removed”
form of the governing equation is derived by
removing velocity divergence terms, ∂ ε ∂V xi i( )
(Konikow and Grove, 1977; Goode, 1990,
1992; Konikow and others, 1996), leaving
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The governing equation can be further
simplified for the case of reversible,
instantaneous, equilibrium sorption of the
solute governed by a linear isotherm.  For this
case, the sorbed concentration, C , is given by

        C = KdC    ,                        (8)

where Kd is the sorption coefficient, or
distribution coefficient, which is assumed to be
constant in time.  The accumulation in the
sorbed phase can be expressed as
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if it is assumed that the aquifer bulk density is
constant in time.  Substituting equations 8 and
9 into equation 7 gives
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The terms controlling sorption can be
combined into a single parameter, the
retardation factor (Rf), which is defined as

  R
K

f
b d= +1

ρ
ε

 .                 (11)

Rf  may vary slightly in time if the porosity
changes due to transient flow effects.  This
possible slight variability is ignored and the
retardation factor is assumed to be constant in
time.  Substituting equation 11 into equation
10 yields
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where Z  = ′Z  / Kd.  The growth term for the
sorbed phase is in terms of an equivalent
dissolved-phase rate.  This is the form of the
governing equation solved in this version (3.0)
of MOC3D.  This governing equation is
coupled to the immobile-water phase
governing equation 6 through the exchange
term β C̃ C−( ) .

Converting equation 12 from an
Eulerian to a Lagrangian framework through
the material derivative yields a simpler form of
the governing equation (for example, see
Konikow and Bredehoeft, 1978, p. 6) for the
concentration of a reference point moving with
the retarded velocity (V/Rf)
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Although this concentration is now that of a
moving point in space, the same symbol, C, is
retained for convenience.

Boundary and initial conditions, and
internal sources associated with water sources,
are described by Konikow and others (1996).

Governing Equation for Ground-
Water Age Transport

A special form of the solute transport
equation can be used to simulate ground-water
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age transport.  Dropping the decay and
sorption reactions from the governing equation
12 developed above leaves a governing
equation that includes zero-order growth in the
dissolved phase and double-porosity exchange:
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Ground-water age can be simulated by an
advection-dispersion transport equation of the
form (Goode, 1996, 1998)
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where A (T) is the volume-average ground-
water age in the aquifer, or time since recharge;

′A  (T) is the age of water in external sources,
and Ã  (T) is the age of water in the immobile-
water phase.  By examination, the age-
transport equation is identical to the solute-
transport equation under the following
conditions:

•  all concentrations are replaced with
corresponding ages

•  the zero-order growth rate has unit (1)
value, and

•  decay and sorption reactions are not
present.

The most common application of this equation
is for steady-state conditions in which the time
derivative term is zero.  A steady-state solution
does not exist if both V and D are zero.

Boundary and initial conditions for
age-transport simulation based on equation 15
are consistent with the normal form of the
solute-transport equation (Goode, 1996).  In
general, the age of incoming water is zero, but
non-zero values can be specified as
appropriate.  The standard 'natural' outflow
condition implies that age is carried out of the
aquifer with discharging water and no
dispersion occurs across boundaries.  The
initial age of water in the aquifer and in the
immobile-water phase, if present, must be
specified.  At very large times, the solution is
not sensitive to the initial condition, but it is
mathematically required.

The numerical methods described
below are given in terms of solute
concentrations.  These same methods are used
for the age-transport equation.  In this case, the
particle and node concentrations are particle
and node ages.  Furthermore, the decay and
growth reaction terms are not used for the age-
transport numerical solution.

NUMERICAL METHODS

The notation and conventions used in
this report and in the MOC3D  version 3.0
code to describe the grid and to reference (or to
number) nodes are described by Konikow and
others (1996).  The indexing notation used
here is consistent with that used in the
FORTRAN code for MODFLOW by
McDonald and Harbaugh (1988), although not
necessarily the notation used in the text of their
report.

Solute-Transport Equation

Method of Characteristics

As described by Konikow and others
(1996), the advective part of the transport
solution is computed by a system of moving
particles that track ‘retarded’ solute motion in
the aquifer.  The remaining processes affecting
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concentrations are left in a partial differential
equation describing the concentrations of those
moving particles.  Equation 13 can be
rearranged to express the temporal change in
concentration as
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Integration of the transport problem for
one transport time step involves first moving
particles to new locations and then adjusting
particle concentrations according to equation
16 (Konikow and others, 1996). The approach
taken to couple advection and other transport
processes is to compute node concentrations
on a finite-difference grid from the particle
concentrations, and use these node
concentrations to compute the concentration
gradients and changes in equation 16.  These
computed concentration changes are then
applied to individual particles, and the time-
step cycle is complete.

Decay

Decay is simulated by reducing the
particle concentrations during advection.
During the advective step, the particle
concentration has not yet been adjusted for
dispersion and sources.  However, the change
in particle position accounts for advection up to
time increment t+∆t.  An analytical solution for
concentration during decay, ignoring all other
processes, is used to compute new particle
concentrations after decay.  The loss of solute
mass during a given transport time increment
(∆t) because of decay processes is accounted
for by computing the decayed particle
concentration, Cp

d , as

C C ep
d

p
t teff= −

 
λ ∆   ,               (17)

where    λ λ λeff
f

fR
R= + −( )[ ]1

1

is an effective decay rate and Cp
t  is the particle

concentration at the start of the move interval
(and before advection).  All terms in equation
17 are evaluated for the finite-difference cell
where the particle is located after moving, at
the end of the transport time step.  If Rf = 1 (no
retardation), or if λ  = λ, the effective decay

rate is simply λ.
As noted by Goode and Konikow

(1989), the exponential formulation of
equation 17 has no associated numerical
stability restrictions.  However, if the half-life
is on the order of the transport time increment
or smaller, some accuracy will be lost because
of the explicit de-coupling of decay and other
transport processes.

Node Concentrations

After all particles have been moved, the
concentration at each node is temporarily
assigned the average concentration of all
particles then located within the volume of that
cell; this average concentration  is denoted as
Cj i k

adv
, , :

  

C

C j j i i k k

j j i i k k
j i k

p
d

p
t

p
t

p
t

p

N

p
t

p
t

p
t

p

N
adv
, ,

, ,

, ,
 =

= = =( )
= = =( )

+ + +

=

+ + +

=

∑

∑

δ

δ

1 1 1

1

1 1 1

1

,   (18)

where the δ function is 1 if the particle is
within the cell j,i,k and is zero otherwise.  The
time index is labeled “adv” because this
temporarily assigned average concentration
represents the new time level only with respect
to advective transport and decay.  With respect
to the finite-difference grid, the effect of
advective transport is to move particles with
differing concentrations into and out of each
cell.
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Finite-Difference Approximations

The divergence of dispersive flux is
normalized by the retardation factor and
porosity to yield the rate of change in
concentration.  In addition, in a quasi-3D
approach, changes in saturated thickness are
incorporated for horizontal flux terms.
Standard finite-difference methods are applied
to the governing partial differential equation.
Hence, derivatives in the governing equation
are approximated by differences.  For the time

derivative, the rate of change in time is
approximated by the difference between
concentrations at two time levels divided by the
transport time increment.  Similarly, the spatial
derivatives are replaced by differences between
adjacent nodes (cell centers) in the finite-
difference grid.  The rate of change in
concentration due to dispersion, water sources,
zero-order sources, and exchange with an
immobile-water phase can be written as (after
Konikow and others, 1996)
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,         (19)

where subscript m is a summation index for
the dispersion term.  The j,i,k subscripts in
equation 19 denote the spatial finite-difference
grid indexing, as described by Konikow and
others (1996).  The superscript “*” indicates
that the terms depend on the average of the
concentration at the old time level and the
concentration at the new time level after
advection and decay:

C
C C

j i k
j i k
t

j i k
adv

, ,
* , , , ,=

+
2

 .                     (20)

These averaged concentrations are used to
calculate the solute flux terms indicated by the
superscript “*.”

The components of the dispersive flux
in each direction across cell faces are calculated
by use of centered-in-space finite-difference
approximations.  A detailed description of
these finite-difference approximations is given
by Konikow and others (1996).

In the method-of-characteristics
approach, the change in concentration during
each transport time increment is computed for
each cell in the model, and then that change in
concentration is applied to each particle within
that cell at the end of the time increment.
Version 3.0 of MOC3D documented in this
report has two optional methods for computing
that change in cell concentration during a time
increment: a fully explicit method (Konikow
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and others, 1996) and an implicit method
(Kipp and others, 1998).  These methods
retain an explicit de-coupling of advection and
decay from the other transport processes
affecting concentrations.  Incorporation of the
modified and added reaction terms in these
alternate methods are described below.

The procedure to change particle
concentrations depends on the sign of the total
change in concentration (Konikow and others,
1996).  For a positive change, or increasing
concentrations, the change in concentration is
added to all particles located in the cell.  If the
concentration change is negative, the ratio of
the new concentration to the old concentration
is used to scale all particle concentrations,
resulting in proportional changes in individual
particle concentrations.

Explicit-Dispersion Method

Following Konikow and others
(1996), all terms on the right-hand side of
equation 19 are evaluated by use of known
concentrations in the flowing water, C*,
which is the average of the concentration at the
previous time level and the concentration at the
new time level after advection and decay only.
The only other unknown is the concentration in
the immobile-water phase, C̃ .  This
concentration is computed first at the new time
level by use of a centered-in-time finite-
difference method.

A centered-in-time finite-difference
approximation for the concentration in the
immobile-water phase can be written (in this
and following equations, the node index j,i,k
is implicit for all terms)

        

˜ ˜
˜

˜
˜ ˜
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˜ ˜*
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.       (21)

Grouping unknown terms at the new time level
on the left-hand side gives
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(22)

from which the concentration at the new time
level is computed.  The average of the new and
old time level concentration is used to compute
the mass flux to the flowing water phase.

The change in concentration due to
dispersion and sources is computed as
described by Konikow and others (1996), with
the minor modification that the retardation
factor is allowed to vary from cell to cell and is
thus indexed by all three spatial indices, j,i,k.

The additional change in concentration
due to zero-order sources and double-porosity
exchange (∆C) is

   

∆ ∆
C

t

R
Z R Z

C C C

f
f

t
t t

= + −( )[

+ + −( )




+
+

1

2
2

1
1β

ε
˜ ˜ *

 

.

    

(23)

Numerical mass conservation between the
flowing and immobile-water phases is
maintained by use of the same expression for
exchange flux in both finite-difference
expressions.  This change in concentration is
added to the concentration changes from
dispersion and sources and used to modify cell
and particle concentrations as described above
(see Konikow and others, 1996).

For the case of explicit dispersion and
source calculations, a new stability criterion is
used for the double-porosity calculations.  As
with the stability criteria developed for sources
(Konikow and others, 1996; Konikow and
Bredehoeft, 1978), this criteria limits mass
flux in one transport time step due to double-
porosity exchange to total mass available in the
cell.  This condition can be expressed as
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∆t

Rf

β
ε

≤ 1 0.  .                     (24)

Solving equation 24 for ∆t at all nodes yields
the criterion

∆t
Rf j i k

j i k

≤
( )









( )

Min
over grid

 
  

, ,

, ,

ε

β  .          (25)

Because the exchange process with the
immobile-water phase is occurring
simultaneously with dispersion and injection,
this new stability requirement is combined with
dispersion and injection stability requirements.
Thus, the limiting time-step size is determined
from limiting by dispersion and double-
porosity exchange, or by injection and double-
porosity exchange, whichever is more
restrictive.  This stability limit is not needed for
the implicit-dispersion method (Kipp and
others, 1998).  Hence, larger time steps can be
taken using the implicit-dispersion method
when dispersion or injection rates are high.

Implicit-Dispersion Method

Following Kipp and others (1998), all
terms on the right-hand side of equation 19 are
evaluated by use of a time-weighted average of
old and new concentrations.  The known
concentration in the flowing water, C*, is the
average of the concentration at the previous
time level and the concentration at the new time
level after advection and decay only.  Kipp and
others (1998) describe the procedures to build
an implicit matrix equation for concentrations
at the new time level.  The additional transport
processes here affect only the diagonal matrix
terms and the forcing vector on the right-hand
side.  Leaving out the dispersion and source
terms already described by Kipp and others
(1998), an implicit finite-difference equation
for the change in concentration in the flowing
water phase is
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,  (26)

where θ is the implicit time-weighting
coefficient.  Fully-implicit integration for the
flowing-water phase concentration
corresponds to θ = 1 and Crank-Nicolson
(centered-in-time) integration corresponds to
θ = 0.5  (Kipp and others, 1998).  The
immobile-water concentration is unknown.
However, this unknown term can be written in
terms of only known concentrations and the
new flowing-water concentration.  Substituting
this form into equation 24 yields an implicit
equation in terms of the new concentration in
the flowing water alone.

A centered-in-time finite-difference
approximation for the concentration in the
immobile-water phase can be written as
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(27)

Grouping unknown terms at the new time level
and rearranging results in
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(28)

The average of the new and old time level
concentration is used to compute the mass flux
to the flowing-water phase.

The equation for the immobile-phase
concentration can be directly substituted into
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the finite-difference equation for the mobile
phase to yield a single implicit equation.  The

right-hand side of equation 28 is substituted
into equation 26 and rearranged, yielding
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(29)

The change in concentration due to
dispersion and sources is computed as
described by Kipp and others (1998), with the
minor modification that the braced term in front
of δC in equation 29 is subtracted from the
diagonal coefficient of the conductance matrix.
The remaining terms on the right-hand side of
equation 29 are added to the forcing vector (b
as defined by Kipp and others, 1998, p. 10).

After the concentration change for the
flowing-water phase is computed implicitly,
the concentration in the immobile-water phase
is computed from equation 27. Numerical
mass conservation between the flowing and
immobile-water phases is maintained by use of
the same expression for exchange flux in both
finite-difference expressions.

Ground-Water Age Transport
Equation

The ground-water age transport
equation is solved by use of the numerical
methods for the solute transport equation, as
presented above, and by Konikow and others
(1996) and Kipp and others (1998).  In this
context, the concentration of particles and
nodes in the model corresponds to the age.
Rather than compute the contribution of the
zero-order source term (1) by use of the finite-
difference grid, this term is added directly to
particle ages in the age-transport model, similar

to the methods used for decay in the solute-
transport equation.

At the beginning of each transport time
step, the age of each particle is increased by
∆t, the length of the transport time step.
Advection, dispersion, water source, and
double-porosity processes are all simulated by
use of the methods described here and in
previous MOC3D documentation (Konikow
and others, 1996; Kipp and others, 1998).
Other than activating the age transport option,
the only other input used is a conversion factor
for the ages.  By use of this conversion factor,
the ages in the transport model can be in years
even though the internal flow and transport
model time unit is seconds, for example.

COMPUTER PROGRAM

General Program Features

The integration of the MOC3D
transport program with the MODFLOW
ground-water flow model is described by
Konikow and others (1996) and Kipp and
others (1998).  Implementing MOC3D requires
the use of a separate “name” file similar to the
file used in MODFLOW.  The principal
MOC3D input data (such as subgrid
dimensions, hydraulic properties, and particle
information) are read from the main MOC3D
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data file.  Other files are used for observation
wells, concentrations in recharge, and several
input and output options.  Three additional file
types are used to activate the optional methods
documented in this report.  Detailed input data
requirements and instructions for the MOC3D
name file and for the new optional packages
are presented in appendix A.  Also, a sample
input dataset for a test problem is included in
appendix B.

MOC3D output is routed to a main
listing file, separate from the MODFLOW
listing file. Options are available for writing
specific data to separate output files, which
will facilitate graphical post-processing.
Appendix C contains output from the sample
dataset described in appendix B.

Program Segments

MOC3D and the modifications
presented here are compatible with the version
of MODFLOW designated as MODFLOW-96

(Harbaugh and McDonald, 1996).  The only
changes to the flow-model programs are
modification of the main routine to call
subroutines for MOC3D and to pass necessary
arrays and parameters for the optional methods
presented here.

The primary MOC3D subroutines that
are modified for the methods presented here
are listed in table 1.  One change made
throughout the model is that the original array
for layer-by-layer retardation factors has been
expanded to a cell-by-cell array to
accommodate the new spatially variable
retardation factor option.  This modification is
transparent to the user.

The subroutines added to MOC3D for
age, double porosity, and simple reactions are
listed in tables 2, 3, and 4, respectively.  The
naming and function of these subroutines
generally follows conventions used in
MODFLOW-96 and MOC3D.

Table 1.  Primary MOC3D 3.0 subroutine files
modified for age, double porosity, and simple
reactions

Subroutine Changes from version 2.0

MOC_MAIN6 Pass new variables and
arrays to existing
subroutines; Call new
subroutines to compute
changes in concentration
for age, double porosity,
and simple reactions

MOC6 Call new subroutines to read
options and parameters for
modifications

MOVE6 Age added, decay and
retardation modified

Table 2. MOC3D  3.0 subroutines for AGE

Subroutine Description

AGE6DF Read time-unit conversion
factor

AGE6AP Add change in age for 1
transport time step to all
particles and all nodes
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Table 3. MOC3D 3.0 subroutines for Double
Porosity (DP)

Subroutine Description

DP6DF Read double-porosity reaction
and printing options

DP6AL Allocate space in "X" array
DP6RP Read parameters for double

porosity
DP6AP Solve double-porosity

concentration equation for
explicit-dispersion method

DP6IAP Formulate double-porosity
concentration equation for
implicit-dispersion method

DP6IUP Update double-porosity
concentration for implicit-
dispersion method

SDP6C Print or save double-porosity
concentrations

DP6MB Double-porosity mass balance
DP6ST Compute stability limits for

double-porosity equation
for explicit-dispersion
method

Table 4. MOC3D  3.0 subroutines for Simple
Reactions (DK)

Subroutine Description

DK6DF Read reaction options
DK6AL Allocate space in "X" array
DK6RP Read parameters for simple

reactions
DK6DK Compute effective decay rate

coefficient for individual
model cell

DK6AP Compute changes in
concentration due to zero-
order growth reactions for
explicit-dispersion method

DK6IAP Add zero-order growth terms
to conductance matrix and
forcing vector for implicit-
dispersion method

DK6MB Reaction mass balance

MODEL TESTING AND
EVALUATION

The results of the numerical model are
compared to analytical solutions to illustrate the
relative accuracy of the model and to provide
examples of the model capabilities.  Because of
the idealized features of these problems, care
should be taken in transferring the results of
these tests to real-world problems.  However,
these results indicate that the model can
accurately solve the ground-water transport
equations described in this report with
adequate spatial and temporal discretization.  In
addition to the tests discussed here, the test
simulations described by Konikow and others
(1996) have all been successfully re-run with

version 3.0 of MOC3D utilizing the modified
algorithms for retardation and decay.  Tests of
general solute-transport simulation capabilities
of MOC3D are presented by Goode and
Konikow (1991), Konikow and others (1996),
and Kipp and others (1998).  Hornberger and
Konikow (1998) describe a graphical user-
interface for MOC3D.

Decay and Sorption in One-
Dimensional Steady Flow

Wexler (1992) presents an analytical
solution for one-dimensional solute transport
in a finite-length aquifer system having a third-
type source boundary condition.  The one-
dimensional governing equation is
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The governing equation is subject to the
boundary conditions

V ′C = VC − D
∂C

∂x
, x = 0        (31)

  and    
∂
∂
C

x
= 0, x = L        (32)

and initial condition

C = 0 ,  0<x<L  .        (33)

For this and the following test problems, it is
assumed that the length of the system, L, is
equal to 12 cm, ′C =1.0, and V = 0.1 cm/s.
The analytical solution is given by equations
52 and 53 of Wexler (1992, p. 17).  The flow
equation is solved by use of a one-dimensional
grid having 122 cells (nodes) in the x
direction.  The solute-transport equation is
solved in a 120-cell subgrid to assure a
constant velocity within the transport domain
and to allow an accurate match to the boundary
conditions of the analytical solution.  The grid
spacing is ∆x = 0.1 cm.  The numerical
solution is implemented by use of three initial
particles per cell (NPTPND = 3) and a
CELDIS factor of 0.5.  The input parameters
for the model simulation are summarized in
table 5.

The effect of decay is evaluated by
specifying the decay rate as λ = 0.01 s-1

without retardation (fig. 1), which agrees well
with the analytical solution.  Three different
cases with a retardation factor of Rf = 2 and
different values of decay coefficients for the
dissolved and sorbed phases yield numerically
identical solutions at t = 180 s.  Decay is not
reduced by the retardation effect, hence, these
cases have effective decay rate coefficients that
are one-half that of the base case without
retardation.  If retardation is included and the
sorbed and dissolved phases decay at the same
rate as the base case, concentrations are

appreciably lower at t = 180 s.  These results
also agree well with the analytical solution.

Table 5.  Parameters used in MOC3D simulation of
transport in a one-dimensional, steady-state flow
system.
[Abbreviations: cm2/s, square centimeters per
second; cm, centimeter; s, second; cm/s,
centimeters per second]

Parameter    Value

Txx = Tyy 0.01 cm2/s
Porosity (ε) 0.1
Dispersivity (αL) 0.1 cm
PERLEN (length of stress

period)
90 or 180 s

Velocity (Vx) 0.1 cm/s
Initial concentration (C0) 0.0
Source concentration (′C ) 1.0
Number of rows 1
Number of columns 122
Number of layers 1
DELR (∆x) 0.1 cm
DELC (∆y) 0.1 cm
Thickness (b) 1.0 cm
NPTPND (Initial number of

particles per cell)
3

CELDIS 0.5
INTRPL (Interpolation

scheme)
1
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Figure 1.  Numerical (MOC3D) and analytical solutions for five cases for solute transport in a one-
dimensional, steady flow field with decay.  Variables are time, t, retardation factor, Rf, dissolved phase
decay rate coefficient, λ, and sorbed phase decay rate coefficient, λ . Other parameters are listed in
table 5. [Abbreviations: s, second; s-1, per second]

Zero-Order Loss in One-
Dimensional Steady Flow

The transport solution using the DK
package with zero-order loss (negative growth)
is tested by comparing the numerical solution
to an analytical solution for a one-dimensional
steady-flow case with no dispersion.  The
governing equation for this case is
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The equation is nonlinear when the growth
terms are negative because they become zero if
the concentration is zero.  The hyperbolic

governing equation is subject to the boundary
condition

C = C1  , x = 0  ,           (35)

and the initial condition

C = 0 ,        0<x<L  .        (36)

The problem can be solved by use of
coordinate transformations, yielding
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where H is the Heaviside step function: H(y) =
1 for y > 0 and H(y) = 0 for y ≤ 0.  This

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

 
MOC3D
ANALYTICAL
wex.dk2

C
O

N
C

E
N

T
R

A
T

IO
N

, I
N

 M
IL

LI
G

R
A

M
S

 P
E

R
 L

IT
E

R

DISTANCE, IN CENTIMETERS

t R

t R

t R

t R

f

f

f

f

= = =

= = = =

= = = =

= = = =

−

−

−

−

90 1 0 01

180 2 0 005

180 2 0 01 0 0

180 2 0 0 0 01

 s,  ,   s

 s,  ,   s

 s,  ,   s ,  

 s,  ,  ,   s

1

1

1

1

λ

λ λ

λ λ

λ λ

.

.

. .

. .

t Rf= = = = −180 2 0 01 s,  ,   s 1λ λ .



16

particular solution is for the case of negative Z
and Z , corresponding to zero-order loss.  If
the growth terms are positive, the second
Heaviside function is removed.

The numerical model reproduces the
analytical solution very closely for five cases

with retardation and zero-order loss (fig. 2).  A
slight difference is noted at the advancing
front, but this difference disappears as
concentrations at the front drop to zero,
numerically and analytically.

Figure 2.  Numerical (MOC3D) and analytical solutions for several different cases for solute transport in a
one-dimensional, steady flow field with zero-order loss and no dispersion. Variables are time, t,
retardation factor, Rf, dissolved phase loss rate, Z, and sorbed phase loss rate, Z . Other parameters are
listed in table 5. [Abbreviations: s, second; mg/L, milligrams per liter]

Double-Porosity Exchange in One-
Dimensional Steady Flow

The MOC3D extensions for double
porosity (DP) are tested by comparing the
numerical solution to an analytical solution for
a one-dimensional steady-flow case.  The
physical system and model are generally the
same as the one-dimensional case considered

previously.  The additional parameters for the
immobile-water phase are listed in table 6.  The
initial concentration in the immobile phase is
assumed to be zero and the initial concentration
in the mobile phase is 20.0 in the first transport
subgrid cell.  This numerical initial condition
approximates an instantaneous impulse
condition at the inflow boundary.  Incoming
water has a concentration of zero, in contrast to
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the case in the previous section.  The linear
velocity interpolation option is selected.

The governing equations are

 ∂
∂

∂
∂

∂
∂

β
ε

C

t
D

C

x
V

C

x
C Cx= − + −( )

2

2
˜   and    (38)

 
˜

˜
˜ε βdC

dt
C C= −( )   ,         (39)

subject to the boundary conditions

0 = −VC D
C

x

∂
∂

, x = 0        (40)

 and 
∂C

∂x
= 0 , x = L        (41)

and the initial conditions:

C = 0 ,     C̃ = 0,      0<x<L .       (42)

The analytical solution for the solute
concentration in the mobile phase for the case
of an impulse inflow condition is given in the
Laplace domain as (Valocchi, 1985)

ˆ( , )
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/C x p
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L
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L
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− + +( )
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
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



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
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


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2
2

1 1 4

1 1 4
1 2

α
α

α
,      (43)

where ˆ( , )C x p  is the Laplace transform of
C(x,t); p is the Laplace transform variable; A =
M/εL3 where M is the total mass injected and L

is a unit length (1 cm in the present case); α is
the dispersivity and

h
f p

f p
= −( )

−( ) +
1

1

ω
ω

    ,        (44)

f =
+
ε

ε ε̃
   ,   and        (45)

ω β
ε

= L

v
   .         (46)

The concentration in the (x,t) domain is
obtained by numerical inversion of the Laplace
transform solution by use of the Stehfest
algorithm (Stehfest, 1970; Moench and Ogata,
1984).The same numerical model parameters
used in the decay test case (table 5) are used
for this case, with the additional DP parameters
listed in table 6.

Table 6.  Modified and additional MOC3D
parameters for double-porosity simulation.
[s, seconds; mg/L, milligrams per liter]

Parameter    Value

Immobile-phase porosity ( ε̃ ) 0.1
Exchange-rate coefficient (β) varies
PERLEN (length of stress

period)
60 s

Initial concentration (C0)
In first cell of transport

subgrid (j=2)
In other cells

20.0 mg/L

0.0
Source concentration (′C ) 0.0
Initial concentration (̃C ) in

immobile-water phase
0.0

INTRPL (Interpolation
scheme)

1
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The analytical and MOC3D solutions
agree well over a range of exchange-rate
coefficient values (fig. 3).  The numerical

solution shows some minor deviations,
especially at the peak concentrations for the
case of β = 0.001 s-1.

Figure 3.  Numerical (MOC3D) and analytical solutions for several different cases for solute transport in a
one-dimensional, steady flow field with double porosity. The variable is the linear exchange coefficient,
β. Double-porosity parameters are listed in table 6 and other parameters are listed in table 5.
[Abbreviation: s-1, per second]

Age in One-Dimensional Steady
Flow

The age transport solution is tested by
comparing the numerical solution to an
analytical solution for a one-dimensional
steady-flow case with no dispersion.  Under
steady-flow conditions, the steady-state age
distribution is obtained by solving a governing
equation with the time derivative term set to
zero.  Thus, the governing equation and
boundary condition for this case are

    
V

dA

dx

W A
−

−( )[ ] − =
Σ 0

1 0
ε

    , and      (47)

0 = VA ,    x = 0 .          (48)

For the test problem here, the recharge term W
is set to zero over the first half of the domain
and takes on a non-zero uniform value over the
second half as

W x L

W
A x L

L x L

= ≤ ≤

=
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By integration, the analytical solution where
W=0 is

A = x/V   0 ≤ x ≤ L/2   .        (50)

For the properties used here, the age increases
linearly from A = 0 at the inlet to the column
to A = 60 s at x = L/2 = 6 cm.

To derive the solution for the last part
of the column, the form of equation is changed
from the flow-equation-removed form back to
the form in which the divergence of water flux
is included as

dqA

dx
WA− − =' .ε 0

          
(51)

For W representing recharge with age zero,
WA' = 0.  By definition, W = dq/dx for this
one-dimensional problem.  Splitting the
derivative and substituting gives

q
dA

dx
AW+ − =ε 0.

               

(52)

This expression can be integrated for the
general case.  A trivial solution is available for
the case here by choosing W = ε/A(x = L/2).

In this case, the last two terms of (52) cancel,
hence, dA/dx = 0.  Thus, the analytical
solution for the age is A(6 cm ≤ x ≤ 12 cm) =
60 s.  The increase in age as water flows is
precisely offset by the mixing of the water in
the column with incoming water at age zero.

MOC3D cannot solve a steady-state
transport equation directly, so the simulation is
run for a time period long enough that the
computed ages do not change appreciably with
simulation time. Minor fluctuations or
oscillations may continue to occur, but these
are artifacts of the discrete numerical method.
The input parameters for the model simulation
are the same as those shown in table 5 except
that the dispersivity is 0.0 and the simulation
period length is 180 s.

The numerical solution agrees very
well with the analytical solution (fig. 4).  This
case illustrates that the numerical methods used
in MOC3D are suitable for advective transport
problems in which dispersion is neglected.
However, the model cannot solve steady-state
transport problems directly but must be run in
transient mode with constant conditions until
steady-state conditions are asymptotically
reached.
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Figure 4.  Numerical (MOC3D) and analytical solutions for ground-water age transport in a one-
dimensional, steady flow field with no dispersion.  Other parameters are listed in table 5.

SUMMARY AND CONCLUSIONS

The spatially variable and temporally
variable geochemical conditions in
contaminated aquifers lead to complex patterns
of solute attenuation. These processes cannot
be accurately approximated using uniform and
constant reaction coefficients. To improve the
capabilities of the ground-water solute
transport model MOC3D to approximate these
effects, simple reaction terms have been added
to the governing equation and numerical
methods, and the flexibility of existing reaction
simulation has been improved. These
modifications are incoporated in version 3.0 of
MOC3D.

Recent advances in environmental
tracers allows dating of ground water; the age

of ground water is defined relative to isolation
from the atmospheric source of the tracers. A
useful tool in analysis of these age-dating
results is a model of the age of ground water
within an aquifer. MOC3D has been modified
to simulate ground-water age transport,
including the effects of double-porosity
exchange.

The modifications described here
extend the capabilities of MOC3D for
simulation of solute transport in ground water.
These extensions allow simulation of age
transport, effects of diffusive exchange with an
immobile-water phase, and more flexible
retardation, decay, and growth reactions than
those allowed in the original version of the
model.  These extensions are tested by
comparing model output to analytical solutions
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for special cases.  These tests indicate that the
model can generate accurate solutions to the
ground-water transport equation for these
special cases.  These extensions do not alter
the basic algorithms used to solve the transport
equation, hence the guidance given by
Konikow and others (1996) about applicability
and accuracy of MOC3D for practical problems
also applies to this version (3.0).
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APPENDIX  A:   ADDITIONAL DATA  INPUT INSTRUCTIONS FOR AGE,
DOUBLE POROSITY, AND SIMPLE REACTIONS IN  MOC3D (Version 3)

All input variables are read using free formats, except as specifically indicated.  In free
format, variables are separated by one or more spaces or by a comma and optionally one or more
spaces.  Blank spaces are not read as zeros.

MOC3D Transport Name File (CONC)

FOR EACH SIMULATION:

 1.  Data:   FTYPE    NUNIT    FNAME

The name file consists of records defining the names and units numbers of the files.  Each
“record” consists of a separate line of data.  There must be a record for the listing file and for the
main MOC3D input file.

The listing (or output) file (“CLST”) must be the first record.  The other files may be in any
order.  Each record can be no more than 79 characters.

FTYPE The file type, which may be one of the following character strings:

CLST MOC3D listing file (separate from the MODFLOW listing file) [required].

MOC or  MOCIMP  Main MOC3D input data file Specifying MOC indicates
dispersion calculations will be explicit (as described by Konikow and
others, 1996) and specifying MOCIMP indicates dispersion calculations
will be implicit (as described by Kipp and others, 1998).

CRCH Concentrations in recharge [optional].

CNCA Separate output file containing concentration data in ASCII (text-only) format.
Frequency and format controlled by NPNTCL and ICONFM [optional].

CNCB Separate output file containing concentration data in binary format [optional].

VELA Separate output file with velocity data in ASCII format.  Frequency and format
of printing controlled by NPNTVL and IVELFM [optional].

VELB Separate output file with velocity data in binary format [optional].

PRTA Separate output file with particle locations printed in ASCII format.  Frequency
and format of printing controlled by NPNTPL [optional].

PRTB Separate output file with particle locations printed in binary format [optional].

OBS Observation wells input file [optional].

DATA For formatted files such as those required by the OBS package and for array
data separate from the main MOC3D input data file [optional].

DATA(BINARY) For unformatted input/output files [optional].

******* The following optional FTYPEs select modifications documented in this report ******

AGE Ground-water age simulation input file [optional].

DP Double porosity input file [optional].

DK Simple reactions (decay, zero-order growth, retardation) input file [optional].
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NUNIT The FORTRAN unit number used to read from and write to files.  Any legal unit
number other than 97, 98, and 99 (which are reserved by MODFLOW) can be
used provided that it is not previously specified in the MODFLOW name file.

FNAME The name of the file.

AGE Input File

Activating the AGE package results in the model concentration output corresponding to
ground-water ages.  Age simulation is not compatible with most possible reaction terms in
MOC3D, except for the double porosity option.  Ground-water age is simulated with the advection
dispersion transport equation by adding a uniform zero-order source term of unit (1) strength,
corresponding to the rate of aging.

FOR EACH SIMULATION, IF AGE PACKAGE USED:

 1.  Data:   AGER8 The aging rate (usually 1.0)

The aging rate (AGER8) is the ratio of model output age units to the simulation time units.
If AGER8=1.0, the computed ages will be in the same time units as the transport simulation.
AGER8 can be used to convert output ages to a more convenient time scale.  For example, for
output ages of years in a model simulation with time units of seconds, AGER8 = 1 / ( 365 * 24 *
60 * 60 ) = 1 / 31,536,000 = 3.171 x 10-8.

Double Porosity (DP) Input File

Activating the double-porosity package allows simulation of linear kinetic exchange
between the flowing water and an immobile water phase.  Within the double-porosity package,
options are provided to include decay and zero-order growth reactions.  After a single line of
control parameters, double-porosity properties are listed.  Input includes the initial concentration,
the porosity of the immobile phase, and the linear exchange coefficient.  If optional reactions are
selected, those rate coefficients also must be provided.  The exchange-rate coefficient and the
reaction-rate coefficients can optionally change each flow-model stress period.

FOR EACH SIMULATION, IF DP PACKAGE USED:

 1.  Data:   IDPFO   IDPZO   IDPTIM    IDPPS

IDPFO If IDPFO=1, activate first-order decay reaction in immobile water phase.
IDPZO If IDPZO=1, activate zero-order growth reaction in immobile water phase.
IDPTIM If IDPTIM=1, double porosity rate coefficients change each stress period.
IDPPS If IDPPS=1, print immobile-phase concentrations using aquifer-concentration

formats and frequency.
If IDPPS=2, save immobile-phase concentrations using aquifer-concentration
formats and frequency.
If IDPPS=3, print and save immobile-phase concentrations using aquifer-
concentration formats and frequency.
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FOR EACH LAYER OF TRANSPORT SUBGRID:

2.   Data:    DPCON(NSCOL,NSROW)   Initial concentration [̃ ( )C t = 0  (ML-3)].
     Module:    U2DREL *

3.   Data:    DPPOR(NSCOL,NSROW)    Porosity of immobile water phase [ε̃  (-)].
     Module:    U2DREL *

FOR EACH SIMULATION (if IDPTIM=1, then FOR EACH FLOW-MODEL STRESS PERIOD)
FOR EACH LAYER OF TRANSPORT SUBGRID:

4.   Data:    DPXRAT(NSCOL,NSROW)    Linear exchange coefficient [β (1/T)].
     Module:    U2DREL *

IF IDPFO=1, OPTIONAL FIRST-ORDER DECAY REACTION IN DOUBLE POROSITY
5.   Data:    DPFO(NSCOL,NSROW) First-order decay reaction coefficient

[ λ̃  (1/T)].
     Module:    U2DREL *

IF IDPZO=1, OPTIONAL ZERO-ORDER GROWTH REACTION IN DOUBLE POROSITY
6.   Data:    DPZO(NSCOL,NSROW)    Zero-order growth reaction rate [Z̃  (ML-3T-1)].
     Module:    U2DREL *

For simulations using a multi-layer transport subgrid, input consists of 1, followed by 2 and 3 for
each subgrid layer, followed by 4 and optionally 5 and 6 for each subgrid layer.  If more than one
flow-model stress period is used, and IDPTIM=1, then datasets 4 and optionally 5 and 6 are
repeated for each subgrid layer, for each subsequent stress period.

Simple Reactions (DK) Input File

Activating the simple reactions package allows incorporation of simple but flexible reaction
terms into the basic transport solution.  The original model includes decay and retardation, but
retardation is assumed to be uniform within each model layer.  In the original model, decay is
assumed to occur at the same rate in the dissolved and sorbed phases and is uniform throughout the
model and constant during the entire simulation period.  The DK package allows retardation factors
to be input cell by cell.  Decay also can be controlled cell by cell.  In addition, decay can occur at
different rates in the dissolved and sorbed phases, and the decay rates can change at the beginning
of each flow model stress period.  Finally, a zero-order growth reaction also is included; it also can
be specified cell-by-cell and can optionally change at the beginning of each flow model stress
period.  After the initial control parameters, the retardation factors for all layers are read, if that
option is activated (IDKRF=1).  If read, these retardation factors overwrite the values read in the
main MOC input file.  Next, decay coefficients and growth rates are read layer by layer: all of the
active decay and growth reaction terms for layer 1 are read, then the same parameters for layer 2,
and so on.  This grouping is used because when the time-variable reaction rates are used, and the
retardation factor is not allowed to change in time.  With the grouping used here, the decay and
growth input structure for the initial stress period is the same as that used during subsequent stress
periods.
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FOR EACH SIMULATION, IF DK PACKAGE USED:

 1.  Data:   IDKRF   IDKTIM   IDKFO   IDKFS   IDKZO   IDKZS

IDKRF If IDKRF=1, activate spatially variable retardation factor.
IDKTIM If IDKTIM=1, decay and growth reaction rates change in time at each stress period.
IDKFO If IDKFO=1, activate spatially variable decay for dissolved phase.
IDKFS If IDKFS=1, activate spatially variable decay for sorbed phase.
IDKZO If IDKZO=1, activate spatially variable zero-order growth for dissolved phase.
IDKZS IF IDKZS=1, activate spatially variable zero-order growth for sorbed phase.

FOR EACH LAYER OF TRANSPORT SUBGRID:

IF IDKRF=1, OPTIONAL SPATIALLY VARIABLE RETARDATION FACTOR
2.   Data:    DKRF(NSCOL,NSROW)   Retardation factor [Rf  (-)].

     Module:    U2DREL *

FOR EACH SIMULATION (if IDKTIM=1, then FOR EACH FLOW-MODEL STRESS
PERIOD)
FOR EACH LAYER OF TRANSPORT SUBGRID:

IF IDKFO=1, OPTIONAL DECAY RATE FOR DISSOLVED PHASE
3.   Data:    DKFO(NSCOL,NSROW)    Decay rate coefficient for dissolved phase

[λ  (1/T)].
     Module:    U2DREL *

IF IDKFS=1, OPTIONAL DECAY RATE FOR SORBED PHASE
4.   Data:    DKFS(NSCOL,NSROW)    Decay rate coefficient for sorbed phase

[ λ  (1/T)].
     Module:    U2DREL *

IF IDKZO=1, OPTIONAL ZERO-ORDER GROWTH RATE IN DISSOLVED PHASE
5.   Data:    DKZO(NSCOL,NSROW)  Zero-order growth rate for dissolved phase

[Z (ML-3T-1)].
     Module:    U2DREL *

IF IDKZS=1, OPTIONAL ZERO-ORDER GROWTH RATE IN SORBED PHASE
6.   Data:    DKZS(NSCOL,NSROW) Zero-order growth reaction rate for sorbed

phase [Z  (ML-3T-1)].
     Module:    U2DREL *

Repeat 3-6, as needed, for each layer of the subgrid.

IF IDKTIM=1, Repeat 3-6, as needed, for all layers, for each flow-model stress period.  Note that
the retardation factor is constant in time and new values are not read for subsequent stress periods.
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APPENDIX B:  ANNOTATED EXAMPLE INPUT DATASET FOR SAMPLE
PROBLEM

This example input dataset is for one of the solutions shown in figure 1 with retardation
and decay in both sorbed and dissolved phases.  Parameter values are listed in table 5.  Several of
the required data files (finite.nam, finite.bas, finite.bcf, and finite.sip) are those required for
MODFLOW-96, and their formats are described by Harbaugh and McDonald (1996).  Only files
that are changed from the original documentation (Konikow and others, 1996) are reproduced
here.

In the data files shown below, the right side of some data lines includes a semi-colon
followed by text that describes the parameters for which values are given.  These comments
(including the semicolon) are not read by the program because in free format the code will only
read the proper number of variables and ignore any subsequent information on that line.  This style
of commenting data files is optional, but users may find it helpful when viewing the content of data
files.

Following (enclosed in a border) are the contents of the MODFLOW name file for the
sample problem; explanations are noted outside of border:

File name:  finite.nam

list    16     finite.lst ← Designates main output file for MODFLOW

bas     95     finite.bas ← Basic input data for MODFLOW

bcf     11     finite.bcf ← Block-centered flow package

sip     19     finite.sip ← Input for numerical solution of flow equation

conc    33     finite.mcn ← Transport name file (turns transport “on”)

   ↑              ↑                     ↑
   1               2                     3 

1  Ftype (that is, the type of file)
2  Unit number
3  File name (name chosen to reflect contents of file)
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Following (enclosed in a border) are the contents of the basic package input data file for the
MODFLOW simulation of the sample problem; explanations are noted outside of border:
File name:  finite.bas

1  Two header lines of comments.  For convenience and clarity, the second line is used to label names of
parameters on subsequent line of file.

2  Flow grid dimensions, number of periods, and time units.
3  Options line (new in MODFLOW-96)
4  Flags for buffer array and drawdown calculations.
5  IBOUND identifiers (first line) and array
6  Head value assigned to inactive cells
7  Initial head information
8  MODFLOW time-step information

Following (enclosed in a border) are the contents of the MOC3D name file for the sample
problem; explanations are noted outside of border:
File name:  finite.mcn

clst    94     finite.out ← Designates main output file for MOC3D

moc     96     finite.moc ← Main input data file for MOC3D

obs     44     finite.obs ← Input data file for observation wells

data    45     finite.oba ← Output file for observation well data

cnca    22     finite.cna ← Separate output file for conc. data (ASCII)

cncb    23     finite.cnb ← Separate output file for conc. data (binary)

dk      24     finite.dk ← DK input data file (turns DK package "on")

   ↑               ↑                     ↑
   1                2                     3 

1  Ftype
2  Unit number
3  File name

Finite:  Compare to Wexler program and MOC3D                  BAS Input ← 1
      NLAY      NROW      NCOL      NPER    ITMUNI ← 1
         1         1       122         1         1 ← 2
FREE ← 3
         0         1      ; IAPART,ISTRT ← 4
        95         1(25I3)                                 3   ; IBOUND ← 5
 -1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 -2 ← 5
      0.00                                            ; HNOFLO ← 6
        95       1.0(122F5.0)                     1   ; HEAD ← 7
 12.1 ← 7
 180.0           1        1.    ; PERLEN,NSTP,TSMULT ← 8
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Following (enclosed in a border) are the contents of the main input data file for the MOC3D
simulation for the sample problem; selected explanations are noted outside of border:

File name:  finite.moc
One-dimensional, Steady Flow, DK Decay, Low Dispersion:  MOC3D 3.0 Input ← 1
    ISLAY1    ISLAY2    ISROW1    ISROW2    ISCOL1    ISCOL2 ← 1
         1         1         1         1         2       121 ← 2
         0       0.0       0.0 ; NODISP, DECAY, DIFFUS ← 3
      2000         3           ; NPMAX, NPTPND ← 4
       0.5      0.05         1 ; CELDIS, FZERO, INTRPL ← 4
  0 0 0 -1 0 0 0 ; NPNTCL, ICONFM, NPNTVL, IVELFM, NPNTDL, IDSPFM, NPRTPL ← 5
       0.0       ; CNOFLO ← 6
         0       0.0 (122F3.0)                     ; initial concentration
         0       1.                                ; C' inflow
         2                                         ; NZONES to follow ← 7
        -1       1.0                               ; IZONE, ZONCON ← 7
        -2       0.0                               ; IZONE, ZONCON ← 7
         0         0                               ; IGENPT ← 8
         0       0.1                               ; longitudinal disp.
         0       0.1                               ; transverse disp. horiz.
         0       0.1                               ; transverse disp. vert.
         0       1.0                               ; retardation factor
         0       1.0                               ; thickness
         0       0.1                               ; porosity

1  Two header lines of comments.  For convenience and clarity, the second line is used to label names of
parameters on subsequent line of file.

2  Indices for transport subgrid
3  Flag for no dispersion, decay rate, diffusion coefficient
4  Particle information for advective transport
5  Print flags
6  Value of concentration associated with inactive cells
7  Concentrations associated with fixed-head nodes (fixed head nodes are defined in the IBOUND array in the

MODFLOW BAS package)
8  Flag for “strong” sources or sinks

Following (enclosed in a border) are the contents of the DK input data file for the MOC3D
simulation for the sample problem; selected explanations are noted outside of border:

File name:  finite.dk
  1  0  1  1  0  0 ; idkrf idktim idkfo idkfs idkzo idkzs ← 1
CONSTANT  2.0 ← 2
CONSTANT  0.01 ← 3
CONSTANT  0.01 ← 4

1  Options for DK package
2  Spatially-variable retardation factors
3  Spatially-variable decay coefficient for dissolved phase
4  Spatially-variable decay coefficient for sorbed phase
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APPENDIX  C:  SELECTED  OUTPUT FOR SAMPLE  PROBLEM

This example output was generated from the input datasets listed in appendix B for a case
of one-dimensional transport in steady-state flow with retardation and decay.  The line spacing and
font sizes of the output files have been modified in places to enhance the clarity of reproduction in
this report.  Some repetitive lines of output have been deleted where indicated by an ellipsis (...).

Some brief annotations were added in a few places in this sample output listing to help the
reader understand the purpose of various sections of output.  These annotations are written in bold
italics to clarify that they are not part of the output file.

Following are the contents of the MOC3D main output file for the sample problem.

              U.S. GEOLOGICAL SURVEY
 METHOD-OF-CHARACTERISTICS SOLUTE TRANSPORT MODEL
           MOC3D (Version 3.0) 1999/03/24

 MOC BASIC INPUT READ FROM UNIT
 LISTING FILE: finite.out   UNIT  94

 OPENING finite.moc
 FILE TYPE: MOC   UNIT  96

 OPENING finite.obs
 FILE TYPE: OBS   UNIT  44

 OPENING finite.oba
 FILE TYPE: DATA   UNIT  45

 OPENING finite.cna
 FILE TYPE: CNCA   UNIT  22

 OPENING finite.cnb
 FILE TYPE: CNCB   UNIT  23

 OPENING finite.dk
 FILE TYPE: DK   UNIT  24

 MOC BASIC INPUT READ FROM UNIT  96

2 TITLE LINES:
 One-dimensional, Steady Flow, DK Decay, Low Dispersion:  MOC3D 3.0 Input
     ISLAY1    ISLAY2    ISROW1    ISROW2    ISCOL1    ISCOL2

PROBLEM DESCRIPTORS, INCLUDING GRID CHARACTERISTICS AND PARTICLE INFORMATION:
      MAPPING OF SOLUTE TRANSPORT SUBGRID IN FLOW GRID:
 FIRST LAYER FOR SOLUTE TRANSPORT =   1      LAST LAYER FOR SOLUTE TRANSPORT  =   1
 FIRST ROW FOR SOLUTE TRANSPORT   =   1      LAST ROW FOR SOLUTE TRANSPORT    =   1
 FIRST COLUMN FOR SOLUTE TRANSPORT=   2      LAST COLUMN FOR SOLUTE TRANSPORT = 121

 UNIFORM DELCOL AND DELROW IN SUBGRID FOR SOLUTE TRANSPORT

 NO. OF LAYERS =    1   NO. OF ROWS =    1   NO. OF COLUMNS =  120
 NO SOLUTE DECAY
 NO MOLECULAR DIFFUSION
 MAXIMUM NUMBER OF PARTICLES (NPMAX) =     2000

FILE INFORMATION

DK INPUT FILE
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INPUT FOR DK OPTIONS READ FROM UNIT        24
 SPATIALLY-VARIABLE RETARDATION FACTOR
  LAYER-CONSTANT RETARDATION FACTORS FROM MOC INPUT FILE WILL NOT BE USED
 DECAY AND GROWTH RATES DO NOT CHANGE IN TIME
 SPATIALLY-VARIABLE FIRST-ORDER DECAY
 DISTINCT SPATIALLY-VARIABLE FIRST-ORDER DECAY FOR SORBED SOLUTE
  SORBED MASS DECAYS AT DIFFERENT RATE THAN DISSOLVED
 NO SPATIALLY-VARIABLE ZERO-ORDER GROWTH
 NO DISTINCT SPATIALLY-VARIABLE ZERO-ORDER GROWTH FOR SORBED SOLUTE
  SORBED MASS GROWS AT SAME RATE AS DISSOLVED

      240 ELEMENTS IN X ARRAY ARE USED BY DK
    14485 ELEMENTS IN X ARRAY ARE USED BY MOC
       12 ELEMENTS IN X ARRAY ARE USED BY OBS

 NUMBER OF PARTICLES INITIALLY IN EACH ACTIVE CELL (NPTPND) =   3
 PARTICLE MAP ("o" indicates particle location; shown as
              fractions of cell distances relative to node location):

       o------o------o

     -1/3     0     1/3

 INITIAL RELATIVE PARTICLE COORDINATES
   1    0.00000   0.00000  -0.33333
   2    0.00000   0.00000   0.00000
   3    0.00000   0.00000   0.33333

 CELDIS=     0.500
 FZERO =     0.050

INTRPL= 1;  LINEAR INTERPOLATION SCHEME

NPNTCL=  0:     CONCENTRATIONS WILL BE WRITTEN AT THE END OF THE SIMULATION
MODFLOW FORMAT SPECIFIER FOR CONCENTRATION DATA: ICONFM=  0

NPNTVL=  0:         VELOCITIES WILL BE WRITTEN AT THE END OF THE SIMULATION
MODFLOW FORMAT SPECIFIER FOR      VELOCITY DATA: IVELFM= -1

NPNTDL=  0: DISP. COEFFICIENTS WILL NOT BE WRITTEN

NPNTPL=  0: PARTICLE LOCATIONS WILL NOT BE WRITTEN

CONCENTRATION WILL BE SET TO 0.00000E+00 AT ALL NO-FLOW NODES (IBOUND=0).

    INITIAL CONCENTRATION =  0.0000000E+00 FOR LAYER   1

VALUES OF C' REQUIRED FOR SUBGRID BOUNDARY ARRAY =    1
ONE FOR EACH LAYER IN TRANSPORT SUBGRID

ORDER OF C' VALUES: FIRST LAYER IN SUBGRID, EACH SUBSEQUENT LAYER,
LAYER ABOVE SUBGRID, LAYER BELOW SUBGRID:

  SUBGRID BOUNDARY ARRAY  =   1.000000

NUMBER OF ZONES FOR CONCENTRATIONS AT FIXED HEAD CELLS =    2

 ZONE FLAG =   -1     INFLOW CONCENTRATION =   1.0000E+00
 ZONE FLAG =   -2     INFLOW CONCENTRATION =   0.0000E+00

         SINK-SOURCE FLAG =              0 FOR LAYER   1

 D K

 O P T I O N S

 O U T P U T

 CONTROL

 INITIAL AND

 BOUNDARY

 CONDIT IONS

 FOR SOLUTE
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 LONGITUDNL. DISPERSIVITY =  0.1000000

  HORIZ. TRANSVERSE DISP. =  0.1000000

   VERT. TRANSVERSE DISP. =  0.1000000

       RETARDATION FACTOR =   1.000000

        INITIAL THICKNESS =   1.000000     FOR LAYER   1

         INITIAL POROSITY =  0.1000000     FOR LAYER   1

  SIMPLE REACTION (DK) PACKAGE INPUT

   SPACE VAR. RETARD FCTR =   2.000000     FOR LAYER   1

  FIRST-ORDER DECAY COEF. =  0.1000000E-01 FOR LAYER   1

 FIRST-ORDER SORBED DECAY =  0.1000000E-01 FOR LAYER   1

COORDINATES FOR   3 OBSERVATION WELLS:

  WELL #   LAYER     ROW  COLUMN    UNIT
       1       1       1       2      45
       2       1       1      42      45
       3       1       1     112      45
ALL OBSERVATION WELL DATA WILL BE WRITTEN ON UNIT  45

CONCENTRATION DATA WILL BE SAVED ON UNIT  22 IN ASCII FORMAT
CONCENTRATION DATA WILL BE SAVED ON UNIT  23 IN BINARY FORMAT

 TOTAL NUMBER OF PARTICLES GENERATED  =       360
 TOTAL NUMBER OF ACTIVE NODES (NACTIV) =       120
 MAX. NUMBER OF CELLS THAT CAN BE VOID OF PARTICLES (NZCRIT) =      6
     (IF NZCRIT EXCEEDED, PARTICLES ARE REGENERATED)

CALCULATED VELOCITIES (INCLUDING EFFECTS OF RETARDATION, IF PRESENT):

EFFECTIVE MEAN SOLUTE VELOCITIES IN COLUMN DIRECTION
                          AT NODES

1
  VELOCITY (COL)   IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

           1          2          3          4          5          6          7          8          9      ...
 ......................................................................................................... ...
   1   5.000E-02  5.000E-02  5.000E-02  5.000E-02  5.000E-02  5.000E-02  5.000E-02  5.000E-02  5.000E-02  ...

...
         111        112        113        114        115        116        117        118        119        120
 ..............................................................................................................
   1   5.000E-02  5.000E-02  5.000E-02  5.000E-02  5.000E-02  5.000E-02  5.000E-02  5.000E-02  5.000E-02  5.000E-02

EFFECTIVE MEAN SOLUTE VELOCITIES IN ROW DIRECTION
                          AT NODES

1
  VELOCITY (ROW)   IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

           1          2          3          4          5          6          7          8          9      ...
 ......................................................................................................... ...
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  ...

 D K

 I N P U T
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. . .
         111        112        113        114        115        116        117        118        119        120
 ..............................................................................................................
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00

EFFECTIVE MEAN SOLUTE VELOCITIES IN LAYER DIRECTION
                          AT NODES

1
  VELOCITY (LAYER) IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

           1          2          3          4          5          6          7          8          9      ...
 ......................................................................................................... ...
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  ...

. . .
         111        112        113        114        115        116        117        118        119        120
 ..............................................................................................................
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00

          STABILITY CRITERIA --- M.O.C.

     MAXIMUM FLUID VELOCITIES:  C-VEL =  5.00E-02     R-VEL =  1.00E-20     L-VEL =  1.00E-18
 MINIMUM TIME TO TRAVEL THCK =  1.00E+18

 TIMV =  1.00E+00     NTIMV  =    181

     MAX. C-VEL. IS CONSTRAINT AND OCCURS BETWEEN NODES (   2,   1,   1) AND (   1,   1,   1)

 TIMD =  1.00E+00     NTIMD  =    181

   THERE ARE NO FLUID SOURCES IN THE TRANSPORT SUBGRID

 NUMBER OF MOVES FOR ALL STABILITY CRITERIA:
    CELDIS  DISPERSION   INJECTION
       181         181           1

 CELDIS IS LIMITING
 DISPERSION IS LIMITING

          TIME STEP    1 IN STRESS PERIOD    1

          NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP  =  181
            MOVE TIME STEP (TIMV)=  9.944751262665E-01

(NUMERICAL SOLUTION TO TRANSPORT EQUATION STARTS AT
THIS POINT)

  NP      =     360 AT START OF MOVE        IMOV     =          1
  NP      =     360 AT START OF MOVE        IMOV     =          2
  NP      =     360 AT START OF MOVE        IMOV     =          3
  NP      =     360 AT START OF MOVE        IMOV     =          4
  NP      =     360 AT START OF MOVE        IMOV     =          5

. . .

  NP      =     360 AT START OF MOVE        IMOV     =        176
  NP      =     360 AT START OF MOVE        IMOV     =        177
  NP      =     360 AT START OF MOVE        IMOV     =        178
  NP      =     360 AT START OF MOVE        IMOV     =        179

ONE LINE PRINTED

FOR EACH MOVE TO

TRACK PROGRESS

AND NUMBER OF

ACTIVE PARTICLES
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  NP      =     360 AT START OF MOVE        IMOV     =        180
  NP      =     360 AT START OF MOVE        IMOV     =        181

           SOLUTE BUDGET AND MASS BALANCE FOR TRANSPORT SUBGRID

      VALUES CALCULATED AT END OF:
               STRESS PERIOD    1  OUT OF    1
              FLOW TIME STEP    1  OUT OF    1
    TRANSPORT TIME INCREMENT  181  OUT OF  181

      ELAPSED TIME =  1.8000E+02

      CHEMICAL MASS IN STORAGE:
          INITIAL:   MASS DISSOLVED =  0.0000E+00     MASS SORBED =  0.0000E+00
          PRESENT:   MASS DISSOLVED =  4.1720E-02     MASS SORBED =  4.1720E-02

               CHANGE IN MASS STORED = -8.3440E-02

     CUMULATIVE SOLUTE MASS  (L**3)(M/VOL)
     ----------------------

          IN:
          ---
                     DECAY =  0.0000E+00
             CONSTANT HEAD =  0.0000E+00
          SUBGRID BOUNDARY =  1.8000E-01
                  RECHARGE =  0.0000E+00
                     WELLS =  0.0000E+00
                    RIVERS =  0.0000E+00
                    DRAINS =  0.0000E+00
     GENL. HEAD-DEP. BDYS. =  0.0000E+00
        EVAPOTRANSPIRATION =  0.0000E+00
         FIRST-ORDER DECAY =  0.0000E+00
      1-ORDER DECAY SORBED =  0.0000E+00

                  TOTAL IN =  1.8000E-01

         OUT:
         ----
                     DECAY =  0.0000E+00
             CONSTANT HEAD =  0.0000E+00
          SUBGRID BOUNDARY = -1.8359E-05
                  RECHARGE =  0.0000E+00
                     WELLS =  0.0000E+00
                    RIVERS =  0.0000E+00
                    DRAINS =  0.0000E+00
     GENL. HEAD-DEP. BDYS. =  0.0000E+00
        EVAPOTRANSPIRATION =  0.0000E+00
         FIRST-ORDER DECAY = -4.7825E-02
      1-ORDER DECAY SORBED = -4.7825E-02

                 TOTAL OUT = -9.5668E-02

         SOURCE-TERM DECAY =  0.0000E+00

                  RESIDUAL = -8.9162E-04

       PERCENT DISCREPANCY =  4.9534E-01 RELATIVE TO MASS FLUX IN

ITEMIZED

BUDGETS FOR

SOLUTE FLUXES

 DK BUDGET


