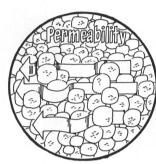


Ground water is water underground in saturated zones beneath the land surface. Contrary to popula belief, ground water does not form underground "rivers." It fills the pores and fractures in underground materials such as sand, gravel, and other rock. If ground water flows from rock materials or can be removed by pumping from the saturated rock materials in useful amounts, the rock materials are called aquifers.


Ground water moves slowly, typically at rates of 7 to 60 centimeters per day in an aquifer. As a result, water could remain in an aquifer for hundreds or thousands of years. Ground water is the source of about 40 percent of water used for public supplies and about 38 percent of water used for agriculture in the United

One of the largest aquifers in the United States is the High Plains Aquifer. The aquifer is approximately the size of California and is located under parts of South Dakota, Wyoming, Kansas, Nebraska, Colorado New Mexico, Oklahoma, and Texas. The High Plains Aquifer contains an estimated 4 quadrillion liters (4

This poster depicts an unconfined or water-table aquifer. An unconfined aquifer is an aquifer where This poster depicts an unconfined or water-table aquifer. An unconfined aquifer is an aquifer where the water surface — water table — is free to rise and decline as water moves from recharge areas to discharge areas. Recharge areas are places where an aquifer receives its water. The recharge sources shown are a reseavoir, a stream, and precipitation. Their titles are red. The arrows represent the movement of water from the recharge sources to the discharge areas. The large circle on the right-hand side of the poster is a representation of how recharge occurs from precipitation.

The left-hand side of the poster shows conditions in a ground-water discharge area. Discharge areas are where ground water flows to the land surface or to surface-water bodies such as the pond and river places.

shown on the poster. Ground water also can discharge by pumping a well. The titles of these ground-water own on the poster. Ground water has can discussing so permission of the poster is folded into 8.5" x 11" panels; front and back panels can easily be photocopied.

Permeability

For water to move in an aguifer, the pores between rock materials and fractures in rock must be connected. If there is a good connection among pore spaces and fractures, water can move freely and we say that the rock is permeable. The capacity of rock material to transmit water is called permeabil-ity. Water moves through different materials at different rates - faster through gravel, slower through sand, and much slower through clay. Therefore, gravel is more per than sand, which is more permeable than clay.

Recharge Areas

Recharge is the addition of water to the ground-water system. The recharge of reshwater begins as precipitation. Precipitation occurs in several forms, including rain, snow, and hail, but only rain is displayed on the poster. Some of the rain infiltrates into the soil. If the rate of the rainfall exceeds the rate of infiltration, surface water will flow over the land surface to surface-water bodies such as rivers and

Water can infiltrate faster from the land surface into sandy soils than silty or clay soils Water infiltrates into the soil and the unsaturated zone. The unsaturated zone occurs immediately below the land surface and contains both water and air in the pores and fractures in the rock materials. Water moves, or percolates, down through the unsaturated zone to the saturated zone. The saturated zone is where all the pores or fractures in rock materials are filled with water. The top of the saturated zone is called the water table.

Because surface-water and ground-water systems are connected, surface water can recharge ground water. Aquifers can obtain water from such surface-water bodies as reservoirs and streams when and where the water table is lower than the surface-water body. Recharge areas usually are higher in elevation than discharge

Discharge Areas

Places where ground water flows from aguifers to springs, seeps, wetlands, ponds. or streams are called ground-water discharge areas. Ground-water discharge to these natural areas occurs when the water surface of the aquifer (water table on the poster) is at or above the elevation of the discharge area (river and pond on the poster). Surface-water and ground-water systems are interconnected. The flow of most streams is sustained by ground water seeping into the stream. The water surfaces of many ponds and wetlands are an extension of the local ground-water table. Springs occur where ground water flows from an aquifer to the land surface

Ground water can be brought to the land surface by pumping from a well. A well is an opening that has been drilled or dug into an aquifer below the water table. Water from the aquifer flows into this opening to replace water removed by pumping water from the well. The water table slopes from areas of recharge to discharge areas like rivers, ponds, wells, and springs.

GROUND-WATER USE FOR THE UNITED STATES, 1995

STATE	NATIONAL RANK	DO- MESTIC	COM- MERCIAL	INDUS- TRIAL	AGRI- CULTURE	OTHER	TOTAL
Alabama	32	685	162	379	276	148	1,650
Alaska	49	84	74	31	0.5	27	217
Arizona	7	1,160	337	276	8,190	764	10,700
Arkansas	4	404	79	485	19,600	117	20,700
California	1	7,260	2,125	2,500	41,700	1,230	54,800
Colorado	10	359	83	150	7,720	224	8,540
Connecticut	42	326	151	39	64	46	626
Delaware	46	119	44	93	142	19	417
District of Columbia	52	0	0	1.9	0	0	1.9
Florida	5	5,420	1,504	1,260	6,520	1,710	16,400
Georgia	14	917	271	1,280	1,850	191	4,510
Hawaii	31	472	337	93	683	365	1,950
ldaho	8	751	102	173	9,580	89	10,700
Illinois	18	1,210	399	704	884	311	3,510
Indiana	27	1,020	385	677	339	259	2,680
lowa	30	532	237	483	445	292	1,990
Kansas	6	407	129	250	12,300	226	13,300
Kentucky	39	185	40	431	10	190	857
Louisiana	13	965	135	1,410	2,340	259	5,110
Maine	48	175	61	31	15	21	303
Maryland	38	438	103	89	187	112	929
Massachusetts	35	490	232	231	111	265	1,330
Michigan	22	1,360	318	942	428	195	3,240
Minnesota	26	949	439	325	691	297	2,700
Mississippi	9	949	178	695	7.650	307	9,780
Missouri	20	679	123	252	2,100	222	3,380
Montana	40	174	37	120	373	67	772
Nebraska	3	636	243	179	22.300	118	23,500
Nevada	23	330	136	30	2,430	308	3,230
New Hampshire	47	187	70	36	3.3	11	308
New Jersev	28	1,110	323	295	126	311	2,160
New Mexico	12	735	330	73	4,940	367	6,440
New York	16	1.810	798	731	142	338	3,820
North Carolina	29	870	119	359	556	114	2,020
North Dakota	45	108	23	17	277	38	463
Ohio	19	1,180	575	1.070	73	532	3,430
Oklahoma	17	271	137	94	3,070	56	3,630
Oregon	15	420	68	95	3.340	45	3,970
Pennsylvania	21	1.020	189	672	214	1.160	3,250
Puerto Rico	43	167	55	50	140	171	583
Rhode Island	51	57	16	11	4.6	15	104
South Carolina	36	544	44	260	150	219	1.220
South Dakota	41	155	71	34	390	58	709
Tennessee	33	685	296	431	118	115	1.640
Texas	2	3,680	295	1,200	25,200	1,240	31,600
Jtah	24	786	271	246	1.520	115	2,940
/ermont	50	101	46	17	17	9.0	189
/irgin Islands	53	0.2	1.0	0.3	0.2	0.1	1.9
/irginia	34	640	166	439	51	59	1,350
Vashington	11	1,620	416	1,170	3,190	259	6,660
Vest Virginia	44	229	156	61	55	52	552
Vest Virginia Visconsin	25	721	284	592	934	343	2,870
Visconsin Vvomina	37	124	284	10	737	300	1,200
OTAL	31			21,600			
IOIAL		45,600	13,200	∠1,000	194,000	14,300	289,000

Use might not add to TOTALS because of inde Category explanation located under pie chart.

ACTIVITY Recharge - Discharge

Introduction

Recharge is the addition of water to an aquifer. Recharge can occur from precipitation or from surface-water bodies such as lakes or streams. Water is lost from an aquifer through discharge. Water can be discharged from an aquifer through wells and springs, and to surface-water bodies such as rivers, ponds, and wellands. The following activity is designed to demonstrate the recharge and discharge of water to a model aquifer.

Objectives -- Students will:

- Identify several sources of recharge for ground water. Identify several sources of discharge for ground water. Discuss how water moves from recharge to discharge areas.
- Discuss the connection between surface water and ground water

- One clear container at least 15-cm wide x 22-cm long x 6-cm deep for each group. Possible containers include One order container at least 15-cm wide x 22-cm long x 6-cm deep for each group clear plastic salad containers or clear baking pans.

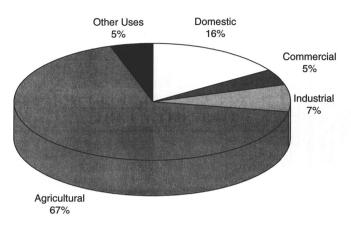
 Sufficient pea-size gravel to fill the container approximately 2/3 full.

 Two 472-mL paper cups for each group.

 One pump dispenser from soft-soap or hand-lotion containers for each group.

- 472 III. or water.
 Grease pencils, one for each group.
 Twigs or small tree branches, to represent trees on the model (optional).
 Colored powdered-drink mix or food coloring (optional).

Teacher Preparation


- 1. Display a copy of the poster titled "Ground Water: The Hidden Resource" on the classroom wall several days prior to conducting this activity.

 2. Using an ice pick or awl, punch 8 to 10 small holes in the bottom of one of the paper cups. When filled with water,
- this cup will be used to simulate rain
- 3. Fill the clear containers 2/3 full with pea-size gravel.

- Divide the class into small groups. Provide each group with one clear container filled 2/3 with pea-size gravel, one 472-mL cup with holes punched in the bottom, one 472-mL cup with no holes, and one pump dispenser.
- Students make models to represent hills and a valley. One student from each group fills the 472-mL cup without holes in the bottom with water. Each group makes a valley in the center of the model by pushing gravel to the farthest opposite ends of the container so the valley extends completely across the width of the container. About 2 cm of pea-sized grave remains in the bottom of the valley.

HOW GROUND WATER IS USED IN THE UNITED STATES

Total ground-water use in 1995 was 289,000 million liters per day.

Nationally, the largest use of ground water is for Agriculture, followed by Domestic and Industrial.

Agricultural use includes ground water for irrigating crops, watering livestock, and fish farms.

The Other Uses category includes ground-water use for mining, thermoelectric power, and public use

- Explain to the students that the gravel mounds on both sides of the container represent hills with a valley in Explain to the students and the graver intourists on both sides on the container represent trees, instruct a student to hold the 472-mL cup with holes over the model. Then add 472 mL of water to this cup. Tell the students that they are simulating rain. Have the students observe how the water infiltrates into the gravel and becomes
- Introduce the word recharge—the addition of water to the ground-water system. Observe that water is standing in the valley. Have the students use a grease pencil to draw a line identifying the water level in the container. The line should traverse the entire model, identifying the water level under the hills and in the valley. There will be a pond in the valley.
- Explain that they have just identified the top of the ground water in their model. The top of the ground water is called the water table. Discuss with the students how the ground water becomes a pond in the valley. This is because the water table is higher than the land surface (gravel) in the valley.
- Have the students insert the pump into one of the hills on the side of the valley, pushing the bottom down to the ground water. Allow each of the students in the group to press the pump 20-30 times after the water in the pump has begun to flow. Catch the water in the paper cup with no holes in the bottom. After each student takes a turn pumping, instruct them to observe the location of the water table in relation to the grease-pencil line. Where did the water go? What happened to the pond? Discuss discharge, the removal of water from the ground. Discuss the effect of ground-water pumping on streams and lakes.

Interpretive Questions

1. Where does ground water come from?

Answer: Precipitation (rain, snow, sleet, etc.) Also, if the water table is at or below the surface of the water in a stream or pond, water can move from the stream or pond to recharge the ground-water system

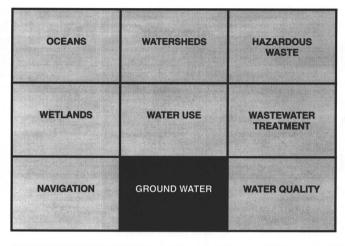
What would happen in the students' neighborhood (name a local stream or pond) if a well was drilled near that stream or pond and enough water pumped to lower the water table around the stream or pond?

Answer: Some water from the stream or pond would be removed by the pump through the well. If enough water removed, a pond or small stream could go dry.

Extension

Sprinkle a colored powdered-drink mix or food coloring on top of one of the hills and repeat the above activity by having it rain on the model. Discuss the movement of "pollution" from the hill to the ground water to the lake.

ORDERING INFORMATION


Copies of all the posters in the series (see Poster Series Panel) can be obtained at no cost from the U.S. Geological Survey. Write to the address below and specify the poster title(s) listed on the Poster Series panel, and grade level(s) desired. The poster entitled "Water: The Resource That Gets Used & Used & Used for Everything!" is also available in black-and-white, intended for coloring by children in grades K2. In addition, the poster entitled "Water: The Resource That Gets Used & Used & Used for Everything!" with activities intended for grades 3-5 is available in Spanish.

U.S. Geological Survey Branch of Information Services Box 25286 Denver Federal Center Denver, CO 80225 Telephone: 1-888-ASK-USGS

Poster Series

This poster is part of a series of water-resources education posters developed through the U.S. Geological Survey's Water Resources Education Initiative, a cooperative effort between public and private education interests. Partners in the program include the U.S. Geological Survey, Bureau of Reclamation, and the U.S. Fish and Wildlife Service of the U.S. Department of the Interior; the National Oceanic and Atmospheric Administration; the U.S. Environmental Protection Agency; the U.S. Army Corps of Engineers; the Nebraska Groundwater Foundation; and the National Science Teachers Association

The other posters in the series are entitled "Oceans--Coastal Hazards: Hurricanes, Tsunamis, Coastal Frosion" "Watersheds: Where We Live", "Hazardous Waste: Cleanup and Prevention", "Wetlands: Water, Wildlife, Plants, & People!", "Water: The Resource That Gets Used & Used & Used for Everything!", "How Do We Treat Our Wastewater?", "Navigation: Traveling the Water Highways!", and "Water Quality...Potential Sources of Pollution". The posters in the series are designed to be joined to create a large wall mural. A schematic of the wall mural is displayed on this panel. The gray shaded spaces represent the posters listed above. The black shaded space represents

Water-resources topics of the posters are drawn in a cartoon format by the same artist. All poster are available in color. The reverse sides of the color posters contain educational activities: one version for children in grades 3-5 and the other for children in grades 6-8.

DEFINITIONS

Aquifer

 An underground body of porous sand, gravel, or fractured rock filled with water and capable of supplying useful quantities of water to a well or spring.
 Igneous or metamorphic rock consisting of relatively large mineral grains.
 Water that contains less than 1,000 milligrams per liter of dissolved solids.
 Water beneath the land surface in the saturated zone. Crystalline Rock Freshwater

Ground Water Ground-Water Discharge

The flow or pumping of water from an aquifer.

The addition of water to an aquifer.

Movement of water from the land surface into the soil. Ground-Water Rec

 The capacity of porous rock for transmitting water.
 Water supplied for domestic, commercial, thermoelectric power, industrial, and Water supplied on defined and control of the public uses.
 Zone below the land surface where all the pores or fractures are filled with water.

Saturated Zone Surface Wate

Water on the Earth's surface.

The zone immediately below the land surface where the pores or fractures

contain both water and air.

- The top of the water surface in the saturated zone of an unconfined aquifer

ACKNOWLEDGMENTS

The following individuals contributed to the development of this poster:

Project Chief, Principal Author, and Layout: Stephen Vandas, U.S. Geological Survey, Denver,

Art Work: Frank Farrar, Frank Farrar Graphics, Denver, Colorado, under contract to the American Water

U.S. GEOLOGICAL SURVEY (USGS)

As the Nation's largest water, earth, and biological science and civilian mapping agency, the USGS works in cooperation with more than 2,000 organizations across the country to provide reliable, impartial, scientific information to resource managers, planners, and other customers. This information is gathered in every state by USGS scientists to minimize the loss of life and property from natural disasters, to contribute to the conservation and the sound economic and physical development of the Nation's natural resources, and to enhance the quality of life by monitoring water, biological, energy, and mineral resources.

U.S. Department of the Interior

U.S. Geological Survey

MIDDLE SCHOOL