
A FORTRAN CODING CONVENTION FOR
USE IN THE U.S. GEOLOGICAL SURVEY,
WATER RESOURCES DIVISION

U.S. GEOLOGICAL SURVEY
Open-File Report 94-501

A Fortran Coding Convention for
Use in the U.S. Geological Survey,
Water Resources Division

By Kathleen M. Flynn, John L. Kittle, Jr., and Alan M. Lumb

U.S. GEOLOGICAL SURVEY
Open-File Report 94-501

Reston, Virginia
1994

U.S. DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Gordon P. Eaton, Director

The use of trade, product, industry, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

For additional information write to: Copies of this report can be purchased from:

Chief, Hydrologic Analysis Support Section U.S. Geological Survey
U.S. Geological Survey, WRD Earth Science Information Center
415 National Center Open-File Reports Section
Reston, VA 22092 Box 25286, MS 517

Denver Federal Center
Denver, CO 80225

CONTENTS iii

CONTENTS
Abstract .. 1
Introduction and Background... 1
Fortran Requirements, Restrictions, and Extensions ... 3
Structured Programming Techniques... 13
Specifications, Documentation, and Style ... 14
Selected References ... 25
Appendix A. SYStem DOCumentation (SYSDOC) Program... 27

FIGURES

1. Fortran Subroutine Outline ... 15
2. PARAMETER INCLUDE File Outline.. 19
3. COMMON Block INCLUDE File Outline... 21
4. Definition INCLUDE File Outline ... 21
A.1. Example Input Files sysdoc.opt and test1.inp... 30
A.2. Example Report of Documented Routines.. 31
A.3. Example Report of Common Block Usage... 57
A.4. Example Report of Intrinsic Usage ... 59
A.5. Example Report of Unknown Routines .. 64

TABLES

1. Fortran Constructs to be Avoided and Suggested Alternatives for These Constructs 3
2. Fortran Language Extensions that are Recommended.. 3
3. Character Strings Used to Identify Key Elements in the Documentation... 14
A.1. Description of the SYSDOC Processing Options and the Optional Input File sysdoc.opt........................... 27
A.2. Input, Intermediate, and Output Files for SYSDOC... 28
A.3. Format of the Required Input File [prefix].inp ... 29

INTRODUCTION AND BACKGROUND 1

A Fortran Coding Convention for Use in the
U.S. Geological Survey, Water Resources Division

By Kathleen M. Flynn1, John L. Kittle, Jr.2, and Alan M. Lumb1

Abstract

A coding convention for computer programs written in Fortran has been established by the
Water Resources Division of the U.S. Geological Survey. This convention covers both the imple-
mentation of selected Fortran features and a recommended coding style. It is designed to simplify
the tasks associated with software support, maintenance, and distribution and is an important
element in software quality assurance plans.

The SYStem DOCumentation (SYSDOC) program is also described in this report. The
SYSDOC program can be used to produce detailed documentation for any program that follows
this coding convention. SYSDOC produces text files that summarize PROGRAMs,
SUBROUTINEs, FUNCTIONs, and COMMON blocks and documents all links between them.

INTRODUCTION AND BACKGROUND

As computing power expands and diversifies, the issues related to software development, maintenance,
distribution, and support become more complex. Originally, the majority of the computing done by the
U.S. Geological Survey, Water Resources Division (WRD), was done on mainframe computers, the first
located in Washington, D.C., and the second at its headquarters in Reston, Va. In the early 1980’s, much of
the computing was moved to a network of minicomputers distributed around the country in district and
region offices as well as the headquarters offices in Reston. Today, in addition to the mainframe and mini-
computers, there is a large assortment of microcomputers and workstations. In the future, the numbers and
assortments of microcomputers and workstations will increase. WRD has gone from maintaining and sup-
porting a single copy of a program on the mainframe to distributing, maintaining, and supporting as many
as 100 or more copies of a given program for an array of platforms.

With the expanding computing power, the libraries of programs have grown. Many of the programs are
large and complex. Programming is often a team effort, with the programmers frequently located in different
states. Often the people involved in the original programming are not available to help with support and
maintenance.

A coding convention is particularly needed with a distributed programming, support, and maintenance
staff, and a distributed computing system. With a well-defined coding convention, software is easier to read,
understand, debug, maintain, distribute, and support than with no coding convention. Software documenta-
tion can be computer generated from code that conforms to a fixed convention. Computer-generated docu-
mentation can save a substantial amount of time and will be more accurate and up to date than handwritten
documentation.

The convention described in this document is intended to simplify the tasks of documenting and sup-
porting software written in Fortran. It should also be helpful in porting software to different types of
machines. Unlike some of the newer programming languages, Fortran does not force structured program-
ming (Berns, 1984). This convention encourages structured programming. Some Fortran features that may

1 U.S. Geological Survey
2 Consultant

2 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

be obsolete or are identified as poor programming practice are discouraged. This convention has not been
found to limit the capabilities of Fortran.

Programs that have been written to conform to this convention can be documented using theSYStem
DOCumentation (SYSDOC) program. Use of the program is documented in Appendix A. An example of
the program documentation generated by SYSDOC is found in Appendix A.

This convention, in combination with SYSDOC and a Fortran static analyzer, provides a sound basis
for software quality control. A static analyzer is a software tool that is used to identify problems and errors
in code that are often overlooked by a compiler. Static analyzers include, but are not limited to, the Main-
tainability Analysis Tool (MAT) (Berns, 1985), FTNCHEK (Moniot, 1993), FORCHECK (Leiden Univer-
sity of the Netherlands), FOR-STUDY (Cobalt Blue, Inc., 1993), FOR-STRUCT (Cobalt Blue, Inc., 1992),
and plusFORT (Polyhedron Software Limited, 1986-94).

This coding convention has evolved over a number of years beginning with a convention developed for
the U.S. Environmental Protection Agency’s Hydrological Simulation Program—FORTRAN (Johanson
and Kittle, 1983). Several groups, including other Federal agencies, have been using versions of the con-
vention. The final version described here represents a compromise of styles. The main goal has been to pro-
duce code that is consistent, well documented without being excessively verbose, readable, and easy to
maintain and support. Experience has shown that implementing this convention takes little or no additional
time during software development and can save a lot of time in software maintenance, debugging, support,
and porting.

In the discussions that follow, the Fortran use and coding style described in this document will be
referred to as theconvention and the Fortran standards will be referred to as thestandard. The Fortran
standard that is associated with this convention is the American National Standards Institute (ANSI)
X3.9-1978 FORTRAN standard. Extensions to the standard have been highlighted in the text by a

.gray background

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS 3

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS

This section describes requirements for and restrictions placed on the use of the ANSI X3.9 - 1978
FORTRAN standard. It also describes recommended extensions to the standard. In addition to the require-
ments and restrictions and excluding the extensions described in this report, all coding should comply with
the standard.

All programmers should have a Fortran language reference manual. The reference manual should be
written for the compiler being used and should clearly identify extensions to the standard. Another impor-
tant tool for the programmer is a structured programming textbook. See the references for some possibilities.

The following section describes the Fortran constructs that are part of this convention. These include
recommended constructs, as well as identifying those that should be avoided. In general, coding constructs
that should be avoided are those that promote unstructured programming techniques, are not part of the stan-
dard, or are obsolete or little used constructs that may yield different results on different computer platforms.
Any software features that contain device dependent code, such as operating system dependent input/output
operations, should be isolated in separate routines. Table 1 contains a list of Fortran constructs that should
be avoided and recommended alternatives to their use. Table 2 contains a list of recommended extensions
to the standard. Note that some compilers may not accept all of the language extensions. These features, as
well as recommended features, are described in more detail on the following pages.

Rules are not made to be broken. However, there are exceptions to rules. This coding convention has
been developed over time and is based on experiences with porting to different hardware platforms and
compilers, as well as experiences with program maintenance and support. The rationale behind each con-
vention is explained below.

Table 1 . Fortran constructs to be avoided and suggested alternatives
for these constructs

Fortran feature Alternative
alternate RETURN IF construct
arithmetic IF IF construct
ASSIGN structured programming techniques
assigned GO TO structured programming techniques
BACKSPACE internal write and read
blank COMMON labeled COMMON
BLOCK DATA subroutine that initializes common variables
computed GO TO IF construct
DO noninteger control use integer control variables
DIMENSION statement explicit type declaration
ENTRY multiple routines or option flags
EQUIVALENCE
Hollerith quoted characters
PAUSE READ statement that waits for input
RETURN (multiple) condition flags
STOP (multiple) condition flags
tabs spaces
, #, and / comments comments beginning with C in column 1
\, &, !, <, >, ", and _ another character

Table 2 . Fortran language extensions that are recommended

Fortran extension Use
INCLUDE PARAMETERs, COMMONs, and file names
lowercase local variable names

4 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

At the start of any programming project, these conventions should be reviewed. Any additional require-
ments, restrictions, or extensions should be clearly identified, described, and justified. Any modifications
or amendments to this convention also should be identified, described, and justified.

Alternate RETURNs should not be used.

An alternate RETURN introduces labels into an argument list to allow the called
procedure to direct the execution of the caller upon return. The same effect can
be achieved with a return code that is tested in an IF construct on RETURN. This
avoids an irregularity in the syntax and semantics of argument association.

The arithmetic IF should be avoided.

The multiple branching nature of this statement violates the principles of struc-
tured top-down programming and makes the code more difficult to understand
and maintain. A preferred alternative is an IF statement or an IF construct.

The ASSIGN statement and the assigned GO TO should not be used.

The multiple branching nature of these statements violates the principles of struc-
tured top-down programming and makes the code more difficult to understand
and maintain. A preferred alternative is an IF statement or an IF construct.

The ASSIGN statement allows a label to be dynamically assigned to an integer
variable and the assigned GO TO statement allows "indirect branching" through
this variable. This hinders the readability of the program flow, especially if the
integer variable also is used in arithmetic operations. The two totally different
usages of the integer variable can be an obscure source of error. The statement
should be replaced by ordinary assignment and the computed GO TO.

BACKSPACE statements should be avoided.

An alternative is to save the record into a character buffer and then use internal
READs. Another option is to write the sequential file to a temporary direct access
file, though this second option should be used sparingly due to portability issues
(see the section Direct Access files).

BACKSPACE can make the logic of the code difficult to follow, especially when
the READ and the BACKSPACE statements are in different parts of the code.
Many inconsistencies in compilers and systems occur in file operations.

Blank COMMON is not used.

Blank COMMON should never be used for libraries because there is no name
associated with it, and it is too easy for it to lose its identity.

BLOCK DATA is not used.

The preferred alternative is to set the data values in a subroutine.

BLOCK DATA should never be used in a library structure as no entry point is
generated; therefore, a loader has no way of bringing the initialized data into the
executable. Because developed code will often eventually be made into libraries,
this construct should not be used in general. The problem stems from the fact that
the BLOCK DATA name is optional; therefore, when the entry-point symbol
table is generated during compilation, its name is not carried through because it
is not required.

Alternate RETURN

Arithmetic IF

ASSIGN and
assigned GO TO

BACKSPACE

Blank COMMON

BLOCK DATA

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS 5

All comment lines are identified by an uppercase C in column 1 (a lowercase c
is nonstandard). The text of the comment should be in mixed uppercase and
lowercase to improve code readability. FORMAT statements may contain mixed
uppercase and lowercase to meet output requirements and improve the readabil-
ity of the output. All other statements are in uppercase.

CASE constructs are not part of the standard and should not be used.

Use an IF statement or an IF construct.

The Fortran character set consists of the 26 uppercase letters A to Z, the ten digits
0 to 9, and the following special characters:

' apostrophe = equal sign
* asterisk (left parenthesis

blank - minus sign
: colon + plus sign
, comma) right parenthesis
$ currency sign / slash
. decimal point

The following characters are not part of the standard and should be used only in
quoted character strings or comments:

& ampersand < less than
\ backslash " quotation mark
! exclamation point tab
> greater than _ underscore

The backslash should be avoided as it is sometimes used by compilers as an
escape character. Tabs should also be avoided due to problems porting software
to various compilers and hardware platforms.

When moving between Fortran and C, remember that the languages handle
arrays in different ways. Fortran arrays are column major and C arrays are row
major. (Fortran arrays are stored in memory with the leftmost dimension varying
faster, C with the rightmost dimension varying faster.)

All comment lines are identified by an uppercase C in column 1. The text of the
comment is in mixed uppercase and lowercase to improve code readability and
is indented with the line of code immediately following the comment. Comment
lines with no text may be used to separate groups of code but generally should
not be used without an accompanying comment line containing text. If the logic
of the code is such that the programmer believes it should be spaced by a blank
comment, it probably needs a comment describing what the next block of code
is all about.

Case

Although the standard specifies that all code be in uppercase, most compilers

One case convention that may improve readability includes the following.
allow either case. The use of mixed case may increase readability of the code.

All local variables are in lowercase. All Fortran language keywords are in
uppercase. All COMMON block variables should have the first letter upper-
case and the rest lowercase. All SUBROUTINE and FUNCTION, dummy
argument, and PARAMETER variable names should be uppercase. There
are many Fortran language processing tools that can be used to automate the
case conversion process.

CASE

Character set

Lowercase letters are not part of the standard but may be used in defining
variable names as described under Case.

C language

Comments

6 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

For consistency, an uppercase C in column 1 is used to signify a comment. An *
or # in column 1 or a /* on a statement line are not used. The *, #, and / are sym-
bols that have specific meaning to some text editors and may cause problems
when editing files containing these characters. The /* is not part of the Fortran
standard.

Comment lines are never inserted into the middle of a statement that is continued
on more than one line.

Comment lines are critical to making a program easy to understand. Use good
comments liberally. Make sure that comments and code agree; when the code
changes, comments also change.

All COMMON blocks are labeled. Blank COMMON is not used. Each variable
is explicitly declared by type. The dimensions of arrays are placed in the explicit
type declarations, not the COMMON block statement. Large arrays should be
dimensioned with a PARAMETER if the code is written to allow different sizes
for the arrays.

The standard places restrictions on the order of some data types and on mixing
numeric and character data in commons. CHARACTER variables are not con-
tained in the same COMMON block as numeric or logical variables. DOUBLE
PRECISION or COMPLEX variables are in separate COMMON blocks or are
listed first if included with other numeric variables. For clarity, it is preferred that
they be in separate COMMON blocks. Variables should be ordered from the
largest variable type to the smallest. The following is the recommended order:

DOUBLE PRECISION
COMPLEX
REAL
INTEGER
LOGICAL

A definition include file should follow the COMMON include file at least the
first time the COMMON is found in the code. The definitions will follow the
same format as argument definitions.

Comments telling which variables in the COMMON block are input, which are
modified, and which are output should be placed in the routine following the
COMMON block include file.

Although the standard specifies that all code be in uppercase, most com-
pilers allow mixed case. See Case for comments on using mixed case.

COMMON

COMMON blocks should be in INCLUDE files to ensure that the order, size,

COMMON block may be contained in an INCLUDE file.
and type of variables are consistent between routines. More than one

QUAD PRECISION

INTEGER*2
LOGICAL*1

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS 7

A computed GO TO may be used to implement the case structure but should
generally be avoided.

The multiple branching nature of this statement makes it easy to violate the prin-
ciples of structured top-down programming and may make the code more diffi-
cult to understand and maintain. A preferred alternative is an IF statement or an
IF construct.

Use standard library operators and functions such as "//", INDEX, CHAR, and
LEN for character concatenation. A library of subprograms is available from the
authors for the manipulation of CHARACTER*1 arrays. These subprograms
may be easier to use than concatenation of character variables.

Continuation lines use a consistent symbol in column 6. Any of the 26 letters, 13
special characters, or the digits 1-9, as described above under character set, may
be used. The standard does not allow the digit 0. Continuation characters for sub-
program arguments are I, M, and O as described under dummy arguments below.

Code on a continuation line is indented at least as far as the code on the previous
line. Lines of continued code are never interrupted by a comment. If a statement
is so complex that it needs commenting in the middle, it will be difficult to under-
stand and prone to error. It should be broken into smaller, more easily understood
statements.

The standard limits the number of continuation lines to 19 per statement. Contin-
uation is commonly found in type declarations, FORMAT, READ, WRITE,
PRINT, DATA, CALL, FUNCTION, and SUBROUTINE statements. An
attempt should be made to limit continuation in other executable statements to
four or five lines. Equations spanning a number of lines may become very diffi-
cult to read.

The recommended character is the $. The alpha-numeric and arithmetic opera-
tors are not recommended for continuation characters as they can be confused
with expressions and statement numbers, making the software harder to read and
understand.

Make sure all program variables are initialized prior to use. DATA statements
may be used to initialize SAVEd variables that are used as flags for initializing
other variables. DATA statements also may be used to set the values for constant
variables. Use executable statements to initialize all other variables.

The standard explicitly permits six types of data. Note that the only one of these
that allows for a length, or size, specification is the CHARACTER type. The use
of QUAD PRECISION, INTEGER*2, and LOGICAL*1 is discouraged. For
consistency, it is recommended that the same order be used for making type
declarations.

INTEGER

REAL
DOUBLE PRECISION

COMPLEX
LOGICAL

CHARACTER*n

Computed GO TO

Concatenation

Continuation lines

DATA statements

Data types

INTEGER*2

QUAD PRECISION

LOGICAL*1

8 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

The DIMENSION statement is not used.

All variables are declared explicitly by type. The dimensions of variables are
included in the explicit type statements only. The dimensions of variables are not
included in COMMON statements.

Direct access files should be used carefully. File opens are separate from the rest
of the code and well documented to facilitate maintenance and porting. A com-
ment explicitly describes the required record length.

Inconsistencies in compilers occur in the units used to define the record length of
unformatted direct access files. Depending on the compiler, or even the compile
options selected, record length units may be bytes, words, half words, or some
other unit.

DO loops always end with a labeled CONTINUE. Multiple DO loops do not
share the same CONTINUE. Control never jumps into a DO loop. Jumping out
of a DO loop should be avoided. If control needs to jump out of a DO loop, then
use a GO TO structure described below.

REAL and DOUBLE PRECISION DO control variables and DO control expres-
sions are not used. Use INTEGER constants or variables.

DO WHILE, DO UNTIL, and DO END are not part of the standard and generally
should not be used. Use a GO TO structure described below to implement these
features.

SUBROUTINE dummy arguments are ordered and listed as Input, Modify, and
Output variables, each type beginning on a new continuation line, in the stated
order, with an I, M, or O, respectively, in column 6. All dummy arguments in a
FUNCTION are Input because FUNCTIONs return a single value. See FUNC-
TION below for more information.

The practice of using I, M, and O for continuation lines, both in the routines and
in the calling routines, has been extremely helpful in debugging, program main-
tenance, and sharing programs.

ENTRY points are not used. The alternatives include passing an option flag to
the routine or separating the routine into multiple routines.

Multiple entries (and the usually accompanying multiple returns) violate the
principles of structured top-down programming and make the code more difficult
to understand and maintain. A subprogram should be entered at the beginning
and exited at the end.

EQUIVALENCE statements should be avoided. The use of equivalenced vari-
ables often reduces program clarity, making maintenance more difficult.

FORMATs are grouped together in numerically ascending order, with the input
FORMATs preceding the output FORMATs. FORMATs are consistently num-
bered.

FORMATs are grouped together and consistently located so they are easy to find
and so the logic and structure of the code is easy to read. The ranges 1000 to 1999
or 8000 to 8999 are recommended for input FORMATs and the ranges 2000 to
2999 or 9000 to 9999 are recommended for output FORMATs.

DIMENSION

Direct Access files

DO loops

DO WHILE,
DO UNTIL, and
DO END

Dummy arguments

ENTRY

EQUIVALENCE

FORMAT

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS 9

Free format of Fortran code is an extension of the standard that should not be
used. The format that should be used for Fortran is:

column content
1 comment
2-5 statement label
6 continuation
7-72 statement
73-80 blank or revision comment

Free format for input and output is recommended, as appropriate, for the appli-
cation.

All FUNCTION statements include an explicit type specification. FUNCTIONs
return a single value. FUNCTION arguments are input only. For clarity and
maintenance, FUNCTIONs do not modify or output dummy arguments and do
not use COMMON blocks.

GO TO in conjunction with an IF pointing back to a CONTINUE statement is
used to implement a structured DO WHILE or DO UNTIL. GO TO statements
should be avoided in all other cases.

An IF statement or an IF construct is used in place of a GO TO pointing down in
the code.

The use of GO TOs are strictly controlled in structured programming. They
should be used only to implement a structured construct, such as DO/WHILE,
DO/UNTIL, or CASE, which are not available in the standard or when the elim-
ination of the GO TO will obscure rather than clarify the meaning of the code.

Undisciplined use of the GO TO statement is, perhaps, the most common viola-
tion of structured programming principles.

See also the Computed GO TO section.

The logical grouping of a program, subroutines, and functions into files will be
dependent on a number of things. The type of routine grouping should be decided
on at the beginning of the project.

When routines are grouped for a library, they should be ordered by the calling
sequence. How the compiler pulls routines into a program should also be consid-
ered.

Large new systems being developed by a number of people will require stringent
version control and the ability to easily locate a particular routine. In this case, it
may be most efficient to store each routine in a separate file.

For other programs, it may be more convenient to group closely related routines
together in a single file.

Use IF constructs to implement branching.

In general, .EQ. and .NE. should not be used to compare floating point variables.
An alternative is to check for a very small absolute difference between the two
variables. Machine precision and round off in computations may make equiva-
lent variables different by a very small fraction.

Free format,
Fortran

Free format,
input/output

FUNCTION

GO TO

Grouping of
routines

IF constructs

IF with .EQ.
and .NE.

10 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

Indentation is used to denote blocks of code. It is used with DO loops, IF con-
structs, GO TO implementing DO WHILE and DO UNTIL structures, and error
handling for OPEN, READ, WRITE, and error conditions. Code is generally
indented two to four spaces—be consistent. The beginning and ending points of
the block of code are not indented (DO, CONTINUE, GO TO, IF, ELSE IF,
ELSE, and END IF). Comments are indented with the code.

Make sure input does not violate the limits of the program (array dimensions,
value range of data types). Terminate input by end-of-file or end-of-record, not
by count. Perform validity checks on input and have recovery methods for
invalid input. Use free-form input whenever appropriate. Have defaults for input
data when appropriate. Input should be self-descriptive, using keywords to allow
easy coding and proofreading. Test data should be for the extreme requirements
of the code.

Intrinsic functions should be used when possible.

Nonstandard functions should be avoided. These nonstandard functions include
AND, OR, XOR, NOT, LS, RS, SHFT, LT, RT, LOC, RND, IRND, INTS,
INTL, and double precision and complex functions.

The use of line numbers in columns 73-80 is unnecessary.

The original purpose of the line numbers was to aid in sorting a dropped deck of
cards, which is no longer valid. Text editors can provide line numbers for editing
purposes when they are needed.

See the Statement labels section for a discussion on numbering statements.

INCLUDE files are used for PARAMETER statements and COMMON
blocks. They may also be useful for blocks of code that are machine
dependent, such as file handling. See the SPECIFICATIONS, DOCUMEN-
TATION, AND STYLE section for outlines for some of these INCLUDE files.

INCLUDE is not part of the standard, but the use of INCLUDE files is

______.dbg - debugging block of code
______.sys - system dependent block of code
______.cmn - common block

b_____.inc - debugging block of code
x_____.inc - system dependent block of code
f_____.inc - file name or file handling code
d_____.inc - variable definitions
c_____.inc - common block
p_____.inc - parameter

Suggested naming conventions for INCLUDE files are:

during debugging.
compiler types. INCLUDE files also may be helpful for including statements
INCLUDE files can also simplify the task of porting code to multiple machine/
the order, size, and type of variables are consistent between routines.
allow INCLUDE. Use of INCLUDE files for COMMON blocks ensures that
INCLUDE statement with the appropriate code for compilers that do not
available on most compilers. It is a fairly simple editing task to replace the

See also the section Name conventions (file).

INCLUDE

Indentation

Input

Intrinsic functions

Line numbers

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS 11

File names may be anything that is valid on the platform being used. A consistent
naming convention is important. Files that are used on more than one platform
should have the same name on all platforms to reduce confusion.

Some projects may need to develop a detailed naming convention for file names
to convey pertinent information to the user.

There are a few system-specific limitations on file names. Very few systems
permit blanks within a file name. The PC environment generally limits a file
name to eight characters followed by a period and a three-character suffix, with
some suffixes having special meaning to the system. Special characters such as
<, >, /, and \ should be avoided as they may have special meaning on some
systems.

All program, function, subroutine, and variable names should be as descriptive
as possible (mean something) within the limit of six characters. The standard
limits the length of a name to six characters, and those characters are the letters
A through Z and the digits 0 through 9. Function and variable names are explic-
itly defined by type. Although each name is explicitly defined, a first-letter, type
naming convention of I through N for INTEGER, D for DOUBLE PRECISION,
C or A for CHARACTER, and the remaining alphabet for REAL may enhance
readability. Descriptive names should always take precedence over a type
naming convention.

The standard defines a symbolic name as having from one to six letters or digits,
the first being a letter.

COMMON block variable names should be at least two characters in length.

PARAMETER statements should be used for important constants and symbolic
data, such as pi, logical unit numbers, and array dimensions. These statements
ensure that a constant is not inadvertently changed and enhance portability of the
code as they allow modification of device specific information in a single state-
ment. For example, if arrays are dimensioned using a PARAMETER value, then
the code could be easily made smaller in terms of memory requirements for use
on a small problem or when machine memory is limited.

PAUSE should be avoided.

Execution of a PAUSE statement requires operator or system-specific interven-
tion to resume execution. In most cases, the same functionality can be achieved
as effectively and in a more portable way with the use of an appropriate READ
statement that awaits some input data.

Name conventions
(file)

Name conventions
(symbolic)

Symbolic names longer than six characters may be more descriptive. Some

six characters should be unique as some compilers truncate names to six
characters. Note that there are tradeoffs between using long, descriptive
variable names and the readability of even relatively simple equations.

projects may need to develop a detailed naming convention to improve
readability and to convey pertinent information to the reader. The first

PARAMETER

PARAMETERs should be defined in INCLUDE files.

PAUSE

12 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

There is a single RETURN in each subprogram. Multiple RETURNs are not
used.

Multiple RETURNs cause nonstructured code, make documentation and code
maintenance more difficult, and are not necessary. A subprogram should be
entered at the beginning and exited at the end.

Statement labels are used only on FORMAT and CONTINUE statements, never
on executable statements. Statement labels start in column 2 and increase as you
go down in the code. FORMAT statements are 1000 or greater. The numbers
1 to 999 are used for CONTINUE statements. Be consistent in numbering state-
ments.

Statement numbers that are not in numerically ascending order make code diffi-
cult to understand and maintain. One-digit statement labels in column 1 may be
difficult to find when reading code that includes comment lines.

One numbering method is to have CONTINUE statements begin at a base of 10
and be incremented by a value that is dependent on the current indentation level
(that is the number of open DO or IF blocks). The increment value of un-indented
code should be 100; therefore, the first un-indented label is 100 CONTINUE.
The label increment for code at indentation level 2 should be 50, for level 3 - 20,
for level 4 - 10, for level 5 and above - 1. For example, if the last label is 445 and
the indentation level is 3, the label will be 460 (the next higher multiple of 20).
Use of this labeling style may increase readability of the code. Fortran language
processing tools can be used to automate this process.

There is a single STOP, located at the end of the main program. Well-structured
code with IF constructs and flag variables does not need additional STOP state-
ments.

Multiple STOPs cause nonstructured code, make documentation and code main-
tenance more difficult, and are not necessary.

Routines have readable flow from top to bottom. The code follows structured
programming principles. PROGRAMs, SUBROUTINEs, and FUNCTIONs, and
code blocks in general, are entered at the beginning (top) and exited at the end
(bottom). ENTRY points are not used. There is a single STOP in a program,
located at the end of the main routine, immediately before the END statement.
SUBROUTINEs and FUNCTIONs never contain a STOP and contain a single
RETURN, located immediately before the END statement.

See the section STRUCTURED PROGRAMMING TECHNIQUES.

Tabs are not used.

Tabs are not part of the standard. They make program porting more difficult.

See Case.

RETURN

Statement labels
(numbers)

STOP

Structure

Tabs

Uppercase/
lowercase

STRUCTURED PROGRAMMING TECHNIQUES 13

STRUCTURED PROGRAMMING TECHNIQUES

All programmers should have a Fortran language reference manual. The reference manual should be
written for the compiler being used and should clearly identify all extensions to the standard. Another
important tool for the programmer is a structured programming textbook. Structured programming is based
on two premises (General Electric, 1986):

1. that programs must be designed and written in a manner that is understandable and maintainable;
and

2. that reliable software can be created by refining a problem (and its solution) into manageable
elements.

This coding convention has been developed over time. It is based on the experiences of many scientists
and programmers developing, maintaining, and supporting software for different hardware platforms using
varied Fortran compilers. This convention, when followed, is designed to structure code in recognizable
patterns with each block of code (control structure) having a single entry and a single exit, thereby support-
ing the functionality of top-down design. Structured programs are better than unstructured in three ways:
increased reliability, easier verification, and easier modification.

Recognizable patterns in the code greatly simplify software development and maintenance as the mean-
ing of the code is more easily ascertained and automatic tools can be used to aid in the development process.
Therefore, both manual and automatic validation of software is enabled.

Validation of unstructured code is complicated as each statement must be treated as a separate event.
That is, in order to understand the meaning of the code, a statement-by-statement examination must be made
(the programmer must simulate a computer). Also, automated procedures cannot be used and debugging
becomes very tedious and prone to errors.

Program readability is enhanced using this convention as program structure is developed in a predict-
able manner in recognizable blocks of code. Each block of code performs a unique operation with a single
entry and a single exit. The size of a single routine should be limited to one or two printed pages for the
program logic. Through this modularization of the code, individual subfunctions can be easily identified and
understood.

This coding convention, in addition to defining recommended coding constructs, defines a coding style
(indentation, commenting conventions, and internal documentation, and so forth) designed to provide max-
imum clarity and readability. For example, indentation enhances clarity by showing the logical structure of
the code.

14 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

SPECIFICATIONS, DOCUMENTATION, AND STYLE

This section describes the parts of the convention related to specification statements, in-line documen-
tation, and overall style and readability. Fortran code that is written using this style of specifications and
documentation can be processed by the SYSDOC program described in Appendix A, producing documen-
tation in the format shown in Appendix A. Character strings containing keyword identifiers are used by
SYSDOC to identify the various elements of the specifications and documentation. Table 3 contains an
ordered list of the character strings SYSDOC expects to find by default. When a specification is not needed
for a routine, then the character string identifier should be omitted. The purpose, history, and end specifica-
tions identifiers are always required. An outline for a Fortran subroutine is shown in figure 1. Outlines for
functions and programs are very similar to the subroutine outline. The remainder of this section contains
brief descriptions and examples for each of the documentation elements.

Table 3 . Character strings used to identify key elements
in the documentation

Character string Required
+ + + PURPOSE + + + yes
+ + + HISTORY + + + yes
+ + + KEYWORDS + + +
+ + + DUMMY ARGUMENTS + + +
+ + + ARGUMENT DEFINITIONS + + +
+ + + PARAMETERS + + +
+ + + PARAMETER DEFINITIONS + + +
+ + + COMMON BLOCKS + + +
+ + + COMMON DEFINITIONS + + +
+ + + SAVES + + +
+ + + SAVE DEFINITIONS + + +
+ + + LOCAL VARIABLES + + +
+ + + LOCAL DEFINITIONS + + +
+ + + EQUIVALENCES + + +
+ + + EQUIVALENCE DEFINITIONS + + +
+ + + FUNCTIONS + + +
+ + + INTRINSICS + + +
+ + + EXTERNALS + + +
+ + + DATA INITIALIZATIONS + + +
+ + + INPUT FORMATS + + +
+ + + OUTPUT FORMATS + + +
+ + + STATEMENT FUNCTIONS + + +
+ + + END SPECIFICATIONS + + + yes

SPECIFICATIONS, DOCUMENTATION, AND STYLE 15

Figure 1. Fortran subroutine outline.

C
C nnnnnn
C
 SUBROUTINE aaaaaa
 I (aaaaaa,...
 M bbbbbb,...
 O cccccc,...)
C
C + + + PURPOSE + + +
C This space is used to define the purpose and function of this
C routine. It should be mixed uppercase and lowercase because it
C will be reproduced in the system documentation exactly as it
C appears here.
C
C + + + HISTORY + + +
C Name 08/06/95 short description of change.
C
C + + + KEYWORDS + + +
C aaaaaam, bbbbbm...
C
C + + + DUMMY ARGUMENTS + + +
 INTEGER
 REAL
 DOUBLE PRECISION
 CHARACTER*n
 LOGICAL
C
C + + + ARGUMENT DEFINITIONS + + +
C aaaaaa - definition of first subroutine argument, in mixed
C uppercase and lowercase. This definition will be
C reproduced in the system documentation exactly as
C it is entered here.
C .
C cccccc - definitions of last subroutine argument
C
C + + + PARAMETERS + + +
 INCLUDE 'Pxxxxx.INC'
C
C + + + PARAMETER DEFINITIONS + + +
C pppppp - parameter definitions
C
C + + + COMMON BLOCKS + + +
 INCLUDE 'Cxxxxx.INC'
C I: AAA, BBB, ...
C M: CCC, DDD, ...
C O: EEE, FFF, ...
C
C + + + COMMON DEFINITIONS + + +
 INCLUDE 'Dxxxxx.INC'
C
C + + + SAVES + + +
 INTEGER
 REAL
 DOUBLE PRECISION
 CHARACTER*n
 LOGICAL
 SAVE
C
C + + + SAVE DEFINITIONS + + +
C SSSSS1 - saved variable definitions are included here
C
C + + + LOCAL VARIABLES + + +
 INTEGER
 REAL
 DOUBLE PRECISION
 CHARACTER*n
 LOGICAL
C

16 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

Figure 1. Fortran subroutine outline--Continued.

C + + + LOCAL DEFINITIONS + + +
C AAAAA1 - local variable definitions are included here
C
C + + + EQUIVALENCES + + +
 INTEGER
 REAL
 DOUBLE PRECISION
 CHARACTER*n
 LOGICAL
 EQUIVALENCE (______, ______)
C
C + + + EQUIVALENCE DEFINITIONS + + +
C AAAAA1 - equivalenced variable definitions are included here
C
C + + + FUNCTIONS + + +
 INTEGER
 REAL
 DOUBLE PRECISION
 CHARACTER*n
 LOGICAL
C
C + + + INTRINSICS + + +
 INTRINSIC
C
C + + + EXTERNALS + + +
 EXTERNAL
C
C + + + DATA INITIALIZATIONS + + +
 DATA AAAA1, AAAA2, AAAA3
 $ / 1, 2, 3 /
C
C + + + INPUT FORMATS + + +
 1nnn FORMAT ()
C
C + + + OUTPUT FORMATS + + +
 2nnn FORMAT ()
C
C + + + STATEMENT FUNCTIONS + + +
C description of statement function
 NAME (arguments) = expression
C
C + + + END SPECIFICATIONS + + +
C
C Code goes here. Should generally be less than
C 150 statements, exclusive of comment lines.
C
 RETURN
 END

SPECIFICATIONS, DOCUMENTATION, AND STYLE 17

Three comment lines precede PROGRAM, FUNCTION, and SUBROUTINE
statements. They may be blank comment lines or may include a programmer-
defined identification system for subprograms. All function statements are pre-
ceded by a type specification.

C
C Version 1.0
C
 PROGRAM SYSDOC

and

C
C
C
 SUBROUTINE VUSE

and

C
C 9410.1
C
 INTEGER FUNCTION CRINTE

SUBROUTINE dummy arguments are listed as Input, Modify, and Output vari-
ables, each type beginning on a new continuation line, in the stated order with an
I, M, or O, respectively, in column 6. This practice has been extremely helpful in
debugging, program maintenance, and sharing subprograms.

FUNCTION arguments are input only. FUNCTIONs return a single value. For
clarity and standard compliance, FUNCTIONs do not have Modify or Output
arguments, nor common blocks. If a routine needs a Modify or Output argument
or contains a common block, it should be written as a subroutine, not a function.

PROGRAMs have no arguments.

 SUBROUTINE VUSE
 I (CMNFG, VNAM, UPDCNT, UPDYTP, UPDNAM,
 I FCOUT,
 M BUFF
 O NUMUSE, IMOFG)

and

 INTEGER FUNCTION CRINTE
 I (ERRINT, LEN, STR)

A paragraph in mixed case (for readability) describes the purpose and function
of the routine. This information should be complete, as it will be reproduced in
the system documentation. Any nonstandard features should be described.

C
C + + + PURPOSE + + +
C This routine converts a character string to its integer
C equivalent. It returns the value of ERRINT for an
C invalid string. The integer is expected to be right
C justified in the string. The integer may be negative.

This space is used to document the history of the routine. The name of the author
or responsible person or unit is included here, as well as dates and justifications
for modifications, fixes, and other changes.

C
C + + + HISTORY + + +
C KMFlynn 09/30/90 tested and accepted
C KMFlynn 02/10/92 change made in code to handle bug
C found in compiler for handling quoted
C backslash

PROGRAMS,
FUNCTIONS,
SUBROUNTINES

ARGUMENTS

PURPOSE

HISTORY

18 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

Keywords are helpful in program maintenance and in indexing the subprograms.
Keywords are separated by commas and contained in columns 7 through 72.
Generally, the number of keywords will be fairly small. If there are a lot of
keywords, the routine may be doing too many things and may be difficult to
maintain.

C
C + + + KEYWORDS + + +
C Character conversion, Integer Conversion,
C Numeric conversion

All arguments are explicitly declared by type in the order INTEGER, REAL,
DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER. Any
array dimensions are included in the explicit type declaration. There are no
implicit type declarations or dimension statements.

C
C + + + DUMMY ARGUMENTS + + +
 INTEGER CMNFG, UPDCNT, UPDTYP(UPDCNT), FCOUT, NUMUSE
 CHARACTER*1 VNAM(8), BUFF(100), UPDNAM(6,UPDCNT), IMOFG

A definition is included for each dummy argument. The definitions appear in the
same order that the arguments are passed to the routine. Each definition begins
on a new line. The Argument name appears in uppercase on the first line of the
definition beginning in column 7. A hyphen (-) is in column 14. The definition is
in mixed case in columns 16-72, using as many lines as are needed to define the
argument. The definition will be reproduced in the documentation exactly as it
appears in the code.

C
C + + + ARGUMENT DEFINITIONS + + +
C DATE - starting date and time
C (1) year (4) hour
C (2) month (5) minute
C (3) day (6) second
C TSTEP - time step, in TUNIT units
C TUNIT - time units
C 1 - second 4 - day
C 2 - minute 5 - month
C 3 - hour 6 - year
C NVAL - number of data values
C VALUE - array containing NVAL data values

KEYWORDS

DUMMY
ARGUMENTS

The *n size declaration is not for numeric or logical variables; it is an
extension to the standard that should be avoided.

ARGUMENT
DEFINITIONS

A hyphen (-) is in column 14 or one space after the name, whichever is larger.
The definition is in mixed case beginning one space after the hyphen, not
exceeding column 72, and left justified to this point. Typically the definitions
will be in columns 16-72.

SPECIFICATIONS, DOCUMENTATION, AND STYLE 19

PARAMETER statements are used mainly to define the size and limits of arrays
and the unit numbers for input and output. A PARAMETER constant is declared
in an explicit type declaration before it is defined, and it is defined before it is
used. The definition of a PARAMETER constant follows the PARAMETER
statement, using the same form as was used for dummy arguments.

C
C + + + PARAMETERS + + +
 INCLUDE 'PSORT.INC'

Where the file PSORT.INC contains:

 INTEGER LENREC, LENARY
 PARAMETER (LENREC=120, LENARY=1000)
C
C + + + PARAMETER DEFINITIONS + + +
C LENREC - maximum record length that will be sorted
C LENARY - maximum number of records that can be sorted

Figure 2. PARAMETER INCLUDE file outline.

 INTEGER nnnnnn
 PARAMETER (nnnnnn=)
C
C + + + PARAMETER DEFINITIONS + + +
C nnnnnn - definition of parameter goes here

All COMMON blocks are named. There is no blank COMMON. Character and
numeric data are not mixed in the same COMMON block. Each COMMON
statement is followed by explicit type declarations for each member of that
COMMON. Any arrays in the COMMON are dimensioned in the explicit type
declarations.

PARAMETERS
and
PARAMETER
DEFINITIONS

It is often useful to place PARAMETER statements in INCLUDE files to
ensure that a parameter is used consistently between routines and to more
easily modify the values when needed for adjusting array limits and for
porting the code. An outline for a PARAMETER include file is shown in
figure 2. See INCLUDE in the FORTRAN REQUIREMENTS,
RESTRICTIONS, AND EXTENSIONS section for suggestions on file
naming conventions. Definitions for PARAMETERs may be included in
the PARAMETER INCLUDE file or in a separate definition INCLUDE file.

COMMON BLOCKS
and
COMMON
DEFINITIONS

COMMON blocks are placed in INCLUDE files. An INCLUDE file may
contain more than one COMMON block. Definitions of the variables in
COMMON may be placed in the COMMON include file or in a definition
include file. These definitions are in the same format as argument definitions.
See INCLUDE in the FORTRAN REQUIREMENTS, RESTRICTIONS,
AND EXTENSIONS section for suggestions on file naming conventions.
Outlines for these files are shown in figures 3 and 4. Each COMMON
block is followed by comment lines indicating which variables from the
INCLUDE file are Input to the routine, Modified by the routine, and Output by
the routine.

20 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

C
C + + + COMMON BLOCKS + + +
 INCLUDE 'CPLOT.INC'
C I: KOUNT, KOLOR, LINE
C M: LABX, LABY, TITLE
C O: XAXIS, YAXIS

Where file CPLOT.INC contains:

C + + + PARAMETERS + + +
 INTEGER MAX
 PARAMETER (MAX = 100)
C + + + PARAMETER DEFINITION + + +
C MAX - maximum number of points
C
 COMMON / PLOTN / KOUNT, KOLOR, LINE
 XVAL, YVAL, XMIN, XMAX, YMIN, YMAX,
 $
 INTEGER KOUNT, KOLOR, LINE
 REAL XVAL(MAX), YVAL(MAX), XMIN, XMAX, YMIN, YMAX
C
 COMMON / PLOTC / LABX, LABY, TITLE
 CHARACTER*40 LABX, LABY
 CHARACTER*60 TITLE(3)
C
C + + + COMMON DEFINITIONS + + +
C KOUNT - number of points to be plotted
C KOLOR - code for line color
C 1 - black
C 2 - red
C 3 - blue
C LINE - code for line type
C 1 - solid
C 2 - dash
C 3 - dot
C XVAL - array of values for x-axis
C YVAL - array of values for y-axis
C XMIN - minimum value for x-axis
C XMAX - maximum value for x-axis
C YMIN - minimum value for y-axis
C YMAX - maximum value for y-axis
C LABX - label for x-axis
C LABY - label for y-axis
C TITLE - title for plot, 3 lines

SPECIFICATIONS, DOCUMENTATION, AND STYLE 21

Figure 3. COMMON block INCLUDE file outline.

C + + + PARAMETERS + + +
 INTEGER nnnnnn
 PARAMETER (nnnnnn=)
C
C + + + PARAMETER DEFINITIONS + + +
C nnnnnn - definition of parameter goes here
C
C Description of how this common is used
 COMMON / CCCCCC / iiiii1, rrrrr1
C
 INTEGER iiiii1
 REAL rrrrr1
C
C Description of how this common is used
 COMMON / CCCCCC / dddddd
C
 DOUBLE PRECISION dddddd
C
C Description of how this common is used
 COMMON / CCCCCC / ccccc1, ccccc2
C
 CHARACTER*N ccccc1, ccccc2

Figure 4. Definition INCLUDE file outline.

C
C + + + COMMON DEFINITIONS + + +
C iiiii1 - definition of common member
C rrrrr1 - definition of common member
C ddddd1 - definition of common member
C ccccc1 - definition of common member

The save statement is used to allow local variables within a subprogram to retain
their value between calls to the subprogram. SAVE should not be indiscrimi-
nately used. Variables to be saved are explicitly declared by type before they are
included in the SAVE statement. Define all saved variables as shown. Any vari-
able that needs to be saved needs a good explanation of how it is used.

C
C + + + SAVES + + +
 REAL TABLE(20,5)
 LOGICAL FIRST
 SAVE TABLE, FIRST
C
C + + + SAVE DEFINITIONS + + +
C TABLE - table used to compute discharge
C (1) - depth, in feet
C (2) - area, in acres
C (3) - volume, in acre-feet
C (4) - outflow 1, in cubic feet per second
C (5) - outflow 2, in cubic feet per second
C FIRST - indicator for status of TABLE
C TRUE - populate the TABLE array
C FALSE - use current values in TABLE array

SAVE
and
SAVE
DEFINITIONS

22 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

All local variables are explicitly declared as INTEGER, REAL, DOUBLE
PRECISION, CHARACTER, or LOGICAL. Local variables should be defined
to assist subsequent programmers in maintaining the code. The six characters
allowed by the standard for variable names generally do not permit meaningful
names; however, trivial variables, such as loop indexes, need not be defined. In
addition to having precise definitions grouped at the beginning of the routine, it
is helpful to have comments within the code explaining the function of the
variables.

C
C + + + LOCAL VARIABLES + + +
 INTEGER I, J, KOUNT, DATE(6), TSTEP, TUNIT
 REAL DISCH
C
C + + + LOCAL DEFINITIONS + + +
C KOUNT - number of data values
C DATE - array containing starting date and time
C (1) - year (4 digits) (4) - hour
C (2) - month (5) - minute
C (3) - day (6) - second
C TSTEP - time step, in TUNIT units
C TUNIT - time unit for time step TSTEP
C 1 - second 5 - day
C 2 - minute 6 - month
C 3 - hour 7 - year
C DISCH - array containing KOUNT discharge values
C beginning at date/time DATE, with time step
 TSTEP,TUNIT

EQUIVALENCE statements should be avoided. They can make program main-
tenance very difficult. All variables in an equivalence statement are explicitly
declared by type. (NOTE: This is an example of using EQUIVALENCE, it is
not a recommended use.)

C
C + + + LOCAL VARIABLES + + +
 CHARACTER*80 TITLE
 CHARACTER*40 NAME
C
C + + + LOCAL DEFINITIONS + + +
C TITLE - title for printout
C NAME - name of site being analyzed
C
C + + + EQUIVALENCES + + +
 CHARACTER*1 TEXT(120)
 EQUIVALENCE (TEXT(1), TITLE) (TEXT(81), NAME)
C
C + + + EQUIVALENCE DEFINITIONS + + +
C TEXT - descriptive information printed out
C (1-80) contains a title
C (81-120) contains site name

LOCAL VARIABLES

Local variables may be coded in lowercase. Because six characters may not
be meaningful, variable names may be longer, but the first six characters must
be unique.

EQUIVALENCES

SPECIFICATIONS, DOCUMENTATION, AND STYLE 23

All external functions and statement functions used within a routine are explicitly
declared by type as INTEGER, REAL, DOUBLE PRECISION, CHARACTER,
or LOGICAL.

C
C + + + FUNCTIONS + + +
 INTEGER LENSTR
 REAL CHRDEC
 CHARACTER*1 DIGCHR
 REAL YLINE, XLINE

All intrinsic functions, such as MOD, ALOG, REAL, DBLE, and so forth, are
declared.

C
C + + + INTRINSICS + + +
 INTRINSIC ABS, MOD

All external subprograms, including system subprograms and graphics subpro-
grams, are declared.

It is recommended that continuation lines not be used to declare EXTERNALs.
One compiler has been found that cannot handle the continuation. System utili-
ties, such as grep in UNIX, can be used to easily identify all EXTERNAL rou-
tines used by a collection of code. In addition, it may also be helpful to group
externals by library or functionality.

C
C + + + EXTERNALS + + +
 EXTERNAL LENSTR, CHRDEC, DIGCHR, CHRDEL, CTRSTR
 EXTERNAL GSCHUP, GTX, GQTXX

Data initializations are grouped together. It is a violation of the standard to ini-
tialize data in a type declaration statement.

Definitions for all variables in DATA statements are included with the defini-
tions for local variables. Use a format for the data statement that is easily read
and uncluttered. Group associated data. When array elements have specific
meaning, it may be useful to include a descriptive comment if it fits in 1 or 2
lines.

C
C + + + DATA INITIALIZATIONS + + +
 DATA SMALL, LIMITS
 $ / 0.00001, 20,5,10 /
C id name lat lng
 DATA INDEX / 2, 45, 8, 9 /,
 $ TYPE / 'C', 'C' 'R', 'R' /,
 $ LENTH / 16, 48, 1, 1 /

Input FORMAT statements use statement labels greater than 999. The ranges
1000 to 1999 and 8000 to 8999 are recommended. Statement numbers are usually
incremented by 10. They are grouped together in numerically ascending order.

C
C + + + INPUT FORMATS + + +
 1000 FORMAT (5F10.3)
 1010 FORMAT (I10, 4F10.2)

Output FORMAT statements use statement labels greater than 999 and greater
than input FORMAT statements. The ranges 2000 to 2999 and 9000 to 9999 are
recommended. Statement numbers are usually incremented by 10. They are
grouped together in numerically ascending order and follow the INPUT formats.

FUNCTIONS

INTRINSICS

EXTERNALS

DATA
INITIALIZATIONS

INPUT FORMATS

OUTPUT FORMATS

24 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

Code FORMATs so they are easy to read. Do not use Hollerith data or the H field
descriptor. It may be helpful to start a continuation line in the FORMAT state-
ment for each new line in the output. Using indentation and lining up text that
will be lined up in the output may make the FORMAT statement easier to read
and modify.

C
C + + + OUTPUT FORMATS + + +
 2000 FORMAT (/, 1X, 'Summary of measured data on ', I4,2I3,
 $ /, 1X, ' precipitation gage ', A7, '=', F5.2,
 $ /, 1X, ' gage ', A7, '=', F5.2,
 $ /, 1X, ' basin average =', F5.2,
 $ /, 1X, ' total runoff, in inches =', F5.2)
 2010 FORMAT (//,1X, '***',
 $ /, 1X, '*** Warning: total runoff exceeds basin ',
 $ 'average precipitation by', F5.2, ' inches.',
 $ /, 1X, '***', /)

Statement functions are grouped together, with each function preceded by a com-
ment line(s) describing the purpose of the function. The explicit type declaration
for statement functions occurs earlier with the declarations for all external func-
tions. All arguments of the statement function are explicitly declared by type under
local variables.

C
C + + + STATEMENT FUNCTIONS + + +
C compute Y given X and the slope and intercept
 YLINE (SLOPE, X, INTRCP) = SLOPE * X + INTRCP
C
C compute X given Y and the slope and intercept
 XLINE (SLOPE, Y, INTRCP) = (Y - INTRCP) / SLOPE

The END SPECIFICATIONS line signals the end of the declaration, definition
and specification statements, and the beginning of the logic of the code. The code
should be well structured. It should generally be limited to two printed pages,
including comments. Indentation is used for DO loops, GO TOs, and IF con-
structs. Two to four spaces are used for indentation. Comment lines should be
used liberally and are indented with the code. See the FORTRAN REQUIRE-
MENTS, RESTRICTIONS, and EXTENSIONS section. See also the section
STRUCTURED PROGRAMMING TECHNIQUES.

C
C + + + END SPECIFICATIONS + + +
C
 .
 .
 .
 (program logic)
 .
 .
 .
C
 RETURN
 END

STATEMENT
FUNCTIONS

END
SPECIFICATIONS
and
LOGIC

SELECTED REFERENCES 25

SELECTED REFERENCES

American National Standard for Information Systems Programming Language Fortran, June, 1989, Draft S8, Version
112, S8(X3.9-198x), American National Standards Institute, Inc., New York, N.Y.

American National Standard Programming Language FORTRAN, 1978, ANSI X3.9-1978, American National
Standards Institute, Inc., New York, N.Y.

American National Standard Programming Language Fortran 90, 1991, ANSI X3.198-199x, American National
Standards Institute, Inc., New York, N.Y., 369 p.

Barnwell, T.O., Jr., and Kittle, J.L., Jr., 1984, Hydrological Simulation Program - FORTRAN, Development,
Maintenance and Applications:in Proceedings, Third International Conference on Urban Storm Drainage,
Chalmers Institute of Technology, Goteborg, Sweden.

Berns, G.M., 1984, New Life for Fortran: Datamation, September 1, p. 166-174.
_____ 1985, Maintainability Analysis Tool, MAT, User's Guide for MAT Version 10: Science Applications

International Corporation, Arlington, Va., 46 p.
Burns, Evelyn, 1985, Fortran 77 Reference Guide, Fourth Edition (Updated for Revision 20.2 by Jerry Onrstein, 1986),

Prime Computer, Inc., Natick, Mass.
Cobalt Blue, Inc., FOR-STRUCT Your Fortran Structuring Solution, 1992, Roswell, Ga., 147 p.
Cobalt Blue, Inc., FOR-STUDY FORTRAN /Static Analyzer, 1993, Roswell, Ga., 90 p.
Data General Customer Documentation: Green Hills Software Fortran Language Reference Manual, Data General

Corporation, Westboro, Mass., 1992, 293 p.
Etter, D.M., 1987, Structured Fortran 77 for Engineers and Scientists, The Benjamin/Cumming Publishing Company,

Inc., Menlo Park, Calif., 519 p.
General Electric, Corporate Information Systems, Bridgeport, Conn., 1986 "Software Engineering Handbook",

McGraw-Hill Series in Software Engineering and Technology, 224 p.
Johanson, R.C., and Kittle, J.L., Jr., 1983, Design, Programming and Maintenance of HSPF: Journal of Technical

Topics in Civil Engineering, v. 109, no. 1, April, p. 41-57.
Katzan, Harry, Jr., 1978, Fortran77: Van Nordstrand Reinhold Company, New York, 203 p.
Kernighan, B.W., and Plauger, P.J., 1976, Software Tools: Addison-Wesley Publishing Company, Reading, Mass.,

338 p.
_____ 1978, The Elements of Programming Style: McGraw-Hill, New York, 168 p.
Lahey Computer Systems, Inc., "Lahey Fortran Language System Reference Manual", Revision B, November, 1990,

Incline Village, Nev., 260 p.
_____ "Programmer's Reference", Revision B, November, 1990, Incline Village, Nev., 126 p.
Leiden University of the Netherlands, FORCHECK--Fortran Verifier Programming Aid and Software Engineering

Tool: Forcheck is a registered trademark by Leiden University of the Netherlands and solely distributed in the USA
by Computing & Systems Consultants of Raleigh, N.C.

Moniot, Robert, 1993, FTNCHEK Version 2.7, Fordham University, 47 p.
Polyhedron Software Limited, Copyright 1986-1994, plusFORT--Adding Value to FORTRAN.
Yourdon, E., 1975, Techniques of Program Structure and Design, Prentice-Hall.

26 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 27

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM

The SYStem DOCumentation (SYSDOC) program can be used to produce software documentation directly from
source code. The program reads source code that conforms to the standard and this convention and generates reports
describing the processed software. The SYSDOC processing options and the optional input file sysdoc.opt are
described in table A.1. The input, intermediate, and output files for SYSDOC are described in table A.2. The format
of the required input file [prefix].inp is described in table A.3.

Table A.1. Description of the SYSDOC processing options and the optional input file sysdoc.opt

Record type Columns Description

1 Include as many record type 1 as needed. Records may appear in any order. Only the options that
are being modified are required.

1-6 Name of option, identified below.

8-15 Value for option.

2 Comments. May appear mixed in any order with record type 1.

1 Identifier indicating this is a comment. SYSDOC recognizes an asterisk (*) and a pound sign (#).

2-80 Comment.

Name Default Description and valid ranges

The following 2 options are related to file management.

prefix sysdoc Prefix to be used for input and output files _.inp, _.out, _.com, _.int, _.unk, _.ina, and _.ins.

clean 1 Flag indicating disposition of intermediate files.
0 - keep files
1 - delete files (default)

The following 10 options effect the formatting of the reports. The width of the lines in the report depends on the values for marglf
and margrt. The report width is equal to marglf + 94 + margrt. In characters, it is at least 96 and at most 134 characters wide.

pgform 1 Format page with page ejects, blank line padding, and page numbers.
0 - no (note: no index will be generated)
1 - yes (note: each routine will begin at tope of page)

marglf 10 Blank spaces for left margin, 1 - 20.

margrt 18 Blank spaces for right margin, 1 - 20.

margtp 2 Blank lines before heading for a routine, 1 - pgline.

pgline 80 Number of lines per page 20 - 1000.
(note: not used when pgform = 0)

pgmain 1 Starting page number for main report, 1 - 9999.
(note: not used when pgform = 0)

pgintr 1 Starting page number for intrinsics report, 1 - 9999.
(note: not used when pgform = 0)

pgcomn 1 Starting page number for common block report, 1 - 9999.
(note: not used when pgform = 0)

pgunkn 1 Starting page number for unknown routines report, 1 - 9999.
(note: not used when pgform = 0)

index 0 Generate the file containing the indexes.
0 - no, do not generate the file (default)
1 - yes, generate the file
(note: index is not generated if pgform = 0)

28 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

Name Default Description and valid ranges

The following 3 options determine the processing options for SYSDOC. By default, the program will generate reports from source
code input.

stxref 1 Flag indicating status of intermediate files SDcall.t SDnam.t SDarg.t SDcuse.t SDadef.t.
0 - use files generated in previous run
1 - generate the files (default)

stargf 1 Flag indicating the status of intermediate SDfarg.t.
0 - use file generated in a previous run
1 - generate the file (default)

merge 1 Merge the intermediate, unformatted files together to generate the formatted main, common blocks,
intrinsics, and unknown routines reports ([prefix].out, [prefix].com, [prefix].int, and [prefix].unk).
0 - no, do not generate reports
1 - yes, generate reports (default)

Miscellaneous options.

debug 0 Debugging output level.
0 - no debugging messages displayed
1 - temporary files not deleted
2 - minimum debugging messages
3 - maximum debugging messages

intlen 4 Default integer length.
2 - short
4 - long (default)

Table A.2. Input, intermediate, and output files for SYSDOC

Status File names Description

input sysdoc.opt Contains changes to the default report processing and formatting options. Described in table A.1.
Optional.

The following files are read or written when stxref = 1. The intermediate files are deleted by the program when clean = 1.

input [prefix].inp Contains a list of the source code and (or) cross-reference files to be documented. Described in table
A.3. Required. The default prefix is sysdoc; it may be modified in sysdoc.opt.

input [name].___ All source code files identified in [prefix].inp. The file suffix is usually f, for, or f77. A [name].XRF
file will be generated for each of these files.

output/input [name].XRF All cross-reference files generated from the source code files identified in [prefix].inp and all cross-
reference files identified in [prefix].inp.

intermediate SDadef.t Contains definitions for all dummy arguments. Listed by routine in the order they were encountered.

intermediate SDarg.t Contains type, size, and Input/Modify/Output status for all dummy arguments. Listed by routine in
the order the routines were processed.

intermediate SDcall.t Contains the names of the external and intrinsic routines called by each routine. Listed in the order
the calling routines were processed.

intermediate SDcuse.t Contains information on common block usage. Includes Input/Modify/Output/Argument status for
how common variables are used. Listed in the order the routines were processed.

intermediate SDdoc.t Contains the purpose information. Listed in the order the routines were processed.

intermediate SDnam.t Contains a list of the routines processed. Listed in the order the routines were encountered. Includes
the routine name, the name of the file containing the routine, the position in the file, and the type of
routine.

intermediate SDsadef.t Sorted version of SDadef.t. Sorted alphabetically by dummy argument name.

intermediate SDsarg.t Sorted version of SDarg.t. Sorted alphabetically by argument name.

intermediate SDscalld.t Sorted version of SDcall.t. Sorted alphabetically by the name of the calling routine.

intermediate SDscallu.t Sorted version of SDcall.t. Sorted by the name of the called routine.

Table A.1. Description of the SYSDOC processing options and the optional input file sysdoc.opt—Continued

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 29

intermediate SDscuse.t Sorted version of SDcuse.t. Sorted alphabetically by the routine name.

intermediate SDscusex.t Sorted version of SDcuse.t. Sorted alphabetically by the name of the common block and the common
block variable names.

intermediate SDsdoc.t Sorted version of SDdoc.t. Sorted alphabetically by routine name.

intermediate SDsnam.t Sorted version of SDnam.t. Sorted alphabetically by routine name.

The following 2 intermediate files are created when stargf = 1. The intermediate files above are required to generate these files.
These files are deleted by the program when clean = 1.

intermediate SDfarg.t Combination of files SDarg.t and SDadef.t. This file is deleted when SDsfarg.t is created.

intermediate SDsfarg.t Sorted version of SDfarg.t. Sorted alphabetically by routine name.

The following 6 output files are created when merge = 1. The intermediate files above generated when stxref = 1 and stargf = 1 are
required to generate these files. The default prefix is sysdoc; it can be modified in sysdoc.opt.

output [prefix].out Formatted report for all processed routines. See figure A.2.

output [prefix].com Formatted report on common block usage. See figure A.3.

output [prefix].int Formatted report on usage of intrinsic routines. See figure A.4.

output [prefix].unk Formatted report on usage of unknown routines. See figure A.5.

output [prefix].ina Combined index of routines processed. Includes page numbers for [prefix].out, [prefix].com,
[prefix].int, and [prefix].unk. Listed alphabetically by name. Not generated when pgform = 0.

output [prefix].ins Sorted version of [prefix].ina. Sorted by report. Not generated when pgform = 0.

Table A.3. Format of the required input file [prefix].inp

Record type Columns Description

1 Include as many record type 1 as needed. Records may appear in any order.

1-64 Name of file containing source code or SYSDOC generated cross reference. May be any name that
is valid on the computer system being used. May include a complete path name if necessary. The
length of the file name may be restricted to less than 64 characters on some systems. Each file may
contain one or more subroutines and (or) functions. A main program is not required but may be
included. The characters >, \, and / are recognized as delimiters for directory names. The suffix XRF
is used for cross-reference files generated in a previous run. Source code files are usually identified
by the suffix f, for, or f77. Any combination of source code and cross-reference files may be entered.

Table A.2. Input, intermediate, and output files for SYSDOC—Continued

Status File names Description

30 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

The example input files shown in figure A.1 were used to generate the example reports in figures A.2, A.3, and
A.4. The sysdoc.opt file indicates that the prefix used for the input file and the output files is test1. The reports will
be formatted with one blank space for the left and right margins (marglf = 1 and margrt = 1). The reports will have no
form feeds or fixed page spacing (pgform = 0). There will be two blank lines before the start of each routine (default
for margtp is 2). All intermediate files will be saved (clean = 0). The test1.inp file indicates that source code will be
read from two files, utilcc.f and utilcn.f. The files utilcc.f and utilcn.f are distributed with the program. The routines
contained in these two files are for manipulation of character arrays and are a subset of a larger library of routines
available from the authors.

Figure A.2 contains the test1.out routine report generated when SYSDOC was run using the input files shown in
figure A.1. This report contains documentation for each of the functions, subroutines, and main programs processed
by SYSDOC. The report is arranged in alphabetical order by routine name. For each routine processed, the report
may contain:

 routine name - as a header, left and right justified
 identification - routine type, order number in the source file, and the name of the source file
 description - the purpose of the routine
 list of arguments - order number, name, type and size, status (input, modify, or output), and description
 common usage - common blocks used, variables used from common, and status (input, modify, output, or passed
 as an argument)
 called routines - list of any called routines, both intrinsics and externals
 calling routines - lists any routines in the report that call this routine and the names of the code groups that
 contain the calling routines
Note that the documentation in figure A.2 is essentially as SYSDOC generated it. The only formatting done using

FrameMaker on a UNIX workstation was to select font type and size for the text (Courier 8 point bold) and the routine
names (Helvetica 12 point bold, with a box drawn around it) and to add page breaks.

Figure A.1. Example input files sysdoc.opt and test1.inp.

File name Contents

sysdoc.opt * no page formatting,
* 1 space on margins, save files
prefix test1
pgform 0
marglf 1
margrt 1
clean 0

test1.inp utilcc.f
utilcn.f

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 31

Figure A.2. Example report of documented routines.

 This SUBROUTINE is number 8 in file utilcn.

 This routine places a comma(s) in the real number in the string
 every 3 digits. String may include sign, decimal point, and
 decimal digits. If there is not enough room in the string, the
 string is returned as it was entered.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array STR
 2 STR C*1 (V) M character array of size LEN

 CALLS:

 routine

 COPYC LENSTR LFTSTR RHTSTR STRFND ZIPC

 CALLED BY:

 unknown

 This SUBROUTINE is number 12 in file utilcc.

 Places the contents of the character*1 array CARY of size LENA
 into the character string CVAR of length LEN. If the length of
 the array is greater than the length of the string (LENA > LENV),
 CVAR will contain the first LENV characters from CARY. If the
 array is smaller than the string (LENA < LENV), then CVAR will
 be padded at the end with blanks.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LENA I*4 I size of input character*1 array CARY
 2 CARY C*1 (V) I input character array of size LENA
 3 LENV I*4 I available length for output character variable CVAR
 4 CVAR C*V O output character variable of length LENV

 CALLS:

 none

 CALLED BY:

 unknown

ADCOMA ADCOMA

CARVAR CARVAR

32 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This SUBROUTINE is number 9 in file utilcn.

 Convert the character array STR to its real equivalent. STR is
 expected to contain a right-justified number and may include a
 sign, decimal point, exponent, and decimal digits (+, -, ., D, E,
 and 0-9). If the character array contains an invalid character
 or cannot be converted, ERRFLG will be returned with a value of 1;
 RVAL is set to -R0MAX in this case. (Note: R0MAX, the largest
 representable number, is determined in subroutine NUMINI. It is
 machine dependent.)

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array STR
 2 STR C*1 (V) I character array containing real value
 3 RVAL R O real value
 4 ERRFLG I*4 O flag indicating success of conversion
 0 - successful
 1 - unsuccessful

 COMMON USAGE:

 block name status
 ------ ------ ------
 RCONST R0MAX I

 CALLS:

 routine

 CHRDEC NUMINI

 CALLED BY:

 unknown

CHDECE CHDECE

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 33

 This SUBROUTINE is number 10 in file utilcn.

 Convert the character array STR to its integer equivalent. STR is
 expected to contain a right-justified integer value and may include
 a sign and decimal digits (+, -, and 0-9). If the character array
 contains an invalid character or cannot be converted, ERRFLG will
 be returned with a value of 1; IVAL is set to 0 in this case.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array STR
 2 STR C*1 (V) I character array of size LEN containing an integer value
 3 IVAL I*4 O integer value
 4 ERRFLG I*4 O flag indicating success of conversion
 0 - successful
 1 - unsuccessful

 CALLS:

 routine

 CHRDIG

 CALLED BY:

 unknown

 This INTEGER FUNCTION is number 13 in file utilcc.

 Searches the columns of the array STR2 for a match to the array
 STR1. If a match is found, CHKSTR returns the column number of the
 first column in STR2 containing STR1. If no match is found,
 CHKSTR returns a zero.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array STR1 and number of rows in STR2
 2 NSTR I*4 I number of strings to be checked, number of columns in STR
 3 STR1 C*1 (V) I character array of size LEN to searched
 4 STR2 C*1 (V,V) I character array of size LEN,NSTR to be searched

 CALLS:

 none

 CALLED BY:

 unknown

CHINTE CHINTE

CHKSTR CHKSTR

34 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This SUBROUTINE is number 14 in file utilcc.

 Copy LEN characters from array STR1 to array STR2.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character arrays STR1 and STR2
 2 STR1 C*1 (V) I input character array of size LEN
 3 STR2 C*1 (V) O output character array of size LEN

 CALLS:

 none

 CALLED BY:

 group routine
 -------- -------
 utilcc DATLST
 utilcn DECCHX

CHRCHR CHRCHR

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 35

 This REAL FUNCTION is number 11 in file utilcn.

 Convert the character array STR to its real equivalent. STR is
 expected to contain a right-justified number and may include a
 sign, decimal point, exponent, and decimal digits (+, -, ., D, E,
 and 0-9). If the character array contains an invalid character
 or cannot be converted, CHRDEC will return -R0MAX. (Note: R0MAX,
 the largest representable number, is determined in subroutine
 NUMINI. It is machine dependent.) Leading blanks are ignored.
 Trailing blanks are treated as zero.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of array STR
 2 STR C*1 (V) I character array of size LEN containing a real value

 COMMON USAGE:

 block name status
 ------ ------ ------
 RCONST R0MAX I

 CALLS:

 routine

 CHRDIG NUMINI

 CALLED BY:

 group routine
 -------- -------
 utilcn CHDECE

CHRDEC CHRDEC

36 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This SUBROUTINE is number 15 in file utilcc.

 Deletes the character in array position POS in STRING and then shifts
 the rest of the array left one position. The last character in the
 STRING is set to blank. If POS is greater than LEN, no action is
 taken.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array STRING
 2 POS I*4 I array position of the character to be deleted from STRING
 3 STRING C*1 (V) M character array of size LEN

 CALLS:

 none

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHX

 This INTEGER FUNCTION is number 13 in file utilcn.

 CHRDIG returns the integer equivalent of a single character. The
 expected characters are '0' - '9'. If CHR contains a character
 other than expected, CHRDIG returns a -1.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 CHR C*1 I a single character

 CALLS:

 none

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHX CHINTE CHRDEC CHRDPR CRINTE

CHRDEL CHRDEL

CHRDIG CHRDIG

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 37

 This DOUBLE PRECISION FUNCTION is number 12 in file utilcn.

 Convert the character array STR to its double precision equivalent.
 STR is expected to contain a right-justified number and may include
 a sign, decimal point, exponent, and decimal digits (+, -, ., D, E,
 and 0-9). If the character array contains an invalid character or
 cannot be converted, CHRDPR will return -D0MAX. (Note: D0MAX, the
 largest representable double precision number, is determined in
 subroutine NUMINI. It is machine dependent.) Leading blanks are
 ignored. Trailing blanks are treated as zero.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of array STR
 2 STR C*1 (V) I character array of length LEN containing a real value

 COMMON USAGE:

 block name status
 ------ ------ ------
 DCONST D0MAX I

 CALLS:

 routine

 CHRDIG NUMINI

 CALLED BY:

 unknown

CHRDPR CHRDPR

38 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This SUBROUTINE is number 16 in file utilcc.

 Inserts the character CHAR into array position COL in the character
 array STRING. First, array positions COL thru LEN-1 are shifted
 forward one space. Then CHAR is placed in array position COL. The
 original STRING(LEN) value is deleted in the process.
 WARNING: CHRINS does not check that COL is a valid position.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of array STRING
 2 COL I*4 I position in STRING that CHAR is to be inserted
 3 CHAR C*1 I character to be inserted in STRING
 4 STRING C*1 (V) M character array of size LEN

 CALLS:

 none

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHX

 This INTEGER FUNCTION is number 14 in file utilcn.

 CHRINT returns the integer equivalent of the character array STR.
 STR is expected to contain a right-justified integer value and may
 include a sign and digits (+, -, and 0-9). CHRINT returns a zero
 if the character array contains an invalid character or cannot be
 converted. Leading blanks are ignored and trailing blanks are
 treated as a zero.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array STR
 2 STR C*1 (V) I character array of size LEN containing an integer value

 CALLS:

 routine

 CRINTE

 CALLED BY:

 unknown

CHRINS CHRINS

CHRINT CHRINT

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 39

 This INTEGER FUNCTION is number 17 in file utilcc.

 Checks the character array CBUF for the occurrence of blanks.
 CKNBLK returns a zero if the array contains all blanks. CKNBLK
 returns a 1 if there are any non-blank characters in CBUF.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array CBUF
 2 CBUF C*1 (V) I character array of size LEN

 CALLS:

 none

 CALLED BY:

 unknown

 This INTEGER FUNCTION is number 10 in file utilcc.

 Looks for the first non-blank character in CBUF. CKNBLV returns
 the position of the first non-blank character. If CBUF contains
 all blanks, CKNBLV returns a zero.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array CBUF
 2 CBUF C*1 (V) I character array of size LEN

 CALLS:

 none

 CALLED BY:

 unknown

CKNBLK CKNBLK

CKNBLV CKNBLV

40 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This SUBROUTINE is number 18 in file utilcc.

 Copies the contents of character array ZIP to character array X.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character arrays XIP and X
 2 ZIP C*1 (V) I input character array of size LEN
 3 X C*1 (V) O output character array of size LEN

 CALLS:

 none

 CALLED BY:

 group routine
 -------- -------
 utilcn ADCOMA INTCHR

 This INTEGER FUNCTION is number 15 in file utilcn.

 CRINTE returns the integer equivalent of the character array STR.
 STR is expected to contain a right-justified integer value and may
 include a sign and digits (+, -, and 0-9). CRINTE returns ERRINT
 if the character array contains an invalid character or cannot be
 converted. Leading blanks are ignored and trailing blanks are
 treated as a zero.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 ERRINT I*4 I value to be returned when the integer value cannot be
 determined
 2 LEN I*4 I size of character array STR
 3 STR C*1 (V) I character array of size LEN containing an integer value

 CALLS:

 routine

 CHRDIG

 CALLED BY:

 group routine
 -------- -------
 utilcn CHRINT CRINTX

COPYC COPYC

CRINTE CRINTE

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 41

 This INTEGER FUNCTION is number 16 in file utilcn.

 CRINTX returns the integer equivalent of the character array STR.
 STR is expected to contain a right-justified integer value and may
 include a sign and digits (+, -, and 0-9). CRINTX returns -999
 if the character array contains an invalid character or cannot be
 converted. Leading blanks are ignored and trailing blanks are
 treated as a zero.
 Convert a character array to its integer equivalent.
 The integer is expected to be right justified in STR.
 For an invalid integer, -999 is returned. Valid characters
 are '0' - '9', '+', and '-' . Leading blanks are ignored.
 Trailing blanks are treated as 0.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array STR
 2 STR C*1 (V) I character array of size LEN

 CALLS:

 routine

 CRINTE

 CALLED BY:

 unknown

 This SUBROUTINE is number 19 in file utilcc.

 Centers the characters within the character array TITLE. Embedded
 blanks are preserved. Leading and trailing blanks are balanced.
 TITLE is restricted to a maximum size of 132.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array TITLE, 1 <= LEN <= 132
 2 TITLE C*1 (V) M character array of size LEN

 CALLS:

 none

 CALLED BY:

 unknown

CRINTX CRINTX

CTRSTR CTRSTR

42 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This SUBROUTINE is number 20 in file utilcc.

 Places the contents of the character variable CVAR of expected
 length LENV into the character*1 array CARY of length LENV. If
 the length of the variable is greater than the length of the array
 (LENV > LENA), CARY will contain the first LENA characters of CVAR.
 If the variable is shorter than the array (LENV < LENA), then CVAR
 will be padded at the end with blanks.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LENV I*4 I length of input character variable
 2 CVAR C*V I input character variable of length LENV
 3 LENA I*4 I size of output character array
 4 CARY C*1 (V) O output character array of size LENA

 CALLS:

 none

 CALLED BY:

 unknown

CVARAR CVARAR

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 43

 This SUBROUTINE is number 21 in file utilcc.

 Places a year, month, and day date into the character array DBUFF.
 The month is represented as a number. If MO is not a valid month
 (1-12), the month and day will not be included in DBUFF. If DY is
 not a valid day (1-31), the day will not be included in DBUFF.
 (Note that no check is made to verify that DY is a valid day for
 the month MO.) OLEN is the actual number of characters used to
 represent the date, the remainder of DBUFF is padded with blanks.
 Examples:
 YR MO DY OLEN DBUFF
 1994 12 31 10 1994/12/31
 92 1 1 6 92/1/1
 1992 11 0 7 1992/11

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 YR I*4 I year
 2 MO I*4 I month
 3 DY I*4 I day
 4 OLEN I*4 O number of array positions used for date
 5 DBUFF C*1 (10) O output character array

 CALLS:

 routine

 INTCHR ZIPC

 CALLED BY:

 unknown

DATCHR DATCHR

44 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This SUBROUTINE is number 22 in file utilcc.

 Converts an integer date (year, month, day, hour, minute, and
 second) to a character representation, with the month represented
 as a 3-character abbreviation. If the hour, minute, and second are
 all zero, they are not included. If the date array contains an
 invalid date or time, the character representation will contain all
 blanks. The program does check that the day is valid for the month.
 A 2-digit year is assumed to occur in the first century. Examples:
 <-- DATE(1-6) --> <----- DSTRNG ------> LEN
 1986,2,14,10,30,0 1986 FEB. 14 10:30:00 21
 92,12,31,0,0,0 92 DEC. 31 10

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 DATE I*4 (6) I date (year, month, day, hour, minute, second)
 2 DSTRNG C*1 (21) O output character array
 3 LEN I*4 O actual number of characters output to character array
 4 ERRCOD I*4 O flag indicating valid date
 0 - valid date
 1 - invalid year
 2 - invalid month
 3 - invalid day
 4 - invalid hour
 5 - invalid minute
 6 - invalid second
 If the year or month is invalid, the remaining date
 elements are not checked. If the year and month are
 valid, ERRCOD is set for the smallest invalid date element;
 i.e., if day and hour are both invalid, ERRDOC = 4.

 CALLS:

 routine

 CHRCHR DAYMON INTCHR ZIPC

 CALLED BY:

 unknown

DATLST DATLST

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 45

 This SUBROUTINE is number 1 in file utilcn.

 Converts a real number to a character array. The number is left
 or right justified in the array based on the value of JUST. If the
 number will not fit in the array, exponential notation is used and
 the number is right justified in the array. For left-justified
 numbers, STR is padded with trailing blanks. For right-justified
 numbers, STR is padded with leading blanks.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 REAIN R I real value to be converted to a character array
 2 LENGTH I*4 I available size for output character array STR
 3 JUST I*4 M output justification
 0 - right justified
 1 - left justified
 will be forced to 0 if an exponent is required
 4 JLEN I*4 O actual number of characters placed in string, includes
 any leading blanks if number is right justified
 5 STR C*1 (V) O output character array of size LENGTH

 COMMON USAGE:

 block name status
 ------ ------ ------
 ICONST RPREC I

 RCONST R0MIN I
 RCONST RP1MIN A

 CALLS:

 routine

 ABS AINT ALOG10 ANINT IABS INDEX INT INTCHR
 LEN NINT NUMINI REAL RWDIGS

 CALLED BY:

 unknown

DECCHR DECCHR

46 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This SUBROUTINE is number 5 in file utilcn.

 Converts a real number to a character array. The number is right
 justified in the array. The number will be represented with SIGDIG
 significant digits and DECPLA decimal places, if there is room in
 STR. If there is not room, the number will be represented using
 exponential notation.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 REAIN R I real value to be converted to a character array
 2 LEN I*4 I available size for output character array
 3 SIGDIG I*4 I significant digits for output
 4 DECPLA I*4 I number of decimal places for output
 0 - no decimal places
 <0 - force exponential output
 5 STR C*1 (V) O output character array of size LEN

 CALLS:

 routine

 ABS CHRCHR CHRDEL CHRDIG CHRINS DIGCHR INTCHR

 CALLED BY:

 unknown

 This CHARACTER FUNCTION is number 6 in file utilcn.

 DIGCHR returns the character equivalent of a single digit. If
 the integer provided is not within the valid range 0 thru 9,
 DIGCHR will return a zero.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 DIG I*4 I digit to be converted to a character

 CALLS:

 none

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHX INTCHR

DECCHX DECCHX

DIGCHR DIGCHR

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 47

 This SUBROUTINE is number 2 in file utilcn.

 Converts a double precision number to a character array. The
 number is left or right justified in the array based on the value
 of JUST. If the number will not fit in the array, exponential
 notation is used and the number is right justified in the array.
 For left-justified numbers, STR is padded with trailing blanks.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 DPRIN D I double precision value to be converted to a character array
 2 LENGTH I*4 I available size for output character array STR
 3 JUST I*4 M output justification
 0 - right justified
 1 - left justified
 will be forced to 0 if an exponent is required
 4 JLEN I*4 O actual number of characters placed in string, includes
 any leading blanks if number is right justified
 5 STR C*1 (V) O output character array of size LENGTH

 COMMON USAGE:

 block name status
 ------ ------ ------
 DCONST D0MIN I
 DCONST DP1MIN A

 ICONST DPREC I

 CALLS:

 routine

 DABS DBLE DINT DLOG10 DNINT DWDIGS IABS IDINT
 IDNINT INDEX INTCHR LEN NUMINI

 CALLED BY:

 unknown

DPRCHR DPRCHR

48 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This INTEGER FUNCTION is number 4 in file utilcn.

 DWDIGS returns the number of whole digits in the double precision
 value. The value is expected to be greater than 0, no check is
 made to verify that this is true.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 DVAL D I double precision value

 CALLS:

 routine

 DLOG10 IDINT

 CALLED BY:

 group routine
 -------- -------
 utilcn DPRCHR

DWDIGS DWDIGS

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 49

 This SUBROUTINE is number 7 in file utilcn.

 Converts an integer number to a character array. The number is
 left or right justified in the array based on the value of JUST.
 The maximum number of digits for the integer is 9. For numbers
 that are left justified, STRNG is padded with trailing blanks.
 For numbers that are right justified, STRNG is padded with leading
 blanks.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 INTIN I*4 I integer value to be converted to a character array
 2 LENA I*4 I available size for output character array
 3 JUST I*4 I output justification
 0 - right justified in the field
 1 - left justified in the field
 4 JLEN I*4 O actual number of characters output to character array
 5 STRNG C*1 (V) O output character array of size LENA

 CALLS:

 routine

 ALOG10 COPYC DIGCHR INT MOD REAL ZIPC

 CALLED BY:

 group routine
 -------- -------
 utilcc DATCHR DATLST
 utilcn DECCHR DECCHX DPRCHR

 This INTEGER FUNCTION is number 1 in file utilcc.

 LENSTR returns the position of the last non-blank character in the
 array STR. If STR contains all blanks, LENSTR returns a zero.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array STR
 2 STR C*1 (V) I character array of size LEN

 CALLS:

 none

 CALLED BY:

 group routine
 -------- -------
 utilcn ADCOMA

INTCHR INTCHR

LENSTR LENSTR

50 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This SUBROUTINE is number 2 in file utilcc.

 Left justifies the characters within the character array TITLE.
 Imbedded blanks are preserved. Title is restricted to a maximum
 size of 132.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array TITLE, 1 <= LEN <= 132
 2 TITLE C*1 (V) M character array of size LEN

 CALLS:

 none

 CALLED BY:

 group routine
 -------- -------
 utilcn ADCOMA

LFTSTR LFTSTR

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 51

 This SUBROUTINE is number 17 in file utilcn.

 Initialize machine dependent floating point constants.

 ARGUMENTS:

 none

 COMMON USAGE:

 block name status
 ------ ------ ------
 DCONST D0MAX O
 DCONST D0MIN O
 DCONST DP1MIN M

 ICONST DPREC M
 ICONST RPREC O

 RCONST R0MAX O
 RCONST R0MIN O
 RCONST RP1MIN M

 CALLS:

 routine

 INT LOG10

 CALLED BY:

 group routine
 -------- -------
 utilcn CHDECE DECCHR DPRCHR CHRDEC CHRDPR

NUMINI NUMINI

52 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This SUBROUTINE is number 9 in file utilcc.

 Converts all lowercase letters in STRING to uppercase. All
 uppercase letters are left in uppercase.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I length of character array STRING
 2 STRING C*1 (V) M character array of length LEN

 CALLS:

 routine

 CHAR ICHAR MOD

 CALLED BY:

 unknown

 This SUBROUTINE is number 11 in file utilcc.

 Right justifies the characters within the character array TITLE.
 Embedded blanks are preserved.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array TITLE, 1 <= LEN <= 132
 2 TITLE C*1 (V) M character array of size LEN

 CALLS:

 none

 CALLED BY:

 group routine
 -------- -------
 utilcn ADCOMA

QUPCAS QUPCAS

RHTSTR RHTSTR

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 53

 This INTEGER FUNCTION is number 3 in file utilcn.

 RWDIGS returns the number of whole digits in the real value. The
 real value is expected to be greater than 0, no check is made to
 verify that this is true.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 RVAL R I real value

 CALLS:

 routine

 ALOG10 INT

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHR

 This INTEGER FUNCTION is number 3 in file utilcc.

 STRFND returns the position in the array STR where the array FSTR
 begins. If FSTR is not contained in STR, STRFND returns a zero.
 If FLEN is greater than LEN, STRFND returns a zero.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array being searched
 2 STR C*1 (V) I character array of size LEN to be searched
 3 FLEN I*4 I size of character array to search for
 4 FSTR C*1 (V) I character array of size FLEN to be searched for

 CALLS:

 none

 CALLED BY:

 group routine
 -------- -------
 utilcn ADCOMA

RWDIGS RWDIGS

STRFND STRFND

54 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This INTEGER FUNCTION is number 4 in file utilcc.

 STRLNX returns the number of characters in the array BUFF. Leading
 and trailing blanks are not included in the count, embedded blanks
 are include in the count. If there are no non-blank characters in
 the array, STRLNX returns a 1.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 NPTS I*4 I size of the character array BUFF
 2 BUFF C*1 (V) I character array of size NPTS

 CALLS:

 none

 CALLED BY:

 unknown

 This SUBROUTINE is number 5 in file utilcc.

 Fill the character array X of size LEN with the given value ZIP.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 LEN I*4 I size of character array ZIP
 2 ZIP C*1 I character to fill array X
 3 X C*1 (V) O character array of size LEN to be filled with ZIP

 CALLS:

 none

 CALLED BY:

 group routine
 -------- -------
 utilcc DATCHR DATLST
 utilcn ADCOMA INTCHR

STRLNX STRLNX

ZIPC ZIPC

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 55

 This SUBROUTINE is number 6 in file utilcc.

 Left justifies the characters in STRING. Leading blanks are
 removed and the characters are shifted to the left. STRING is
 padded with trailing blanks. Embedded blanks are preserved.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 STRING C*V M character variable

 CALLS:

 routine

 LEN

 CALLED BY:

 unknown

 This INTEGER FUNCTION is number 7 in file utilcc.

 Determine the length of STRING, excluding trailing blanks and
 nulls.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 STRING C*V I character variable

 CALLS:

 routine

 CHAR LEN

 CALLED BY:

 unknown

ZLJUST ZLJUST

ZLNTXT ZLNTXT

56 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This SUBROUTINE is number 8 in file utilcc.

 Left justify the characters in STRING. All leading and embedded
 blanks are removed. String is padded with trailing blanks.

 ARGUMENTS:
 declaration
 order name type size status explanation
 ----- ------ ----------- ------ ---
 1 STRING C*V M character variable

 CALLS:

 routine

 LEN

 CALLED BY:

 unknown

ZTRIM ZTRIM

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 57

Figure A.3 contains the test1.com common report generated when SYSDOC was run using the files shown in
figure A.1. This report contains documentation for each of the common blocks used by the documented routines. The
report is arranged in alphabetical order by common block name. For each common block documented, the report
contains:

common name - as a header, left and right justified
common usage table - alphabetically by variable name, lists routines that use the variable, the code group
 that contains the routine, the order number of the routine in the code group, and the status of the
 variable in the routine. The possible status are O - set, I - used but not changed, M - used and
 then changed, and A - passed as an argument to another routine.
Note that the documentation in figure A.3 is essentially as SYSDOC generated it. The only formatting done using

FrameMaker on a UNIX workstation was to select font type and size for the text (Courier 8 point bold) and the routine
names (Helvetica 12 point bold, with a box drawn around it) and to add page breaks.

Figure A.3. Example report of common block usage.

 This COMMON BLOCK is used by:

 name routine group number status
 ------ ------- -------- ------ ------

 D0MAX CHRDPR utilcn 12 I
 D0MAX NUMINI utilcn 17 O

 D0MIN DPRCHR utilcn 2 I
 D0MIN NUMINI utilcn 17 O

 DP1MIN DPRCHR utilcn 2 A
 DP1MIN NUMINI utilcn 17 M

 This COMMON BLOCK is used by:

 name routine group number status
 ------ ------- -------- ------ ------

 DPREC DPRCHR utilcn 2 I
 DPREC NUMINI utilcn 17 M

 RPREC DECCHR utilcn 1 I
 RPREC NUMINI utilcn 17 O

DCONST DCONST

ICONST ICONST

58 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This COMMON BLOCK is used by:

 name routine group number status
 ------ ------- -------- ------ ------

 R0MAX CHDECE utilcn 9 I
 R0MAX CHRDEC utilcn 11 I
 R0MAX NUMINI utilcn 17 O

 R0MIN DECCHR utilcn 1 I
 R0MIN NUMINI utilcn 17 O

 RP1MIN DECCHR utilcn 1 A
 RP1MIN NUMINI utilcn 17 M

RCONST RCONST

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 59

Figure A.4 contains the test1.int intrinsic report generated when SYSDOC was run using the files shown in figure
A.1. This report contains documentation for each of the intrinsic routines used by the documented routines. The report
is arranged in alphabetical order by intrinsic name. For each intrinsic documented, the report contains:

 intrinsic name - as a header, left and right justified
 calling routines - an alphabetical listing by code group and calling routine of all the documented routines
 that call the intrinsic
Note that the documentation in figure A.4 is essentially as SYSDOC generated it. The only formatting done using

FrameMaker on a UNIX workstation was to select font type and size for the text (Courier 8 point bold) and the routine
names (Helvetica 12 point bold, with a box drawn around it) and to add page breaks.

Figure A.4. Example report of intrinsic usage.

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHR DECCHX

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHR

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHR INTCHR RWDIGS

ABS ABS

AINT AINT

ALOG10 ALOG10

60 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHR

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcc QUPCAS ZLNTXT

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DPRCHR

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DPRCHR

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DPRCHR

ANINT ANINT

CHAR CHAR

DABS DABS

DBLE DBLE

DINT DINT

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 61

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DPRCHR DWDIGS

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DPRCHR

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHR DPRCHR

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcc QUPCAS

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DPRCHR DWDIGS

DLOG10 DLOG10

DNINT DNINT

IABS IABS

ICHAR ICHAR

IDINT IDINT

62 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DPRCHR

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHR DPRCHR

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHR INTCHR RWDIGS NUMINI

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcc ZLJUST ZLNTXT ZTRIM
 utilcn DECCHR DPRCHR

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn NUMINI

IDNINT IDNINT

INDEX INDEX

INT INT

LEN LEN

LOG10 LOG10

APPENDIX A. SYSTEM DOCUMENTATION (SYSDOC) PROGRAM 63

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcc QUPCAS
 utilcn INTCHR

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHR

 This called routine is a SYSTEM INTRINSIC.

 CALLED BY:

 group routine
 -------- -------
 utilcn DECCHR INTCHR

MOD MOD

NINT NINT

REAL REAL

64 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

Figure A.5 contains the test1.unk unknowns report generated when SYSDOC was run using the files shown in
figure A.1. This report contains documentation for each of the unknown routines called by the documented routines.
An unknown routine is a routine that is not a known intrinsic and was not included with the documented routines. The
DAYMON routine is contained in the library that utilcc.f and utilcn.f are a subset of. For each unknown documented,
the report contains:

 routine name - as a header, left and right justified
 calling routines - an alphabetical listing by code group and calling routine of all the documented routines
 that call the unknown routine
Note that the documentation in figure A.5 is essentially as SYSDOC generated it. The only formatting done using

FrameMaker on a UNIX workstation was to select font type and size for the text (Courier 8 point bold) and the routine
names (Helvetica 12 point bold, with a box drawn around it) and to add page breaks.

Figure A.5. Example report of unknown routines.

 The location of this called routine is UNKNOWN.

 CALLED BY:

 group routine
 -------- -------
 utilcc DATLST

DAYMON DAYMON

