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Abstract. A stochastic model, based on the recent developments in the theory of extreme
values, is presented to describe and analyze excessive streamflows. The model is a
particular stochastic process x(¢) defined as the maximum term among a random number of
random observations in an interval of time [0, £]. Since the number of hydrograph peaks in
[0, t1 that exceed a certain level 2 and the magnitudes of these peaks are random
variables, the foregoing model seems to conform well to the flood phenomenon. The passage
time T(z) of the process x(¢) relevant to the risk evaluation in the design of hydraulic struc-
tures is also considered. The results obtained are applied on the 72-year record of the Susque-
hanna River at Wilkes-Barre, Pennsylvania. Theoretical and observed results agree reasonably

well,

INTRODUCTION

In various problems of flood analysis it is of
interest to determine the distribution of the
number of flood occurrences in a specific inter-
val of time. This problem has already been
studied by several authors [Shane and Lynn,
1964 Benson, 1968; Kirby, 1969]. For a com-
plete deseription of the flood phenomenon, how-
ever, it is necessary to consider not only the
frequency of flood events but also the magni-
tudes of the corresponding hydrograph peaks
all simultaneously.

This paper is concerned with a new theoret-
ical approach to the problem of flood analysis.
The approach is based on the recent develop-
ments in the theory of extreme values [Todoro-
vic, 1970] and represents an attempt to develop
a more general stochastic model to describe and
predict behavior of floods. The model is a sto-
chastic process x(¢) defined as the maximum
term among a random number of random vari-
ables in an interval of time [0, t]. Since the
number of flood peak discharges in [0, t] ex-
ceeding a certain level x, and the magnitudes of
these peaks are random variables, the foregoing
model seems to conform well to the flood phe-
nomenon. '

Practical aspects suggest that the entire pro-
cess of instantaneous discharge not be considered
but rather the sequence of the hydrograph
peaks. In this way a sequence of random vari-
ables @, @., --- is obtained (Figure 1). To

investigate the maximum peak, it might seem
logical to apply the classical extreme values
theory. Unfortunately this method cannot be
applied because the number of @; in [0, {] and
the time when @, emerges are random variables.
The data used to illustrate and to test the
new approach are obtained from the partial
duration series of flood peak discharges for the
Susquehanna River at Wilkes-Barre, Pennsyl-
vania. These data refer to the period 1891-1964.
Two years, 1898 and 1899, are omitted because
of the nonhomogeneity of data. The already ex-
isting partial duration data on floods have been
checked out using the flood hydrographs.

PHENOMENOLOGICAL CONSIDERATIONS

Following Kirby [1969], any streamflow hy-
drograph can be interpreted as a sequence of
nearly instantaneous hydrograph peaks sepa-
rated by relatively long periods of low flow.
Because of the nature of the phenomenon, the
number of these peaks in a certain interval of
time [0, t] and their magnitudes are ran-
dom wvariables. Since the number of peaks in
[0, £] is random, the times when these peaks
emerge are random variables too.

If we consider a certain level z, and if we con-
sider only those peaks @ in [0, ¢] that exceed
Zo, we can define

£ =0Q: — 2

where & > 0 is a random variable for all ¢+ =
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1,2, --- . With each & we associate the time
(i) when the corresponding peak occurred (Fig-
ure 1). When a flood hydrograph is a multiple
peaked hydrograph [Chow, 1964, p. 14-18],
only the largest peak is taken into considera-
tion. For simplicity, flood peak exceedance flows
£&/’s from now on will be called exceedances only.

Consider an interval of time [0, ¢] and de-
note by x () the largest £, in this interval. Since
the number of £, in [0, t] is a random variable
that depends on time £, x(t) is defined as fol-
lows:

sup £, (1)

T(v) <t

x(t) =

By virtue of definition it follows that for every
t > 0and At >0

x(® < x(t + Ap)

This means that x(¢) is a stochastic process of
nondecreasing sample functions (Figure 2).

In the following an attempt is made to de-
termine a one-dimensional distribution funetion
F.(x) of the stochastic process y(£):

Fy(z) = Px(t) < ] (2)

DISTRIBUTION OF THE NUMBER
OF THE EXCEEDANCES

In this section the distribution function of the
number of exceedances of the level x, is deter-
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mined. Denote by #5(t) the number of exceed-
ances in the interval of time [0, ¢]. By defini-
tion, »(t) may be 0, 1, 2, -+, and for all t >
0 and At > 0, n(t) < 7(t + At). In addition,
7(t) depends on z, (for fixed ¢, 5(¢) is a non-
increasing function of z,). However, in what is
to follow it is assumed that z, is a fixed number.

Denote by E,' = [5(¢) = v] then it follows
that

ESNE!=0forallizjand \JE,' =@
v=0
(3

where © stands for the impossible and Q stands
for a certain event. Let A(t) stand for E[n(£)],
ie,

@

A() = > vP(E,Y (4

y=1

then because of the seasonal variation A(t) is
a nonlinear function of time.

Write Fu(t) = P[+(n) < t]. Then from
Todorovic [1970]

P(Ent) = F() — Four(t) (5)
From equation 5 we obtain

@

F) = 3 P(ES (6)

i=n

Under certain very general assumptions one may

-
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Fig. 1.

1
T(i-1) T (i)

Schematic representation of a streamflow hydrograph.
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x(t)

t

o T

Tig. 2. A sample function of the process x(¢).

show that probabilities P(E.") satisfy the fol-
lowing system of differential equations [Todoro-
vic, 1970]

dP(E,' ¢
%ﬂ_) = Nt P(Ei=i) — M(DP(EL)
E=1,2,--:
o)~ ()P(ES) @
where
: P E E, AL E 3

M(t) = Aitln,;_gﬁl_H (8)

and

B = (e + A — () = 1]
Tt is not difficult to verify that system 7 has
the following solution:

<[]
[ vl o
e { [ 00 = Mees) )

L [

Cexp {j:k () —No(8)] dg} Aty dty_y -+ diy
9

Evidently simple expression for each P(E.') in
terms of [A.(t)] is not possible in general; how-
ever, several special cases have been solved
[Todorovic and Y evjevieh, 1969].

The case we believe is of relevance in flood
analysis is when

Me(®) = A(Y) (independent of %)

P(EOL) =

P(E,")
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Under this condition one can easily check that

3 [ k
HEQ==wp[—j‘Mqu[f‘M$&}/m
] 0
(10)
This is a time dependent Poisson process.

From the mathematical expectation given by
equation 4, A(t) becomes

A@:LK@@ (11

Equation 6 represents the distribution fune-
tion of the time of the nth exceedance. Denote
by f.(t) the corresponding density function
since I, (¢) can be written as follows:

n—1
Fﬂ(t) =, 1. = ZP(EJI)
i=0

Taking into account equation 10, after differen-
tiation, 1t follows that

) =2 o [— [ ds] [ [Ho s

(12)

DISTRIBUTIONS OF X (£) AND T'(2)

According to the definition given in a previous
section, y (¢) represents the maximum flood peak
exceedance flow in an interval of time [0, t],
and, as shown, x(f) is a stochastic process
of nondecreasing (step) sample functions. In
connection with x(¢), another process T'(z) is
defined as the (random) instant when for the
first time (counting from zero) an observation
£, exceeds a given value 2. In mathematical
terms T'(z) is defined as follows:

T(z) = inf [¢; x(D) > ] (13)
ie, T(x) is the smallest ¢ for which x(¢) > =.
Consider the process x(¢) and denote by
F.(x) the corresponding distribution function;
ie,
F2) = Plx(d) < z] t >0 x>0
Then according to theorem 1 [Todorovic, 1970]

F(z) = P(E,") + gP[Q(& <) ﬂE:f:I
(14)

Distribution function 14 may be interpreted as
the probability that all exceedances & in [0, t]
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will be less than or equal to z. If z = 0 it fol-
lows from equation 14 that

F(0) = P(Ey) (15)

Identity 15 represents the probability that there
will be no exceedances in the interval [0, ¢].
From the foregoing discussion it follows that
F.(z) is not differentiable at the point z = 0
(Figure 3).

The mathematical expectation and variance of
the stochastic process x(£) can be determined as
follows. Denote by I, the indicator of the set
A. Then with regard to relation 3 it follows that

Iw =EIE,C=1

Vg, ¥=0

yeo

From this, assuming E[x(t)] exists, we have

Elx()] = E[x(i)feb ]

©

2 Elx(1)- Ig,]

¥=0
(16)
By virtue of definition of x(¢) it turns out that

x(DIg,c = sup &Iz, = sup &g,

0<k=n(t) 0Zk<y
because on the set E,' the random wvariable

n(t) = v. Therefore, mathematical expectation
16 becomes

EB(O) = 3 B(swp 15,9

re=1 1<k<

= > E(swp & | BIP(EY

pe=1 15k<y

(17)

In a similar way one can prove that

@

B()* = 2 El(sw £)° | BIP®) (18)

ym]

Consider now the stochastic process 7'(z) and
write

PLE])

X

o]

Fig. 3. Distribution function F.(z).
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@.() = P[T(x) < {

Since the sample functions of the process (&)
are nondecreasing step funections, the following
relation is obvious (Figure 2):

Plx() < 2] = P[T(z) > z]
From this it follows that

(19)

‘bz(t) =] Fc(x)

or

®.(t) = 1 — P(B,)

-SNeE<an 5] o

k=1 v=1

It is apparent that for allz > 0

®.(0) =0

RISK EVALUATION OF EXCEEDING
THE DESIGN FLOW

One of the most important problems in the
design of a hydraulic structure is the selection
of its capacity, which must be accommodated
to the existing conditions. It is extremely un-
economical to build the structure of large
enough capacity to earry all possible flows dur-
ing its life. Instead, a structure of smaller
capacity is usually constructed. This of course
implies a certain risk; therefore it is necessary
to find a way to determine whether the risk is
a reasonable one.

The passage time T(z) of the stochastic
process x(€) represents a natural measure of the
risk. However, certain phenomenological rea-
sons suggest not using the passage time directly,
but rather proceeding as follows: Denote by

X1y Xz, * (21)
the sequence of the annual maximum values and

define the new random variable N, in the fol-
lowing way:

N, = inf (v; x, > 2) (22)
where 2 > 0. It is apparent that for all 2 > 0,
N. may assume only nonnegative integer values.
In addition, by virtue of definition it follows
that for everyn = 1,2, -+,
P(N.=n) =P, <z -

’

ns1 = 2 X D 2) (23)
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and forn = 0

P(N. = 0) = P(E,")
where t* is equal to the 1-year period.

Because of the nature of the phenomenon, it
seems reasonable to assume that x, represents a
sequence of independent random variables with
the common distribution function F.(z); ie.,

Plx, < ) = F,.(2)

Hence

P(N, = n) = [Fe(@)]"'[1 — Fi.(2)]

From this it follows that the mathematical ex-
pectation of the random wvariable N, for all
z > 01isequal to

©

E(N,) = Z a[F ()" [1 — Fu(2)]
1

Y s Foo(z) (29)

E(N.) represents the average number of years
when the first exceedance of the value = oc-
curs; it has been used as a measure of risk
in the sense that for a given hazardous flow z,
equation 24 provides the average passage time
of the level z. Taking into consideration the
lifetime of the structure, the designer may de-
cide what the capacity of the structure should
be.

H(x)
1.of =
///
08+
06 //Ifl,
4
!/ I ——— The Entire Year
oar If}
it/ ——  The Winter Season
17 ]
azf-if/ —rmomm The Spring Season
/]
]
o 1 1 1 1 é (ID 1 ] 1 on (Cfs)
85383532883
6 0090000 009
O O N O W o w o nwo
- M TONGO QB0
Fig. 4. Observed distributions of the magni-

tude of flood peak exceedance flows for the winter
season, spring season, and the entire year for the
Susquehanna River at Wilkes-Barre, Pennsyl-
vania.
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Fig. 5. Percentage of the total number of
floods of the Susquehanna River at Wilkes-Barre,
Pennsylvania, for the period of 72 years.

A better measure of the risk can be ob-
tained in the following way. For the given life-
time of the structure (the number of years n)
and the risk «, the level 2 can be determined so
that

,i:” [Fie(@) 7 [1 = Fuu(2)] = @

or

Fou(z) = o/

APPLICATIONS

In this section an application of the foregoing
results on the Susquehanna River at Wilkes-
Barre, Pennsylvania, is considered. The data
available refer to the period 1891-1964; the base
z, for the partial duration series is 82,000 cfs
{cubic feet per second).

Before going further it is necessary to say that
all isolated peaks larger than the level z, are
taken into consideration. When a flood hydro-
graph is a multiple peaked hydrograph [Chow,
1964, p. 14-18] only the largest peak is taken
into consideration (Figure 1). This procedure
was adopted to make obtained values for &,
independent. The other way to make £, inde-
pendent random variables is to use the method
of hydrograph separation. However, this method
has a serious shortecoming because the actual
maximum peak and the one obtained by the
hydrograph separation procedure may not be
the same.
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In the sequel the following are the basic as-
sumptions:

1. (&) 18 a sequence of independent identi-
cally distributed random variables with H (z) =
P(¢ < x).

2. (&) and (r(v)) are mutually independent
sequences.

Under these two hypotheses the distribution
function 14 and the mathematical expectation
E[x(t)] become

F(z) = P(E,") + ; [H(=)]*-P(E.)  (25)

Elx(9] = ;{fﬂ xd[H(x)]k}-P(Ek‘) (26)

To justify the foregoing hypothesis one should
be reminded that at least for practical purposes
those £, observed for a season may be as-
sumed independent and identically distributed
[Chow, 1964]. As mentioned before, a stream-
flow hydrograph can be interpreted as a
sequence of nearly instantaneous hydrograph
peaks separated by relatively long periods of low
flow. Regarding this and the foregoing pro-
cedure, physical intuition is not violated by
treating the exceedances of a certain level x, as
independent random variables, not only for a
particular season but for the entire year.

The second part of the first hypothesis asserts
that £, are identically distributed random vari-
ables. This claim does not seem justifiable; in
fact it does not look realistic. To resolve this
problem for the particular case of the Sus-
quehanna River at Wilkes-Barre (z, = 82,000
cfs), three distribution funections of values of
£, are made. The first distribution is related to
the spring season, the second one to the winter
season, and the third one to the entire year.
The number of £ in the other two seasons was
too small to be analyzed. In Figure 4 these
three distributions are depicted. The Kolmo-
gorov-Smirnov test has shown that these three
distribution functions are not significantly dif-
ferent, This result, combined with the state-
ment that inside seasons £, are identically dis-
tributed, supports the hypothesis that at least
for the case under consideration (£,) ean be
regarded as a sequence of identically distributed
random variables.
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FREQUENCY ANALYSIS OF EXCEEDANCES

Contrary to Kirby’s claim, the times between
hydrograph peaks cannot be considered as iden-
tically distributed random variables (although
the physical intuition is not violated by treat-
ing the times as independent). Because the
distribution of the exceedances is not uniform
throughout a year (Figure 5), probabilities

Pln(t, + AD) — 5(t) = k]

# Pln(t; + A) — n(ts) = k]
for different ¢, and ¢,, are different.

In the following an attempt is made to esti-
mate probabilities P(E,'). According to equa-
tion 10, for this purpose it is necessary to evalu-
ate the function A(t) (the average number of
exceedances in [0, £]). For the Susquehanna
River the observed A’(t) given in Figure 7 is
determined in the following way. The interval of
the water year October 1-September 30 was
divided into seventeen 20-day and one 25-day
periods. Then assuming that October 1 is the
origin for periods of 0-20 days, 040 days, - -

f t f t
10 1=20 days 1=60 days t =100 days 4

t =140 days

1 o] 12160 days t = 180 days

= Observed
---- Thecreticol

107 1 = 200 days

t = 365 days

] [ 2 3 4 5 &

Fig. 6. Observed and the corresponding theoret-
ical (Poisson) distributions of the number of
exceedances for periods of 20, 60, 100, 140, 160, 180,
200, and 365 days. .
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Fig. 7. Observed A(t) and the fitting function.
Unit interval on £ axis stands for 20-day period.
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0-365 days, the observed and the corresponding
theoretical (Poisson) distributions of the num-
ber of exceedances were determined (Figure
6). From these distributions the values of A’(t)
at points t = 20, 40, - -- 365 are obtained. The
fitting function A(#) has the following expres-
sion:

A(f) = 0.1015 4 0.1050¢

+ 0.3936 cos (%t + 0.603211—)

ot

+ 0.1280 cos % - 0.40747r)
2wt

+ 0.0604 cos (—6 4 0.589211-)

2mi

+ 0.0130 cos (—3' = 0.2041) (27

As has been mentioned, Shane and Lynn
studied this problem. Their result, that the dis-
tribution of the number of exceedances is a time
independent Poisson process, is not general
enough. In this case A(f) = At. However, from
Figure 7 this is obviously not the case. Therefore
in the equation

P(E,,t) L 87.‘\.(1) [Aif)]p (28)

A(t) is given by equation 27.
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Evaluation of the distribution function F,(x)
represents the central problem of this section. On
the basis of equation 28, distribution function
25 becomes

Fyz) = exp {—AM[1 — H()]} (29

where A(t) is given by equation 27 and H (z)
will be determined, It can easily be seen from
Figure 4 that the exponential distribution suits
the observed distributions. Taking the annual
observed distribution of exceedances as repre-
sentative and determining from these data the
corresponding theoretical (exponential) distri-
bution (Figure 8) one may obtain from (29)

Fo(z) = exp [—A(f) exp (—2.628-107%-2)]
(30)

where z 1s measured n cfs. Figure 9 represents
graphically distribution function 30 for £ = 160,
200, and 365 days and the corresponding ob-
served distribution.

COMPUTATION OF THE LARGEST ANNUAL
EXCEEDANCE WHOSE RETURN PERIOD IS 100 YEARS

In this case t* = 365 days and

1
E(N,) = ——— = 100
B(N) 1 — Fo(x)
H(x)
1.0 b -
o8l ”
0.6 |-
0.4 |
| — Observed
0.2 |- ———— Theoretical
x{cfs)
o § SO BONNE! QU E: (WL, YR SO, NI M.
0 OO0 © 0O 0o© o ©
0O 00 00 o0© o ©
OO0 00 09 g9 g ©
o O n O n O n O
—MQLDMO!ONEE

Fig. 8. Observed and theoretical distributions
of the magnitude of exceedances for the Susque-
hanna River at Wilkes-Barre, Pennsylvania, for a
1-vear period.
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Fig. 9. Observed and theoretical distribution functions of the maximum flood peak ex-
ceedance flow for the Susquehanna River at Wilkes-Barre, Pennsylvania, for 160-, 200-, and

365-day periods.

from which we obtain

exp [—A(f) exp (—2.628 X 10™°z)] = 0.990
(31)
The function A(£) has the value 1.889 for t* =

365 days. Therefore, the solution of equation
3lis

z = 1.992 X 10° cfs

which is the value of the largest annual flood
peak exceedance flow having a return period
of 100 years,

In this way, the design flood against which a
dam is to be built, for example, can be com-
puted.

CONCLUSION

This paper, using some recent results in the
theory of extreme values of a particular class
of stochastic processes, discusses the develop-
ment of a probabilistic model that describes the
flood phenomenon. The model is sufficiently
general to be applied to most cases with im-
portant practical applications. The simplest
form of the model, when exceedances &, &, + -
represent a sequence of independent identically
distributed random wvariables independent of
7(1), 7(2), - -+, is applied to the 72-year record
of the Susquehanna River at Wilkes-Barre,
Pennsylvania. Observed and theoretical results

secem to agree fairly well (application of the
model on the Greenbrier River at Alderson,
West Virginia, has also shown good agreement
between theoretical and observed results). Cer-
tainly for some rivers the simplest form of the
model is not suitable, and it will be necessary to
develop new particular models from the gen-
eral model given by equation 14.
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