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PREFACE 

The series of manuals on techniques de- 
scribes procedures for planning and executing 
specialized work in water-resources investi- 
gations. The material is grouped under major 
subject headings called books and further 
subdivided into sections and chapters ; Sec- 
tion B of Book 3 is on ground-water tech- 
niques. 

This chapter is an introduction to the 
hydraulics of ground-water flow. With the 
exception of a few discussions in standard 
text format, the material is presented in pro- 
gramed form. In this form, a short section 
involving one or two concepts is followed by 
a question dealing with these concepts. If the 
correct answer to this question is chosen, the 
reader is directed to a new section, ,in which 
the theory is further developed or extended. 
If a wrong answer is chosen, the reader is 
directed to a section in which the earlier ma 
terial is reviewed, and the reasons why the 
answer is wrong are discussed; the reader is 
then redirected to the earlier section, to 
choose another answer to the question. This 
approach allows students who are either 
partially familiar with the subject, or well 
prepared for its study, to proceed rapidly 
through the material, while those who require 
more explanation are provided it within the 
sections that deal with erroneous answers. 

In the preparation of any text, difficult 
choices arise as to the material to be included. 
Because this text is an introduction to the 
subject, the discussion has been restricted, 
for the most part, to the flow of homogeneous 
fluid through an isotropic and homogeneous 
porous medium-that is, through a medium 
whose properties do,not change from place to 
place or with direction. Emphasis has been 
placed upon theory rather than application. 
Basic principles of ground-water hydraulics 
are outlined, their uses in developing equa- 

tions of flow are demonstrated, representative 
formal solutions are considered, and methods 
of approximate solution are described. At 
some points, rigorous mathematical deriva- 
tion is employed ; elsewhere, the development 
relies upon physical reasoning and plausibil- 
ity argument. 

The text has been prepared on the assump- 
tion that the reader has completed standard 
courses in calculus and -college physics. 
Readers familiar with differential equations 
will find the material easier to follow than 
will readers who lack this advantage ; and 
readers familiar with vector theory will 
notice that the materal could have been pre- 
sented with greater economy using vector 
notation. 

The material is presented in eight parts. 
Part I introduces some fundamental hydro- 
logic concepts and definitions, such as poros- 
ity, specific discharge, head, and pressure. 
Part II dis,cusses Darcy’s law for unidirec- 
tional flow; a text-format discussion at the 
end of Part II deals with some generalizations 
of Darcy’s law. Part III considers the applica- 
tion of Darcy’s law to some simple field prob- 
lems. The concept of ground-water storage is 
introduced in Part IV. A text-format discus- 
sion at the beginning of Part V deals with 
partial derivatives and their use in ground- 
water equations ; the basic partial differential 
equation for unidirectional nonequilibrium 
flow is developed in the programed material 
of Part V. In Part VI, the partial differential 
equation for radial confined flow is derived 
and the “slug-test” solution, describing the 
effects of an instantaneous injection of fluid 
into a well, is presented and verified. A text- 
format discussion at the end of Part VI out- 
lines the synthesis of additional solutions, in- 
cluding the Theis equation, from the “slug- 
test” solution. Part VII introduces the gen- 
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eral concepts of finite-difference analysis, and 
a text format discussion at the end of Part 
VII outlines some widely used finite-difference 
techniques. Part VIII is concerned with elec- 
tric-analog techniques. The material in Part 
VI is not prerequisite to that in Parts VII and 
VIII ; readers who prefer may proceed di- 
rectly from Part V to Part VII. 

A program outline is presented in the table 
of contents of this report. This outline indi- 
cates the correct-answer sequence through 
each of the eight parts and describes briefly 
the material presented in each correct-answer 
section. Readers may find the outline useful 
in review or in locating discussions of par- 
ticular topics, or may wish to consult it for 
an overview of the order of presentation. 

It is impossible, in this or any other form 
of instruction, to cover every facet of each 
development, or to anticipate every difficulty 
which a reader may experience, particul,arly 
in a field such as ground water, where readers 
may vary widely in experience and mathe- 
matical background. An additional difficulty 
inheren,t in the programed text approach is 
that some continuity may be lost in the proc- 
ess of dividing the material into sections. For 
all these reasons, it is suggested that the 
programed instruction presented here be used 
in conjunction with one or more of the stand- 
ard references on ground-water hydraulics. 

This text is based on a set of notes used by 
the author in presenting the subject of 
ground-water hydraulics to engineers and 
university students in Lahore, West Paki- 
stan, while on assignment with the U.S. 
Agency for International Development. The 

material has been drawn from a number of 
sources. The chapter by Ferris (1959) in the 
text by Wisler and Brater and that by Jacob 
(1950) in “Engineering Hydraulics” were 
both used extensively. Water-Supply Paper 
1536-E (1962) by Ferris, Knowles, Brown, 
and Stallman was an important source, as was 
the paper by Hubbert (1940)) “The Theory of 
Ground Water Motion.” The text “The Flow 
of Homogeneous Fluids through Porous 
Media” by Muskat (1937) and the paper 
“Theoretical Investigation of the Motion of 
Ground Waters” by Slichter (1899) were 
both used as basic references. The develop- 
ment of the Theis equation from the “slug- 
test” solution follows the derivation given in 
the original reference by Theis (1935). The 
material on analog models is drawn largely 
from the tik, “Analog Simulation,” by 
Karplus (1958). In preparing the material on 
numerical methods, use was made of the book, 
“Finite-Difference Equations and Simula- 
tions,” by Hildebrand (1968)) and the paper 
“Selected Digital Computer Techniques for 
Groundwater Resource Evaluation,” by 
Prickett and Lonnquist (1971). A number of 
additional references are mentioned in the 
text. 

The author is indebted to Messrs. David W. 
Greenman and Maurice J. MundorfF, both 
formerly Project Advisors, U.S. Geological 
Survey-U.S.A.I.D., Lahore, for their support 
and encouragement during preparation of the 
original notes from which this text was de- 
veloped. The author is grateful to Patricia 
Bennett for her careful reading and typing 
of the manuscript. 
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L. distance; 
T. time) 
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LT-= 
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gravitational force 
component of gravitational 

force parallel to conduit 
component of gravitational 

force normal to conduit 
gravitational acceleration 
head; static head 
pressure head 
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Sumbol 

Z 

K 
k 
1 
n 
P 
Q 
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L 

ML-1 T-? 
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R 
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electrical current 

hydraulic conductivity 
intrinsic permeability 
length 
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volumetric flujd discharge 
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specific storage 
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P ML-IT-’ 
P ML-” 
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UNIT CONVERSION 

Explanation 

?S/ 4 T&argument of the 
well function 

fluid volume 
velocity 
well function 
width 
elevation above datum 
fraction of the total water in 

storage that can be drained 
by gravity 

finite-difference approxima- 
tion to a2h/ax’ 

finite-difference approxima- 
tion to Yhla$ 

electrical charge 
dynamic viscosity 
fluid density 
electrical resistivity 
electrical conductivity 
voltage or electrical potential 

En&h 

ft (foot) 

Factor for converting 
En&h unite to 

internatiand sy.9te.m 
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3.048 x 10-l 
Metric Sl 

m (metre) 
gal (gallon) 
fF/s (cubic foot per 

second) 

3.785 
2.832X lo-” 

1 (litre) 
ma/s (cubic metre per 

second) 

PROGRAM OUTLINE 

This program outline is provided to assist the reader in review, and to 
facilitate the location of particular topics or discussions in the text. Hope- 
fully, it may also provide some feeling for the organization of the material 
and the order of presentation, both of which tend to be obscured by the 
programed format. 

The section numbers in the left margin correspond to correct answelg in 
the programed instruction ; they give the sequence of sections which will 
be followed if no errors are made in answering the questions. An outline 
of the content of each of the correct-anewer sections is given to the right 
of the section number. Two numbers are listed beneath each of these section 
outlines. These numbers identify the wrong-answer sections for the ques- 
tion presented in the outlined correct-answer section. The correct answer 
to this question is indicated by the next entry in the left margin. 

The discussions written in standard text format are also outlined. For 
these discussions, page numbers corresponding to the listed material are 
given in parentheses in the left margin. 



PROGRAM OUTLINE 

0 Part I. Definitions and general concepts: 
Se&on : 

porosity 
13; 18 

effective porosity; saturation 
12; 29 

porosity, saturation (review) ; point velocity 
variations ; tortuous path effects 
4; 21 

3 tortuous flow path effects (review) ; problems 
in determining actual cross-sectional flow area; 
relation of discharge per unit face area to flow 
velocity 
28; 10 

14 relation of discharge per unit face area to flow 
velocity (review) ; definition of specific dis- 
charge jar specific flux; definition of head 
11; 171 

24 omission of velocity head in ground water; rela- 
tion between pressure and height of fluid col- 
umn (Pascal’s law) 
25; 19 

16 Pascal’s law (review) ; head as potential energy 
per unit weight; elevation head as potential per 
unit weight due to elevation; dimensions of 
pressure 
7; 15 

26 

0 
22 

pressure as a component of potential energy per 
unit volume; pressure head as a component of 
potential energy per unit weight; total poten- 
tial energy per unit weight (question) 
20; 23 

head as potential energy per unit weight (re- 
view) ; total potential energy per unit volume 
6; 27 

8 total poteutial energy per unit volume (review) 

Part II. Darcy’s law: 
Section : 

1 outline of approach-method of balancing forces; 
friction force proportional to velocity; pressure 
force on face of a fluid element in a sand- 
packed pipe (question ) 
25; 16 

8 relation between pressure and force; net pressure 
force on a fluid element (question) 
23; 12 

21 Darcy’s law as a differential equation; analogies 
with other physical systems; ground-water 
velocity potential 

Text-format discussion-Generalizations of Darcy’s 
law: 

(p. 31) specific discharge vector in three dimen- 
sions; definition of components of spe- 
cific-discharge vector 

31 net pressure force on a fluid element (review) ; 
pressure gradient; net pressure force in terms 
of pressure gradient (question) 
6; 14 

26 net pressure force in terms of pressure gradient; 
gravitational force; mass of fluid element in 
terms of density, porosity, and dimensions 
(question) 
3; 17 

(p- 31) Darcy’s law for components of the spe- 
cific-discharge vector; Darcy’s law us- 
ing the resultant specific-discharge vector 

(p. 31) velocity potential; flownet analysis; Darcy’s 
law for components of the specific-dis- 
charge vector in anisotropic media 

(p. 32) flowlines and surfaces of equal head in the 
anisotropic case; solution by transfor- 
mation of coordinates 

16 gravitational force in terms of density, porosity, (p. 32) anisotropy of stratified sedimentary ma- 
and dimensions; component of gravitational terial 

force contributing to the flow (question) 
22; 18 

33 resolution of gravitational force into components 
parallel and normal to the conduit; expression 
for magnitude of component parallel to the 
conduit (question) 
6; 37 

35 expression for component of gravitational force 
parallel to conduit (review) ; substitution of 
&z/Al for cosine in this expression (question) 
32; 4 

11 substitution of &r/Al for cosine in expression for 
gravity component along conduit (review) ; ex- 
pression for total driving force on fluid ele- 
ment attributable to pressure and gravity 
(question) 
24; 10 

19 assumptions regarding frictional retarding force; 
expression for frictional retarding force con- 
sistent with assumptions (question) 
2; 34 

20 balancing of driving forces and frictional force 
to obtain preliminary form of Darcy’s law 
36; 27 

28 Darcy’s law in terms of hydraulic conductivity; 
replacement of 

1 dp dz 
--+- 

pg dl dl 
by dh/dl (question) 
9; 30 

7 discussion of hydraulic conductivity and intrinsic 
permeability; flow of ground water in rela- 
tion to differences in elevation, pressure, and 
head (question) 
29; 13 
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(p. 33) use of components of pressure gradient 
and components of gravitational force 
in each of the three major permeability 
directions; hydraulic conductivity tensor 

(p. 33) aquifer heterogeneity 
(p. 33) fluid heterogeneity; Darcy’s law for a 

heterogeneous fluid in an anisotropic 
aquifer, using intrinsic permeability 

Part III. Application of Darcy’s law to field problems: 
Section: 

1 

7 

3 

10 

24 

26 

9 

41 

27 

40 

differential equations and solutions 
15; 23 

infinite number of solutions to a diRerentS equa- 
tion 
29; 14 

33 interpretation of radial flow differential equation 
(review) ; solution equation as taken‘ from a 
plot of h versus In r ; conversion to common 
logs; characteristics of the semilog plot 
34; 37 

slope-intercept concept applied to solutions of dif- 
ferential equations 
6; 20 

19 logarithmic- cone of depression; equation for 
drawdown at the well (question) 
28; 30 

3 applications of the drawdown equation ;, general 
characteristics of well-flow problems 

application of Darcy’s law to one-dimensional 
equilibrium stream seepage problem; selection 
of particular solution to satisfy the dSerentia1 
equation and to yield correct head at the stream 
(question) 
22; 36 

Part IV. Grouud-water storage: 
Section : 

boundary conditions in differential equations; in- 
terpretation of head data observed in a field 
situation (question) 
42; 21 

1 relation between volume of water stored in a 
tank and water level in the tank 
10; 9 

application of Darcy’s law to a problem of one- 
dimensional steady-state unconfined flow, using 
Dupuit assumptions 
26; 43 

substitution of 
1 d(h”) 
-- 
2 dx 

for 

hdh 
dx 

11 relation between volume of water stored in a 
sand-packed tank and water level in thu tank 
31; 12 

14 slope of V versus h graph for sand-packed tank 
17; 22 

26 capillary effects; assumption that a constant 
amount of water is permanently retained ; re- 
h&ion between volume of water in recoverable 
storage and water level, under these conditions 
(question) 
18; 2 

in the unconfined flow problem; testing for 
solution by differentiation and substitution of 
boundary conditions (question) 
16; 4 

16 slope of V versus A graph for sand-packed tank 
with permanent capillary retention 
4; 29 

33 slope of V versus h graph for prism of uncon- 
fined aquifer 
28; 19 

parabolic steepening of head plot in the Dupuit 
solution; problem of radial flow to a well; cross- 
sectional area of flow at a distance r from the 
well (question) 
12; 6 

decrease in area along path of radial flow; relation 
between decreasing area and hydraulic gradient 
(question) 
11; 32 

32 dependence of V, h relationship on surface area, 
A : definition of specific yield (question) 
‘7; 27 

6 confined or compressive storage; V, h relationship 
for a prism in a confined aquifer 
23; 30 

21 dependence of V, h plot for a prism of confined 
aquifer on base area 
3; 34 

signs in radial flow problem; application of 20 definition of confined or compressive storage co- 
Darcy’s law te the flow problem (question) efficient; specific storage 
33; 17 6; 15 

35 expression of radial flow differential equation in 
tkums of 

dh 

d (In r) 
39; 13 

2 interpretation of radial flow 
expressed in terms of 

dh 

18; 31 
d (lnr) 

differential equation 
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0 25 storage equation-relation between time rate of 
change of volume of water in storage and time 
rate of change of head 
8; 24 

13 relation between time rate of change of volume 
in storage and tune rate of change of head (re- 
view) 

Part V: 
Text-format discussion-Partial Derivatives ia 

Ground-Water- Flow Analysis: 
(p. 69) Partial derivatives; topographic map ex- 

ample 
(p. 70) Calculation of partial (space) derivatives 
(p. 70) Partial derivative with respect to time 
(p. 70) Space derivatives as components of slope 

of the potentiometric surface; depend- 
ence on position and time; time deriva- 
tive as slope of hydrograph; dependence 
on position and time 

(p. 72) Vector formulation of the specific dis- 
charge; Darcy’s law for components of 
the specific discharge vector 

Unidirectional nonequilibrium flow: 
Section: 

1 relation between inflow and outtlow for a tanlc 

0 21 

30 

22 

33 

9 

16 

7 

29; 17 
equation of continuity; relation of ah/&? for a 

prism of aquifer to difference between inflow 
and outflow (question) 
6; 5 

combination of continuity and storage equation to 
obtain relation between ah/C% and inflow minus 
outilow (review) ; expression for inflow 
through one face of a prism of aquifer (ques- 
tion) 
8; 3 

implications of difference between inflow and out- 
flow in a prism of aquifer (question) 
14; 26 

expression for inflow minus outtlow, for one di- 
mensional flow, in terms of difference in head 
gradients (question) 
18; 16 

change in a dependent variable expressed as a 
product of derivative and change in independent 
variable (question) 
25; 20 

change in a dependent variable as product of 
derivative and, change in independent variable 
(review) ; change in derivative as product of 
second derivative and change in independent 
variable (question) 
31; 13 

second derivatives and second partial derivatives; 
expression for change in ahlax in terms of 
second derivative (question) 
4; 23 

32 expression for change in ah/&c in terms of second 
derivative (review) ; expression for inflow 
minus outflow using second derivative (ques- 
tion) 
27; 2 

34 definition of transmissivity; expression for inflow 
minus outllow for one dimensional flow through 
a prism of aquifer, in terms of T and ~hl&‘; 
equating of this inflow minus outflow to rate 
of accumulation; expression for rate of accu- 
mulation in terms of storage coefficient (ques- 
tion) 
28; 12 

10 equating of rate of accumulation, expressed in 
terms of storage coefficient, to the expression 
for inflow minus outflow, to obtain the partial 
differential equation for one-dimensional non- 
equilibrium flow (question) 
11; 24 

19 partial differential equation for two-dimensional 
nonequilibrium flow ; partial difFerentia1 equa- 
tions and their solutions; review of method of 
deriving partial differential equations of ground 
water flow 

Part VI. Nonequilibrinm flow to a well: 
Seeticm: 

1 expression for flow through inner face of cylindri- 
cal element (question) 
34; 36 

15 combination of T and ah/&- into a single variable; 
expression for inflow minus outflow for cylin- 
drical element 
30; 25 

7 useof 

a ~2 
( 1 

-9. 
ar 

in place of 

expression for 

a rCh 
( > a- 
a* 

26; 8 
28 final expression for inflow minus outflow for 

cylindrical element; expression for rate of ILC- 
cumulation in storage in the element (question) 
12; 16 

37 combination of inflow minus outflow term with 
rate of accumulation term to obtain partial 
diEerential equation 
22; 32 

27 procedure of testing a function to determine 
whether it is a solution to the partial differen- 
tial equation; calculation of first radial deriva- 
tion of test function 
4; 2 
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5 calculation of second radial derivation of test 
function 
23; 9 

36 calculation of time derivation of test function 
3; 31 

20 expressions for 

S ah -- 
T at 

and 
Ph 1 ah 

w+x 
for test function 
17; 24 

21 verification that test function is a solution; in- 
stantaneous injection (slug test) problem; de- 
velopment of boundary conditions required at 
i!=O 
10; 19 

18 verification that test function satisfies the bound- 
ary conditions for t = 0; graphical demonstra- 
tion of its behaviour as t+O; development of 
boundary condition for r + 00 
29; 6 

33 relation between condition that @hli4r)+ 0 as 
T + t4 and condition that h + 0 as r + 0~; 
demonstration that test function also satisfies 
h+Oast + co ; development of condition 

v= m / S*h,,r*2mdr 
r=O 

11; 14 
13 demonstration that the test function satisfies 

v= / Tl o S-h,, ,*Brrdr; 

discussion of significance of slug teat solution 

Text-format discussion-Development of additional 
solutions by superposition: 

(p. 112) Linearity of radial equation; superposi- 
tion; equation for head at t due to in- 
jection at t’=O 

(p. 112) superposition to obtain effect of two in- 
jections 

(P. 112) expression for head change due to in- 
stantaneous withdrawal ; superposition 
to obtain effect of repeated bailing 

(P. 113) variable rate of continuous pumping as a 
sequence of infinitesimal withdrawals; 
effect of withdrawal during an infinitesi- 
mal time dt’; use of superposition to ob- 
tain head change due to pumping dur- 
ing a finite time interva.l 

(p. 114) implementation of superposition by in- 
tegration of the expression for head 
change due to instantaneous withdrawal, 
for case of variable. pumping rate 

(p. 115) transformation of integral into exponen- 
tial integral, for case of constant pump- 
ing rate 

(p. 116) definition of u; evaluation of the exponen- 
tial integral by means of series 

(p. 116) definition of well function; equation for 
case where h # 0 prior to pumping; 
equation in terms of drawdown; Theis 
equation 

(p. 117) development of the modified .nonequili- 
brium (semilog approximation) formula 

(p. 117) review of assumptions involved in de- 
rivation of the partial differential equa- 
tion for radial flow 

(p. 11’7) review of assumption involved in the in- 
stantaneous injection solution and in 
the continuous pumpage (constant rate) 
solution 

(p. 118) review of assumptions involved in the 
semilog approximation ; citations of 
literature on extensions of well-flow 
theory for more complex systems 

Part VII. Finite-difference methods: 
Section: 

1 finite-difference expression for first space deri- 
vative (question) 
7; 26 

12 finite-difference expression for second space deri- 
vative (question) 
27; 22 

15 finite-difference expression for 

(question) 
28; 24 

3 finite-difference expression for 

Vh 
g + G 

(review) ; 
notation convention for head at a node 
14; 5 

2 expression for 
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using subscript notation convention 
20; 18 

4 third subscript convention for time axis 
9; 23 

10 expression for 
* aPh 

$+G 

at a particular point and time using the sub- 
script notation; approximations to ah/Z%; finite 
forward-difference approximation to the ground 
water flow equation, using the subscript nota- 
tion (question) 
8; 19 

16 application of forward-difference equation in pre- 
dicting head values ; iterative (relaxation) tech- 
niques (definition) ; finite-diiIerence equation 
for steady-state two-dimensional flow (ques- 
tion) 
11; 13 

25 solution of the steady-state equation by iteration 
21; 6 

17 general discussion of numerical methods 

Text-format discussion-Finite difference methods: 

(p. 136) Forward-difference and backward differ- 
ence approximations to time derivative 

(p. 137) Forward-difference simulation of the 
ground-water flow equation; explicit 
method of solution 

(p. 13’7) Errors; stable and unstable techniquea 

(p. 138) Backward-difference simulation of the 
ground-water flow equation; simui- 
taneous equation sets 

(p. 139) Solution by iteration or relaxation tech- 
niques 

(p. 139) Solution of the steady-state equation by 
iteration 

(p. 139) Solution of the nonequilibrium equation, 
backward-difference simulation, by itera- 
tion 

(p. 140) Iteration levels; superscript notation; 
iteration parameter 

(p. 140) Successive overrelaxation; alternating di- 
rection techniques 

(p. 141) Forward-difference and backward-differ- 
ence simulations of the ground-water 
flow equation using A notation 

(p. 141) Alternating direction implicit procedure 

(p. 144) Thomas algorithm for ‘solution of equa- 
tion sets along rows or columns 

(p. 147) Iteration of the steady-state equation us- 
ing alternating direction method of 
calculation 

(p. 149) Iterative solution using the backward- 
difference simulation and the alternat- 
ing direction technique of computation 

Part VIII. Analog techniques: 

Section: 

1 Ohm’s law; definitions of current and resistance 
19; 8 

6 definitions of reaistivity and conductivity; Ohm’s 
law in terms of resistivity 
24; 3 

28 Ohm’s law in terms of conductivity; analogy be- 
tween Ohm’s law and Darcy’s law for one-di- 
mensional flow 
12; 7 

26 analogy between Darcy’s law and Ohm’s law 
for one-dimensional flow; extension to three 
dimensions; current density; flow of charge 
in a conducting sheet 
25; 23 

11 analogy between flow of charge in a conducting 
sheet and flow of water through a horizontal 
aquifer; method of setting up a steady-state 
analog; parallel between line of constant volt- 
age and line of constant head (question) 
16; 17 

21 nonequilibrium modeling; storage of charge in a 
capacitor, and analogy to storage of ground 
water; capacitor equations 
13; 10 

9 relation between time rate of change of voltage 
and time rate of accumulation of charge for a 
capacitor; relation between current toward a 
capacitor plate and time rate of change of volt- 
age 
20; 18 

4 relation between time rate of change of voltage 
and time rate of accumulation of charge for a 
capacitor (review) ; electrical continuity rela- 
tion; relation between currents and time rate 
of change of capacitor voltage, for a system,of 
four resistors connected to a capacitor; trans- 
formation of this relation to an equation in 
terms of voltages and dkldt (question) 
15; 27 

22 amdogy between equation for capacitor-four re- 
sistor system with finite-difference form of 
two-dimensional ground-water flow equation ; 
method of nonequilibrium modeling 
2; 14 

5 general discussion of the analog technique; 
heterogeneity; cross-sectional analogs; radial 
flow analogs 
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INTRODUCTION TO GROUND-WATER HYDRAULICS-A PROGRAMED 
TEXT FOR SELF-INSTRUCTION 

By Gordon D. Bennett 

Instructions to the Reader 

This programed text is designed to help 
you learn the theory of ground-water hy- 
draulics through self-study. Programed in- 
struction is an approach to a subject, a 
method of learning ; it does not eliminate 
mental effort from the learning process. 
Some sections of this program need only be 
read ; others must be worked through with 
pencil and paper. Some of the questions can 
be answered directly ; ‘others require some 
form of calculation. You may have frequent 
occasion, as you work through the text, to 
consult standard texts or references in 
mlathematics, fluid mechanics, and hydrology. 

In each of the eight parts of the text, begin 
the programed instruction by reading Section 
1. Choose an answer ,to the question at the 
end of the section, and turn to the new ~sec- 

tion indicated beside the answer you have 
chosen. If your answer was correct, you will 
turn to a section containing new material 
and another question, and you may proceed 
again as in Section 1. If your answer was not 
correct, you will turn to a section which con- 
tains some further explanation of the earlier 
material, and which directs you to go back 
for another try ,at the question. Usually, in 
this event, it will be worthwhile to reread the 
material of the earlier section. Continue in 
this way through the program until you 
reach a section indicating the end of the part. 
Note that although the sections are arranged 
in numerical order within each of the eight 
parts, you would not normally proceed in 
numerical ,sequence (Section 1 to Section 2 
and so on) through the instruction. 

1 



Part I. Definitions and General Concepts 

Introduction 

In Part I, certain concepts which are fre- relating to these terms is not attempted. The 
quently used in ground-water hydraulics are material is intended only to introduce and 
introduced. Among these are porosity, spe- define these terms and to provide an indica- 
cific discharge, hydraulic head, and fluid tion of their physical significance. 
pressure. Rigorous development of theorems 

The porosity of a specimen of porous ma- Turn to Section: 

terial is defined as the ratio of the volume of 0.5 cubic feet 13 
open pore space in the specimen to the bulk 0.2 cubic feet 18 
volume of the specimen. 0.8 cubic feet 9 

QUESTION 

What volume of solid material is present 
in 1 cubic foot of sandstone, if the porosity 
of the sandstone is 0.20? 1 0 

Nowhere in Part I is there an instruction to the question, and turn to the section indi- 
to turn to Section 2. Perhaps you have just cated opposite the answer you select. 
read Section 1 and have turned to Section 2 
without considering the question in Section 
1. If so, return to Section 1, choose an answer 2 0 

Your answer in Section 6 is correct. Any a problem may arise if we attempt to define 
flow path between A and B will be longer average fluid velocity as a ratio of discharge 
than the linear distance AB; it is generally to cross-sectional area, as is customarily done 
impossible to know the actual distance that in open-flow hydraulics. 
a particle of fluid travels in moving through 
a section of porous material. 

In the same way, it is difficult to know the 
actual cross-sectional area of the flow, when 
dealing with flow in a porous medium. Any 
cross-sectional area selected will be occupied 
partly by grains of solid material and partly 
by pores containing the fluid. For this reason, Con.- 3. 

3 



4 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

3. -con. 

QUESTION 

In the block of saturated porous material in 
the figure, a fluid di&arge, &, is crossing 
the area, A, at right angles. A represents the 
gross area of the block face, including both 
solid particles and fluid-filled pore sgace. The 
quotient Q/A would be: 

Turn to Section: 

less than 14 
equal to 28 
greater than 10 

the average velocity of the fluid particles 

Your answer in Section 6 is not correct. connected by a straight capillary tube, but 
The particle would move a distance equal to the probability of such a connection is essen- 
the linear interval AB if the two points were tially zero in a normal porous medium. In 

general, the possible paths of flow between 
any two points will be tortuous in character. 

4 Return to Section 6 and select another 
0 answer. 

Your answer in Section 22 is not correct. through the surrounding fluid, but x repre- 
Pressure doe5 represent potential energy per sents potential energy per unit weight due 
unit volume due to the forces transmitted to elevation. The question asked for total 

potential energy per unit volume. 

5 Return to Section 22 and select another 
0 answer. 

Your answer in Section 9 is correct. Thirty 
percent of the interconnected pore space in 
a porous medium whose effective porosity is 
0.20 is 6 percent of the bulk volume, or 0.06 
cubic feet. In the remainder of this program, 
fully saturated conditions will be assumed 
unless unsaturated flow is specifically men- 
tioned:* 

Variati0.n in the tlow velocity of an indi- 
vidual fluid particle is inherent in the nature 
of flow through porous media. Within an in- 
dividual pore, boundary resistance causes the 
velocity to decrease from a maximum along 

6. -Con. 

the centerline to essentially zero at the pore 
wall. Another form of velocity variation is 
imposed by the tortuous character of the 
flow-that is, the repeated branching and 
reconnecting of flow paths, as the particles 
of fluid make their way around the individual 
grains of solid. This anastomizing or braided 
pattern causes the velocity of a fluid particle 
to vary from point to point in both magnitude 
and direction, even if its motion occurs along 
the centerline of the pore space. However, if 
we view a small segment of the medium but 
one which is ,still large enough to contain a 
great number of pores, we find that the 
microscopic oomponents of motion cancel in 
all except one resultant direction of flow. 



PART I. DEFINITIONS AND GENERAL CONCEPTS 6 

QUESTION 

In the porous block in the figure, a particle 
of fluid moving from point A to point B 
would travel a distance: 

Turn to Section: 

greater than the linear distance AB 3 
equal to the linear distance AB 4 
less than the linear distance AB 21 

Your ‘answer in Section 16 is not cor- 
rect. If we were considering the height of 
a static column of water above a point, 
which as we have seen is given by p/pg, 
we would be dealing with dimensions of 
potential energy per unit weight. The ques- 
tion in S,ection 16, however, relates to the 
units of pressure alone. These units are force 
per unit area-for example, pounds of force 
per square foot of area, which can be written 

in the form pounds/ft’. Now we may “multi- 
ply” these units by the term ft/ft to obtain 
an equivalent set of units applicable to pres- 
sure. 

Return to Section 16 and choose another 
answer. 

7 0 

Your answer, p +pgx, in Section 22 is cor- 
rect. We have seen th,at-pressure is equivalent 
to potential energy per unit volume attrib- 
utable to forces transmitted through the sur- 
rounding fluid. Potential energy per unit vol- 
ume due to elevation is obtained by multiply- 
ing the potential energy per unit weight due 
to elevation-that is, x-by the weight per 
unit volume, pg. The total potenti’al energy 
per unit volume is then the ‘sum of these two 
terms, that is, ~+~gx. 

No discussion of flow energy would be 
complete without mention of kinetic energy. 
In the mechanics of solid particles, the kinetic 
energy, KE, of a mass, m, moving with a 
velocity vu. is given by 

KE = mvp/2. 
Now suppose we are dealing with a fluid 

of mass density p. We wish to know the 
kinetic energy of a volu,me V of this fluid 
which is moving at a velocity v. The mass of 
the volume is pV, and the kinetic energy is 
thus 

pVvP/B. 
If we divide by the volume, V, we obtain 

0 
pv”/2 

- 

as the kinetic energy per unit volume of fluid; 
and dividing this in turn by the weight per 
unit volume, pg, gives v2/2g as the kinetic 
energy per unit weight of fluid. Each of these 
kinetic energy expressions is proportional to 
the square of the velocity. The velocities of 
flow in ground-water movement are almost 
always extremely low, and therefore the 
kinetic energy terms are extremely small 
compared to the potential energy terms. Con- 
sequently, in dealing with ground-water 
problems we can generally neglect the kinetic 
energy altogether and take into account only 
the potential energy of the system and the 
losses in potential energy due to friction. This 
is an important respect in which ground- 
water hydraulics differs from the hydraulics 
of open flow. 

This discussion concludes Part I. In Part II 
we will consider Darcy’s law, which relates 
the specific discharge, Q, to the gradient of 
hydraulic head, in flow through porous media. 

8 0 



6 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

Your answer in Section 1 is correct; if 0.20 
of the cube is occupied by pore space, 0.80 of 
its volume must be solid matter. In ground- 
water studfes we are normally interested in 
the interconnected, or effective, porosity, 
which is the ratio of the volume of intercon- 
nected pore space-excluding completely iso- 
lated pores--to the bulk volume. As used in 
this text the term “porosity” will always 
refer to the interconnected or effective poros- 
ity. Ground water is said to occur under sa;t- 
urated conditions when all interconnected 
pore space is completely filled with water, 

9 0 

and it occurs under unsaturated conditions 
when part of the pores contain water and 
part contain air. In problems of unsaturated 
flow, the degree of saturation is often ex- 
pressed as a percentage of the interconnected 
pore space. 

QUESTION 

What volume of water is contained in 1 
cubic foot of porous material, if the effective 
porosity is 0.20 and saturation expressed as 
a percentage of the interconnected pore space 
is 30 percent? 

0.30 cubic feet 
0.06 cubic feet 
0.20 cubic feet 

Turn to Section: 

12 
6 

29 

Your answer in Section 3 is not correct. 
The area rl represents the gross cross-sec- 
tional area of the porous block, normal to the 
direction of flow. A part of this area is occu- 
pied by grains of solid, and a part by open 
pore space. Let us s’ay that 20 percent of the 
area A represents pore space ; the actual 

10 0 

cross-sectional area available for the flow is 
thus 0.2 A. If we were willing to take the 
ratio of discharge to flow area as equal to the 
average velocity, without considering any 
other factor, we would have to use the ratio 
&/0.2A. The actual average particle velocity 
would presumably exceed even thi,s figure, 
because of the excess distance traveled in 
tortuous flow. 

Return to Section 3 and choose another 
answer. 

Your answer in Section 14 is not correct. 0 (h, is sometimes referred to as the pressure 
The column of water in the piezometer is head at point 0). We have defined head as tie 
static, but h, is the elevation of the top of elevation above datum of the top of a static 
this column above the point of measurement, column of water that can be supported at 

the point. 

11 Return to Section 14 and choose another 
0 answer. 

Your answer in Section 9 is not correct. 30 percent of the interconnected pore space 
Saturation is expressed here as a percentage is occupied by w,ater. Since the effective 
of the interconnected pore space, not as a porosity was given as 0.20, and the sample 
percentage of the sample volume ; that ia, volume as 1 cubic foot, the volume of inter- 

connected pore space is 0.20 cubic feet. 

12 Return to Section 9 and choose another 
l answer. 
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Your answer in Section 1 is not correct. question in Section 1 asked for the volume of 
Porosity is defined by the equation solid material, V,, in a specimen for which 

VP VP the gross volume, V,, is 1 cubic foot and the 
n--s- 

v, ve+vp 
porosity, n, is 0.20. 

Return to Section 1 and choose another 
where V, is the volume of pore space in the answer. 
specimen, V, is the gross volume of the speci- 
men, and V, is the volume of solid material 
in the specimen (note that V, = V, + V,) . The 13 0 

Your answer in Section 3 is correct. Q/A 
will be less than the average velocity of fluid 
motion since the gro.ss cross-sectional area, 
A, will be greater than the actual cross- 
sectional area of flow. In many porous media, 
the ratio of actual area of flow to gross cross- 
sectional area can be taken as equal to the 
interconnected porosity of the material. 

We have seen that it is generally difficult 
or impossible to know or measure the actual 
velocity of fluid motion or the actual cross- 
sectional area of flow in a porous medium. 
For this reason, we usually work in terms of 
discharge and gross cross-sectional area. 
That is, we use the quantity Q/A, where Q 
is the discharge through a segment of porous 
material, and A is the gross cross-sectional 
area of the segment. This quantity is referred 
to as the specific discharge, or specific flux, 
and is designated by the symbol q. 

Another quantity we will use frequently 
is the static head, or simply the head. In 
ground-water problems, the head at a point 
is taken as the elevation, above an arbitrary 
datum, of the top of a static column of water 
that can be supported above the point. In 
using this definition, we assume that the 
density of the water in the measuring column 
is equal to that of the ground water, and that 
the density of the ground water is uniform. 

Porhs ’ 
filter 

, , 

bed T 
9 

QUESTION 

The diagram represents an enclosed porous 
filter bed ; the plane AB is taken as the datum 
and a piezometer is inserted to the point 0. 
What is the head at point 0 ? 

Turn to Section: 

The distance h, 11 
The distance x 17 
The distance h,+ z 24 

14 0 
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Your answer in Section 16 is not correct. 
Pressure is usually expressed as force per 
unit area-for example, as pounds per square 
foot, which may be written pounds/ft*. A 
term having units of work or energy per unit 
area, such as ft-pounds/ft?, would represent 

15 l 

the product of pressure and a term having 
units of distance, feet. We are interested here 
in an equivalent set of units for pressure 
alone. Now note that if a pressure term were 
multiplied by a dimensionless factor having 
“units” of ft/ft, we would obtain a result still 
having the units of pressure. 

Return to Section 16 and select another 
answer. 

Your answer, p/pg, in Section 24 is correct. 
The column. of water inside the pipe is static 
and must obey the laws of hydrostatics. Thus 
the pressure at the bottom of the pipe is 
related to the height of the column of water 
in the pipe by Pascal’s law, which here takes 
the form 

or 
P = PiA, 

h, = p/w 
h, thus actually serves as a measure of the 
pressure at the point occupied by the end of 
the pipe and, for this reason, is termed the 
pressure head at that point. It is added to the 
elevation of the point to yield the head at 
the point. 

Head in ,ground water is actually a me&s- 
ure of the potential energy per unit weight 
of water. This is an important concept. 

The elevation term, x, in the diagram rep- 
resents the potentilal energy of a unit weight 
of water at point 0 that accrues from the 
position of the point above the datum. For 
example, if x is 10 feet, 10 pound5 of water 
in the vicinity of point 0 could accomplish 
100 foot-pounds of work in falling to the 
datum ; the potential energy per unit weight 
of water at point 0 due to the elevation of 
the point alone would thus be 10 feet. Sim- 
ilarly, the pressure term, h,, represents the 
potential energy of a unit weight of water at 
point 0 originating from the forces exerted 
on the point through the surrounding fluid. 
This concept is considered further in the 
following sections. 

16 0 

Piezometer 

-- 

-T h* 
1 - 0 

I 
2 

Water level 
in piezometer 

A Datum - 
(Point 0 represents a general point 

in a fluid system) 

QUESTION 

Pressure is normally thought of as force 
per unit area. Dimensionally this is equiva- 
lent to: 

Turn to Section: 

energy per unit weight 7 
energy per unit volume 26 
work per unit area 15 
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Your answer in Section 14 is not correct. when conditions in the porous medium are 
x is the elevation of the point above the at equilibrium. 
datum; we defined< head as the elevation, Return to section 14 and choose another 
above datum, of the top of a static column of answer. 
water that can be supported at the point. The 
column of water in the piezometer is static 17 0 

Your answer in Section 1 is not correct. Return to Section 1 and choose another 
If the porosity is 0.20, there will be 0.20 cubic answer. 
foot of pore space in a specimen of l-cubic- 
foot volume. The question asked for the vol- 
ume of solid material in the specimen. 18 0 

Your answer in Section 24 i,s not correct. 
The column of water inside the pipe is static 
and must obey the laws of hydrostatics. The 
pressure at a depth d beneath the water sur- 
face, in a b,ody of static water, is given by 
Pascal’s law as 

p=Pgd 
where again p is the mass density of the 
water, g is the acceleration due to gravity, 
and the pressure at the water surface is 
taken as zero. This relation may be applied 

to the water inside the pipe in the question 
of Section 24. If you are not familiar with 
Pascal’s law it would be useful to read 
through a di,scussion of hydrostatics, as given 
in any standard physics text, before pr+ 
ceeding further in the program. 

Return to Section 24 and choose another 
answer. 

19 0 

Your answer in Section 26 is not correct. tion is x, while that due to the forces exerted 
Potential energy is a scalar term ; when it on it through the swrrounding water is h,. 
consists of contributions from different Return to Section 26 and choose another 
sources, these are simply added to obtain the answer. 
total potential energy. The potential energy 
of the unit weight of water due to its eleva- 20 8 

Your answer in Section 6 is not correct. Return to Section 6 and select another 
The line AB is, of course, the shortest dis- answer. 
tance between the two points, and no flow 
path could be any sho’rter than this. 21 0 
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0 

Your answer in Section 26 is correct. The 
unit weight of water has hydraulic potential 
energy due to its elevation and due to the 
forces exerted on it by the surrounding fluid. 
The potential energy due to its elevation is 
x, and the potential energy due to the forces 
exerted on it through the surrounding fluid 
is p/Pg or h,. The sum of x and h, is of course 
the head, h, (as used in ground-water hy- 
draulics) at the point in question. The two 
terms making up the head at a point-the 
elevation of the point itself above datum and 
the elevation of the top of a static column of 
water that can be supported above the 
point-measure respectively the two forms 
of hydraulic potential energy per unit 
weight. Their sum indicates the total hy- 
draulic potential energy per unit weight of 
fluid at the point. 

Piezometer + 

A 

> - 

rJ 

I 

Water level 

1 

-. m piezometer 

PIN 

QUESTION 

Which of the following expressions would -l-----Datum- 

indicate total hydraulic potential energy of 
a unit volum.e of fluid in the vicinity of point 
A in the diagram? 

Turn to Section: 

P+Pm 8 

22 P+x 5 
0 P/PS + 2 27 

Your answer in Section 26 is not correct. weight of water in this vicinity will also 
x represents, the potential energy of a unit possess potential energy because of the forces 
weight of water in the vicinity of point 0, due exerted upon it through the surrounding 
to its elevation above the datum. A ‘unit water. The question asked for total hydraulic 

’ potential energy. 

23 Return to Section 26 and select another 
0 answer. 

Your answer in Section 14 is correct. Head water that can be supported above the point. 
consists of two terms in ground-water sys- In this case, the column of water in the 
tems: the elevation of the point itself above piezometer is the static column above the 
datum, and the height of a static column of point. 

The height of the column of water above 

24. -con. 
the point is a measure of the pressure ‘at the 
point and is sometimes termed the pressure 
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head. Readers familiar with open flow hy- 
draulics may recognize that the head we have 
defined here differs from the total head used 
in open flow hydraulics in that the velocity 
term, vz/2g, is missing. Velocities of flow are 
usually smtall in ground-water systems, and 
the term v2/2g is almost always negligible in 
comparison to the elevation and pressure 
terms. 

QUESTION 

Suppose a pipe, open only at the top and 
bottom, is driven into the ground. ‘The bottom 
of the pipe comes to rest at a point below the 
water table where the pressure is p. Water 
rises inside the pipe to a height h, above the 

lower end of the pipe. The pressure on the 
water surface within the pipe (which is 
actually the atmospheric pressure) is here 
taken as zero. The height of the column of 
water inside the pipe, above the bottom of the 
pipe, will be given by: 

Turn to Section: 
h, = pips 16 
h, = g/pp 25 
h, = ppg 19 
where p is the water density, or mass per unit 
volume, and g is the gravitational constant. 

Con.- 24. 

Your answer in Section 24 is not correct. 
Pressure within a body of static water varies 
in accordance with Pa’scal’s law, which may 
be stated 

p=pgd 
where p is the mass density of water, g is the 
acceleration due to gravity, and d is the depth 
below the surface at which the pressure is 
measured. The pressure on the upper surface 
of the water (sometimes denoted p, in text- 
books of hydraulics) is here considered to be 
zero. If you are not familiar with this rela- 
tion, it would be a good idea to read through 

a discussion of hydrostatics, as presented in 
any standard physics text, before proceeding 
further with the program. 

In the problem of Section 24, the column 
of water in the pipe is static, and Pascal’s 
law may be used to give the pressure at any 
point within this column-even at its base, 
where it joins the ground-water system. 

Return to Section 24 and choose another 
answer. 

25 0 

Your answer in Section 16 is correct. Pres- 
sure may in fact be thought of as potential 
energy per unit volume of liquid. Physically, b-d-4 
this concept is perhaps most easily appre- 
ciated using the example of a simple hy- 
draulic cylinder, or hydraulic press, shown 
schematically in the diagram. Liquid under 

~~~~~~~- 

a pressure p is fed in through the port at 0. 
As the liquid enters, the piston is displaced 

!qyjl--g 

to the right. Pressure is a measure of force 
per unit area, and it follows that the total 
force on the piston is given by the product 
of the pressure, p, and the face area of the Con.- 0 26 
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piston, which we designate A. Thus, F-p x A, the pressure, p, under which the fluid is ad- 
where F is the force on the piston. mitted to the cylinder. 

The work accomplished in moving the 
piston is given as the product of the force 
and the distance through which it acts. If the 
piston moves a distance d, the work done is 
given by 

W=Fxd=pxAxd 
where W is the work accomplished in moving 
the piston. The product A X d is the volume 
of fluid in the cylinder at the completion of 
the work; and we could say that this volume 
of liquid is capable of doing the work W, 
provided the liquid is at the pressure p. 

This concept of pressure as potential en- 
ergy per unit volume can be extended to gen- 
eral systems of flow, provided that we under- 
stand this potential energy to be only that 
due to forces exerted on a fluid element by the 
surrounding fluid. To obtain total potential 
energy, we would have to add the potential 
energy due to the force of gravity acting 
directly on the fluid element. 

Potential energy is often termed the ability 
to do work. That is, if a system is capable of 
doing 10 foot-pounds of work, we say that it 
possesses a potential energy of 10 foot- 
pounds. In the case of our cybnder, the poten- 
tial energy we assign depends upon how far 
we are willing to let the piston travel. If the 
piston is allowed to travel a distance d=5, 
the work that can be done is px5A; if the 
piston is allowed to travel a distance d=lO, 
the work that can be done is px 10A. Thus 
the assignment of a potential energy in this 
case is not altogether straightforward, since 
the distance which the piston will travel-r, 
equivalently, the volume of fluid which will 
be admitted to the cylinder under the pres- 
sure p-must be specified before the potential 
energy can be assigned. In this case, there- 
fore, it is more convenient to talk about a 
potential energy per unit volume of liquid. 
For example, if we are told that the potential 
energy is 10 foot-pounds per cubic foot of 
water in the cylinder, we can calculate the 
particular potential energy associated with 
the admission of any specified volume of fluid 
to the cylinder. The work which can be done 
if a volume AXd of liquid is admitted is 
p X A x d; dividing this by the volume A xd 
gives the work which can be done per unit 
volume of liquid-that is, the potential en- 
ergy per unit volume of liquid. This poten- 
tial energy per unit volume turns out to be 

If pressure, representing potential energy 
per unit volume, is in turn divided by pg, 
weight per unit volume, we obtain p/pg-or 
simply h,, the height of a static column of 
water above the point-as the potential en- 
ergy per unit weight that is due to the forces 
transmitted through the surrounding fluid. 

QUESTION 

Referring to ^ihe diagram, which of the 
following expreseions will give the total hy- 

Water level 

-T - in piezometer 

Piezometer j 

1 

h, 
1 - 0 

( Datum - 

draulic potential energy of a unit weight of 
water located in the vicinity of point O? 

26. -Con. 
z 

h,+x 

Turn to Sectction: 

23 
22 
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Your answer in Section 22 is not correct. Return to Section 22 and choose another 
We have already seen that p/Pg + x was equal answer. 
to the total potential energy per unit weight 
of water. To obtain potential energy per unit 
volume, we must multiply by weight per unit 
volume. 27 0 

Your answer in Section 3 is not correct. 
The quotient, &/A, would yield an average 
velocity if we were dealing with an open 
flow. Here, however, A is not the cross- 
sectional area of flow; it is, rather, the cross- 
sectional area of the porous block normal to 
the flow. Only that fraction of this area which 
consists of open pore space can be considered 
the cross-sectional area of flow. Suppose, for 

example, that this pore area. represents 20 
percent of the total face area, A. The flow 
area would then be 0.2 A. 

Return to Section 3 and choose another 
answer. 

28 0 

Your answer in Section 9 is not correct. Return to Section 9 and choose another 
The volume of interconnected pore space is answer. 
0.20 cubic feet, but since saturation is less 
than 100 percent, the volume of water in the 
specimen cannot equal the volume of inter- 
connected pore space. Keep in mind that we 
are expressing saturation as a percentage of 
the interconnected pore space. 29 0 



Part II. Duty’s Law 

Introduction 

Part II gives a development of Darcy’s than a plausibility argument, and is pre- 
law. This law relates ‘specific discharge, or sented in order to give the reader some 
discharge per unit area, to the gradient of appreciation for the physical significance of 
hydraulic heAd. It is the fundamental relation the relation. 
governing steady-state flow in porous media. Following the program section of Part II 
The development given here should not be a short discussion on generalization of 
taken as a rigorous derivation ; it is no more Darcy’s law is given in text format. 

In mechanics, when considering the steady 
motion of a particle, it is customary to equate 
the forces producing the motion to the fric- 
tional forces opposing it. The same approach 
may be followed in considering the steady 
movement of fluid through a porous medium. 
In studying the motion of a solid particle 
through a fluid, we find that the force of 
friction opposing the motion is proportional 
to the velocity of the particle. Similarly, in 
flow through a porous medium, we will 
assume that the frictional forces opposing the 
flow are proportional to the fluid velocity. Our 
approach, then, will be to obtain expressions 
for the forces driving a flow and to equate 
these to the frictional force opposing the 
flow, which will be assumed proportional to 
the velocity. More exactly, we will take the 
vector sum of the forces driving ,and opposing 
the flow and set this equal to zero. What we 
are saying is that because the fluid motion is 
steady-that is, because no acceleration is 
observed-the forces on the fluid must be in 
balance, and thxerefore that their vector sum 
is zero, at all points. The equation that we 
obtain from this process of balancing forces 

will be a form of Darcy’s law. We begin by 
considering the forces which drive the flow. 

QUESTION 

Suppose we have a pipe packed with sand, 
as in the diagram. The porosity of the sand is 
n. Liquid of density p is circulated through 
the pipe by means of a pump. The dotted 
lines mark out a small cylindrical segment 
in the pipe, of length Al, and of cross-sec- 
tional area A, equal to that of the pipe. A 

14 
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small volume, or element, of the moving stream face of the fluid element by the ad- 
fluid occupies this segment. The fluid pres- jacent fluid element? 
sure at point 1, at the upstream side of the Turn to Section: 

segment, is p,. PI A 25 
Which of the following expressions would p,nA 8 

best represent the force exerted on the up- PlPg 16 

Your answer in Section 19, which you have chosen is not incompatible 

- -$Q(Az-WA), 
with these assumptions, it does not fit them 
as well as one of the other answers. Your 

is not correct. Our assumptions were that the answer assumes the retarding force to be 

frictional retarding force wo,uld be propor- proportional more particularly to the full 

tional in some way to the dynamic viscosity discharge, Q, than to the specific discharge, 

(p), to the volume of fluid in the element Q’A’ 
(Al-n-A), and to the specific discharge, or Return to Section 19 and choose another 
flow per unit area (Q/A). While thme answer answer. 

Your answer in Section 26 is not correct. the density of the fluid, represents its mas8 
The term aZ*n*A gives the volume of fluid in per unit volume. 
the element; the question asked for the mass Return to Section 26 and choose another 
of fluid in the element. Keep in mind that p, answer. 

(4) 
Your answer in Section 35 is not correct. pression for the component of thixs total fosce 

The term d (Ax) 2 + (AZ) * is obviously equal in the direction of flow. We hlave seen that 
to Al, so that the answer you sehzcted is this component is given by the expression 

equivalent to the term p*n.A.g.hZ. But ‘ais we ! .n-A.g-Al.cos 7; the idea of the question 

saw in Section 15, this term gives the magni- 
1s to find a term equivalent to cos y and to 
substitute it into the above expression. 

tude of the total gravitational force on our Return to Section 35 and choose another 
fluid element; what we want here ia an ex- answer. 
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Your answer in Section 31, 

d*nA 
-ii’ 

is not correct. The expression obtained pre- 
viously for the net force was (p,-p,)nA, or 
- ApnA. You have substituted the pressure 
gradimt, 01” rate of pressure change per foot, 
for the small pressure change, -hp. To ob- 
tain a net change, or increment, from a gradi- 
ent, or rate of chlange per unit distance, we 
must multiply the rate per unit distance by 
the distance over which this change takes 
place. For example, dp/dZ in the figure repre- 
sents the slope of a graph of pressure, p, 
versus distance, 2. To obtain the pressure 
change, p, -p,, we must multipIy this slope 
by the length of the interval, AI; and since 
we actually require the quantity p, -p,, we 
must insert a negative sign. (In the situation 
shown at left, p, is greater Ihan p,-that is, 
pressure is decreasing in the direction of 
flow, 1. The derivative dp/dl is therefore an 

4 Distance, 2 -C 4 

-dp 
Pa - p, = Pressure change, &J = &IXA~ 

intrinsically negative quantity itself-the 
graph has a negative slope. By inserting an- 
other negative sign, we will obtain a positive 
result for the term p,-p,.) 

Return to Section 31 and choose another 
answer. 

Your answer in Section 33 is not correct. 
The term p.n*Al.A*g gives the magnitude of 
the total gravitational force vector, F,. How- 
ever, we require the component of this force 
vector in the direction 1 since only this com- 
ponent is effective in producing flow along 
the pipe. In the vector diagram, the length 
of the arrow representing the gravitational 
force, F,, is proportional to the magnitude of 
that force, and the length of the arrows rep- 
resenting the two components, f, and f,,, are 
proportional to the magnitudes of those com- 
ponents. Using a diagram to show the resolu- 
tion of a vector into its components makes it 
easy to visualize the following general rule: 
the magnitude of the component of a vector 
in a given direction is obtained by multiply- 
ing the magnitude of the vector by the cosine 
of the angle between the direction of the 
vector and the direction in which the com- Return to Section 33 and choose an&her 
ponent is taken. answer. 
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f7\ 

Your answer in Section 28, 
Q dh -= 
A 

-K-, 
dl 

is correct. This relation between specific dis- 
charge and head gradient, or hydraulic gradi- 
ent, dh/dl, was obtained experimentally by 
Henri Darcy (1856) and is known as Darcy’s 
law for flow through porous media. Thse,con- 
stant K, in the current usage of the U.S. 
Geological Survey, is termed the hydraulic 
conductivity and has the dimensi’ons of a 
velocity. The constant k, again in the cur- 
rent usage of the Geological Survey, is 
termed the intrinsic permeability; it’s dimen- 
sions are (length) *, and its units depend 
upon the units of density and viscosity em- 
ployed. In the current usage of the Geologi- 
cal Survey; where p is measured in kg/m?, g 
in m/s*, and p in kg/ (m s) , k would have 
the units of m*. 

As noted in Section 28, hydraulic conduc- 
tivity, K, is related to intrinsic permeability, 
k, by the equation 

K&K 
P 

where p is the fluid density, p the dynamic 
viscosity of the fluid, ,and g the gravitational 
constant. Hydraulic conductivity thus in- 
corporates two properties of the fluid and 
cannot be considered ,a property of the porous 
medium alone. Intrinsic permeability, on the 
other hand, is normally considered to be only 
a property of the porous medium. In ground- 
water systems, variations in density aIre 
normally associated with variations in dis- 

solved-mineral content of the water, while 
variations in viscosity are usually due to 
temperature changes. Thus in problems in- 
volving significant variations in mineral con- 
tent or in water tem’perature, it is preferable 
to utilize intrinsic permeability. 

The entire theory of steady-state flow 
through porous media depends upon Darcy’s 
law. There are certain more general forms 
in which it may be expressed to deal with 
three-dimensional motion; some of these are 
considered in the text-format discussion at 
the end of this chapter. The development 
presented in this chapter involves numerous 
arbitrary assumptions, and thus should not 
be considered a theoretical derivation of 
Darcy’s law. It has been presented here to 
illustrate, in a general way, the physical 
significance of the terms appearing in the 
law. 

QUESTION 

Consider the following statements : 
(a) ground water flows from higher eleva- 

tions to lower elevations. 
(b) ground water flows in the direction of 

decreasing pressure. 
(c) ground water moves in the direction 

of decreasing head. 
Based on Darcy’s law as given in this chap- 

ter, which of these statements should always 
be considered true? 

Turn to Section: 

all three 29 
(b) and (c) but not (a) 13 
only Cc) 21 

(8) 
Your answer, p,nA, in Section 1 is cor- by the fluid area then gives the total force 

rect. The overall cross-sectiontal area of the on the fluid element th,rough the upstream 
upstream face of the segment is A. The face. Similarly, if p, is the fluid pressure 
area of fluid in the upstream face is nA, if at the downstream face, p,nA, gives the 
we assume the ratio between fluid ‘area and magnitude of the force exerted on the down- 

0 
overall area to be equal to the porosity. The stream face of the fluid element by the ad- 
pressure, or force per unit area, multiplied jacent downstream element. 
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(8) -Con. 

QUESTION 

Let us assume that the pressure p, is Turn to Section: 

greater than the pressure p,. Which of the p,nA + p,nA 23 
following expressions would best represent p,nA + pznA 
the net pressure-force on the element in 2 

12 

the direction of flow? p,nA - p,nA 31 

(9) 
Your answer in Section 28 is not correct. dh d(p/pg) dz 

We saw in Part I that head, h, was given by -=-+-* 
dl dl dl 

h=L+z. Use this result in selecting a new answer 
v to the question of Section 28. 

It follows that 

Your answer in Section 11 is not correct. 
We have obtained expressions for two forces 
acting in the direction of flow-the net 
pressure force, which was calculated as the 
difference between forces exerted on the up 
stream and downstream faces of the element 
by adjacent elemenb of fluid (see Section 
26) ; and the component of the gravitational 
force in the direction of flow (see Section 
11). The question asks for the combined net 
force due to both pressure and gravity. 

Forces are combined by means of vector ad- 
dition. In this cause, however, the net pressure 
force and the component of gravity we are 
considering are oriented in the same direc- 
tion-in the direction of flow. Vector addi- 
tion in this instance therefore becomes a 
simple addition of the magnitudes of the two 
terms. 

Return to Section 11 and choose another 
answer. 

Your answer, 
AZ 

pen. Al.A.g-, 
Al 

in Section 35, is correct. Ax/Al is the equiva- 
lent of cos y ; it simply gives the chlange in 
elevation per unit distance along the path of 
flow. (It thus differs from slope which by 
definition is the change in elevation per unit 
horizontal distance.) In the notation of cal- 
CUIUS, AZ/A~ would be represented by the 
derivative, dx/dZ, implying the limiting value 

of the ratio AZ/AZ as smaller and smaller 
values of Al are liken. The force component 
along the pipe must be positive, or oriented 
in the direction of flow, if x decreases in the 
direction of flow-that is, if dz/dZ is negac 
tive. It must be negative, or oriented against 
the flow, if x increases in the direction of 
flow-that is if dx/dl is positive. We there- 
fore introduce a negative sign, so that we 
have finally 

f,= -p.n.A.al*g*dz/dl 
where 4 is the component of the gravitational 
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(11)~con. 
force parallel to the pipe, as in Section 33. Turn to Section: 

The total force driving the flow is the sum 
of this gravity component and the pressure 
force. 

( -;-pg!f)nl.n.A 19 

dp dz 
QUESTION 24 

Which of the following expressions would 
---$os 7 +p.n.Al+A.g.- 

dl 

give the net force on the fluid in the direction dz dp 
of flow, due to pressure and gravity together? 

-p.~~.~l.A-g.--- 10 
dl dl 

(12) 

Your answer in Section 8 is not correct. 
The expression (p,nA -+p2nA) /2 would be 
approximately equal to the force in the di- 
rection of flow against a cross-sectional area 
taken at the midpoint of our fluid element; 
it does not give the net force on the element 
itself in the direction of flow. 

The fluid element extends along the pipe 
a short distance. Over this distance, pressure 
decreases from p, at the upstream face to p, 
at the downstream face. The force on the 
element at the upstream face is the force 
acting in the direction of flow; the force on 

the element at the downstream face is a 
force acting agaisnf the direction of flow. 
That is, it is a “back push” from the adjacent 
fluid element, against the element we are 
considering. Its magnitude is again given as 
a product of pressure, porosity, and face 
area, p,nA, but we now insert a negative sign 
to describe the fact that it acts in opposition 
to the force previously considered. The net 
force in the direction of flow is obtained by 
algebraic addition of the two force terms. 

Return to Section 8 and choose another 
answer. 

Your answer in Section 7 is not correct. that Darcy’s law relates flow per unit area to 
Ground water frequently percolates down- the gradient of head, not to the gradient of 
ward from the water table ; the pressure is pressure. 
greater at depth than at the water table, so Return to section 7 and choose another 
in these cases water is moving in the direc- answer. 
tion of increasing pressure. Keep in mind 

Your answer in Section 31 is not correct. pressure change term, --hp. To obtain an 
We have seen that the net pressure force was expression for a change, or an increment, 
equal to --hpnA. It cannot be equal to this from a derivative, it is necessary to multiply 
and to Ap(dp/dl)nA (unless dp/dl happens the derivative--that is, the rate of change 
to equal -1, in a particular case). per unit distance--by the distance over 

We wish to substitute an expression in- which the increment or change occurs. For 
volving the derivative, dp/dZ, in place of the example, the diagram shows a graph of pres- 
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- (Id)-Con. 

PI --.-_ 

I 

Slope 
dp of -5 

R Jdl graph . 
2 
2 
; P2 --.- -__----_-- _______ 
PC 

Al 

4 Distance, I - 12 

sure versus distance. The slope of this graph 
is the derivative, dp/dl. If we wish to ob- 
tain the change in pressure, p,--p, occurring 
over the interval A& we must multiply the 
rate of change per unit distance, dp/dl, by 
the distance Al. Since we actually require the 
negative of this quantity, pl--p2, we must 
insert a negative sign. (As shown on the 
graph, p, exceeds p 2-pressure is decreasing 
in the direction of flow, 1. The derivative of 
pressure with respect to distance, dp/dl, is 
therefore a negative quantity itself-that is, 
the graph has a negative slope. By inserting 
another negative sign, we will obtain a posi- 

P2 - p, = Pressure change, Ap = $XAl tive result for the term pl-p2.) 
Return to Section 31 and choose another 

answer. 

(15) 
Your answer, m=p-Al-n.A, in Section 26 

is correct; mass density, p, times volume of 
fluid, n.Al*A, where n is porsity, gives the 
mass of fluid. The magnitude of the total 
force of gravity on our fluid element will, 
therefore, be p .Al.n*A.g. This gravitational 
force acts vertically downward. As a force, 
however, it is a vector quantity; and like any 
other vector quantity it can be resolved into 
components acting in other directions. 

QUESTION 

The diagram again shows the flow system 
we have postulated. Which of the following 
statements is correct? 

d----J, 
The entire gravitational force is effect- 

tive in causing flow along the pipe. 22 
Only the component of the gravitational 

force parallel to the axis of the pipe 
contributes to flow along the pipe. 33 

Only the horizontal component of the 
gravitational force contributes to flow _ . 
along the pipe. 18 

0 
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(16) 
Your answer in Section 1 is not correct. 

The force on the element will be given by 
plied by the area of fluid against which the 
pressure acts. 

the pressure, or force per unit area, multi- Return to Section 1 and choose another 
answer. 

(17) 
Your answer in Section 26 is not correct. aleA is occupied by fluid ; the balance is oc- 

The term p.Al.A would give the mass of a cupied by solid sand grains, so that the actual 
fluid element having a volume h1.A. In our volume of fluid is less than AZ-A. 
problem, however, only a part of the volume Return to Section 26 and choose another 

answer. 

Your answer in Section 15 is not correct. 
Gravity, as we are considering it, has no 
horizontal component. No vector can have a 
component perpendicular to its own direc- 
tion. For our purposes we consider the gravi- 
tational force vector, F, to be always di- 
rected vertically downward ; there can be 
no horizontal component of this force. 

The diagram shows the gravitational force 
vector resolved into two components---one 
parallel to the direction of flow, fi, and one 
perpendicular to the direction of flow, f,,. 
Fluid velocity itself may be considered a vec- 
tor, in the direction 1. As such, it has no com- 
ponent in the direction of f,, normal to the 
pipe-and a force component normal to the 

pipe could not contribute in any way to the 
fluid velocity, 

Return to Section 15 and choose another 
answer. 

Your answer in Section 11, 

is correct. The net force per unit volume of 
fluid due to pressure and gravity would thus 
be 

/ dp dz\ - 
t -+pps- , 

dl dl I 
since AZ.n.A gives the voiume of the fluid 
element. 

Our approach in this development is to 
equate the net force driving the flow to the 
frictional force opposing it; ‘more exactly, we 
will obtain the vector sum of these opposing 
forces ,and :set the result equal to zero. The 
resulting equation will ,be a &atement of 
Darcy’s law. We have obtained an expression 
for the net force driving the flow. We now 
consider the force opposing the motion. This 
force is due primarily to friction between the 
moving fluid land tie porous medium. In some 
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(19) -Con. 

other systems of mechanics-for ,example in 
the case of a particle moving through a vis- 
cous fluid at moderate speed-the frictional 
retarding force is olbserved to be proportional 
to the velocity of movement. By anlalogy we 
assume a similar relation to hold for our 
element ‘of fluid. However, Ia,s indicated in 
Part I, [the actual (pore) velocity varies from 
point to point and is difficult or impossible to 
determine. For practical purpos’es therefore, 
we consider the frictional force on our fluid 
element to be proportional to the s)pecific dis- 
charge, or flow per unit clross-sectional ‘area, 
through the porous material. (See Section 
14, Part I.) The specific discharge, which has 
the dimensions of ‘a velocity (land is in fact a 
sort of ,a,pplarent velocity), lis determined by 
the statistical distribation of pore vel,ocities 
within the fluid element; and we axe, in ef- 
fect, assnming that (the ,total frictional re- 
tarding force on the element is likewise de- 
termined by this statistical dietribution of 
pore velocities. In addition, we assume the 
totial frictional retarding force on the fluid 
element to <be. proportional ;to the volume of 
fluid in the ~elem~ent, ‘on the ;tiheory that the 
total ‘area of fluid-solid contact within the 
element, and therefore the total frictioaal 
drag on the element, increases in proportion 
to the volume of the element. Finslly, we as- 
sume thlat (the retarding force is proportional 
to the dynamic viscosity of the flaid, since 
we would expect a fluid of low viscosity to 
move throjugh a porous medium more readily 
th’an ia highly viscous liquid. 

Porosity = n 

2 

QUEStl0t.l 

Following the various assumptions out- 
lined above, which of the following expres- 
eiolns would you choose as best representing 
the frictional retarding force on the fluid ele- 
ment of ,Section 1. (Shown again in the di:a- 
gram. ) 

Turn to Section: 

k A1.n.A 

20 

where l/k indioates a constant of propor- 
tionality, p is the dynamic viscosity of the 
fluid, and Q is the flulid discharge through the 
,pipe. 

Your #answjer in ,Section 19, changing with time, or in other words, that 

Q 
-+p(~le~eA)7 

there is no fluid acceleration. In this condi- 
tion, 6he forces producing the motion must 
be in balance with the frictional retarding 

is correct. The negative sign is employed to force. The vector sum of these forces must 
indicate *that ,&he frictional retarding force therefore be zero; and ,beoause the force 
will be opposite in di~rection to the fluid move- components contribuGng to ‘the ,motion are 
ment. We assume that our fluid motion is all dire&ed along ,tie pipe, this v&or sum 
steady-that is, &hat the fluid velocity i,s not is simply an algebraic sum. 
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(20)-con* 
QUESTION 

We have seen that the net driving force on 
the fluid element-that is, the net force in 
the direction of flow due to pressure and 
gravity together-is given by 

/dr, dx\ 
- 

Suppose we take the algebraic sum of this 
force and our retarding force, and set the 
result equal to zero. Which the following 

equations may then be derived from 
sult? 

Turn 
dp dz P Q 
--$pg-+-.-=Al~n~A 

dl k A 
k dp dz Q 

-- 
( ) 

-+pgji =A 
P dl 

PQ Al.n.A=-- 
kA 

the re- 

to Section: 

36 

28 

27 

Your !answer in Section 7 is correct. 
Darcy’s law, as fan equation containing a 
derivative, is actually a differential equation. 
It relates flow per unit (area, or flux, to the 
energy consumed per unit distance by fric- 
tion. Analogies can readily be recognized 
between Darcy’s law and the differential 
equations governing the steady flow of heat 
or electricity. The hydraulic c’onductivity, 
X, is analogous to thermal or electrical con- 
ductivity; while hydraulic head, h, is a po- 

tential an’alogous to temperature or voltage. 
(To be more correct, the term Kh constitutes 
a ground-water velocity potential-that is, a 
function whose derivative yields the flow 
velocity-provided both the fluid and the 
porous medium are homogeneous and the 
medium is isotropic.) 

This concludes the programed instruction 
of Part II. A discussion in text format deal- 
ing with generalizations of Darcy’s law be- 
gins on the page following Section 37. 

Your answer in Section 15 is not correct. 
The diagram shows the gravitational force 
vector, F,, resolved into two components, one 
parallel to the direction of flow, fi, and one 
perpendicular to it, f,. If the flow were ver- 
tically downward,-that is, colinear with F, 
-the entire gravitational force would be ef- 
fective in producing flow. In the situation 
shown, however, one component of the gravi- 
tational forceL--fn, or that perpendicular to 
the flow-is balanced by static forces ex- has no component in the direction of f,. The 
erted by the walls of the pipe. To view this force component f, can therefore contribute 
in another way, we may note that the fluid nothing to the fluid velocity. 
velocity itself is a vector, in the direction 2. 
No vector can have ‘a component perpendicu- Return to Section 15 and choose another 
lar to its own direction ; so the velocity vector answer. 
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Your answer in Section 8 is not correct. 
The pressure at a ,point in a fluid is a scalar 
quantity; it is not directional in character, 
and we say that it “acts in all directions.” 
However, if we choose any small crossasec- 
tional area within the fluid, we can measure 
a force against this area attributable to the 
pressure, regardless of the orientation of the 
area. This force is a vector, or directed quan- 
tity; it acts in a direction normal to the small 
area and has a magnitude equal to the prod- 
uct of the pressure and the area. In the ex- 
ample of Sections 1 land 8, we consider the 
pressure at two points, tie upstream and 
downstream faces of our fluid element. At 
the upstream face we write an expression 

pInA for the magnitude of the force in the 
direction of the flow. At the downstream face 
we are interested ia a force oppoeing the 
flow-that is, acting in a direction opposite 
to the flow. The magnitude of this force is 
again given as a product of pressure, poros- 
i’ty, and face area, p,nA; but because we are 
interested in the force acting against the 
flow, or in a direction opposite to that .orig- 
inally taken, we now introduce a negative 
sign. The net force on the fluid element along 
the axis of the pipe can now be obtained by 
algebraic addition of the two force expres- 
sions. 

Return to Section 8 and choose another 
answer. 

Your answer in Section 11 i,s not correct. 
The idea here is s,imply to combine the ex- 
pressions obtained for the net pressure force 
(see Section 26) and for the component of 
the gravitation’al force parallel to the pipe 
(see Section 11). Forces are alwam combined 
by means of vector addition. In this case, 
however, the two vectors we are considering 
are oriented in the same direction. That is, 

both the net pressure force and our com- 
ponent of the gravitational force are oriented 
in the direction of the flow. In this case, 
therefore, vector addition amounts to no 
more &an the simple scalar addition of the 
magnitudes of the two components. 

Return to Section 11 and choose another 
answer. 

Your answer in Section 1 is not correct. If face of the fluid element. For our purposee 
we were dealing with open flow in the pipe, here, we may assume that the ratio of fluid 
the force on the fluid element would indeed area ,to total <area is equal to the porosity, n. 
be given by the term pIA. Here, however, a 
part of the area A is occupied by solid sand Return to Section 1 and choose another 
grains and the remainder by the upstream answer. 
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Your answer in Section 31, 
dp 

- -AlnA, 
dl 

is correct. The gradient or derivative of pres- 
sure, dp/dl, multiplied by the length inter- 
val, Al, gives the change in pressure, p,-p,, 
occurring in that interval. Since we require 
the term p, -p,, we use a negative sign. 
Multiplication by the fluid area, nA, then 
gives the net pressure force on the element. 

Our purpose in this chapter is to develop 
Darcy’s law by equating the fo,rces driving 
a flow to the frictional force retarding it. 
We have considered the pressure force, which 
is one of the forces driving the flow. In addi- 
tion to this pressure force, the element of 
fluid is acted upon directly by the force of 
gravity. The total gravitational force on the 
element is given by the acceleration due to 
gravity, g, multiplied by the mass, m, of fluid 
in the element. 

I I Porosity = n 

i 

QUESTION 

Which of the following equations for the 
mass of fluid in our element, which is shown 
again in the diagram, is correct? 

Turn to Section: 

m=Al+n.A 3 
m=p-Al-A 17 
m=P.Al.n.A 15 

Your answer, representing the volume of fluid in the ele- 

PQ ment. When these force terms are added and 
&-n-A=--- 

kA 
their sum set equal to zero, the term AIsn-A 
may be divided out of the equation. 

in Section 20 is not correct. Each of the force 
terms-the net driving force and the retard- Return to Section 20 and choose another 
ing force--contains the expression AZ.n.A answer. 

Your answer in Section 20, bg 
K=-. 

is correct. For the case of a fluid of’ uniform 
Using this new constant we may rewrite 

our equation in the form 
density and viscosity, the terms p and P are 
constants and may be com,bined with the 
other constants in the problem to form a new 
constant, K, defined as 

-Kc!- ?+“) Q =-* 
pg dl iii A 

(continued on next page) 
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(28)~con* 
0 

QUESTION 

Keeping in mind that the term l/pg is a 
constant, so that 

d2 
0 1 dp pg --= 

pg dl dl ’ 

which of the equations given below consti- 
tutes a valid expression of the equation we 
have just obtained? 

Q Kdh 
-=- - 

A dl 

Turn to Section: 

7 

that is, 

h=p+z. 
Pg 

Your answer in Section 7 is not correct. 
Ground water frequently discharges upward 
into stream valleys ; and in the figure, upward 
flow occurs in the shorter arm of the U-tube. 
Thus statement (a) of Section 7 cannot 
always be true. 

Return to Section 7 and choose another 
answer. 

(30) 
Your answer in Section 28 is not correct. 

We saw in Part I that hydraulic head, h, was 
given by 

h=p+z. 

The derivative of h w?gth respect to distance, Using this relation, return to Section 28 
I, is therefore given by and choose another answer. 

0 
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Your answer in Section 8 is correct. The 
net force in the direction of flow is given by 
the difference between the two opposing 
forces exerted upon the oppoeite faces of the 
element by the adjacent elements of fluid. 
We may now factor out the common term 
nA and obtain as our expression for net pres- 
sure force (p, -p2) nA, or - ApnA, where 
Ap indicates the small pressure difference, 
p, -pl, between the downstream face of the 
fluid element and the upstream face. 

Since pressure is varying from point to 
point within our system, we may speak of a 
pressure gradi’ent; that is, a rate 09 change 
of pressure with distance, I, along the flow 
path. This gradient might be expressed, for 
example, in pounds per square inch (of pres- 
sure) per foot (of distance) ; it is represented 
by the symbol dp/dl, and is referred to as the 
derivative of pressure with respect to dis- 
tance in the direction 1. If we were to plot a 
graph of pressure versus distance, dp/dl 
would represent the slope of the graph. 

QUESTION 

Which of the following expressions is ap- 
proximately equivalent to the net pressure 

Pipe packed 
with sand 

i I 
I Porosity = n 

+ I 
Pressure=p, 

B 
Pressure=p* 

Pz - PI = AP 

force, - ApnA, on our element of fluid 
(‘shown again in the diagram) ? 

Turn to Section: 

dp 
--ah4 
dl 
dp 
-nA 
dl 

dP 
Ap-nA 

dl 
14 

Your answer, p.n*Al*A*g~sin y, in Section angle 7. It is true, however, that the idea of 
35 is not co,rrect. We have already seen that this question Ps ,to find an equivalent term for 
the magnitude of our force component is cos y Iand subfstitute it in our previous expreis- 
given by p.n.Al.A-g.cos y. In the answer sion for the force component. 
you have chosen, sin y has been substituted 
for cos y in our original expression-and this Return to Section 35 and choose another 
can be true only for ,a particular value of the answer. 
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Your answer in Section 15 is correct; we 
may resolve the gravitational force, F, into 
two orthogonal components, 4 and f,, parallel 
to and perpendicular to the axis of the pipe 
as shown in the figure. There is no movement 
perpendicular to the pipe; the component of 
the gravitational force in this direction is 

balanced by static forces exerted against the 
fluid element by the wall of the pipe. The 
component parallel to the pipe does contribute 
to ,the motion and must be taken into account 
in equations describing the flow. 

QUESTION 

The magnitude of the total gravitational 
force upon the element is given by the mass 
of the element multiplied by the acceleration 
due to gravity ; that is, F, =mg, where m is 
the mass of the fluid element. Referring to 
the diagram shown, which of the following 
expressions gives the magnitude of the com- 
ponent of the gravitational force parallel to 
the axis of the pipe? 

Turn to Section: 

f,=, .n.Al.A.g 6 
fl=P *n-Al -A-g-cay 
fl==n*AZ.A*g*tany 

Your answer in Section 19, 
1 Q2P 

-~al.n.A 
is not correct. Our assumptions were that the 
retarding force would be proportional in 
some way Ito the dynamic viscosity (p) , to the 
volume of fluid in the element (AZVZ~A) , and 
to the specific discharge, or flow per unit area 
(Q/A), Your answer represents the retard- 

ing force as proportional to the square of 
fluid discharge, which might be compatible 
with *the assumptions, but ae inversely pro- 
portional to the volume of fluid in the ele- 
ment, which is not compatible with the 
assumptions. 

Return to Section 19 and choose an&her 
answer. 
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Your answer, p*n.Al*A.g*cos 7, in Section 
33 is correct. The mass of the fluid element, 
as we have seen, is pen. AI-A; multiplication 
by the acceleration, g, gives the total gravi- 
tational fo,rce on the element. The component 
of this force parallel to the pipe, as indicated 
by the vector diagram, will be found by multi- 
plying the total force by the cosine of 7. 

QUESTION 

Suppose we now draw a small right tri- 
angle, taking the hypotenuse as AI, the length 
of our fluid element, and constructing the 
two sides Ax and Ax as in the diagram. Which 
of the following expressions may then be 
used for the magnitude (without regard to 
sign) of the component of gravitational force 
parallel to the flow? 

Turn to Section: 

P en. Al * A + g + sin y 32 
p - n . A . g . am+ (Ax)~ 4 

AX 
p * n * Al * A . g . - 11 

Al 

(36) 
Your answer in Section 20 is not correct. 

If the sum of the two force expressions is set 
We may divide through by the term Al.n.A, 
representing the volume of fluid in the ele- 

equal to zero, we have ment, and rearrange the resulting equation 
to obtain the required result. 

-.$(Al. n. A)?=& 

Return to Section 20 and choose another 
answer. 

A 
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0 

Your ansrver in Section 33 is not correct. 
The total gravitational force on Ithe element 
is gtien by mg, where m is the masIs of fluid 
in the element and g is the acceleration due 
to gravity. ‘The mass of fluid in the element 
is in turn given by the volume of fluid in the 

elemem multiplied by the mass per unit vol- 
ume, or mass density, of the fluid, which we 
have designated P. The volume of fluid in the 
element, as we hlave seen is n.Al*A, where 
n is the porosity. The mass is therefore 
,,.n*al.A; and the total fo’rce of gravity on 
the fluid element is given by 

We require the component of thi:s gravita- 
tional foroe parallel to the axis of the pipe. 
The sketch #shows a vector diagram in which 
the length of each arrow is proportional to 
the fo;rce or component lit [represents. The 
gravi’tational force is represented hy the 
arrow F, land the components are represented 
by the ,arrows fi and f,. The rule for the res- 
olution of a vector ~i,nto components can be 
visualized from geometric considerations. 
The miagnitude of Ithe component of a vector 
in a given direction is the product of the mag- 
nitude of the vector land the cosine of the 
angle between the direction of the vector and 
the given direction. 

Return to Section 33 and choose another 
answer. 
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Generalizations of Darcy’s LOW 

The form of Darcy’s law considered in the 
preceding program is useful only for one- 
dimensional flow. The discussion in this sec- 
tion indicates, in general outline, the manner 
in which Darcy?s law is extended to cover 
more complex situations. Vector nobation is 
used for economy of presentation, and this 
discussion is intended primarily fo,r readers 
familiar with this notation. Those concepts 
which are essential to mat&al covered later 
in the program ,are treated again as they are 
required in the development-without the use 
of vector notation. The material presented 
here is not difficult, and readers not familiar 
with vector notation may find it possible to 
follow the mathematics by reference to a 
standard text on vector analysis. However, 
those who prefer may simply read through 
this section for familiarity with quaNative 
aspects of the material and may then proceed 
directly to Part III. 

For three-dimensional flow, we may con- 
sider the specific discharge, q or Q/A, to be 
a vector quantity, with components iq,, jqy, 
and kq, in the three coordinate directions. 
i, j, and k represent the standard unit 
vectors of the Cartesian system. We consider 
a small area, A,, oriented at right angles to 
the 2 axi’s at a point 0, and observe the fluid 
discharge through this area to be Q,; the 
limiting value of the ratio &,/A,, as A, is 
made to shrink toward the point 0, gives the 
value of q. applicable at point 0. qV and qs 
are similarly defined for the 2/ and z direc- 
tions. The specific discharge at point 0 is 
given by the vector sum 

Q 
q=T=iqn+ jqv+kq,. 

q is thus a vector point function; its magni- 

tude and direction may vary with location in 
steady flow and with location and time in 
unsteady flow. 

If the porous ,medium is homogeneous and 
isotropic ‘and if the fluid is of unifo’rm density 
and viscosity, the components ,of the specific- 
discharge vector are each given by a form of 
Darcy’s law, utilizing the partial derivative 
of head with respect to di:stance in the direc- 
tion in question. That is, the components are 
given by 

qa= -KCh 
ax 

ah 
qV= -K- 

ay 

qz= -Kch 
ax 

where K is the hydraulic conductivity. 
It follows th,at the specific-discha.rge vector 

in this case will be given by 

q= -K i-+ j-+k- I 
ah ah ah 

1 
t ax av ax’ 

q=-Kvh 
or 

where v h denotes the head-gradient vector. 
Thus, if the medium is isotropic and homo- 

geneous, - Kh confstitutes a velocity poten- 
tial; and the various methods of potential 
theory, as applied in studying heat flow and 
electricity, may be utilized in studying the 
ground-water motion. Since the specific- 
discharge vector is colinear with v h, it will 
be oriented at right angles to the surfaces of 
equal head, and flownet analysis immediately 
suggests itself as a useful method of solving 
field problems. 
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In praotice, one does not usually find homo- 
geneous and isotropic aquifers with which to 
work ; frequently, however, simply for lack 
of more detailed data, aquifers ‘are assumed 
to be homogeneous and isotropic in obtaining 
initial or approximate ‘solutions to ground- 
water problems. 

The situation in many aquifers can be rep- 
resented more successfully by a sllightly more 
general form of Darcy’s law, in which a dif- 
ferent hydraulic conductivity is assigned to 
each of the coordinate dir&ions. Darcy’s law 
then takes the form 

ah 
qa= -KS- 

ZW 

qv= -K: 
aY 

qs= -Kz 
ax 

where K,, K,, and K, represent the hydraulic 
conduotivities in the X, y, and x directions, 
respectively, and again 

This form of Darcy’s law can be applied 
only to those anisotropic aquifers which are 
characterized by three principal axes of hy- 
draulic conductivity (or permeability) which 
are mutually orthogonal, so that the direction 
of maximum hydraulic conductivity is at 
right angles to the direction of minimum hy- 
draulic conductivity. These axes must corres- 
pond with the X, y, and x axes used in the 
analysis. The implication is that one of the 
principal axes of conductivity must be ver- 
tical; for unless the x axis is taken in the 
vertical direction, the term ah/ax cannot be 
used to represent the sum of the vertical 
pressure gradient and Itbe gravitational fowe 
term. 

It is easily demonstrated that the specific- 
discharge vector and the lines of flow are no 
longer orthogonal to the surfaces of equal 
head in this anistropic case, and that the 
conditions for the existence. of a velocity 
potential are no longer satisfied. Formal 
mathematical ,solutions to field problems are 
essentially as easy to obtain ais in the iso- 
tropic ease, however, since a relatively simple 

transformation of scales can be introduced 
which converts the anisotropic system to an 
equivalent isotropic system (Muskat, 1937). 
The problem may then be solved in the 
equivalent isotropic system, and the solution 
retransformed to the original anisotropic 
system. 

Probably the most common form of aniso- 
tropy encountered in the field is fiat exhib- 
ited by stratified sedimentary material, in 
which the permeability or hydraulic conduc- 
tivity aormal to the bedding is less than that 
parallel to the bedding. If the bedding is hori- 
zontal, the form of Darcy’s law given above 
may be applied, using K, = KY. The anisotropy 
in this case is two-dimensional, with the axis 
of minimum permeability normal to the bed- 
ding, and the axis of maximum permeability 
parallel to it. In many cases, aquifers are 
assumed to exhibit simple two-dimensional 
anisotropy of this sort when in fact they are 
characterized by heterogeneous stratification 
and discrete alternations of permeability. 
This type of simplifying assumption fre- 
quently enables one to obtain an approximate 
solution, where otherwise no solution at all 
would be possible. 

For many problems, however, this gen- 
eralized farm of Darcy’s law is itself inade- 
qu,ate. A,s fan example, one may consider a 
stratified aquifer, exhibiting simple two- 
dimensional ~anisotropy, which is not hori- 
zontal, but ,rather is dipping at an appreciable 
angle. The direction of minimum permeabil- 
ity, normal to the bedding, does not in this 
case coincide with the vertical. One may 
choose new coordinate axes to conform to the 
new principal directions of conductivity. If 
this is done, tbe component of the specific dis- 
charge in each-of these new coordinate direc- 
tions ~must be expressed in terms of the pres- 
sure gradient in the direction concerned, and 
the component of the gravitational force in 
that direction. Reduction of the equations to 
the simple form already given, using the prin- 
cipal directional derivatives of h, is not pas- 
sible. Alternatively, one may retain the hori- 
zontal-vertical coordinate system, in which 
case the principal ax- of conductivity do not 
coincide with ,the coordinate axes. In this 
case, hydraulic conductivity ,must be ex- 
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pressed as a tensor; the component of the 
specific discharge in one coordinate direction 
will not depend solely on the head gradient in 
that direction, but upon the head gradients in 
the other coordinate directions as well. 

In addition to these considerations regard- 
ing aquifer anisotropy, practical problems 
require that attention be paid to heterogen- 
eity, both of the aquifer and of the fluid. If 
the aquifer is heterogeneous, hydraulic con- 
ductivity must be treated as a function of the 
space coordinates ; in this case, hydraulic 
conductivity (or in some cases intrinsic 
permeability) is usually defined ‘as a tensor 
which varies with position in the aquifer. 

the fluid varies in both density and viscosity. 
Darcy’s law fo’r this case may be written 

kz aP 
CL= - -- 

PX>zl,2 ax 
~~, aP 

q,,= -- - 

If the fluid is heterogeneou,s, its viscosity 
and density cannot be treated as constants, 
as was done in the program section of Part 
II. Equations cannot be reduced to terms of 
the hydraulic c’onductivity and head gradi- 
ents, but must rather be retained in terms of 
specific permeability, vi,scosity, pressure 
gradients, and components of the gravib- 
tional force (which depend upon fluid den- 
sity, and will vary with position, ,and possibly 
with time, as fluid density varies). A special 
case of some importance is that in which the 
aquifer is horizontal, with principal axes of 
permeability in the X, y, and x directions, but 

Qz= -~$ps,/$g) 

and again 

In these equations, k,, k, and k, are the 
intrinsic permeabilities in the x, y, and x 
directions ; P,,~,~ is the dynamic viscosity func- 
tion ; P~,~,~ is the density function; and the 
other terms are as previously defined. Since 
gravity is a’ssumed to have no components in 
the horizontal plane, density does not enter 
into the expressions for q3: and ql/. In natural 
aquifers, variations in density mare related 
primarily to variations in dissolved-solid con- 
tent of the water, while variations in vis- 
cosity are relsated primarily to variations of 
ground-water temperature. The equations 
given above thus have utility in situations 
where water quality and water temperature 
are known to vary in an aquifer. 



Part I II. Application of Darcy’s Law to Field Problems 

Darcy’s I,aw, as mentioned in the discussion of Part II, however, Darcy’s law has direct 
at the close of Part II, may be generalized applioation to many field problems. In Part 
to deal with three-dimensional flows ; and it III we shall consider a few examples of such 
may be combined with other laws or concepts direct application. Later, in Part V and VI, 
to develop equations for relatively complex we will consider th:e combination of Darcy’s 
problems of ground-water hydraulics. Even law with other concepts to yield equations 
in the simple form develo,ped in the program for more complex problems. 

1 u- 

In Part II we pointed out that Darcy’s law 
is a differential equation-that is, an equa- 
tion containing a derivative. It gives us some 
information about the rate at which head 
changes with distance, under given condi- 
tions of flow. In general, in dealing with 
ground-water problems, we will require ex- 
pressions that relate values of head, rather 
than thse ra:te of change of head, to flow con- 
ditions. To proceed from a differential equa- 
tion, describing the rate of change of head, 
to an algebraic equation giving values of 
head, is to obtain a solution to the differential 
equation. There are various techniques for 
doing this. We need not go into these tech- 
niques of solution here. For our purposes, it 
will be sufllcient if we can recognize Ia solu- 
tion when we are given one--that is, if we 
can test an algebraic equation to determine 
whether it is a solution to a given differential 
equation. This is just a matter of differentia- 
tion. When we w&h to know whether an 
algebraic equation is a solution to a differ- 

ential equation, we may simply differentiate 
the algebraic equation. If we obtain a result 
which is equivalent to the given differential 
equation, then the algebraic equation is a 
solution to the differential equation. Should 
we fail to obtain an equivalent result, the 
algebraic equation is not a solution. Thus, for 
our present purposes at least, we may con- 
sider a ,solution to a differential equation to 
be an algebraic equation which, when differ- 
entiated, will yield the given differential 
equation. 

QUESTION 

Which of the following algebraic equations 
is a solutioa to the differential equation 

dx 

2/=Kx2 

x=2y+K 
y=Kx+5 

Turn to Section: 

15 
23 
7 
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02 
Your answer in Section 35, QUESTION 

dh Q 
-=-9 

2 (In r) 2nKb 

is correct. This equation is equivalent to the 
original differential ,equation for the problem 
and states that the rate of change of hy- 
draulic head, with respect to change in the 
natural logarithm o,f radial distance, is con- 
stant and equal to 

Suppose we were to plot a graph of hy- 
draulic head versus the natural log of radial 
distance from the well, in our discharging 
well problem. Which of the following state- 
ments would apply to this graph? 

Turn to Section: 

Q 
2nKb * 

(a) The plot would become progres- 
sively steeper with decreasing 
values of In r-that is, as the 
well is approached. 

(b) Equal changes in head would be 
observed over intervals repre- 
senting equal changes in r. 

(c) The plot would be a straight line. 

18 

31 
38 

Your answer in Section 19 is correct. If 
the head in the well (and throughout the 
aquifer) prior to pumping is ‘equal to h,, the 
term h,- h, is actually the drawdown in the 
pumping well (assuming that there are no 
additional losses in head ‘associated with flow 
through the well screen, or within the well 
itself). Thus the equation in your answer 
allows us to predict the drawdown associated 
with any discharge, Q. Alternatively, the 
equation can be viewed as a method of cal- 
culating the hydraulic conductivity, K, of the 
aquifer on the basis of field measurements of 
Q and h, - h,, or on the basis of head meas- 
urements at any arbitrary radii, r1 ,and rz, 
using observation wells. The theory of steady- 
state flow to a well as developed here is often 
referred to as the Thiem theory, after G. 
Thiem, who contributed to its development 
(Thiem, 1906). 

While it would not be common, in practice, 
to find a well conveniently located at the cen- 
ter of a circular island, the example is a 
very useful one. The hydraulic operation of 
any well is similar, in many important re- 
spects, to that of the well on the island. In 

particular, the decrease in cross-sectional 
area of flow as the well is approached, lead- 
ing to the logarithmic “coae of depression” 
in thle potentiometric surface, is a feature of 
every discharging well problem. It is in fact 
the dominant feature of such problems, since 
the head losses close to the well, within this 
“cone of depression” are normally the largest 
head losses associated with the operation of 
a well. The radial symmetry assumed in the 
Thiem analysis usually prevails, at least in 
the area close to the well, in most discharging 
well problems. 

Readers familiar with differential equa- 
tions will note that the equations of radial 
flow developed here can be obtained more 
directly by separating variables in the differ- 
ential equation 

Q dh 
--Km-, 
2abr dr 

and integrating between the limits rl and r2, 
or r, and re. That is, these radial-flow equa- 
tions, which state that head will vary with 
the logarithm of radial distance, are ac- 
tually solutions to this differential equa- 
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tion; if they are differentiated with respect ciated with potential-flow problems involving 
to r, the differential equation is obtained. cylindrical symmetry in other branches of 
Again readers familiar with the general con- physics. 
cepts of potential theory will recognize the 
pattern of head loss around the well as an You have completed Part III. You may go 
example of the “logarithmic potential” asso- on to Part IV. 

40 
Your answer in Section 9, 

h~h,,-2&~ 

veloped for the problem. Keep in mind that in 
order to find a solution to the differential 
eauation 

KW 

is not correct. If we differentiate this equa- 
tion, treating h, as a constant, we obtain the 

d(h*) 2Q 
-= -- 

ax Kw 
result we must find an expression which will yield 

dh 2Q this equation upon differentiation. -= -- 
dx Kw Return to Section 9 and choose another 

which is not the differential equation we de- answer. 

5 u- 
Your answer in Section 8 is not correct. The 

differential equation tells us that any solution 
we obtain, giving h as a function o,f x, must 
be such that the derivative of h with respect 
to x, dh/dr is a constant, - (Q/KA) . Thus 
we know that (1) since the derivative is a 
constant (does not <involve x) , the plot of 
h versus x for any solution must h,ave a con- 
stant slo,pe-that is, the plot must be a 
straight line; and (2) since the constant has 

the same value for any solution, the graphs 
of different or distinct solutions must all have 
the same slop+that is, these plots must be 
parallel straight lines. A family of curves all 
intersecting rthe x axis at a common point, as 
in the answer which you chose, could not 
have these characteristics. 

Return to Section 8 and choose another 
answer. 

6 u- 
Your answer in Section 41 is not correct. axis. At a radial distance r from the well, the 

The directioln of flow in this problem is cross-sectional area of flow will be the area 
radial, toward the well as an axis. The cross- o-f a cylindrical surface of radius T and of 
sectional area of flow must be taken at right height equal to the thickness of the aquifer. 
angles to this radial flow direction ; that is, it 
must be ‘a cylindrical surface within the aqui- Return to Section 41 and select another 
fer having the centerline of the well as its answer. 

0 - 

0 
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07 
Your answer, y = Kx + 5, in Section 1 is cor- 

rect; of the three expreesions given, it is the 
only one which yields dy/dx= K upon differ- 
entiation. However, 9 = Kx + 6 is obviously 
not the only equation which will give this 
result upon differentiation. For example, dif- 
ferentiation of the equations y= Kx+7, 
y = Kx - 3, or y = Kx will also yield dy/dx = K. 
The constant term which is added or sub- 
tracted on the right does not affect the differ- 
entiation; regardless of the value of the con- 
stant, the derivative of y with respect to x 
always turns out to be K. Since we have an 
infinite choice of constants to add or sub- 
tract, there :re an infinite number of alge- 
braic equations which qualify as solutions to 
our differential equation. This is a general 
characteristic of differential equations-the 
solutions to ,a differential equation are always 
infinite in number. 

QUESTION 

Given the following three algebraic equa- 
tions relating head, h, to distance, x. 

Q 
(a) h=--x 

KA 

Q 
(b) h=ho--x 

KA 

Q 
(c) h=h,--x2+7 

KA 

where ho, &, K, and A are cmstants ; which 
of the equations are solutions to the differ- 
ential equation 

!i-Kth? 
A dx 

Turn to Section: 
all three 29 
only (a) 14 
(a) and (b) but not (c) 8 

08 
h 

Your answer in Section 7 is correct. Either 
(a) or (b), when differentiated and re- 
arranged, will yield the equation 

Q dh 
-= -K-. 
A dx 

Differentiation of (c) leads to an entirely 
different equation. 

In the preceding example, the algebraic 
equations deal with values of hydraulic head, 
h, at various distances from some reference 
point; while the differential equation deals 
with the rate of change of head with di&ance. 
The differential equation is, of course, 
Darcy’s law and states that if head is plotted 
versus distance, the slope of the plot will be 
constant-that is, the graph will be a straight 

Slope = - - 
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line. The graphs of equations (a) and (b) of 
Section ‘7 are shown in the diagram. Each is 
a straight line having a slope equal to 

Q . 
-a 

the intercept of equation (a) on the h axis 
is h= 0, while the intercept of equation (b) 
on the h axis is h= h,. These intercepts give 
the values ‘of h at x = 0 ; they provide the 
reference points from which changes in h 
are measured. 

QUESTION 

If we were to graph all possible solutions 
to the differential equation 

dh Q -= --, 
dx KA 

the result would be: 

Turn to Section: 

A family of curves, infinite in number, 
each intersecting the x axis at 

Q xc -- 5 
KA 

An infinite number of parallel straight 
lines, all having a slope 

Q 
-KA 

and distinguished by different inter- 
cepts on the x=0 axis. 

A finite number of parallel straight 
lines, all having a slope 

Q 
-KA 

10 

which intersect the x=0 axis at 
various positive values of h. 20 

9 cl 

Your answer in Section 25, 

Q = - Kwhe, 
dx- 

is correct. From the rules of differentiation, 
the derivative of h2 with respect to x is 
given by 

-457 d (h2) 

dx dx 
Therefore, substituting 

1 d(he) 
-- 
2 dx 

for h (dh/dx) in the equation 
dh 

Q= -Kwh- 
dx 

and rearranging, we have 
d(ha) -2Q 
-=-* 

dx Kw 

In this rearranged form, the differential 
equation states that the derivative of h2 with 
respect to x must equal the constant term 

-29 
Kw 

QUESTION 

Which of the following expressions, when 
differentiated, yields the above form of the 
differential equation-that is, which of the 
following ‘expressions constitutes a solution 
to the differential equation ? (h, is a constant, 
representing the value of h at x=0.) 

Turn to Section: 

2Q 
h2 = h,2 --x2 

Kw 
2Q 

h2=ho2--x 

Kw 
2Q 

h=ho--x 
Kw 

16 

41 

4 



0 
PART III. APPLICATION OF DARCY’S LAW TO FIELD PROBLEMS 39 

010 

Your answer in Section 8 is 
straight line having the slope 

Q 

-xi 

correct. Any 

will be the graph of a solution to the differ- 
ential equation 

There are an infinite number of lines which 
may have this slope, corresponding to the 
infinite number of solutions to the differential 
equation. 

The figure shows a confined aquifer of 
thickness b. The aquifer is completely cut by 
a stream, and seepage occurs from the stream 
into the aquifer. The stream level stands at 
an elevation ho above the head datum, which 
is an arbitrarily chosen level surface. The 
direction at right angles to the Istram is de- 
noted the x direction, and we take x as 0 at 
the edge ,of the ‘stream. We assume tlmt the 
system is in steady ‘state, so that no changes 
occur with time. Along #a reach of the stream 
having length w, the total rate of seepage 
loss from the stream (in, say, cubic feet per 
second) ils denoted 2Q. We assume that half 
of this seepage occurs through the right bank 
of the stream, and thus enters the part of the 
aquifer shown in our sketch. This seepage 
then moves away from the stream in a steady 
flow along the x direction. The resulting dis- 
tribution of hydraulic head within the 
aquifer is ‘indicated by the dashed line 
marked “potentiometric surface” in the 
sketch. This surface, sometimes referred to 
as the “piezometric surface,” actually traces 
the static water levels in wells or pipes tap- 
ping the aquifer at various points. The dif- 
erenti’al equation applicable to this problem 
is obtained by applying Darcy’s law to the 

flow, Q, across the cross-sectional area, bw, 
and may be written 

dh -Q 
-= --9 
dx Kbw 

where K is the hydraulic conductivity of the 
aquifer. The head distribution-that is, the 
potentiometric surface-is described by one 
of the solutions to this differenti’al equation. 
In addition to satisfying the differential equa- 
tion, the required solution must yield the 
correct value of h at the edge of the stream- 
that is, at x=0. 

QUESTION 

Which of the following expressions gives 
the particular solution (to the above differ- 
ential equation) which ‘applies to the prob- 
lem described in this section? 

Turn to Section: 

Q 
h= --z 22 

Kbw 
Q 

h=2Q--x 
Kbw 

Q 
h=ho--x 

Kwb 

36 

24 
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Your answer in Section 27 is not correct. characteristic of the problem we are con- 

The decrease in radius does not compensate sidering. It has a major-in fact, dominant- 
for the decrease in cross-sectional area; it is, effect upon the ,solution to the problem. 
rather, the cause of this decrease in cross- Return to Section 27 apd choose another 
sectional area. The decreasing crosjs-sectional answer. 
area, along the path of flow, is a fundamental 

Your answer in Section 41 is not correct. as its axis. The area of flow at a radial dis- 
The flow of water is directed radially inward lance r from the well wo’uld thus be the area 
toward the well. Any cross-sectional area of of a cylindrical surface of radius r, having a 
flow, taken normal to this radial direction of height equal to the thickness of the aquifer. 
movement, would be a cylindrical surface in Return to Section 41 and choo’se another 
the aquifer,, having the centerline of the well answer. 

Your answer in Section 35, 
dh Q 

(In r)-=-, 
dr 2,rKb 

is not correct. The differential equation as 
given in Section 35 was 

dh Q T-C-. 
dr 2&b 

In your answer, In r sba.s simply been sub- 

stituted for r. This is obviously not what we 
want; In r is not equal to r. The relations 
given in Section 35 can be used to obtain an 
expression which is equivalent to dh/dr. This 
expression can then be substituted for dh/dr 
in the above differential equation to obtain 
the required result. 

Return to Section 35 and choose another 
answer. 

14 cl 
Your answer in Section 7 is not correct. 

It is true that expression (a), 
Q 

h= --x, 
KA 

yields the result 
dh Q 
z= -xi- 

upon differentiation and is thus a solution to 
the given equation. However, it is not the 
only one of the given expressions which 
yields the required result upon differentia- 
tion. 

Return to Section 7 and test the remaining 
expressions, by differentiation, in order to 
find the correct answer. 
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Your answer, ~J=E?, in Section 1 is not dy 
correct. If we differentiate the equation -K -- 
y=Kxz, we obtain dx 

$2KX, 
which is not the differenti,al equation with 
which we started. Our differential equation 
Wi3S 

and we are looking for ,a solution to this 
differential equation-that is, we are looking 
for an algebraic expression which, when dif- 
ferentiated, will produce the differential 
equation (dy/dx) = K. 

Return to Section 1 and test the remaining 
choices, by differentiating them, to see which 
will yield the given differential equation. 

016 
Your answer in Section 9, 

2Q 
jp=@--x2, 

Kw 
is not correct. If we differentiate this an- 
swer, treating h,’ as a constant, we obtain 

d(W 2Q .2x 
-=-- , 

dx Kw 
since the derivative of x2 with respect to x 

is 2x. This result is not the differential equa- 
tion with which we started, so the equation 
of your answer is not the solution we require. 

Return to Section 9 and choose another 
answer. Keep in mind that the equation you 
select must yield the result 

d(P) 2Q 
-= -- 

dx Kw 
when it is differentiated. 

Your answer in Section 40, 
Q -KW2) 

-- -9 
2crb dr 

states that flow, divided by cross-sectional 
area, is proportional to the gradient of the 
square of head. Thus it cannot be a valid 

is not correct. Darcy’s law states that flow, 
application of Darcy’s law to the problem. 

Return to Section 40 and choose another 
divided by cross-sectional area, must be pro- answer. 
portional to the head gradient. Your answer 

018 
Your answer in Section 2 is not correct. slope, as in the answer you chose, the deriva- 

The equation in Se&ion 2 states that the de- tive cannot be constant. 
rivative of head with respect to In r is a con- Return to Section 2 and choose another 
stant. This derivative is simply the slope of answer. 
a plot of 12 versus In T. If such a plot changes 
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Your answer in Section 38 is correct ; inas- 

much as log r changes by the same amount 
between 10 and 1 as it does between 1,000 
and 100, th.e head changes by the same 
amount in these two intervals. If we were to 
replot head ldirectly versus radius, r, rather 
than versus log r, we would no longer have a 
straight line, but rather a “logarithmic” 
curve, as shown in the sketch. The gradient 
becomes progressively steeper as we ap- 
proach the .well, to compensate for the de- 
creasing cross-sectional area of flow. This 
logarithmic pattern of head decline is some- 
times referred to as the “cone of depression” 
in the potentiometric surface around the well. 

QUESTION 

The equation obtained in Section 38 can be 
applied between the radius of the island, ret 
and the radius of the well, r,, to obtain an 
expression for the head difference between 
the well and edge of the island. If h, repre- 
sents the head at the edge of the ieland (that 
is, the level of the open water surrounding 
the island) and h, represents the head in the 

h 

I I I 
0 100 1,000 r 

Arithmetic scale 

well which of the following expressions 
would result from this procedure? 

Turn to Section: 

&5Bogr” 
he-h,=- - 

2srKb re 
2.3Qlogc 

he-h,,,=- - 
2rKb rw 

28 

3 

2.3Q 
h,-h,=- (log r,-log r,) 30 

2nKb 

Your answer in Section 8 is not correct. If 
we were to write the solution to the equation 

Q dh 
-= -K- 
A dx 

in the most, general form, we would write 
Q h=- -x+c 

KA 
where c could represent any constant term 
we wish. No matter what value we assign c, 
so long ,as it is constant (not dependent on 
x) its d,erivative with respect lo x will be 
zero. Thus regardless of the value of c, differ- 
entiation will yield the result 

dh Q -= 
dx -iGi 

which is equivalent to our given differential 
equation. Clearly we can assign an infinite 
number of values to the term c, and obtain 
an infinite number of distinct equations 
(solution,s) which we can differentiate to 
obtain our differential equation. Each of 
these solutions is the equation of a straight 
line; that is, each has a slope, dh/dx, equal 
to - (Q/KA) , ,and ,each has a distinct inter- 
cept on the h axi,s, where x= 0. This inter- 
cept is simply the value of the constant c, 
since if we set x = 0 in the solution we obtain 
h=c. 

Return to Section 8 and choose another 
answer. 
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Your answer in Section 24 is not correct. 

According to Darcy’s law, the specific dis- 
charge, &/A, is given by 

Q -= -K!? 
A di 

If the specifics discharge increases ‘M the 
stream is approached, the head gradient 
dhldx must Lalso increashthat is, become 

steeper-as the stream is approached. A plot 
of h versus distance would thus be some sort 
of curve. In the statement of the problem in 
Section 24, however, head was described as 
increasing linearly with distance away from 
the stream. Since head increases in a linear 
fashion, dh/dx is constant. 

Return to Section 24 and choose another 
answer. 

022 
Your answer in Section 10, 

Q h= -- 
KbwXY 

is not correct. It is true that d.Xerentiation 
of this equation yields the result 

dh Q -= 
dx -Kbw 

which is our given differential ‘equation; but 
this in itself is not enough to make it the 
answer to our problem. If we set x equal to 
zero in the expression 

Q 
h= --x, 

Kwb 
we obtain the result h = 0. That is, this equa- 
tion says that where x is zero, at the edge of 
the stream, hydraulic head is also zero. Ac- 

cording to the statement of our problem, 
however, head i,s equal to h,, the elevation of 
the stream surface above d,atum, at x = 0. The 
solution which we require must not only have 
the property of yielding the given differen- 
tial equation 

dh Q -= 
dx -- Kbw 

when it is differentiated ; it must also have 
the property that when x is set equal to zero 
in the solution, hydraulic head will be h,. 
This is an example of what is meant by a 
boundary condition; the solution must sati’sfy 
a certain condition (h = ho) along a certain 
boundary (x =0) of the problem. 

Return to Section 10 .and choose another 
answer. 

a23 
Your answer, x = 2y + K, in Section 1 is not 

txwrect. We can rearrange the equ’ation you 
selected as follows 

y= 1-x-5 
2 

Now if we differentiate this equation, we 
obtain 

dy 
-= $5, 
dx 

which is not the differential equ,ation with 

which we ,started. We were asked to find a 
solution to the differenti’al equation 

dy 
-K; 

dx- 
that is, we were asked to find an algebraic 
equation which, when differentiated, would 
yield the result dy/dx = K. 

Return to Section 1 and test the remaining 
answers by differentiation, to see which one 
satisfies this condition. 
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Your answer in Section 10, 

Q 
h=h,--x 

Kbw 
is correct. The differential equation tells us 
that a plot ‘of h versus x will be a straight 
line with slope 

Q --; 
Kbw 

while from the other information given, we 
know that at x=0, h is equal to ho. Thus, to 
describe h as a function of x we require the 
equation of a straight line, with h, as the 
intercept and - (Q/Kbw) ,as the slope. We 
can make two tests to verify that we have 
obtained the correct soIution; first, we may 
differentiate the solution with respect to x, 
to see whether we obtain the differential 
equation ; scscond, we may let x equal 0 in the 
solution to see whether the condition that h 
is h, at x=0 is satisfied. Only if our equation 
meets both of these tests i’s it ‘the solution we 
require. The conditioa that h must be h, at 
x=0 is an example of what is commonly 
termed a boundary condition; it is a condi- 
tion which states that h must have a certain 
value along one or another of the bound,aries 
of our problem. The differential equation, 

dh Q -= --? 
dx Kbw 

is in itself insufficient to define head as a 
function of x. It establishes that the graph of 
h versus x will be a straight line with slope 

Q 
--9 

Kbw 

25 cl 
Your answer in Section 24 is correct. This Suppose we now consider an aquifer in 

serves to ,illustrate the dual utility of flow which the flow is unconfined, so that the 
equations i.n ground-water hydraulics-they upper limit of the flow system at any point 
enable us to predict the head distributions is the water surface, or water table, itself. 
associated with various conditions of flow Again we consider uniform flow away from 
and they enable us to draw conclusions re- a stream, as shown in the diagram. It is con- 
garding. ground-water. flow on the basis of venient in this case to take the base of the 
head distrj.butions observed in the field. unconfined aquifer as our head datum. We 

but there are an infinite number of such 
straight lines which we might draw. The 
additional information given by the boundary 
condition-that h must be ho at x =O-per- 
mits us to pick out the particular straight 
line we require, by giving us its intercept. A 
boundary condition is thus a bit of informa- 
tion on the value of head at a known point: 
it provides a reference from which the 
changes in head indicated by a differentia1 
equation may be measured. The processes of 
(1) differentiation to establish that a given 
equation is a solution to a differential equa- 
tion and (2) application of boundary condi- 
tions to establish that it is the particular 
solution that we require may be ,applied to 
problems much more complex than the one 
we have considered here. 

QUESTION 

Suppose that, in measuring observation 
wells tapping ‘a confined aquifer, we observe 
a linear increase in head with distance away 
from a stream or channel which cuts com- 
pletely through the aquifer; and suppose 
this pattern remains unchanged through a 
considerable period of time. Which of the 
following conclusions could we logically draw 
on the basis of this evidence? 

Turn to Section: 

There is no flow within the aquifer. 
There is a steady flow through the 

aquifer into the stream. 
A flow which increases in specific dis- 

charge as one approaches the 
stream occurs in the aquifer. 

42 

25 

21 
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assume that vertical components of flow are 
negligible. Thi,s assulmptioa is never wholly 
satisfied, as movement cannot be ‘entirely 
lateral in and near the free surface, owing to 
the slope of the surface itself. Frequently, 
however, the vertical velocity component is 
slight compared to the lateral and therefore 
can be neglected, as we are doing here. An 
important difference between this problem 
and the confined-flow problem is that here the 
cross-sectional area of flow diminishes along 
the path of flow, as h decreases, whereas in 
the confined problem it remains constant. 

Along a reach of the stream having a length 
W, seepage into the aquifer occurs at a rate 
2Q ; and we assume that half of this seepage 
moves to the right, into the part of the 
aquifer shown in the sketch. 

QUESTION 

According to the assumptions outlined 
above, which of the following relations is 
obtained by ‘applying Darcy’s law to this 
problem ? 

Turn to Section: 

dh 
Q= -Kxw- 

dx 
Q -= -J&F 

bw dx 
dh 

Q= -Kwh- 
dx 

26 

43 

9 

026 
Your answer in Section 25, the diagram of Section 25, the cross-sectional 

dh area of the flow-that is, the cross-sectional 
Q = - Kxw--, 

dx 
area taken at right angles to the direction of 
movementnan be seen to be equal to wh. 

is not correct. Darcy’s law states that the In the answer which you chose, the term xw 
flow i,s the product of the hydra.ulic conduc- appears as the ,area of flow. 
tivity, the cross-sectional ‘area of flow, and Return to Section 25 and choose another 
the (negative) head gradient. Referring to answer. 

027 

I ! 
rl 

Your answer, 2tib, in Section 41 is correct. 

0 
The flow is radially inward in the (negative) 
r direction-that is, parallel to the r axis of 

polar coordinates. The cross-sectional area of 
flow is a surface which is everywhere normal 
to this direction of flow; hence it is a cylin- 
drical surface, and its area is given by the 
expression for the area of a cylinder. 

As we proceed inward along the path of 
flow ,in this problem, the cylindrical area of 
flow becomes smaller and smaller, as illus- 
trated in the sketch. This is also evident from 
our expression for the cross-sectional area, 
which tells uIs that as r decreases, the area 
must decrease. 
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27 Cl -Con. 

QUESTION 

Which of the following statements is cor- 
rect? 

Turn to Section: 

(a) Although cross-sectional area is 
decreasing, radius is Ialso de 
creasing. These factors com- 
bine in such a way that the 
hydraulic gradient remains 
constant. 11 

(b) Cross-sectional area decreases 
along the path of flow, while 
discharge remains constant ; 
therefore, the hydr,aulic gradi- 
ent must increase along the 
path of flow. 

(c) Cross-sectional area of flow de- 
creases Ialong ;the path of flow, 
but this is offset by conver- 
gence of the flowlines toward 
the well, and no increase in the 
hydraulic gradient occurs. 

40 

32 

280 
Your answer in Section 19, 2.39 

2.3Q 
log?, 

hz-h1=- log5 
ho-h,,,=- 27rKb r2 

2xKb re Comparison with the equations in Section 38 
is not correct. If we let h, <and r, be repre- will show thhat this is not the form which we 
sented by II, and rz, and if we let h, and r, require. 
be represented by h1 and rl, your answer can Return to Se&cm 19 and choose another 
be restated in the form answer. 

29 0 

Your answer in Section 7 is not correct. 
The given differential equation 

Q 3 
-=-A- 

A dx 
can be rearranged to 

dh Q -= 
dx xi’ 

In order for all three of the given expres- 
sions to be solutions to this equation, all 
three would have to yield - (Q/KA) as the 
derivative of h with respect to x. But if we 
differentiate expmssion (c), for example, 
which was 

h=h,-:xP+‘7, 
KA 

we obtain 

dh -2Q -z-x, 
dx KA 

which is not the’given differential equation. 
Thus we can see that at least expression (c) 
does not satisfy the given equation. 

Return to Section ‘7 and test the remaining 
expressions, by differentiation, in order to 
find the correct answer. 
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030 
Your answer in Section 19, right in your answer will be negative, imply- 

ing that h, is greater than h,. Thi,s does not 
he-h,,= Z(log r,-log r,), make sense; the head in a discharging well 

ii- cannot be greater than the head ,at the radius 
is not correct. The term log re will obviously of influence of the well. 
be greater than log r,, since rs is much Return to Section 19 and choose ,another 
greater than rW. Thus the expression on the answer. 

031 
Your answer in Section 2 is not correct. 

If equal changes in head were observed over 
intervals representing equal changes in r, 
we could write 

ah 
- = constant 
AT 

where Ah is the change in head which is 
always observed over any interval of radial 
width hr. In derivative form this would be 

dh 
-= constant, 
dr 

and this is not the condition which has been 
shown to apply to this problem. The condition 
our plot must satisfy, rather, is 

dh 
- = constant. 
d(ln r) 

Return to Section 2 and choose another 
answer. 

032 
Your answer in Section 27 is not correct. teristic of the discharging well problem; in 

The convergence of flowlines toward the well effect the decreasing flow area has a dominant 
does not compen,sate for the decrease in flow influence on the form of the head distribution 
area; it is, rather, caused by this decrease in around the well. 
flow area. The decrease in flow area as the Return to Section 27 and select another 
well is approached is a fundamental charac- answer. 

033 
Your answer in Section 40, 

Q -K!! -- 
A d3G) 

set up an x axis along which head could vary. 
The answer which you (selected involves a 
derivative of head with respect to x and thus 
cannot apply to our problem. 

is not correct. The x coordinate ww not used Return to Section 40 and choose another 
in our analysis of this problem : we did not answer. 
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Your answer in Section 38 is not correct. is the same for two different intervals, then 
The equation the head drops across those intervals must be 

2.39 
- log? 

equal. For the two intervals mentioned in the 
h,-h,=- answer which you chose, these ratios are 

2xKb rl 10/l and lOOO/lOO. 
indicates that if the ratio r,/r,-that is, the Return to Section 38 and choose another 
ratio of the outer radius to the inner radius- answer. 

35 cl 
Your answer in Section 40 is correct. The 

hydraulic gradient here is dh/dr, since flow 
is in. the r direction. We assume radial sym- 
metry around the well, so that the angular 
polar coordinate, 8, need not appear at all. 
We now rewrite the equation which you se- 
lected in th.e form: 

dh Q T-E-, 
dr 2irKb 

and we focus our attention for a moment on 
the left-hand member. According to the rules 
of differentiation we may write: 

dh dh d (In r) -= 
dr d (in r) dr 

where In r denotes the natural logarithm of 
r; and we may recall from in,troductory cal- 
culus that the derivative of In T with respect 
to r is given by 

d(In T) 1 

dr r 

QUESTION 

Using these expressions, which of the fol- 
lowing may be obtained as a correct restate- 
ment of the differential equation for the 
problem? 

Turn to Section: 

dh Q(ln r) 
-= 39 
dr 2rrKb 

dh Q -=- 2 
d (In r) 2~Kb 

dh Q 
(In r)-=- 13 

dr 2sKb 

36 0 
Your answer in Section 10, 

Q 
h=2Q--2, 

Kwb 
is not correct. This answer is indeed a solu- 
tion to our differenti,aI equation, for when we 
differentiate it we obtain the differential 
equation 

dh Q - --* 
ii- Kbw 

However, if we set 2 equal to zero in the 
answer which you chose, we find &at hy- 
draulic head, h, is equal to 2Q at the point 
where x is zero-that is, at the edge of the 

stream. In the discussion of Section 10, how- 
ever, it was stated that hydraulic head was 
equal to ho at the edge of the stream-h,, 
being the elevation of the stream surface 
above datum. This problem illustrates wh,at 
is meant by <tithe berm boundary condition; 
the solution must satisfy a condition along 
one boundary (h = ho at z = 0) in addition to 
satisfying the given djfferentiai equation. 
There are an infinite number of possible solu- 
tions to the above differential equation, but 
only one which satisfies this required bound- 
ary condition. 

Return to Section 10 and choose another 
answer. 
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037 
Your answer in Section 38 is not correct. 2.39 

If the equation hmo-h1o= =- . 1. 

2.3Q 

0 

2rKb 
h,-h,=- log ?- Return to Section 38 and choose another 

2nKb rl answer. 
is applied to the two intervals in question, 
we have 

h,,-h,= 
2.3Q 
-log 1 
2nKb 

and 

038 
h 

Your answer in Section 2 is correct. The 
equation states that the derivative of h with 
respect to In r is a constant. Thus a graph of 
h versus In r will be a straight line, which 
will have a slope equal to 

Q 

BrrKb- 

The sketch shows such a graph. As In r 
changes from In rz to In rl, head decreases 
from h, to h,; and as with any straight line 
function, the change in head can be obtained 
by multiplying the change in the independent 
variable by the slope of the line; that is, 

Q 
hz-hl= -((In r,-ln r,). 

2rKb 

I I ’ ,ln+ 
In r1 In 7, 

I I I I 
1 10 100 1,000 ?- 

Logarithmic scale 

This can be written in the equivalent form 
Q 

h,-h,=- InrL 
2,rKb r, 

inasmuch as the difference between In r2 and 
In r1 is simply the log of the quotient 
In (rJr,). At this point it is convenient to 
change from natural logs to common logs. 
This involves only multiplication by a con- 
stant-that is In r=2.3 log r, where log r 
denotes the common logarithm, or log to the 
base 10. Making this change, our equation 
takes the form 

or 

hz-ht= 
2.39 

-(log ?-*-log r1). 
2rKb 

Again a graph can be plotted of h versus 
log r-or, to do the same thing mode con- 
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38 0 -Con. 

veniently, a. graph ca.n be plotted of h versus 
r on semilog paper, as shown in the sketch. 
Since we have only multiplied by a constant, 
the graph remains a straight line. 

QUESTION 

On the basis of the graph shown in the 
figure and the equations given above, which 
of the following statements is correct? 

Turn to Section: 

(a) The head drop between r = 10 and 
r=l is equal to that between 
r = 1,000 ‘and r = 100. 19 

(b) The head drop between r= 10 and 
r= 1 is less than that between 
r= 1,000 and r= 100. 34 

(c) The head drop between r = 10 and 
r= 1 is much greater than that 
between r=lOO and r=lO. 37 

390 
Your answer in Section 35, 

dh Q(lnr) 
-=-? 
dr 2rKb 

is not correct. The following relations were 
given in Section 35: 

dh dh d (In r) -=-.- 
dr d(ln r) dr 

and 
d(lnr) 1 
-=-* 

dr r 
Combining these, 

dh 1 dh 
_=- . -. 
dr r d (In r) 

In the question of Section 35, the idea is 
to substitute the term 

1 dh 
--- 
r d(lnr) 

for the term 
dh 

z 
in the differential equation for our problem. 

Return to Section 35 and choose another 
answer. 

40 Cl 

Your answer in Section 27 is correct. The 
decrease in cross-sectional ‘area must, accord- 
ing to Darcy’s law, be accompanied by a 
steepening of the hydraulic gradient. When 
we apply Darcy’s law to this problem, weiill 
omit the customary negative sign. This is 
done because Q, the well discharge, must 
itself carry ‘a negative sign in this problem, 
since it is oriented toward the well, in the 
direction of decreasing values of r. The nega- 
tive sign ,on Q combines with the negative 
sign used by convention in Darcy’s law to 
yield an equation in positive terms. 

QUESTION 

Which of the following expressions is a 
valid application of Darcy’s law Q this prob- 
lem, and hence a valid differential equation 
for the problem ? 

Q dh 
-K- -- 

Turn to Section: 

A dx 

-=K!! Q 
2crb dr 
Q -K d(W -- - 

2,rrb dr 

33 

36 

17 
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041 
Your answer in Section 9, 

jp=@-2&_, 
Kw 

is correct. The solution indicates ‘that h will 
have the form of a parabola wh,en plotted 
versus x in this cas’e. The para,bolic steepen- 
ing of the hydraulic gradient compensates 
for the progressive decrease in flow area, in 
such ‘a way that Da.rcy’s law is always sa.ti,s- 
fied. This approximate theory of unconfined 
flow was introduced by Dupuit (1863) and 
the assumptions involved in it a)re frequently 
referred to as the Dupuit assumptions. If 
the method is used in cases where these 
assumptions do not apply, serious errors can 
be introduced. 

We next consider another problem in 
which the cross-sectional area of flow dimin- 
ishes along the path of flow, leading to a 
progressive steepening of the hydraulic 
gradient. In this case, however, the decrease 
in area is generated by cylindrical geometry 
rather than by the slope of a free surface. 

The figure shows a well located at the cen- 
ter of a circular island. The well taps a con- 
fined aquifer which is rech’arged by the open 
water around the perimeter of the isltand. 
During pumping, water flows radially inward 
toward the well. We assume that the open 
water around the island maintains the head 
at a co&ant level along the periphery o,f the 
aquifer ‘and that the recharge along this 
periphery equals the well discharge. Since 
the well is at the center of the island and the 
island is circular, we can assume that cylin- 
drical symmetry will prevail; we can there- 
fore introduce polar coordinates to simplify 
the problem. 

QUESTION 

If b represents the thickness of the aquifer, 
which of the following expressions repre- 
sents the cross-sectional area of flow at a 
radial distance r from the axis of the well? 

Turn to Section: 

2xrb 27 
rr’b 12 
274 6 

042 
Your answer in Section 24 is not correct. 

The ,statement that there is ,a linear increase 
in head with distance away from the stream 
implies that there is a non-zero slope, dh/dx, 
in the potentiometric surface, and this in 
turn implies that flow exists in ,the aquifer. 
Darcy’s law states that 

Q= -K/l!!. 
dx 

Hydraulic conductivity, K, may be very low, 

but cannot be considered equal to zero as long 
as we ‘are dealing with an aquifer in the 
normal sense of the word. Thu,s in order for 
Q to be zero, through a given area A, the head 
gradient dh/dx ‘normal to A must be zero. In 
this case we have observed a head gradient 
which is not zero in the aquifer, so we know 
that flow of some magnitude must exist in 
the aquifer. 

Return to Section 24 and choose another 
answer. 



52 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

43 Cl e 
Your answer in Section 25, 

Q dh 
-= -K-, 
bW dx 

is not correct. You have taken the cross- 
sectional area of flow to be bw-that is, the 
product of aquifer thickness and width of 
section. An examination of the figure in Sec- 

tion 25 will show tiat thi,s does not represent 
the actual area of flow. The aquifer is not 
saturated through its full thickness, but 
rather to a distance h above the base of the 
aquifer. Thus, the cross-sectional area of flow 
is wh, rather than bw. 

Return to Section 25 and choose another 
answer. 



Port IV. Ground-Water Storage 

Introduction 

In Parts II and III we dealt with aquifers the differential equations for a simple case 
and porous media only as conduiOs-that is, of nonequilibrium flow by combining the 
we discussed only their properties rel,ating storage equation with D,arcy?s law, by means 
to the transmission of water in steady flow. of the equation of continuity, which is simply 
Aquifers have another very important hy- a statement of the principle of conservation 
draulic property-that of water storage. In of mass. In Part VI, we will repeat this 
Part IV we will examine this property of process fos the case of nonequiliblrium radial 
ground-water storage and develop an equa- flow to a well and will obtain an important 
tion to describe it. In Part V we will develop solution to the resulting differential equation. 

0 1 

The picture shows an open tank, having a 
square base of area A. If a volume of water, 
AV, is poured into this tank, the water level 
will rise by an increment, Ah, such that 

aV=A.Ah. The total volume, V, of water in 
storage in the tank at any time can be deter- 
mined by measuring the depth, h, of water 
in the tank and multiplying this depth by A. 

QUESTION 

Suppose the total volume of water in stor- 
age is plotted as a function of the level of 
water in the tank, so that the volume asso- 
ciated with any water level can be read 
directly from the plot. The graph will be : 

Turn to Section: 

(a) a parabola with slope $ 

AV 

10 

(b) a straight line with slope z=A 11 

(c) a logarithmic curve 9 
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Your answer in Section 26 is not correct. 
The volume of water present in the sand 
initially was hAn. A certain fraction, /3, of 
this fluid volume wus drained off by gravity, 
leaving the fraction 1 -p istill occupied by 
fluid. p thus represents the fraction of the 
total pore ‘space, below the level h, which does 
does not al,ready contain water, and which 

must be refilled in order to resaturate the 
sand to the level h. That is, in order to re- 
saturate the sand to the level h, a volume of 
water equal to this unoccupied pore volume 
must be pumped into the tank. 

Return to Section 26 and choose another 
answer. 

3 

Your answer in Section 21 is not correct. depends upon the size of the prism consid- 
In the imaginary experiment described in ered, as well as upon the type of aquifer 
Section 21, it was stated that doubling the material ; it cannot be considered a constant 
base area of the prism had the effect of representative of the aquifer material 
doubling the slope of the V,h plot-that is, Return to Section 21 and choose another, 0 
of doubling the term dV/dh. Thus, dV/dh answer. 

4 

Your answer in Section 16, 
AV dv 

-=-=np, 
Ah dh 

is not correct. It neglects the effect of the 
base area, A, of the tank. 

We have seen that when the tank is drained 
by gravity and then resaturated to the level 
h, the relation between V and h is 

V= hAnp 
where n is the porosity of the sand and p the 
fraction of the water in the sand that can be 
drained out by gravity. Now if, instead of 

draining the sand to the bottom of the tank, 
we simply remove a small volume of water, 
AV, so that the water level in the tank falls 
by a small amount Ah, we should expect AV 
and Ah to be related in the same way as V 
and h in our previous experiment. If we are 
resaturating the sand by increments, when 
it has previously been saturated and then 
drained by gravity, the same relation should 
hold. 

Return to Section 16 and choose another 
answer. 
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5 
Your answer in Section 20 is not correct. Keep in mind that the storage coefficient of 

If each well penetrated both aquifers, there the artesian zone will probably be smaller 
would be no reason for the responses of the than the specific yield of the water-table 
two wells to differ. The. form of the response aquifer by at least two orders of magnitude. 
might be difficult to predict, but at least it Return to Section 20 and choose another 
should be roughly the same for each well. answer. 

6 
Your answer in Section 32 is correct. Spe- 

cific yield figures for normal aquifer ma- 
terials may range from 0.01 to 0.35. It is 
common to speak of the specific yield of an 
unconfined aquifer as a whole ; but it should 
be noted that the process of release from un- 
confined storage really occurs at the water 
table. If the water table falls or rises within 
an aquifer, into layers or strata having dif- 
ferent hydraulic properties, specific yield 
must change. In ,addition, of course, ‘specific 
yield can vary with map location, in response 
to local geologic conditions. 

II 

4 

Piezometer 

: 

d-i Water level 

Sides of prism 
hydraulically seated 

0 

I Datum 

Confining 
material 

Unconfined storage is probably the most 
important mechanism of ground-water stor- 
age from an economic point of view, but it 
is not the only ‘sucth mechanism. Storage 
effects have also been observed in confined 
or artesian ‘aquifers. The mechanism of con- 
fined storage depends, at least in part, upon 
compression and expansion of the water it- 
self and of the porous framework of the 
aquifer; for this reason confined storage is 
sometimes referred to as compressive stor- 
age. In this outline we will not attempt an 
analysis of the mechanism of confined stor- 
age, but will concentrate instead on develop- 
ing a mathematical description of its effects, 
suitable for hydrologic calculations. A dis- 
cussion of the mechanism of confined storage 
is given by Jacob (1950, p. 328-334), and by 
Cooper (1966). 

The diagram shows a vertical prism ex- 
tending through a uniform confined aquifer. 
The base area of the prism is A. Although the 
prism remains structurally a part of the con- 
fined aquifer, we suppose it to be isolated 
hydraulically from the rest of the aquifer by 
imaginary hydraulic barriers, so that water 
added to the prism remains within it. We 
further imagine that we have some method 
of pumping water into the prism in measured 
increments, and that we have a piezometer, 
as shown in the diagram, through which we 
can measure the head within the prism. 

(continued on next page) 
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6-con. 
QUESTION 

Suppose that head is initially aat the level 
h,, which is above the top of the aquifer, in- 
dicating that the prism is not only saturated, 
but under confined hydrostatic prossure. We 

1 
Hydraulic head, h 

designate the volume of water in storage in 
this initial condition as VI. Now suppose 
more water is pumped into the prism by 
increments ; and that the head is measured 
after each addition, ,and a graph of the vol- 
ume of water in storage versus the hydraulic 
head in the prism is plotted. If the resulting 
plot had the form shown in the figure, which 
of the following statements would you accept 
as valid? 

Turn to Section: 

(a) The rate of change of volume of 
water in confined storage, with 
respect to hydraulic head, h, is 

dV 
constant; that is -= constant 21 

dh 
(b) The rate of change of hydraulic 

head with respect to volume in 
storage, depends upon the vol- 
ume in storage. 23 

(c) The rate of change of volume in 
storage, with respect to the base 
area of the prism, is equal to Ah. 30 

7 
Your answer in Section 32 is not correct. very large quantity. As we wish specific 

One important concept wh,ich is missing from yield to represent a property of the aquifer 
the definition you selected is that specific material, we define it in terms of the volume 
yield refers to a unit base area of the aqui- that can be drained per unit map area of 
for. The definition you selected talks about aquifer. 
the volume of water which can be drained Return to Section 32 and choose another 
from the aquifer-this would vary with ex- answer. 
tent of the aquifer and would normally be a 

8 

Your answer in Section 25 is not correct. 
The relation given in Section 25 for the rate 
of release of water from storage was 

!!L&dh 
dt dt 

where S is the storage coefficient, A bhe area 
of aquifer under study, and dh/dt the rate 

of change of head with time within that area 
of aquifer. In tie question of Se&ion 25, the 
the specific yield of the water-table aquifer 
was given ELLS 0.20, and the rate of decline of 
water level in the shallow well was given as. 
0.5 foot per day. The surface area of a section 
of the aquifer within a 10 foot radius of the 
well would #be T x 102, or 314 square feet. The 
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&-con. 
rate of release from storage in this section Return to Section 25 and choose another 
would therefore be answer. 

~=SA~=O.2~314xO.5 
dt dt 

= 31.4 cubic feet per day. 

9 
Your answer in Section 1 is not correct. 

Whenever we add a fixed volume of water- 
say 10 cubic feet-to the tank, the water level 
must rise by a corresponding fixed amount. 
If the base area of the tank is 5 square feet, 
the addition of 10 cubic feet of water must 
always produce an increase of 2 feet in h; 
the addition of 15 cubic feet of water must 
produce an iacrease of 3 feet in h; and so on. 
The ratio AV/Ah in this case must always 

be 5. In other words, the ratio AV/Ah is con- 
stant and is equal to the base area, A, of the 
tank. 

Now if we plot V versus h, the slope of 
this plot will be AV/Ah, by definition. This 
slope, as we have seen a,bove, must be a con- 
stant. A logarithmic curve does not exhibit 
a constant slolpe. 

Return to Section 1 and choose another 
answer. 

10 
Your answer in Section 1 is not correct. 

The increment in the volume of water within 
the tank, resulting from an increase in water 
level of Ah, is given by AV=AAh. Thus, 

AV 
-A -- 

ah 
where A, the base area of the tank, is a con- 
stant. If we construct a plot of V, the vol- 

ume of water in the tank, versus h, the level 
in the t,ank, the slope of the plot will by defi- 
nition be AV/Ah; but since AV/Ah is a con- 
stant, the plot cannot be a parabola. The 
slope of a parabola changes continuously 
along the graph. 

Return to Section 1 and choose another 
answer. 

11 
Your answer in Section 1 is correct. The 

slope of the graph, AV/Ah or dV/dh, is con- 
stant and equal to A. Thus the volume of 
water in storage per foot of head (water 
level) in the tank is A. 

Now consider the tank shown in the 
sketch. It is similar to the one we just dealt 
with, except that it is packed with dry sand 
having an interconnected (effective) poros- 
ity denoted by n. The tank is open at the top 
and has a base of area A. Water can be 
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ll-con. 
pumped int.o the tank through a pipe con- which water rises in the piezometer. Neglect- 
netted at its base, and the water level within ing all capillary eff&s, which of the follow- 
the tank-that is, the level of saturation in ing expressixons wo,uld constitute a valid re- 
the sand--c:an be measured by means of a lation between the volume of water pumped 
piezometer, also connected at the base of the into the tank and the rise in water level above 
tank. the base of the tank? 

Turn to Section: 
QUESTION V=Ah 31 

Suppose we pump a small volume of water, h=VAn 12 
V, into the tank and observe the level, h, to V=hAn 14 

12 
Your answer in Section 11 is not correct. urated pore space. A review of the definition 

If the water rises to a level h above the base of porosity as given in Part I may help to 
of the tank, the bulk volume of saturated clarify this. 
sand (neglecting capillary effects) will be Return to Section 11 and choose another 
hA. This bulk volume must be multiplied by answer. 
the porosity to obtain the total volume of sat- 

13 
Your answer in Section 25 is correct. The 

release from storage in a given area in the 
water-table aquifer is given by 

dV 
-=S,A~=0.2xAx0.5=0.1A. 
dt dt 

The release. from storage in an equal area in 
the artesian aquifer would be 

~=S.~d~=2x10-“xAx5=0.001A. 
dt dt 

Thus the water-table contribution exceeds 
the artesian release by a factor of 100. 

This completes our introductory discussion 
of aquifer storage. You may go on to Part V, 
in which we will combine the concept of 
aquifer storage with Darcy’s law, using the 
equation of continuity, to develop the differ- 
ential equation for a simple problem in non- 
equilibrium ground-water flow. 

14 
Your answer, V= hAn, in Section 11 is cor- Turn to Section: 

rect. Now suppose water is ‘added to the tank AV 1 

in increments, and h is measured after the (a) a straight line with slope k=~ 17 

addition of each increment; and suppo,se a 
graph of V versus ‘h is plotted, where V is the AV 

(b) a straight line with slope -= An 26 
total or cumulative volume which has been Ah 
added, and h is the water level in the tank. (c) a logarithmic curve with slope 

QUESTION depending on h 22 

Again neglecting all capillary effects, the 
resulting graph would be: 
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15 
Your answer in Section 20 is not correct. 

The specific yield of the water-table aquifer 
would normally be greater than the storage 
coefficient of the artesian zone by at least two 
orders of magnitude. A seasonal fluctuation 
in pumpage would usually involve a brief 
withdrawal from storage, or a brief period of 
accumulation in storage. The two aquifers 
are pumped at about the same rate, so pre- 
sumably seasonal adjustments in the pump- 
age will be of the same order of magnitude 

for each. However, the response of the two 
aquifers to withdrawal (or accumulation) of 
a similar volume of water wbuld be com- 
pletely different, and wonld be governed by 
their storage coefficients. The aquifer with 
the higher s,torage coefficient could sustain 
the withdrawal with lees drawdown of water 
level than co,uld the aquifer with the lower 
storage coefficient. 

Return to Section 20 and choose another 
answer, 

16 
Your answer, V= hAnp, in Section 26 is 

correct. This expression gives the volume of 
water withdrawn in draining the tank by 
gravity, and the volume which must be added 
to resaturate the ‘sand to the original level, 
under our assumption that the fraction held 
by capillary forces is constant. 

QUESTION 

Suppose, subject to the same assumption, 
that the tank is drained by removing incre- 
ments of water (or resaturated by adding 
increments of water) and a graph of the vol- 
ume of water in storage, V, versus the level 

of saturation, h, is plotted from the results 
of the experiment. Which of the following 
expressions would describe the slope of the 
resulting graph ? 

AV dv 
-=.,=np 
ah dh 

Turn to Section: 

4 

AV dV 
-=-=Anfl 
ah dh ’ 
AV dV 
h=dh=hAnp 29 

17 
Your answer in Section 14 is not correct. already saturated to some level, and an addi- 

We have seen that if a volume of water, V, tional volume of water, Av, is pumped in, 
is pumped into the tank when it is initially the water level will rise by an increment Ah, 
dry, the equation such that 

V=h-A-n Av=Ah * A - n. 
describes the relation between V and h, the Return to Section 14 and use this reltion 
level of water in the sand. If the sand is in choosing another answer. 
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Your answer in Section 26 is not correct. 
h*A .n would represent the volume of water 
required to raise the water level to a distance 
h above the base of the tank, if the sand were 
initially dry. In this case, however, the sand 
is not initially dry. Some of the pore space is 
already occupied by wa,ter at the beginning 
of the experiment, since after drainage by 
gravity, capillary effects cause some water 
to be held in permanent retention. The vol- 
ume of water which must be added to resat- 
urate the sand to the level h is equal to the 
volume of pore space below the level h which 

does not already contain water. The total 
volume of pore space below the level h is 
h*A an; when the sand was initially sat- 
urated, this entire volume contained water. 
When the sand was drained, a certain frac- 
tion of this water, which we designate p, 
was removed. The remaining fraction, 1 -p, 
was held by capillary retention in the sand. 
Thus p represents the fraction of the pore 
space which is empty when we begin to refill 
the tank. 

Return to Section 26 and choose another 
answer. 

19 
Your answer in Section 33 is not correct. 

Because the aquifer material is identical to 
the sand of our tank experiments and because 
the base area of our prism of aquifer is equal 
to the base <area. of our tank, we should expect 
the relation between volume released from 
storage and decline in water level within the 
prism to be identical to that obtained for the 
tank. In the answer which you selected, how- 

ever, there is no description of the effect of 
capillary retention. Remember that the fac- 
tor p, which was used in the tank experiment 
to describe the fraction of the water which 
could be drained by gravity, as opposed to 
that held in capillary retention, must appear 
in your answer. 

Return to Section 33 and choose another 
answer. 

20 
Your answer in Section 21 is correct. The 

results of the imaginary experiment suggest 
that the term 

1 dV 
-- 
A dh 

is a constant for the aquifer material. 
In practice, in dealing with the confined or 

compressive storage of ‘an aquifer, it is usually 
assumed that the quantity (l/A) (dV/dh) 
is a constant for the aquifer, or is at least a 
constant for any given looation in the aquifer. 
This quantity, (l/A) (dV/dh), is denoted S 
and is called the confined or compressive stor- 
age coefficient, or simply the storage coeffi- 
cient, of the aquifer. 

It would of course be difficult or impossible 
to perform the experiment described in Sec- 
tion 6. However, if storage coefficient is de- 
fined by the equation 

1 dV 
S=--, 

A dh 
a nonequilibrium theory can be developed 
from this definition which explains many of 
the observed phenomena of confined flow. 

The following points should be noted re- 
garding confined storage coefficient : 
(1) The storage coefficient is the volume of 

water released from storage in a 
prism of unit area, extending through 
the full thickness of the aquifer, in 
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response to a unit decline in head. 
This statement can be appreciated by 
a review of the hypothetical experi- 
ment described earlier, or by letting 
A = 1 in the finite-difference form of 
the definition, S= (l/A) (hV/hh) . 

(2) The definition of storage coefficient is 
simila#r to that of specific yield, in the 
sense that each is defined as the term 
(l/A) (dV/dh), for a prism extend- 
ing through an aquifer. Thus in many 
applications, the two terms occupy the 
the same position in the theory. In the 
case of an unconfined aquifer the spe- 
cific yield is often referred to as the 
storage coefficient. 

(3) It shonld be noted, however, that the 
processes involved in the two types of 
storage are completely different. With- 
drawal from or addition to unconfined 
storage takes place at the water table ; 
it is spoken of as occurring in a prism 
of aquifer because it is usually the 
only significant form of storage within 
such a prism in most water-table situ- 
ations. Confined storage effects, on the 
other hand, are distributed through- 
out the vertical thickness of an 
aquifer. 

(4) Confined storage coefficient values are 
generally several orders of magnitude 
less than specific yield values. Specific 
yields range typically from 0.01 to 
0.35, whereas confined storage values 
usually range from 1O-6 tc 1O-5. 

The definition of confined ,&rage in terms 
of a prism extending through the aquifer i,s 
adequate where ,tbe flow is entirely horizon- 
tal-that is, where no differences in head or 
in lithology occur along a vertical within the 

aquifer. Where vertical differences do occur, 
-one must allow fo,r the possibility 09 different 
patterns of storage release at different points 
along the vertical, and a storage definition 
b’ased on a prism is no longer adequate. Use 
is therefore made of the specific storage, S,, 
which is dedned las the volume of water re- 
leased from confined storage in ,a unit vol- 
ume of aquifer, per unit decline in head. In 
a holmogeneous aquifer, S, would be equal to 
5’ divided by the thickness of the aquifer. 

QUESTION 

Consider a small ground-water basin that 
has both an artesian aquifer and a water- 
table aquifer. Regional withdrawal from the 
artesian aquifer is about equal to that from 
the water-table aquifer, and seasonal fluc- 
tuations in pumpage are similar. Records are 
kept on two olb,servation wells, neither of 
which is in the immediate vicinity,of a dis- 
charging well. One well sho,ws very little 
fluctuation in water level in response to sea- 
sonal variations in pumpage, while the other 
shows great fluctu’ation. Which of the follow- 
ing statementc would more probably be true? 

Turn to Section: 

(a) The well showing little fluctuation. 
taps the water-table aquifer, 
while that showing great fluc- 
tuation taps the artesian zone. 25 

(b) Each well penetrates both aquifers. 5 

(c) The well showing great fluctuation 
taps the water-table aquifer, 
while that showing little fluc- 
tuation taps the artesian zone. ,lS 
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Your answer in Section 6 is correct. The 
plot is a straight line, so the slope, dV/dh, 
is a constant. Now suppose the prism is ex- 
panded to twice its original base area, and 
our imaginary experiment is repeated ; and 
suppose we observe that, as 8 result of the 
increase in base area, the slope of our V, h 
plot is twice its original value. 

QUESTION 

Let A now represent the base area of any 
general (vertical) prism through the aqui- 
fer ; or in general, let A represent the surface 
area of the section of the aquifer we are iso- 
lating for discussion. On the basis of the evi- 
edence described, which of the following 
statements would you be inclined to accept? 

Turn to Section: 

(a) 
dV 

dh 
is a constant for the aquifer 
material 

(b) The term 
1 dV 

-- 
A dh 

is a constant for the aquifer 
material 

(c) The term 

Adv 
dh 

is a constant for the aquifer 
material 

3 

20 

34 

22 
Your answer in Section 14 is not correct. as well if the water is added to the tank in 

We have seen that, neglecting capillary increments. Each incremental volume of 
effects, there is a linear relationship between water, AV, pumped into the tank produces an 
the volume of water, V, pumped into the tank increment in head, Ah, such that 
when it is initially dry, and the level of 
water, h, above the base of the tank. That is, 

AV=Ah-A-n. 

a constant coefficient, An, relates these two Return to Section 14 and choose another 
quantities : V= h-A en. This linearity holds answer. 

23 
Your answer in Section 6 is not correct. at different values of V. The plot, in other 

The ratio oaf the change of volume of water words, would be some sort of curve. The plot 
in storage, to the change in hydraulic head shown in Section 6, however, is a straight 
is by definition the slope, AV/Ah or dV/dh, linhit has a constant slope, the same for 
of a plot of V versus h. If this rate of change any value of V. 
of V with h were to depend upon V, the plot Return to Section 6 and choose another 
of V versus h would show a different slope answer. 
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24 
Your answer in Section 25 is not correct. 

The relation given in Section 25 for the rate 
of release of water from storage was 

d”+dh 
dt dt 

where S is the storage coefficient, A the area 
of aquifer under study, and dh/dt the rate 
of change of head with time within that area 
of aquifer. In the question of Section 25, S 
was given as 2X lo-” for the artesian aqui- 
fer, ‘and dh/dt, as measured in the deep well, 

was 5 feet per day. A section of the aquifer 
within a 10 foot radius of the observation 
well would have a surface area of ?r x 102, or 
314 square feet. The rate of release of water 
from storage in this section would therefore 
be 

~=SA~=2xlO-‘x314x5 
dt dt 

= 0.314 cubic feet per day. 
Return to Section 25 and choose another 

answer. 

25 
Your answer in Section 20 is correct. Be- 

cause of the higher storage coefficient of the 
water-table aquifer, release or accumulation 
of a comparable volume of water will cause 
a much smaller fluctuation of water level in 
the water-table aquifer than in the artesian 
aquifer. In effect, we have introduced time 
variation into the problem here, since we are 
discussing changes in head with time. To 
bring time into the equati’ons, we may pro- 
ceed as follows. 

Let S represent either specific yield or 
storage coefficient. Then according to our 
definitions we may write, using the finite- 
difference form, 

1 AV 
s=--* 

A ah 
The relation b’etween the volume of water 
taken into or released from aquifer storage 
in a pris,m of base area A and the accom- 
panying change in head, is therefore: 

Av=SAAh. 

Now let us divide both sides of this equa- 
tion by At, the time interval over which the 
decline in head was observed. We then have : 

bV=SAk 
At At 

or, if we are talking about a vanishingly 
small time interval, 

!!LgLldh 
dt dt 

Here dV/dt is th’e time rate of accumula- 
tion of water in storage, expressed, for ex- 
ample, in cubic feet per day ; and dh/dt is 
the rate of increase in head, expressed, for 
example, in feet per day. If we are dealing 
with release from storage, head will decline, 
and both dV/dt and dh/dt will be negative. 
The partial derivative notation, ah/at, is 
usually used instead of dh/dt, because head 
may vary with distance in the aquifer as well 
as with time. This equation is frequently re- 
ferred to as the storage equation. 

The equation can also be obtained using 
the rules of differentiation. For the case we 
are considering we have 

dV dV dh 
-=---9 
dt dh dt 

but from the definition of storage coefficient, 
dV/dh = SA, so that by ‘substitution 

;+A?. 
dt 

(continued on next page) 
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QUESTION 

Suppose we record the water levels in a 
deep observation well, penetrating a confined 
aquifer which h,as a storage coefficient of 
2 x 10-4, and a shallow observation well, tap- 
ping ,a water-table aquifer which has a spe- 
cific yield of 0.20. The water level in the deep 
well falls at a rate of 6 feet per day, while 
that in the shallow well falls at a rate of 0.5 
foot per day. Considering the release of 
water from storage in each aquifer within 
a radius of IO feet of the observation well, 
which of the following statements would be 
most accurate? 

.“I.. I” ““-..-... 

(a) within a radius of 10 feet of the 
shallow well, water is being re- 
leased from storage in the 
water-table aquifer at a rate of 
5 cubic feet per day. 8 

(b) the rate of release of water from 
storage in the water-table aqui- 
fer, within 10 feet of the shallow 
well, is 100 times as great as 
that in the artesian aquifer, 
within 10 feet of the deep well. 13 

(c) within a radius of 10 feet of the 
deep well, water is being re- 
leased from storage in the arte- 
sian aquifer at a rate of 1 cubic 
foot per day. 24 

26 
Your answer in Section 14 is correct. If 

there were no capillary effects, the result of 
filling the tank with sand would simply be to 
take up some of the volume available for 
storage of water. Thus the slope of the plot 
of V versus k for the sand-filled tank would 
differ from that for the open tank (Section 
1) only by the factor n, which i,s the ratio 
of the storage volume available in the sand- 
filled tank to that available in the open tank. 

In practice, of coume, capillary effects 
cannot be neglected. In this development we 
will take a simplified view of these effects, 
as a detailed examination of capillary phe- 
nomena is baeyoad the scope of our discussion. 
Let us assume that due to capillary forces, a 
certain constant fraction of the water in the 
sand is permanently retained. That is, we 
assume that following the initial saturation 
of the sand, we can never drain off by gravity 
the full volume of water which was added 
during the initial saturation. A part of this 
initially added water remains permanently 
held in the pore spaces by capillary attrac- 

tion; thus the amount of water which can be 
alternately stored and recovered is reduced. 

QUESTION 

Suppose the tank is initially saturated to 
a level h and is then drained by gravity. Sup- 
pose further that the ratio of ‘the volume of 
water drained to that initially added is ob- 
served to be p ; that is, the fraction of the 
added water which can be drained is ,f3, while 
the fraction retained in the sand by capillary 
forces is (1 -p) . Subject to our assumption 
that the fraction retained is a constant, 
which of the following expressions gives the 
volume of water which would have to be 
restored 6, the tank, after draining, in order 
to resaturate. the sand to the same level, h, 
as before? 

V=hAn 

V= hA14- 
P 

V=hAnp 

Turn lo Section: 

18 

2 

16 
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27 
Your answer in Section 32 is not correct. A verbal definition of specific yield must 

Your answer defines specific yield as the therefore include this latter concept in some 
quantity (presumably th.e total quantity) of manner-that is, it must indicate that we 
water which can be drained by gravity from are referring to the quantity released from 
a unit area of the aquifer. In the preceding storage per unit decline in head. 
analysis, we developed the concept of specific Return to Section 32 and choose another 
yield in terms of the quantity of water which answer. 
can be drained per unit decline in water level. 

28 
Your answer in Section 33 is not correct. 

The aquifer material was given as identical 
to the sand of the tank experiments described 
previously, and the base area of the prism 
was taken as equal to the base area of the 
tank. We are considering only storage within 
the prism itself, in relation to water level in 
the prism, and are nolt concerned with what 
goes on in the aquifer beyond the boundaries 

of the prism. At this rate, we should expect 
the relation between the volume of water 
drained from storage and the accompanying 
decline in water level to be the same for our 
prism of aquifer as for the tank of the earlier 
experiments. 

Return to Section 33 and choose another 
answer. 

29 
Your answer in Section 16, 

AV dV 
z=z=hAnp 

is not correct. This answer would indicate 
that the relation between V and h-that is, 
the slope of a plot of V versus h-is a func- 
tion of h. However, we have already seen 
that if we refill the tank after it has been 
drained by gravity, we will find V and h to 
be related by a constant Anp. That is, we 

will find that V= hAnp or that the ratio of V 
to h is the constant Anp. If the tank is 
drained by increments, or refilled by incre- 
ments after draining, we would expect the 
same relationship to hold between the incre- 
ments of fluid volume, AV, and the incre- 
ments of head, Ah, as was observed between 
V and h in the ini’tial problem. That is, we 
would expect to find that hV= Ah. Anp. 

Return to Section 16 and choose another 
answer. 

30 
Your answer in Section 6 is not correct. we are considering the relation between the 

Ah represents a simple change in the hy- volume of water in storage and the hydraulic 
draulic head, h. It does not represent any head. We have not yet taken into considera- 
form of rate of change; when we describe a tion the effect of varying the base area of 
rate of change, we always require two vari- our prism of aquifer. 
ables, since we always consider the ratio of Return to Section 6 and choose another 
change of one variable to that of another. answer. 

0 ” At this point of our discussion, moreover, 
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Your answer in Section 11 is not correct. 
The sand-filled tank of Section 11 differs 
from the open tank of Section 1, in that any 
quantity of water pumped into the sand- 
filled tank can utilize only the interconnected 
pore volume as its storage space ; in the open 
tank of Section 1 the full capacity of the tank 
was available. If the sand-filled tank is initi- 
ally empty and a volume of water, V, is 
pumped in, this water will occupy the total 
volume of interconnected space between the 
base of the tank and the height to which the 
sand is saturated (neglecting capillary 

effects). If the water level in the sand is a 
distance h above the base of the tank, the 
bulk volume of the saturated part of the sand 
will be h-A, where A is the base area of the 
tank. However, the volume of injected water 
will not equal this bulk saturated volume, 
but rather the interconnected pore volume 
within the saturated region. A review of the 
definition of porosity as given in Part I may 
help to clarify this. 

Return to Section 11 and choose another 
answer. 

32 

Your answer in Section 33, 

fl=An/i?, 
dh 

is correct. The aquifer material is assumed 
to be identic’al to the sand in the tank experi- 
ments ; if the area of the prism is equal to 
that of the tank, the two plots of storage 
versus water level should be identical. Note, 
however, that area is a factor in the expres- 
sion for dv/dh; if we were to choose a pris- 
matic section of larger area, it would pro- 
vide more storage, per foot of head change, 
than one of smaller area, just as a tank of 
larger base area would provide more stor- 
age, per foot of water-level change, than a 
tank of smaller area. If the base of our prism 
of aquifer ‘were unity, the expression for 
dV/dh would be simply np; and in general, 
an expression could be written for the change 
in storage volume per unit head change, per 
unit area of aquifer, as 

1 dV 
_. -=np. 
A dh 

The term np is referred to as the specific 
yield of an aquifer, and is usually designated 
&,. Because we have assumed (1 -p) , the 
fraction of water retained by capillary forces, 
to be constant, we obtain the result that S, 
is a constant; and for many engineering 
applications, this is a satisfactory approxi- 
mation. It should be noted, however, that it 
is only an ,approximation; the fraction of 
water held in capillary retention may change 
with time, for various reasons, leading to 
apparent variations in S, with time. 

Specific yield describes the properties of an 
aquifer to store and release water (through 
unconfined storage) just as permeability de- 
scribes its properties of transmitting water. 
Mathematically, specific yield is equivalent to 
the term (l/A) (dV/dh) for an unconfined 
aquifer. 

(continued on next page) 
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QUESTION 

On the basis of the above discussion, which 
of the following statements would you select 
as the best verbal definition of specific yield? 

Turn to Section: 

(a) The specific yield of an unconfined 
aquifer is the volume of water 
which can be drained by gravity 
from the aquifer in response to 
a unit decline in head. 7 

(b) The specific yield of a horizontal 
unconfined aquifer is the volume 
of water which is drained by 
gravity from a vertical prism of 
unit base area extending 
through the aquifer, in re- 
sponse to a unit lowering of the 
saturated level. 6 

(c) The specific yield of an unconfined 
aquifer is the quantity of water 
which can be drained from a 
unit area of the aquifer. 27 

-33 
Your answer in Section 16, 

AV dV 
-=-=Anp, 
ah dh 

is correct. The slope of the graph of volume 
of water in sto’rage versus water level-or 
in other words, the derivative of V with re- 
spect to h-would be constant and equal to 
Anp. 

Now suppose that we are dealing with a 
prismatic section taken vertically through a 

uniform unconfined aquifer as shown in the 
figure. The base area of the prism is again 
denoted A. Suppose the aquifer material is 
identical in its hydraulic properties to the 
sand of our tank experiments. We wish to 
construct a graph of the water in recoverable 
storage within the prism versus the level of 
saturation, or water-table level, in the aqui- 
fer in the vicinity of the prism. We are inter- 
ested only in water which can be drained by 
gravity ; water in permanent capillary reten- 
tion will not be considered part of the stor- 
age. 

QUESTION 

Which of the following expressions would 
describe the slope of this graph? 

Turn to Section: 

28 

dv= An 
dh 

19 

g=Anp 32 
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34 
Your answer in Section 21 is not correct. A (dV/dh) would depend upon the size of the 

In the imaginary experiment described in prism considered, as well as upon the type of 
Section 21, it was stated that doubling the aquifer material, and could not be considered 
base area, A, of the prism had the effeot of a constant representative of the aquifer ma- 
doubling the slope, dV/dh, of the V, h plot. terial. 
Thus the term A(dV/dh) would be four Return to Section 21 and choose another 
times as great for the prism of doubled area, answer. 
as for the original prism. That is, the term 



Part’ V. Unidirectional Nonequilibrium Flow 

Introduction 

In Part V, our purpose is to develop the 
differential equation for a problem of non- 
equilibrium flow. To do this, we utilize the 
storage equation, 

$=&, 
dt 

developed in Part IV, and we utilize Darcy’s 
law. These two relations are linked by means 
of a relation called the equation of continuity, 
which is a statement of the principle of con- 
servation of mass. 

In Part VI we will develop the same type 
of equation in polar coordinates land will dis- 
cuss a solution to this equation for a particu- 
lar flow problem. In the course of working 
through Parts V and VI, the reader may 
realize that the relations describing the stor- 
age and transmission of ground water can 
be combined to develop the differential equa- 

tions for many other types of flow; and that 
solutions to these equations can be developed 
for a variety of field problems. 

Before the start of the program of Part V, 
there is a brief discussion, in text form, of 
the significance of partial derivatives, their 
use in ground-water equations, and in par- 
ticular their use in a more general form of 
Darcy’s law. This form of Darcy’s law was 
introduced in the text-format discussion at 
the end of Part II. The discussion here is in- 
tended primarily for readers who may not be 
accustomed to using partial derivatives and 
vector notation. It may be omitted by readers 
conversant with these topics. This discussion 
is not intended ‘as a rigo8rous treatment of 
partial differentiation. Readers who are not 
familiar with the subject may wish to review 
such a treatment in any standard text of 
calculus. 

Partial derivatives in ground-water flow analysis 

When a dependent variable varies with 
more than on’e independent variable, the 
partial derivative notation is used. A topo- 
graphic map, for example, may be considered 
a representation of a dependent variable 
(elevation) which is a function of two in- 
dependent variables-the two map direc- 
tions, which we will call X and y, as shown in 
figure i. If elevation is denoted E, each 
contour on the map represents a curve in the 
X-y plane along which E has ‘some constant 
value, In general, if we move in the X direc- 
tion, we will cross elevation oontours-that 
is, E will change. Let us say that if we move 
a distance Ax parallel to the x axis, E is ob- 
served to change by an amount AE,. We may 

form a ratio, AEJAX, of this change in eleva- 
tion to the length of the x interval in which 
it occurs. If the interval AX becomes vanish- 
ingly small, this ratio is designlated @/ax 
and is termed the partial derivative of E with 
respect ‘to X. aE/ax is adually the slope of 
a plot of E versus x, at the point under con- 
sideration, or the ,slope of a tangent to this 
plot, as shown in figure i. Note that in obtain- 
ing aE/ax we move parallel to the x axis- 
that is, we hold y constant, considering only 
the variation in E due to the change in x. 

Similarly, if we move a small distance, Ay. 
parallel to the y axis, E will again change by 
some small amount, AE,. We (again form a 
ratio, AE,/Ay; if the distance taken along 

69 
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the y axis is vanishingly small, this ratio is 
designated &!C/ay and is termed the partial 
derivative of E with respect to y. Note that 
this time we have moved parallel to the y 
axis; in effect we have held x constant and 
isolated the variation in E due to the change 
in y alone. 

If it happened that land surface varied so 
regularly over the map area that we could 
actually write a mathematical expression 
giving elevation, E, as a function of x and y, 
then we could compute aE/ax simply by dif- 
ferentiating this expression with respect to 
x, treating y as a constant. Similarly, we 
could compute @/ay by differentiating the 
expression with respect to y, treating x as a 
constant. For ,exa.mple, suppose that after 
studying the contour map, we decide that ele- 
vation can be expressed approximately as a 
function of :C and y by the equation 

E=5x2+10y+20. 

Differentiating this equation with respect 
to x, treating y as a constant, gives 

?f= 10x. 
W 

We could, therefore, compute aE/ax at any 
point by substituting the x-coordinate of that 
point into the above equation. Differentiating 
the equation with respect to y, treating x as 
a constant, gives 

aE 
-=lO, 
aY 

indicating that aE/ay has the same value, 
10, at all points of the m,ap. In this example, 
aE/ax turned out to be independent of y 
and aE/ay turned out to be independent of 
both x and y. In gen’eral, however, aE/ax 
may depend on both x and y, and aE/ay may 
also depend on both x and y. For example, if 
E were described by the equation 

E=5x2+5y2+8xy+20, 

differentiation with respect to x: would give 

aE 
-=lOx+8y 
ax 

while differentiation with respect to y would 
give 

aE 
-= 1oy + 8x. 
ay 

In the topographic-map example, aE/ax 
and aE/ay are space derivatives-that is, 
each describes the variation of E in a par- 
ticular dire&ion in space. In the discussion 
given in, this chapter we will use the space 
deriva4iPe of head, ah/ax, giving the change 
in hydraulic head with respect to distance in 
the x direction. In addition, however, we will 
use the time derivative of head, ah/at, giv- 
ing the change in head with respect to time, 
if position is held fixed. ah/at is a partial 
derivative, just as is ah/ax, and it is com- 
puted according to the same rules, by con- 
sidering all independent variables except t 
to be constant. We could in fact make a 
“map” of the variation of head with respect 
to distance and time by laying out coordinate 
axes marked x and t, and drawing contours 
of equal h in this x, t plane. The discussion 
given for directional derivatives in the topo- 
graph,ic-map example could then be applied 
to ah/at in this example. 

The partial derivative of head with respect 
to distance, ah/ax, gives the slope of the 
potentiometric surface in the x direction at 
a given point, x, and time, t. This is illus- 
trated in figure ii. If x or t are varied, then 
in general ah/ax will vary, since the slope of 
the potentiometric surface changes, in gen- 
eral, both with position and with time. 

The partial derivative of head with respect 
to time, ah/at, gives the time rate at which 
water level is rising or falling-that is, the 
slope of a hydrograph-at a given point, x, 
and time, t. This is shown in figure iii. Again, 
if x or t are varied, then in general ah/at 
will vary. In other words, ah/ax is a func- 
tion of both x and t, and ah/at is also a func- 
tion of both x and t, in the general case. 

Physically, ah/ax may be thought of as 
the slope of the potentiometric surface which 
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Contour map in 5, y plane, showing 
lines along which E is constant 

Plot of E versus x i 
for y=y, ;Slope of 
tangent is aE at 

z- 
the point x,, y, 

fig. i 

, Plot of E versus y 
for z = zz;Slope of 

aE at 
tangent is av 
the point z2, y, 

will be observed if time is suddenly frozen at 
some value. If an expression is given for h, 
as a function of x and t, ah/ax can be ca.l- 
culated by differentiating this expression 
with respect to x, treating t as a constant. In 
the same way, ah/at may be visualized as the 
slope of a hydrograph recorded at a particu- 

Potentiometric 
surface 

Obserytiyn wells 
/ 

Slope of tangent 

254 

~1; 

3X 
the point x = x1 

I 
I 
21 

Distance, z 

h 
Hydrograph of 

observation well 

at the time t = t, 

Time, t 

71 

fig. iii 

lar location (x value). If h is given as a func- 
tion of x and t, an expression for ah/at may 
be obtained by differentiating with respect 
to t, treating x as if it were a constant. 

In the discussion in Part V the problem is 
restricted to only one space derivative, 
ah/ax, and the time derivative. In the gen- 
eral case, we would have to consider all 
three space derivatives-ah/ax, ah/al/, and 

fig. ii 
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9@- Qa -- 
A 
Q Qu=Y 
A 

Q Qc =B 
A 

fig. iv 
ah/ax-in a,ddition to the time derivative. In 
such a me, as noted in the discussion at the 
close of Pant II, we would u’tilize Darcy’s law 
in a somewhat more general form. When 
flow may occur in more than one dire&ion, 
we consider the specific discharge, q= Q/A 
to be a vector, having the three co;mponents 
ql, qil, and qr:. If the medium is isotropic, each 
of these components is given by a form of 

Darcy’s law, in which the partial derivative 
of head in the direction concerned is em- 
ployed. The expressions for the apparent 
velocity components are 

Qs= -Kz!L 
ax 
ah 

qv= -K- 
3Y 
ah 

,qQz= -K- 
a2 

where K is the hydraulic conductivity. 
qn actually represents the fluid discharge 

per unit area in the x direction-that is, the 
discharge crossing a unit area oriented at 
right angles to the x axis. Similarly, qv and 
qz represent the discharges crossing unit 
areas normal to the y and x axes, respec- 
tively. The three components are calculated 
individually and added vectorially to obtain 
the resultant apparent velocity of the flow. 
(See figure iv.) 

We now proceed to the programed material 
of Part V. 

1 
If 

\ \Q, 

The picture shows an open tank with an 
inflow at the top and an outlet pipe at the 
base. Water is flowing in at the top at a rate 
Q1 and is flowing out at the base at a rate Q2. 

QUESTION 

Suppose we observe that the volume of 
water in the tank is increasing at a rate of 5 
cubic feet per minute. Which of the following 
equations could we consider correct? 

Turn to Section: 

Q1 = 5 cubic feet per minute 29 

-=2.5 cubic feet per minute 
2 

17 

Q,-Q,=5 cubic feet per minute 21 
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0 

Your answer in Section 32, 

Q,-&,=KZ, 
3% 

II 

2 
is not correct. The inflow through face 1 of 
the prism is given, according to Darcy’s law, 
as a product of the hydraulic conductivity, 
the head gradient at face 1, and the cross- 
sectional area, bay, of face 1; that is, 

Q K; 1=- 

( ) 

bay. 
1 

Similarly, the outflow through face 2 is given 
as a product of hydraulic conductivity, head 
gradient at face 2, and the cross-sectional 
area of face 2, which is again bay; that is 

bay. 

Inflow minus outflow is thus given by 

Qr-Qs=Kbay( (;)z- ($), ). 

In the preceeding sections, we have seen that 
the term 

can be written in an equivalent 
the second derivative. 

form using 

Return to Section 32 and use this second 
derivative form in the above equation to 
obtain the correct answer. 

Your answer in Section 30, 

-K ah 
&I= - 

-0 bAy ax 1’ ent. Your answer gives the flow as the prod- 
is not correct. Darcy’s law states that the uct of hydraulic conductivity and head gradi- 
flow through a given plane-in this case, face ent, divided by area. 
1 of the prism-is given as the product of Return to Section 30 and choose another 
hydraulic conductivity, area, and head gradi- answer. 

Your answer in Section 7, 

a2h ah 
-*-9 
ax2 ax 

is not correct. We wish to find the change in of the interval. Here, the variable is ah/ax 

the quantity ah/ax over a smlall interval, AX, 
and the interval is AX; thus we require the 

of the x-axis. We have seen in the preceding derivative of ah/ax with respect to x and 
sections of Part V thlat the change in a vari- must multiply this by the interval Ax. 

able over such an interval is given by the Return to Section 7 and choose another 
derivative of the variable times the length answer. 
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5 
II 

Your answer in Section 21 is not correct. 
A falling water level in the piezometer would 
indicate that water was being released from 
storage in the prism of aquifer. The slope of 
a plot of piezo,meter level versus time would 
in this case be negative ; ,that is, ah/at would 
be negative, since h would decrease as t in- 
creased. According to the storage equation, 

!!I=& 
dt at 

6 
II 

and therefore the rate of accumulation in 
storage, dV/dt, would also have to be neg- 
ative. That is, we would have depletion from 
storage, rather than accumulation in stor- 
age. The question in Section 22, however, 
states that inflow to the prism exceeds out- 
flow; thus, according to the equation of con- 
tinuity, accumulation in storage should be 
occurring. 

Return to Section 21 and choose another 
answer. 

Your answer in Section 21 is not correct. 
If the water level in the piezometer were 
constant with time, a plot of the piezometer 
readings vwsus time would simply be a hori- 
zontal line. The slope of such a plot, ah/at, 
would be zero. From the storage equation, 
then, the rate of accumulation of water in 
storage in the prism would have to be zero, 
for we would have 

“v=SA ?!!+A. o=(-). 
dt at 

The question states, however, that inflow to 
the prism exceeds outflow; according to the 
equation of continuity, then, the rate of 
accumulation of water in storage cannot be 
zero. Rather, it must equal the difference 
between inflow and outflow. 

Return to Section 21 and choose another 
answer. 

7 
If 

Your answer in Section 16, 

(Z),- (Z),; (+)) (x2-x1), 
I-2 

is correct. In this case, the derivative itself is 
the variable whose change is required, and 
for this we must use the derivative of the 
derivative, 

dx ’ 

evaluated at an appropriate point within the 
interval. This term is called the second de- 
rivative of y with respect to x, and the nota- 
tion d*y/dx” is used for it. That is, 

d% 

dx” dx 

dy 
= slope of a plot of - versus x. 

dx 
The terms and notations used in the case 

of partial derivatives are entirely parallel. 
The notation a”h/ax* is used to represent the 
second partial derivative of h with respect 
to x, which in turn is simply the partial de- 
rivative of ah/ax with respect to x. That is, 
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ah 
a- 

( ) a2h ax -= 
ax2 ax 

ah 

Con.- ’ 7 
=slope of a plot of - versus x. 

ax 
Again, the partial derivative notation in- 

dicates that we can expect ah/ax to vmy 
with t (or some other variable) as well as 
with x; a2h/ax2 measures only its change 
due to a change in x, all other independent 
variables being held constant. 

represented the change in the hydraulic 
gradient occurring across the prism. If the 
width of the prism in the x direction (that 
is, parallel to the xdaxis) is Ax, which of the 
following expressions could most reasonably 
be substituted for 

QUESTION 

In Section 9, we saw that inflow minus 
outflow for our prism of aquifer could be 

a2h ah -.- 
expressed in the form ax2 ax 

&I - Q2 = KbAy 
K),- es, 1 

and that the term 

Turn to Section: 

4 

ax 
a2h 
- * Ax 
ax2 

23 

32 

Your answer in Section 30, 

&I= -KbAxAy 
( ) 

2 
ax I) 

is ndt correct. According to Darcy’s law, the ent at face 1. The cross-sectional area of face 
flow through face 1 should equal the product 1 is simply bay. 
of the hydraulic conductivity, the crossc Return to Section 30 and choose another 
sectional area of the face, and the head gradi- answer. 

Your answer in Section 33, 

91-&z= -Kbay( ($)/ (;)2}, 

is correct. We may change the term in braces 
to (ah/ax),- (ah/ax) 1 and drop the nega- 
tive sign to obtain the form 

II 

9 
The term (ah/ax) 2 - (ah/ax) 1 represents 

the change in hydraulic gradient from one 
side of the prism of aquifer to the other. We 
wish now ,to express this change in hydraulic 
gradient in a slightly different form. 

(continued on next page) 
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9 ’ --Con. 

Y I 

QUESTION 

In the figure, a variable y is plotted as a 
function of an independent variable, x. As cz 
changes from x1 to x2, y changes from y1 to 
y,; (dy/dx) 1--2 represents the slope of the 
plot at a point between z1 and x2. If the 
change in x is small, which of the following 
expressions would you use to obtain an 
approximate value for the change in y? 

Turn to Section: 

16 

+ (x,-x,) 25 

yz-y1=m(x2-xi.) +z 20 
Ax 

10 
II 

Your answer in Section 34, 
dV ah 

-iii-= SAxAy- at 
is correct. (We should note that for a finite 
prism, ah/at may vary from point to point 
between the two faces ; and we require an 
average value, which will yield the correct 
value of dV/dt for the prism. In fact there is 
always-at least one point within the prism at 
which the value of ah/at is such an average, 
and we assume that we can measure and use 
ah/at at such a point. If we allow the prism 
to become infinitesimal in size, only one value 
of ah/at can be specified within it, and this 

value will yield an exact result for dV/dt.) 
Using the equation of continuity we may 

now set this expression which we have ob- 
tained for rate of accumulation equal to our 
expression for inflow minus outflow. 

QUESTION 

Which of the following equations is ob- 
tained by equating the above expression for 
dV/dt to that obtained in Section 34 for 
&l-&z? 

Turn to Section: 

a’h S ah 
-=-- 19 
ax2 T at 
a2h ah 

T-AXAY = S- 11 
ax2 at 

ah ah 
TAYAX-=SAXAY- 24 

ax at 
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0 
Your answer in Section 10 is not correct. 

We used Darcy’s law to obtain expressions 
for inflow and outflow from the prism of 
aquifer, and we used the s’econd derivative 
notation to express the difference between 
inflow and outflow. This led, in Section 34, 
to the equation 

II 11 

Q1-Q2=TAXAY~ 
W 

for inflow minus outflow. According to the 
equation of continuity, inflow minus outflow 
must equal rate of accumulation in storage; 
that is 

QrQz=$ 

We obtained an expression for dV/dt 
through the storage equation, which states 
that rate of accumulation in storage must 
equal the product of storage coefficient, sur- 
face (or base) area, and time rate of change 
of head; that is 

dV ah 

dt=SAxAy--’ at 
Substitution of the first and third equa- 

tions into the second will yield the correct 
result. 

Return to Section 10 and choose another 
answer. 

Your answer in Section 34, 

dV S ah 
-=--9 
dt K at 

is not correct. The storage equation tells us 
that the rate of accumullation of water in 
storage within the prism of aquifer must 
equal the product of Istorage coefficient, rate 
of ch’ange of head with time, and base area 
of the prism. Hydraulic conductivity, K, is 

II 12 
not involved in the storage equation. In the 
answer which you selected, there is no term 
describing the base area of the prism, and 
hydraulic conductivity appears on the right 
side of the equation. 

Return to Section 34 and choose another 
answer. 

Your answer in Section 16, 

(s)2 - ($), = ($)~~~x2-xd, 

is not correct. In this case, the dependent 
variable, plotted on the vertical axis, is 
dy/dx. As we have seen in preceding sections, 
the change in tie d,ependent variable is given 
by the slope of the graph, or derivative of 
the dependent variable with respect to z, 

II 

13 
multiplied by the change in x. Thus we re- 
quire the derivative of dy/dx with respect 
to 2 in our answer. In the answer shown 
above, however, we have only the square of 
the derivative of y with respect to x. 

Return to Section 16 and choose another 
answer. 
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14 
If 

the water level in the prism of aquifer must 
change with time. However, it need not rise; 
if inflow is less than outflow, it will fall. 

Your answer in Section 22 is not correct. Return to Section 22 and choose another 
It is true th.at if inflow differs from outflow answer. 

15 
If 

to indicate that it is incqrrect. In the storage 
equation, S is associated with the time deriva- 
tive of head, @/at. Again, the answer 

Your answer in Section 33, chosen involves only the head gradient at the 

s ah 

( ) 

outflow face. Since we are seeking an expres- 
Q,--Q2=- - sion for inflow minus outflow, we would ex- 

K ax 2 pect head gradients at both faces to be in- 
is not correct. This answer associates storage volved in the answer. 
coefficient, S, with a space derivative of head, Return to Section 33 and choose another 
(ah/ax) 2; this in itself should be sufficient answer. 

16 
If 

Your answer in Section 9, 

dy 

y2-y1= dx ( ) 
(x2--x*), 

I-2 
is correct. The change in the dependent vari- 
able, y, is found by multiplying the change in 
the independent variable, x, by the slope of 
the plot, dy,/dx. Note that dy/dx must be the 
slope in the vicinity of the interval %I to x2 ; 

dtt 

frequently, it is considered to be the slope at 
the midpoint of this interval. The approxi- 
mation beco.mes more and more accurate as 
the size of the interval, x2-x1, decreases. The 
above equation is often written in the form 

&/ 
Ay=--AX. 

dx 
(In a more formal sense, it can be demon- 

strated that if y is a continuous function of 
x and if dy/dx exists throughout the interval 
from x1 to xZ, then there is at least one point 
somewhere in this interval at which the de- 
rivative, dy/dx, has a value such that 

or 

dy ~z- YI 
-=- 
dx x2-2, 

y*-yl=~(x2-xl). 
dx 

This is known as the law of the mean of 
differential calculus. It guarantees that the 
approximation can always be used, provided 
we are careful about the point within the 
interval at which we take dy/dx. Further, 
since this l,aw must hold no mater how small 

(continued on next page) 

dx 
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the interval (x,-x,) is taken, the approxi- 
mation must become exact as the interval is 
allowed to become infinitesimal.) 

QUESTION Turn to Section: 

Now suppose we measure the slope of our 
curve, c&/&r, at vario~es points, and construct (z)2 - (gl = (x2-x1pJm2 31 

a plot of dv/dx versus x, as shown in the 
figure. Again, suppose we wish to know the 
change in C&/&C which occurs as x changes 

(Z),- (!E)l= (!E)~~*(x2-xl~ 13 

from x1 to x2. The subscript l-2 is again 
used to denote evaluation at a point between 
x1 and x2. Which of the following expressions 
would give an approximate value for this 

($),- (;)l= ( dc3)l~2~x2-xl~ 

dx 
change ? 7 

FLOW 79 
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N 

17 
Your answer in Section 1 is not correct. I_ 

The rate of accumulation in the tank does cumulation of water in the tank, or by a com- 
depend upon both Q1 and Q,, but not in the bination of these factors. 
way that your answer implies. The inflow to Return to Section 1 and choose another 
the tank must be balanced by outflow, by ac- answer. 

Your answer in Section 33, 

Q,-B,=K($)l-K($)2 

II 

18 
problem, that each should be a product of 

is not correct. The answer treats both inflow hydraulic conductivity, head gradient, and 
and outflow as products of hydraulic con- flow area. 
ductivity and head gradient; but we have Return to Section 33 and choose another 
seen, in our application of Darcy’s law to the answer. 

Your answer in Section 10, 
a”h S ah 
-Z-m, 
ax2 T at 

is correct. Thlis equation describes ground- 
water movement under the simple conditions 
which we have assumed-that is, where the 
aquifer is confined, horizontal, homogeneous, 
and isotropic, land the movement is in one 
direction (taken here as the x direction) .I If 
horizomal components of motion normal to 

‘A rigorous and more general development of the ground 
water equation ia given by Cooper (1966). 

II 
19 

the x-axis were present, we would have to 
consider inflow and outflow through the other 
two faces of the prism ; that is, the two faces 
normal to the y-axis. We would find this in- 
flow minus outflow to be 

a2h 
Qvl-QyZ=Kbh~hy-. 

ay2 
The total inflow minus outflow for the 

prism would then be (QI1 - &,I + (Q,, - QvJ9 
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19 N f--Con. 

where Qn, -Qn2 represents the term we ob- 
tained previously, K~AXAY (a2h/ax2). Final- 
ly, equating this total inflow minus outflow to 
the rate of accumulation, we would have 

a*h a”h ah 
K~AxA~-+K~A~A~-=SAXAY- 

ax2 3Y2 at 
or, using the notation T=Kb, and dividing 
through by TAXAY, 

a*h a*h S ah 
-+-=--. 
ax* ay* T at 

These equations are partial differential 
equations; that is, they are equations contain- 
ing partial derivatives. The relation given 
above for two-dimensional flow is a partial 
differential equation in three independent 
variables x, y, ‘and t. For simplicity, we con- 
tinue the discussion in terms of the equation 
for unidirectional flow, 

a2h S ah 
-=--* 
ax* T at 

This is a partial differential equation in two 
independent variables, x and t. It relates the 
rate of change of head with time, to the rate 
at which the slope of the potentiometric sur- 
face, ah/ax, changes with distance. When 
we say that we require c solution to this 
partial differentisl equation, we mean that 
we are looking for an expression giving head, 

h, as a function of position, x, and time, t, 
such that when this expression is differen- 
tiated twice with respect to x (to obtain 
a*h/ax*) and once with respect to t (to ob- 
tain ah/at), the resulDs will satisfy the con- 
dition 

a*h S ah 
-=--* 
ax* T at 

As with ordinary differential equations, 
there will always be an infinite number of 
expressions which will satisfy a partial dif- 
ferential equation ; the particular solution re- 
quired for a given problem must satisfy, in 
addition, certain conditions peculiar to that 
problem. As in ordinary differential equa- 
tions, these ,additional conditions, termed 
boundary conditions, establish the starting 
points from which the changes in h described 
by the differential equation are measured. 

This concludes Part V. In Part VI, we will 
make a development similar to the one 
made in Part V, but using polar coordi- 
nates, and dealing with the problem of non- 
equilibrium flow to a well. Our approach will 
be the same: we will express inflow and out- 
flow in terms of Darcy’s law and rate of 
accumulation in terms of the storage equa- 
tion; we will then rela,te these flow and stor- 
age terms through the equation of continuity. 
We will go on to discuss a particular ,solution 
of the resulting partial differential equation 
and will show how this solution can be used 
to build up other solutions, including the 
well-known Theis equation. 

20 
II x, the change in y corresponding to a small 

change in x is given by the relation 
Change in y = (Slope of curve) 

. (Change in x) , 
where the slope of the curve is measured in 

Your answer in Section 9, the vicinity in which the change is sought. 

y*-yl=m(x,-2J +b”d, 
This follows directly from the definition of, 
the slope of the curve. 

AX Return to Section 9 and choose another 
is not correct. If y is plotted as a function of answer. 
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0 

Your answer in Section 1 is correct. If 
water is accumulating in the tank at a rate 
of 5 cubic feet per minute, inflow must exceed 
outflow by this amount. This is essentially a 
statement of the principle of conservation of 
mass. Since matter cannot be destroyed (ex- 
cept by conversion into energy, which we 
need not consider here), trhe difference be 
tween the rate ,at which mass enters the tank 
and that at which it leaves the tank must 
equal the rate at which it accumulati in the 
tank. Further, because compression of the 
water is not significant here, we may use vol- 
ume in plsce of mass. In general terms, the 
relation with which we are dealing may be 
stated as : 

I, 

21 

Inflow - Outflow = Rate of accumulation. 
This relation is often termed the equation of 
continuilty. 

Note that if outflow exceeds inflow, the 

r ieznmeter 

rate of accumulation will be negative-that 
is, we will have depletion rather than accu- 
mulation. An important special case of this 
equation is that in which inflow and outflow 
are in balance, so that the rate of accumula- 
tion is zero. As an example, consider a tank 
in which the inflow is just equal to the out- 
flow. R,ate of accumulation in the tank is zero, 
and the water level does not change with 
time. The flow is said to be in equilibrium, 
or in the steady state. The problems which 
we considered in Part III were of this sort; 
no changes of head with time were postu- 
lated, so the assumption that inflow and out- 
flow were in balance was implicit. The flow 
pattern could be expected to remain the same 
from one moment to the next. 

Forms of the equation of continuity occur 
in all branches of physics. In electricity, for 
example, if the flow of charge toward a ca- 
pacitor exceeds that away from it, charge 
must accumulate on the capacitor plate, and 
voltage must increase. In heat conduction, 
if the flow of heat into a region exceeds that 
leaving it, heat must accumulate within the 
region, and the temperature within the re- 
gion must rise. 

QUESTION 

The sketch shows a prismatic section 
through a confined aquifer. Water is flowing 
in the x direction, that is, into the prism 
through face 1 and ‘out of the prism through 
face 2. A piezometer or observation well 
measures the hydraulic head within the 
prism. Let us suppose that the volumetric 
rate at which water is entering through face 
1 exceeds that at which it is leaving through 
face 2. The water level in the piezometer will 
then : 

remain constant with time 
fall steadily 
rise 

Turn to Section: 

6 
6 

30 
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0 

22 
II 

r iezometer 

Your answer in Section 30, 

Q1=-Kbag F 
( ) ax 1’ 

is correct. (@/ax), is the hydraulic gradi- 
ent at the particular point and time in which 
we are interested. We ,simply insert it in 
Darcy’s law to obtain the required flow rate. 

We are dealing with nonequilibrium flow 
here ; that is, in general, inflow and outflow 
will not be equal. Flow occurs only in the x 
direction ; thus the outflow from our prism 
of aquifer must take place entirely through 
face 2, as shown in the sketch. 

QUESTION 

Assuming that outflow differs from inflow 
and that the hydraulic conductivity and 
thickness of the aquifer are constant, which 
of the following statements is correct? 

Turn to Section: 

The water level in the prism must rise 14 
The hydraulic gradient at face 2 of 

the prism must differ from that at 
face 1 of the prism 33 

The rate of withdrawal from storage 
must be given by Darcy’s law. 26 

23 
II 

Your answer in Section 7, 

ask 
( ) ax 

ax ’ 

dependent variable, over a small interval of 
the x-axis, AX, is given by the derivative of 
the variable times the length of the interval. 
Here, the variable is ah/ax and the term 
3 (ah/ax) /ax of your answer is certainly its 
derivative. However, this derivative is not 
multiplied by the interval along the x-axis; 
thus the answer gives only the rate of change 
of ah/ax with distance--not its actual 
change across the interval Ax. 

is not correct. As we have seen in earlier Return to Section 7 and choose another 
sections of this chapter, the change in a answer. 

24 
II ah 

SAXAY-, 
at 

Your answ0r in Section 10 is not correct. as in the answer which you chose. However, 
The rate of 8accumulation in storage is given the expression for inflow minus outflow re- 
by quires a second derivative, as it deals with 0 
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the difference between two flow terms, each 
of which incorporates a first derivative. In 

Con.- ” 24 
the answer which you chose, inflow minus Review Sections 9, 32, and 34 and then 
outflow is expressed in terms of a first de- return to Section 10 and choose another 
rivative. answer. 

Your answer in’Section 9, 

dy 

( ) 
212-1/t= - + (x*-x1), 

dx 1-2 

tt 

25 
is not correct. From the definition of slope, swer which you chose, the slope of the curve 
the change in y can be found by multiplying is added to the change in x. 
the change in x by the slope of *he curve, Return to Section 9 and choose another 
measured in the interval x1 to x2. In the an- answer. 

Your answer in Section 22 is not correct. II 
Darcy’s law describes the transmission of 26 
ground water, not its withdrawal from stor- 
age. The storage equation, developed in Part 
IV, deal,s with changes in the quantity of Return to Section 22 and choose another 
water in storage. answer. 

Your answer in Section 32, 

Q1 - Q2 = K-AX, 
ax2 

is not correct. Your answer includes the 
hydraulic conductivity, K, and the term 

a*h 
-AX, 
ax2 

which, as we have seen, is equal to 

Thus if we were to expand your answer, 
expressing it in the original head gradient 
terms, we would have 

II 

27 
Q,-Qz=K((~)2- (;). )-K(G), 

This states that inflow is a product of hy- 
draulic conductivity and head gradient, and 
that outflow is similarly a product of hy- 
draulic conductivity and head gradient. We 
know from Darcy’s law, however, that both 
inflow and outflow must be given as prod&s 
of hydraulic conductivity, head gradient, and 
flow area. Your answer thus fails to incor- 
porate flow area into the expression for in- 
flow minus outflow. 

Return to Section 32 and choose another 
answer. 
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28 
N storage in the prism of aquifer is equal to 

the product of storage coefficient, rate of 
change of head with time, and base area of 
the prism. In your answer the rate of ac- 

Your answer in Section 34, cumulation is equated to the product of the 
dV ah storage coefficient, the rate of change of head 
-= .%A+-, with time, and the area, bhx, of one of the 
dt at vertical faces of the prism. 

is not correct. The storage equation states Return to Section 34 and choose another 
that the rate of accumulation of water in answer. 

29 
II swer to be correct, the outflow, Q2, would 

have to be zero. Only in that case would the 
rate of accumulation in the tank equal the 

Your answer in Section 1 is not correct. inflow. 
Some of the inflow to the tank is balanced Return to Section 1 and choose another 
by outflow at the base. In order for your an- answer. 

30 
II 

Your answer in Section 21 is correct. Ac- 
cording to the equation of continuity, if in- 
flow to the prism of aquifer exceeds outflow, 
water must be accumulating in storage with- 
in the prism. According to the storage equa- 
tion, if water is accumulating in storage 
within the prism, hydraulic head in the 
prism must, be increasing with time. Speci- 
fically, we have 

Inflow - Outflow = Rate of accumulation,’ 
dV/dt 

and 

;=&L 
at 

where A is the base area of the prism. There- 
fore, 

1Here again we me volume in place of mass in the equation 
of continuity, even though slight compression and expansion of 
the water fan be a factor contributing to confined storage. The 
changes in fluid density from point to point in a normal ground- 
water situation are sufficiently small to permit this approxi- 
mation. In fact, if this were not the case. it would not be 
possible to use the simple formulation of storage coefllcient. de- 
fined in terms of fluid volume. which we have adopted. 

ah 
Inflow - Outflow = SA-. 

at 
If the term (Inflow-Outflow) is positive 

-that is, if inflow exceeds outflow-then 
ah/at must be positive, and water levels 
must be increasing with time. In the above 
equations, we have used the partial deriva- 
tive of head with respect to time, ah/at; and 
in the equations that follow, we will use the 
partial derivative of head with respect to 
distance, ah/ax. These notations are used 
because, in this problem, head will vary both 
with time and with distance. 

QUESTION 

The sketch again shows the prism of Sec- 
tion 21. We assume this prism to be taken 
in a homogeneous and isotropic aquifer 
which is horizontal and of uniform ;thick- 
ness. Suppose we let (ah/ax) 1 represent the 
hydraulic gradient (in the x direction, which 
is the direction of the flow) at face 1 of the 
prism. We wish to write an expression for 
the inflow through face 1 of the prism. Let 
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Piezometer II Con.- ’ 30 
us denote this inflow Q1, and let us further 
denote the height of the prism (thickness of 
the aquifer) by b. The width of the prism 
normal to the x axis is denoted Ay, the length 
of the prism along the x axis is denoted Ax, 
and the hydraulic conductivity of the aquifer 
is denoted K. Which of the foilowing equa- 
tions gives the required expression for the 
inflow at face 1 ? 

Turn to Section: 

22 

Your answer in Section 16, 

(Z)*- ($)l= (x2-x1($),_,, 

is not correct. In the preceding sections we 
sa+w that the change in the dependent vari- 
able is given by the change, x2 -x1, in the 
independent variable, times the derivative of 
the dependent variable with respect to x. 
Here the dependent variable is dy/dx ; but 

N 

31 
in your answer we do not have the derivative 
of this dependent variable with respect to x 
-we have, rather, only the derivative of y 
with respect to 2. 

Return to Section 16 and choose another 
answer. 

Your answer in Section 7, 
a2h 
- * Ax, 

is correct. This term is equivalent to the term 

provided that we choose a suita.ble point 
within the interval x2 -x1 at which to evalu- 

If 

32 
ate @z/ax*. The product (a2h/ax2) AX rep- 
resents the slope of a plot of ah/ax versus 
x, multiplied by the interval along the x 
-axis, AX, and thus gives the change in ah/ax 
over this interval. 

(continued on next page) 
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N 

32 - 
Con . 

QUESTION 

Using this expression for 

(($),- (3 I 
which of the following forms is the correct 
expression for inflow minus outflow, Q1 -Q2, 
for our prism of aquifer, which is shown 
again in th.e diagram? 

?urn to Section: 

3% 

Q1 - Q2 = K-AX 
ax2 

a”h 

27 

Q1 - Q, = K~A~Ax- 34 
ax2 

8,-Qz=K- 2 
W 

Piezometer It 

Yaur answer in Section 22 is correct. If we 
apply Darcy’s law at face 2, we have 

where at face 1 we had 

Q1=-Kbay 2 . ( \ 
\%/I 

K, b, and Ay do not change. Thus if the aut- 
flow, Q2, is to differ from the inflaw, Q1, the 
hydraulic gradients at the inflow and outflow 

faces must differ-that is, (ah/ax), must 
differ from (ah/ax) 1. 

QUESTION 

Using the expressions we have developed 
for inflow and outflow, which of the follow- 
ing terms would describe inflow minus out- 
flow for the prism? 

Turn to Section: 

QcQ,=K($)~ -K(g), 18 

15 

9x-&z= -y{(f). - ($), } 9 
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0 

Your answer in Section 32, 

a2h 
Ql - Qz = KbayAx-, 

ax2 
is correct. The term Kb, representing the 
hydraulic conductivity of the aquifer times 
its thickness, is called the transmissivity or 
transmissibility of the aquifer, and is desig- 
nated by the letter T. Using this notation, 
the expression for inflow minus outflow be- 
comes 

a*h 
Q, - QZ = TAYAX-. 

3” 
Now according to the equation of continu- 

ity, this inflow minus outflow must equal the 
rate of accumulation of water in storage 
within the prism of aquifer, which is shown 
in the figure. 

QUESTION 

We represent the average time rate of 
change of head in the prism of aquifer by 
ah/at and note that the base area of the 
prism is A=AXAY. Using the storage equa- 
tion, which of the following expressions 
gives’ the rate of accumulation in storage 
within the prism? 

Turn to Section: 

C-W ah 
-= Sbhx- 
d-t .- at 

dV S ah 
-=-- 
dt K at 
dV ah 
-=sAxAyz dt 

28 

12 

10 

II 

34 

Water level changing 

material 



Part VI. Nonequilibrium Flow to a Well 

Introduction 

In Part V we developed the equation 
a2h S ah 
-=-- 
ax2 T at 

for one-dimensional nonequilibrium flow in 
a homogeneous and isotropic conlined 
aquifer. We indicated, in addition, that ex- 
tension to two-dimensional flow would yield 
the equation 

a’h a2h S ah 
-z-m* 

gs+ayz T at 

In Part VI we consider a problem involv- 
ing flow aw$ay from (or toward) a well in 
such an aquifer. As in the steady&ate prob- 
lem of flow to a well, which we considered in 
Part III, we will find it convenient here to 
use polar coordinates. The two-dimensional 
differential equation 

a2h ph S ah 
-+-=-- 
ax= aY2 T at 

can be transformed readily into polar coordi- 
nates by using standard methods. However, 
it is both easy and instructive to derive the 

equation again from hydraulic principles in 
the form in which we are going to use it. 
After we have developed the differential 
equation in this way, we will consider one of 
its solutions, corresponding to an instantane- 
ous disturbance to the aquifer. In the ter- 
minology of systems analysis, this solution 
will give the “impulse response” of the well- 
aquifer system. In considering this solution, 
we will first show by differentiation that it 
satisfies the given differential equation ; we 
will then develop the boundary conditions ap- 
plicable to the problem and show that the 
solution satisfies these conditions. Following 
the programed section of Part VI, a discus- 
sion in text format has been added showing 
how the “impulse response” solution may be 
used to synthesize solutions corresponding to 
more complex disturbances to the aquifer. In 
particular, solutions are synthesized for the 
case of repeated withdrawal, or bailing, of 
a well and for the case of continuous pump- 
ing of a well. The latter solution, for the par- 
ticular case in which the pumping rate is 
constant, is the Theis equation, which is com- 
monly used in aquifer test analysis. 

-m 

1 + 

The figure shows ,a well penetrating a con- the inner surface of the element is at a 
fined aquifer. A cylindrical shell or prism, radius r1 from the axis of the well, which is 
coaxial with the well and extending through taken as the origin of the polar coordinate 
the full thickness, b, of the aquifer has been system ; and the outer surface of the element 
outlined in the diagram. The radial width of is at a radius rz from this axis. We assume 
this cylindrical element is designated Ar ; all flow to be in the radial direction, so that 

88 



PART VI. NONEQUILIBRIUM FLOW TO A WELL 89 

0 
1 

+ -Con. 

/ 
Well 

we need not consider variation in the vertical 
or angular directions. We further assume 
that we are dealing with injection of water 
into the aquifer through the well, so that flow 
is outward, away from the well, in the posi- 
tive r 
of the 
ity T, 

direction. The hydraulic. conductivity 
aquifer is denoted K, the transmissiv- 
and the storage coefficient S. 

If 
QUESTION 

(ah/w) 1 represents the hydraulic 
gradient at the inner face of the cylindrical 
element, which of the following expressions 
will be obtained for the flow through this 
face, by an application of Darcy’s law? 

Turn to Section: 

34 

Q 15 

Q 1= 36 

Your answer in Section 27, 

ah V -Z- e- (S?2/4Tt) 

’ ar 4xTt 
is not correct. 

You are correct in your intention to mul- 
tiply the derivative of e- (s+/4Tt) by the “con- 
stant” coefficient V/ (4*Tt) to obtain the 
derivative of the product 

V 
-e- (Sr2/4Tt) , 
4rrTt 

with respect to r. However, your differentia- 
tion of e-(S+/4Tt) is not correct. The deriva- 

tive of e raised to some power is not sim- 
ply e raised to the same power, as you have 
written, but the product of e raised to that 
power times the derivative of the exponent. 
That is, 

de” du 
-= eu-. 
dr dr 

Thus, in this case, we must obtain the deriva- 
tive of the exponent, - (Sr2/4Tt), and multi- 
ply e- (Sr2/4Tt) by this derivative to obtain the 
derivative of e- (sr2/4Tt) with respect to r. 

Return to Section 27 and choose another 
answer. 
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3 + 
Your answer in Section 35, 

ah V 
-= - . e-(S+/4Tt) 

at 4aTt 
is not cor.rect. In your answer, the term 
e- (Sr2/4Tt) is differentiated correctly with re- 
spect to time. However, your answer gives 
only the derivative of this factor times the 
first factor itself, V/(4rTt). According to 
the rule for differentiation of a product, we 
must add to this the second factor, e-(Sr’/4rt), 

times the derivative of the first factor. 
The first factor, V/(4rTt) was treated as a 
constant coefficient when we were differen- 
tiating with respect to r, since it does not 
contain r. It does, however, contain t and 
cannot be treated as a constant when we are 
differentiating with respect to t. Its deriva- 
tive with respect to t is given in the discus- 
sion of Section 35. 

Return to Section 35 and choose another 
answer. 

4 + 

Your answer in Section 27, 

ah - 2% 
--=e- (Sr2/4Tt) . - 

ar ( ) 4Tt ’ 

is not correct. 
When an expression is multiplied by a con- 

stant coefficient, the derivative of the product 
is simply the constant coefficient times the 
derivative of the expression. For example, 
the derivative of the expression x2, with re 
spect to x, is 2x; but if x2 is multiplied by 
the constant coefficient c, the derivative of 
the product, cxz, is c-2x. 

In the question of Section 27, the term 
e- (.%*/4rt) is actually the expression in which 

we must differentiate with respect to r. The 
term V/ (4xTt), represents a constant coeffi- 
cient--constant with respect to this differen- 
tiation, because it does not contain r. Thus 
whatever we obtain as the derivative of 
e- (S+/4Tt) must be multiplied by this coeffi- 
cient, V/ (4xTt), to obtain the derivative of 
the product 

V 
-e-- (S+/4Tt). 

4rrTt 
Your differentiation of e- (s+/4rt) is cor- 
rect, but your answer does not contain the 
factor V/(4rTt) and thus cannot be correct. 

Return to Section 27 and choose another 
answer. 

Your answer in Section 27, 

ah V -=zr pe- (S?2/4Tt) . 

ar 4aTt 
is correct. 

We now wish to differentiate this expres- 
sion for ah&r, in order to obtain a2h/ar2. 
To do this, we treat the expression as the 
product of two factors. The first is the func- 
tion we just differentiated, 

V 
-e- (Sr?/4Tt) ; 

4irTt 

the second is 

Once again we are differentiating with re- 
spect to r, so that t is treated as a constant. 
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QUESTION 

If we follow the ruIe for differentiation 
of a product (first factor times derivative 
of second, plus sqond factor times deriva- 
tive of first), which of the following results 
do we obtain for a2h/arz? 

Turn to Section: 

f~LJe-wTt~ . (;)+(IE) . ,-(ST2/4Tt) . (XT)) 35 

a*h V 
-=- . e- (.W/4Tt) 

ar* QnTt 
.(z)+(z). ,-LS+,4Ttl . (3 23 

9 

6 + 

Your answer in Section 18 is not correct. 
The answer which you chose states that out, or approaches zero, as radial distance 
head becomes infinite as radial dimstance be- becomes very large. 
comes small. The behavior which we are try- Return to Section 18 and choose another 
ing to describe is that in which head dies answer. 

ah 
( ) 

T- 
;; l 

( > 
T- 
ar 2 

0 

r 

\ 
Slope of 
tangent to curve 

Your answer in Section 15, 

a-c?*=24 (f),- (3 ), 
is correct. The term 

actually represents the change in the vari- 
able r (ah/ar) between the radial limits, r1 
and r2, of our element. If we imagine a plot 
of r (ah&r) versus r, as in the figure, we 
can readily see that this change will be given 
approximately by the slope of the plot times 

(continued on next page) 
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7 + -Con. 
0 

the radial .increment, Ar. That is, approxi- 
mately 

(r!!t),- (r$),= ‘(lF)-Ar 

where the derivative 

ah 
a r- 

( ) ar 

ar 
represents the slope of our plot, at an ap 
propriate point within the element. This 
slope, or derivative, is negative in our illus- 
tration, so that 

The approximation inherent in the above 
equation becomes progressively more accur- 
ate as Ar decreases in size. 

QUESTION 
Recalling that the rule for differentiation 

of a product is “first factor times derivative 
of second plus second factor times derivative 
of first,” which of the following equations 
gives the derivative of r (ah/at+) with re- 
spectto r? 

Turn to Section: 

‘($) ‘(g) ah 
=r +- 26 

ar ar ar 

a2h ah =r-+- 28 
ar ar2 ar 

azh = Zr- 8 
ar arP 

8 + 

Your answer in Section 7, 

ah 
a r- 

( ) ar =f&? 
ar2’ 

ar 
is not correct. We are required to take the 
derivative of the product r(ah/ar) . The rule 
for differentiation of a product is easy to 
remember: first factor times derivative of 
second, plus second factor times derivative 
of first ; that is 

d(m) dv du 
-=u---+v- 

dx dx dx 
A derivation of this formula can be found 

in any standard text of calculus. Our first 
factor is r, and our second factor is ah&. 
Thus we must form the expression: r times 
the derivative of ah/ar with respect to r, 
plus ah/ar times the derivative of r with re- 
spect to r. 

Return to Section 7 and chooee another 
answer. 
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9 + 

Your answer in Section 6, 

is not correct. If we remove the braces and 
separate your ,answer into two terms, we 
have 

aih V 
-= ___ . e- (S72/4Tt) . 

arz 4rTt 
($!)+(I.%) . &. e-~S7’/4Tt~. 

The first term, according to the rule for dif- 
ferentiation of a product, is correct, since it 
represents the first factor, 

V 
-* e- (S13/4Tt) 

4aTt 
multiplied by the derivative of the seco,nd 
(with respect to r) , which is simply 

-2s 

4Tt’ 
The second term of your answer, however, 
is not correct. 

- 2Sr 

4Tt 
is the second factor of the product we wish 
to differentiate but 

V 
-. e- (S72/4Tt) 

4nTt 
does not represent the derivative of the first 
factor. This first factor is itself 

V 
- . e - (S?Z/4Tt) 

4rTt 
and its derivative with respect to r was ob- 
tained in answer to the question of Section Return to Section 5 and choose another 
27. answer. 
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10 + 
Your answer in Section 21 is not correct. 

We established in the discussion of Section 
21 that the rise in head within the well at 
t = 0, due to injection of the volume V, would 
be given by V/A,, where A, is the cross-sec- 
tional area of the well bore. If the well radius 
approaches zero, A, must approach zero. The 
smaller A, becomes, the larger the quotient 
V/A, must become; for example, l/O.001 is 

certainly much greater than l/l. Your an- 
swer, that the head change is zero, could only 
be true if the area of the well were immea- 
surably large, so that thme addition of a finite 
volume of water would produce no measur- 
able effect. 

Return to Section 21 and choose another 
answer. 

77 + 
Your answer in Section 33 is not correct. 

The integration in the equation 

v= I’=” S-h,, .2irrdr 
r=O 

cannot be carried out until we substitute 
some clearly defined function of r for the 
term h,t. Until this is done, we do not even 
know what function we are trying to inte- 
grate. But even if the integration could be 
carried out and the result were found to be 

V 
- e- (+S/4Tt) 

4nTt 
then we would be left with the result 

V 
v=- e- (r2S/4Tt) 

4irTt 
which clearly can never be satisfied 
perhaps at isolated values of r and t. 

except 

Return to Section 33 and choose another 
answer. 

12 + 
Your answer in Section 28, 

dv+p ah 

dt at 
is not correct. The storage equation states 
that the rate of accumulation in storage is 
equal to the product of storage coefficient, 
rate of change of head with time, and base 
area of the element (prism) of aquifer under 
consideration. Your answer contains the 
storage coefficient, S, and the time rate of 
change, ah/at. However, the base area of 
the prism which we are considering is not 
given by &. 
This term gives the area of a circle extending 
from the origin to the radius r; our prism is 
actually a cylindrical shell, extending from 

the radius rl to the radius r2. Its base area 
is the area of the shaded region in the figure. 
This region has a radial width of AT and a 
mean perimeter of 291-r. 

Return to Section 28 and choose another 
answer. 
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0 73+ 

Your answer in 
proposed solution, 
randtis 

Section 33 is correct. Our 
giving h as a function of 

h,t = pe- (r%S/4Tt). 

4rrTt 
To test this solution for’conformity with the 
required condition we substitute 

V 
--e- (+S/4Tt) 

4nTt 

for h,t4n the equation 

V= jr=* Se h,.,t * 2rrdr 
T-=0 

and evaluate the integral to see whether the 
equation is satisfied. The substitution gives 

V= rzms.Gt .e- (+S/4Tt) .&,.ydr. 

r=O ?r 

Constant terms may be taken outside the in- 
tegral ; in this case, we are integrating with 
respect to r, so t may be treated as a constant 
and taken outside the integral as well. We 
leave the factor 2 under the integral for the 
moment and take the remaining constants 
outside to give 

SV r=cQ V=- I e- (r2S/4Tt) .2rdr. 

4Tt r=O 

To evaluate the integral in this form, we 
make use of a simple algebraic substitution. 
Let 

x=r2: 

then 

dz=Brdr; 

and let 

S 
a=-. 

4Tt 

Substituting these terms in the above 
equation, we obtain : 

The indefinite integral of e-O2 is simply 

I 
--e-W; 

a 

that is, 

J 

1 
e-aqjx= --e-az+c 

a 
where c is a constant of integration. The in- 
finite upper limit in our problem is handled 
by the standard method ; the steps are as 
follows 

/ 

.Z=CO 

/ 

b 
e-uzdz=lim e-“zdz 

z=o b+ca 0 

1 1 
- --.- ( )I a e” 

+-f- 
a 

but 

’ 

so that 

/ 

ZZCO 1 
e-az& =- 

z=o a 
Therefore 

1 
aV e-az&=aV--= V. 

a 
This verifies that our function 

V 
-e- (r2S/4Tt) 

4xTt 
(continued on next page) 
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actually satisfies the required condition- 
that is, that when we substitute this term 
for h,,$ in the expression 

/ 
TECO 

r=O 
S.h,t.2~rdr 

and perform the integration, the result is 
actually equal to V, the volume of injected 
water, as required by the condition. 

We have shown, then, that the expression 

V 
h= pe- (r?3/4Tt) 

4*Ti3 
satisfies the differential equation for radial 
flow in an aquifer and satisfies as well the 
boundary conditions associated with the in- 
stantaneous injection of a volume of water 
through a well at the origin, at t =O. It is, 
therefore, the particular solution required 
for this problem. It is an important solu- 
tion for two reasons. First, it describes ap- 
proximately what happens when a charge of 
water is suddenly added to a well in the 

standard “slug test” (Ferris and Knowles, 
1963) and provides a means of estimating 
transmissivity through such a test.’ Second, 
and more importantly, it gives the “impulse 
response” of the welLaquifer system-the 
solution corresponding to an instantaneous 
disturbance. Solutions for more complkated 
forms of disturbance, such as repeated in- 
jections or withdrawals. or continuous with- 
drawal, can be synthesized from this ele- 
mentary solution. Following Section 37, a 
discussion is given in text format outlining 
the manner in which solutions correspond- 
ing to repeated bailing and continuous pump- 
ing of a well may be built up from the im- 
pulse response solution. 

This concludes the programed instruction 
of Part VI. You may proceed to the text- 
format discussion following Section 37. 
Readers who prefer may proceed to Part VII. 

‘A subsequent publication (Cooper, Bredehoeft. and Papa- 
dopulos. 1967) has provided a more accurate description of the 
actual effect of adding a charge of water to a well, by con- 
sidering the inertia of the column of water in the well. This 
factor was neglected in the original analysis. 

14 + 

Your answer in Section 33 is not correct. equation. The solution actually represents 
The condition to be satisfied was the head, h,t ; if we substitute it for the quan- 

V:= r=%h,,t.2?rrdr. 
tity 27ir, as your answer suggests, there will 
be two terms, h,.,t and our solution, both rep- 

r=O resenting head in the resulting equation. 
A solution to our differential equation is by Moreover if the result of the integration 
definition an expression giving the head, h, were 2&’ we would be left with the result 
at any radius, r, and time, t, in a form that V=2&‘, which does not satisfy the required 
satisfies the differential equation. Here, the condition. 
idea is to test such a solution to see if it also Return to Section 33 and choose another 
satisfies the condition phrased in the above answer. 

15 
+ 

Your answer in Section 1, T, as before. The variable terms, r and ah/ 

&I= -KBxr,b 2 
( ) 

ar, may be combined and treated as a single 

ar 1’ 
variable, r (ah/ar) . The value of this vari- 
able at the inner face of the cylindrical ele- 

is correct. The terms 27, K, and b are all ment will be designated (rah/ar),. Using 
constants ; we will denote the product Kb by these notations, our expression for inflow 
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through the inner face of the cylindrical 
element is now 

Q,=-2nT r? 
( ) ar 1. 

QUESTION 

Suppose we continue to treat the product 
r(ah/ar) as a single variable, and let (rah/ 
ar)t denote the value of this variable at the 
outer face of the cylindrical element. The ex- 
pression for the outflow, Q2, through the 
outer cylindrical surface can then be written 
in terms of (9@/ar)2, in a form similar to 

that for the inflow. Which of the following 
equations would we then obtain for the in- 
flow minus outflow, Q1 - Q2, for our cylindri- 
cal element ? 

?urn to Section: 

QrQz=2rT((c),-(~$)~) 7 

,,-,.=~~T(Y~); (Y$)~ 30 

QcQ~=~~T(($)~-($)~ } 25 

16 + 

Your answer in Section 28, 

sah 
dV at 
-=-9 
dt 2arAr 

is not correct. The storage equation tells us 
that rate of accumulation in storage should 
equal the product of storage coefficient, rate 
of change of head with time, and base area 

of the element (prism) of aquifer with which 
we are dealing. Our element, or prism, of 
aquifer is a cylindrical shell extending from 
the radius rI to the radius r2. Its base area is 
given by the term %frAr. However, in your 
answer this area term is divided into the 
term S (ah/at). 

Return to Section 28 and choose ,another 
answer. 

17 + 

Your answer in Section 20, 

a”h 1 ah V -2s 2S2r2 
-+--e-e- (Sr=/4Tt) -+- 
3-2 r ar 4xTt 1 1 4Tt 16T2t2 ’ is not equal to 

2S2r2 
is not correct. The mistake in this answer re -. 
sults from an algebraic error in simplifying 16T2tZ 
the second term of the expression for a*h/ Return to Section 20 and choose another 
ar*. The nroduct answer. 
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Your answer in Section 21 is correct; head 
is immeasurably great, or infinite, at the well 
at t = 0. Taking this result together with our 
requirement that head must be zero else- 
where in the aquifer at t = 0, we may phrase 
the boundary condition for t =0 as follows 

h+w, for r=O and t=O 
h=O, for r>Oand t=O. 

We now test our solution to see if it satis- 
fies this requirement. Probably the easiest 
way to do this is to expand the term 
e- (.%‘/4rt) in a Maclaurin series. The theory 
of this type of series expansion is treated in 
standard texts of calculus ; the result, ,as ap- 
plied to our exponential function, has the 
form 

e~=l+x+~+x~+*** 
. . 

or for a negative exponent, 
1 

e-a= 

1+x+;;+;+*** 
. . 

In our case, a: is the term r2S/4Tt, and 

e- (r’%/4Tt) =_ 

2 r2S 3 

(‘2”) (i) ( G ) 

l+ - + -+- +*** 

4Tt 2! 3! 
so that 

V 
-e- (+=S/rlTt) = 

4rrTt 

V 
. 

r4S2,rr Pi% 
4rTt + r*& + -+ +*** 

4Tt.2’ 16T2t2-3! . 
Now as t approaches zero, the first term in 

the denominator approaches zero ; the second 
remains constant, and the third and all 
higher terms become infinite, provided r does 
not also approach zero. If any term in the 

h 

h 

\ 

t=1 

h 

t=0.1 

T 
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denominator is infinite, the fraction as a 
whole becomes zero. Thus the expression 

V 
PC- (+S/4Tt) 

4xTt 
is zero for t =0 and r#O, and satisfies the 
first part of our condition. 

If r and t are both allowed to approach 
zero, the first two terms in the denominator 
of our fraction will be zero. The third will 
behave in the same manner as the fraction 
cx4/kx behaves as x approaches zero, since 
r-and t are both approaching zero in the same 
way. The limit of tx*/kx as x approaches 
zero is 0, since 

cx4 c 
-=-x3* 

kx k 
Therefore the third term in the denominator 
must also approach the limit zero as r and t 

approach zero. By a similar analysis it can 
be shown that the limit of every succeeding 
term in the denominator is zero as r and t 

approach zero. Thus the entire denominator 
is zero, and the fraction as a whole is infinite, 
so that the term 

V 
e- (+S/4Tt) 

zz 

is infinite when r and t are both zero, satisfy- 
the second part of our condition. 

Another and very instructive way to in- 

vestigate the behavior of the function 
V 

PC- (+S/4Tt) 

4rTt 
is to construct plots of this function versus 
r, for decreasing values of time. The figures 
show the form that such a series of plots 
will take. It may be noted that as time ap- 
proaches zero the function approaches the 
shape of #a sharp “spike,” or impulse, at r= 
0. The shape of ,these curves suggests a head 
distribution which we might sketch intutive- 
ly, if we were asked to describe the response 
of an aquifer to the injection of a small 
volume of water. It is suggested that the 
reader construct a few of these plots, in 
order to acquire a feeling 
of the function. 

for the behavior 

QUESTION 

The aquifer is assumed to be infinite in 
extent, and the volume of water injected is 
assumed to be small. We would therefore ex- 
pect the effects of the injection to die out at 
great radial distances from the well. Which 
of the following exprwsions is ,a mathema- 
tical formullation of this behavior and could 
be used as a boundary condition for our 
problem? 

Turn to Section: 

h+O as r-) 00 33 
h+co as t+co 29 
h+oo as r+O 6 

19 + 

Your answer in Section 21 is not correct. 
We established in the discussion of Section 
21 that the rise in water level in the well at 
t =0 should be given by the expression h= 
V/A,, where A, is the cross-sectionial area of 
the well bore and V is the volume of water 
injected. In order fo,r h to have the instan- 
taneous value of 1 foot, V, in cubic feet, 
would have to be numerically equal to A,, 
in square feet. However, we are assuming 

the well to have an infinitesimally small 
radius, so that A,, its cross-sectional area, 
approaches zero. If smaller and smaller 
values are. assigned to the denominator, A,, 
while the numerator, V, is held constant, 
the fraction V/A, must take on larger and 
larger values. 

Return to Section 21 and choose another 
answer. 
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Your answer in Section 35, 

is correct. If the term 
V 

-e- (Sr?/4Tt) 

4rrTt 
is factored from this expression we have 

ah v -=-me- (S+/4Tt) 
at 4rTt 

and if we multiply this equation by S/T, we 
obtain 

Sah V 
_-c--g- (S+/4Tt) --- . 
T at 4rrTt 

Our expression for ah&, obtained in an- 
swer to the question of Section 27 WM 

ah ‘v 
-=-n-(Srs/4Tt) . 

ar 4rTt 
The term (l/r) (ah/ar) is therefore given 
by 

lab V 
-w=: -e- (W/4Tt) . 

r ar 4=Tt 
In answering the question of Section 5, 

we saw that the expression for a2h/ar2 was 
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QUESTION 

Which of the following expreasions is ob- 
tained for 

a*h 1 ah 
-+--, 
ar* r ar 

by combining the two expressions given 
above and factoring out the term 

V 

4rTt 

. e-’ (Sr2/4Tt) 7 . 

a*h 1 ah V 
-+--= 
ar2 

-e- WW{;+~] 
r ar 4*Tt 

a*h 1 ah V 
-+--=- 
ar2 r ar 4rTt 

e- (S+‘/4Tt, ( ;+l?} 

a*h 1 ah V 
-+--=- 
arz r ar 4rrTt 

e- W.tI(;+~) 

Turn to Section: 

21 

17 

24 

21 + 

Your answer in Section 20, 

a*h 1 ah V 
-+--=- 
a+ r ar 4=Tt 

,- WWTt~( ;+&}, 

is correct. Now note that this expression is 
identical to that given for (S/T) (ah/at) in 
Section 20. Thus we have shown that if head 
is given by 

V 
h=- .e- (.%=/4Tt) 

4,rTt 
then it is true that 

a2h 1 ah S ah 
-+--=----; 
ar* T ar T at 
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In other words, the expression 
V 

h= pe- (Sr2/4Tt) 

4,rTt 
satisfies the partial differential equation, or 
constitutes one particular solution to it. In 
fact, this expression is the solution which 
describes the hydraulic head in an infinite, 
horizontal, homogeneous, and isotropic arte- 
sian aquifer, after a finite volume of water, 
V, is injected suddenly at t =0 into a fully 
penetrating well of infinitesimal radius lo- 
cated at r = 0, ass,uming that head was every- 
where at the datum prior to the injection- 
that is, assuming h was everywhere zero 
prior to t = 0. 

Proof that our function is the solution 
corresponding to this problem requires, in 
addition to the demonstration that it satis- 
fies the differential equation, proof that it 
satisfies the various boundary conditions 
peculiar to the problem. We now wish to 
formulate these conditions. 

The charge of fluid is added to the well at 
the instant t = 0. At this instant, there has 
been no time available for fluid to move 
away from the well, into the aquifer. There- 
fore, at all points in the aquifer except at 
the well (that is, except at r=O), the head 
at t =0 must still be zero. In the well, on the 
other hand, the addition of the volume of 

water produces an instantaneous rise in 
head. For a well of measurable radius, this 
instantaneous head buildup, Ah, would be 
given by 

v v 
Ah=--=--, 

A, n-rwz 
where A,,, is the cross-sectional area of the 
well blare, and rw i,s the well radius. For ex- 
ample, if A, is 1 square foot and we inject 
1 cubic foot of water, we should observe an 
instantaneous rise in head of 1 foot in the 
well ; and because head was originally at 0 
(datum level), we can say that the head in 
the well at t =0 should be 1 foot. If A were 
0.5 square foot, the head in the well at t = 0 
should be 2 feet; and so on. 

QUESTION 

For purposes of developing the boundary 
conditions, we have assumed the radius of 
our well ,to be infinitesimally small-th,at is, 
to approach zero. Which of the follo,wing 
statements describes the behavior of head at 
the well at t =0, subject to this assumption? 

Turn to Section: 

head at the well will be 0 feet at t = 0 10 
head at the well will be 1 foot at t = 0 19 
head at the well will be immeasurably large 

-that is, infinite-at t= 0 18 

22 + 
Your answer in Section 37 is not correct. dV ah 

The expression obtained in Section 28 for in- -=s2n?Ar-. 
flow minus outflow was dt at 

The expression for inflow minus outflow may 

~,-4&=2+~+3AT. 
be equated to that for dV/dt, and the result 
simplified to yield the correct answer. 

Return to Section 37 and choose another 
Our expression for dV/dt was answer. 
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Your answer in Section 6, 

aah V 
-= -.e-(s~a,4Tt)(~)+(~).e-(s~2,4Tt).(4~), 
ar2 4rTt 

is not correct. The rule for differentiation of 
a product is: first factod times derivative of 
second plus second factor times derivative of 
first. The two factors, in this case, are 

V 
-e- (S+/4Tt) 

4xTt 
(which-we have already differentiated in the 
question of Section 27) and 

- 2Sr 

4Tt _ 
The first term of your answer is correct; the 
first factor, 

V 
-e- (.%-=/4Tt) 
4,rTt 

is multiplied by the derivative of the second, 
which is 

-2s 

4Tt 

(t is simply treated as part of the constant 
coefficient of r, since we are differentiating 
with respect to r). The second term of your 
answer, however, is not correct; you have 
written the derivative of the first factor as 

-2Sr 
e- (S+/4Tt) . - . 

( ) 4Tt 

Compare this with the correct answer to the 
question of Section 27 and you will see that 
it does not represent the derivative of 

V 

anTt 
e - (S+a/4Tt) Return to Section 5 and choose another 

answer. 
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Your ansbwer in Section 20, 
a’h 1 ah V 
-+---=- of the two terms 
ar2 r ar 4rTt 

is not correct. This answer contains alge- 
braic errors, both in the addition of the two 
tX9lllS Return to Section 20 and choose another 

answer. 

25 + 

Your aneiwer in Section 15, 

Q1+24(3-(3 ), 

is not correct. The expression for inflow 
through the inner cylindrical face was shown 
tobe 

Applying Darcy’s law in a similar fashion to 
the outer c.ylindrical face, at radius r,, the 

expression for outflow through this face is 
found to be 

ah 
Q 2=-2rT r- ,. 

( ) ar 2 
These two equations may be subtracted to 

obtain an expression for inflow minus out- 
flow. The radius, r, does not disappear in 
this subtraction. Your answer, which does 
not include radius, must therefore be wrong. 

Return to Section 15 and choose another 
answer. 

26 + 

Your answer in Section 7, 

a(lrg) a($) ah 
---=r +-v-, 

ar ar ar 
is not correct. The derivative of a product is 
given by the first factor multiplied by the 
derivative of the second, plus the second 
factor multiplied by the derivative of the 
first. Your first term, above is correct; the 
first factor, r, is multiplied by the derivative 
of ‘ah&, a.lthough it would be more conven- 
tional ti use the second derivative notation, 

azh 
-s 
ar* I 

rather than 

ar ’ 
Your second term, however, is not correct. 
The derivative of r with respect to r is not 
equal to r. 

Return to Section 7 and. choose another 
answer. 
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Your answer in Section 37 is correct. The 
basic differential equation for the problem is 

a2h 1 ah S ah 
-+--=--* 
ar* r ar T at 

In seeking a solution to this equation, we 
are seeking an expression giving h as a func- 
tion of r and t, such that when ah/ar, a2h/ 
ar2, and ah/at are obtained by differentia- 
tion and substituted into this equation, the 
equation is found to be satisfied. For ex- 
ample, consider the function 

V 
h= p. e- (S72/4Tt) 

4rrTt 
in which V (as well as S and T) is constant 
and e is the base of natural logarithms. This 
happens to be an important function in the 
theory of well hydraulics, as we shall see ; 
and we wish now to test it, to see whether 
it satisfies the above differential equation. To 
do this we must differentiate the expression 
once with respect to t and twice with respect 
to r; these operations are not difficult if the 
rules of differentiation are applied carefully. 
First we will differentiate with respect to 

27 + 

r; in doing so, we treat t as a constant, so 
that the factor V/ (4rTt) becomes simply a 
constant coefficient. In the exponent, as well, 
the term - (S/4Tt) may be considered a 
constant coefficient of r2 ; and the problem is 
essentially one of finding the derivative of 
e- (~4~~) 7’ and multiplying this by the 
constant factor V/ (4rTt). The derivative of 
a function e” with respect to a variable r is 
given simply by e”* (du/dr) . Here, u is the 
term - (S/4Tt) r2. 

QUESTION 

Following the procedure outlined above, 
which of the following expressions is found 
for ah&? 

Turn to Section: 

4 

-=- 

ah V -=- e- (SP’j4Tt) 

ar 4=Tt 
2 

28 + 

Your answer in Section 7, 

a2h ah =r- +-9 
ar af-2 ar 

is correct. Our expression for 

may therefore be written 

Our expression for inflow minus outflow 
therefore becomes 

(continued on next page) 
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Ql-Q.=2A7( (T$),- (?-3} 

As before, we wish to equate thi,s expres- 
sion for inflow minus outflow to the rate of 
accumulation of water tin storage in our ele- 
ment. The surface area of the cylindrical ele- 
ment is given approximately by 

A = 2flAr. 

The term 2~ is the perimeter of a circle 
taken along the midradius of the element; 
multiplioation by the radial width, Ar gives 
the surface area, or base area, of the cylin- 
drical shell. 

QUESTION 

Using this expression for the surface area 
of the cylindrical element, and letting ah/ 
at denote the time rate of head buildup in 
the element, which of the following expres- 
sions is obtained for the rate of accumula- 
tion of water in storage in the element? 

dV ah 
Turn to Section: 

- = S2xrAr- 
dt at 

z!L&Jp- 
ah 

dt at 

ST!!- 
dV at 
-=- 
dt %rAr 

37 

12 

16 

29 + 

Your answer in Section 18 is not correct. as going to infinity, rather than disappear- 
The behavior we are trying to describe is ing; and it describes a restriction on h with 
the disappearance of the effect of injection, time, rather than with distance. 
at great radial distances from the well. The Return to Section 18 and choose another 
answer which you chose describes head, h, answer. 

30 + 

Your answer in Section 16, 

is not correct. We established in Sections 1 
and 15 that inflow through the inner cylin- 
drical face of the element is given by 
Darcy’s laws as 

Using a similar approach, we can show that 
outflow through the outer cylindrical face is 
given by 

These two equations can be subtracted to ob- 
tain an expression for inflow minus outflow 
for the cylindrical element. 

Return to Section 15 and choose another 
answer. 
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Your answer in Section 35, 

ah V SF 
-= -+ e- (S72/4Tt) . 

at 4rTt’4Tt” 

Recall that the derivative of an exponential, 
e”, with respect to t is given bye”du/dt. Let- 
ting u represent - (Sr2/4Tt), your answer 
gives only au/at in the place where it should 
give 

is not correct. Application of the product 
rule-first factor times derivative of sec- 
ond plus second factor times derivative of 
first-is correct; but your expression for the 
time derivative of e- (~‘4~~) is not correct. 

au 
e”-. 

at 
Return to Section 35 and choose another 

answer. 

32 + 

Your answer in Section 37 is not correct. 
In Section 28, we saw that the expression 
for inflow minus outflow could be written 

,,T( c++r 

and 

I a2h ah 
Ql-Qz=2rT r-+- I AT 

0 I arz arl 

while the expression we obtained 
dt was 

dV ah 
-=SBflar-. 
dt at 

If we equate the terms 

ah 
S2flAr- 

at 
for dV/ and then divide through the resulting equa- 

tion by 

2TTrar, 
we obtain the correct answer to the ques- 
tion of Section 37. 

Return to Section 37 and choose another 
answer. 

33 + 

Your answer in Section 18, h+O as r+co is 
correct. From a mathematical point of view, 
we should perhaps have used, instead, the 
condition that (ah&) +O as r+w . This con- 
dition is required as r increases toward in- 
finity, because the cross sectional area of flow 
within the aquifer-a cylindrical area co- 
axial with the well-expands toward in- 
finity. Thus if we were to apply Darcy’s law 
to determine the flow of the injected water 
away from the well, we would obtain the re- 
sult that this flow increases toward an in- 
finite value with increasing distance from the 
well, unless we postulated that the head 

gradient, ah&r, decreased toward zero with 
increasing r. However, the condition that h 
approaches a constant, 0, as r+co implies 
that ah& must also approach zero as r in- 
creases; and it is a somewhat easier condi- 
tion to establish. 

Our task, then, is to show that the func- 
tion 

V 
e- (r2S/4Tt) 

4rTt 

satisfies this condition-that is, we must test 
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this function to see whether its value ap- 
proaches zero as r approaches infinity. It is 
easy to show that for any finite value of 
time the condition is satisfied. However, we 
are also interested in what happens as t ap- 
proaches infinity along with r-that is, we 
would like our condition to be satisfied for 
all times, even those immeasurably large. 
For this reason, it is convenient to use the 
the series expansion form given in Section 
18 ; that is we use 

V 
- e- (+:5/4Tt) 

4,Tt 
V 

= 
r4s2?r rwx 

4rrT t + r2Sx + -+ 
4Tt.2! 16T2tZ-3! 

In order that the fraction on the right ap- 
proach zero, it is sufficient that any one of 
the individual terms in the denominator be- 
comes infinite. If r and t both approach in- 
finity, the first two terms clearly become in- 
finite; in fact, the remaining terms become 
infinite as well, although we need not show 
this. If one! term is infinite, the entire de- 
nominator is infinite, and the fraction is 
zero. For a finite value of t, all terms except 
the first clearly become infinite as @co, and 
again the expression as a whole tends to 
zero. Thus the expression 

V 
-e- (r’S/rlTt) 

4rTt 

satisfies the condition of tending to zero as 
*CO, for any value of time. Again, this can 
be demonstrated by extending the plots de- 
scribed in Section 18 to large values of r. 

We could also add the condition that h 
must approach zero as time becomes infinite, 
everywhere in the aquifer-that is, that the 
effect of the injection must eventually die 
out with time everywhere throughout the 
aquifer, since we are injecting a finite vol- 

ume of water into an aquifer which is as- 
sumed to be infinite in extent. We have just 
shown that h approaches zero at infinite 
time, as r also becomes infinite ; we need only 
show that this behavior holds when r is 
finite. We will show this through direct use 
of the function, although it is also evident 
using the series expansion form. As t be- 
comes infinitely large the factor 

V 

4rTt 
must approach zero ; the factor 

- e- (+S/4Tt) 

which is equivalent to 

1 

e(r?S/4Tt) 

must approach the value 

or 

1 

eo, 

if r is finite. But e” is simply 1, so that the 
product 

V 

4,Tt’ 

e- (+‘%/4Tt) 

must approach zero as t becomes infinitely 
large, at any finite value of r. 

We now consider the last condition which 
our function should satisfy. In the sketch, 
the aquifer has been divided into cylindrical 
elements of radial width Ar, coaxial with the 
well. At any given time t after injection, the 
injected volume of fluid, V, is distributed in 
some way among these cylindrical elements. 
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We assumed head to be at the datum, or zero, 
prior to injection, so that h actually repre- 
sents only the head increase due to the in- 
jection. From the definition of storage co- 
efficient, the quantity of the injected fluid 
contained within a given cylindrical element 
will be given by 

where r is the median radius of the element, 
so that 2wrAr is the base area of the element; 
hr,t gives the average head in the element 
(that is, at the radius r) at the time in ques- 
tion ; and S is the storage coefficient. (Recall 
the definition of storage coefficient--the 
volume in storage is the product of storage 
coefficient, head, and base area.) Now if we 
sum the volumes in storage in every cylin- 
drical element in the aquifer, the total must 
equal the injected volume, V, at any time 
after injection. That is, 

where the summation is carried out over all 
of the cylindrical elements in the aquifer. 
Again, it should be kept in mind that h,,, 
represents only the head increase associated 
with the injection, so that its use in the stor- 
age equation leads only to the volume of 
water injected, not to the total volume in 
storage. Now since we are dealing with a 
continuous system, we replace the summa- 
tion in the above equation by an integration. 

That is, we let the width of each element 
become infinitesimally small, denoting it dr, 
so that the number of elements becomes in- 
finitely great; and we rewrite our equation 
as 

v= [l-y S - h,t - Bnrdr. 

The limits of integration extend from T= 0 
to r= co, indicating that the cylindrical ele- 
ments extend over the entire aquifer. This 
equation then is the final condition which 
our function should satisfy if it is in fact 
the solution we are seeking. 

QUESTION 

How do you think our proposed solution 
should be tested to see if it satisfies this 
boundany condition? 

Turn to Section: 

The integration indicated in the equation 
should be carried out. The result should 
equal 

V 
-e- (rW/4Tt). 11 
4rTt 

The expression 

V 
- e- (rV/4Tt) 

4rTt 
should be substituted for 

27fr 
in the equation, and the integration should 
be carried out ; the result should be 

27s. 14 
The expression 

V 
- e- (+*S/4Tt) 

4,rTt 
should be substituted for 

h r,t 
in the equation, and the integration should 
be carried out ; the result should equal 

V. 13 
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34 + 0 

Your answer in Section 1, 

ah 
Q 1=-Krr12 - 

( ) ar 1 

is not correict. Darcy’s law states that flow is 
given by the product of hydraulic conduc- 
tivity, head gradient in the direction of flow, 
and cross-sectional area normal to the di- 
rection of ,flow. In this problem as in the 
steady flow to a well treated in Part III, the 

direction of flow is the radial, or r, direction. 
An area which is everywhere normal to the 
radial coordinate would be a cylindrical 
area, coaxial with the well. That is, the flow 
area that we require here is a cylindrical 
area-in particular, the inner face of the 
cylindrical prism shown in Section 1. The 
area of a cylinder is given by the product 
of its height and its perimeter. 

Return to Section 1 and choose another 
answer. 

35 + 

Your answer in Section 6, 

is correct. We now wish to differentiate the 
equation 

V 
h= -. e- (Sr=/4Tt) 

4mTt 
with respect to time, to obtain an expression 
for ah/at. In doing this, we consider r to be 
a constant, and treat our expression as the 
product of t.he two functions of t, 

V 

4rrTt 
and 

e- (Sr’/rlTt) . 

The derivative of 
V V 

-, or--‘t-l 
4rTt 4,7T 

with respect to t is 
V -V 

------.t-2,0r -. 
4rT 4rTt= 

To differentiate 
e- (S+‘/4Tt) 

we again apply the rule 

de” du 
-= eu-, 
dt dt 

where u is 

- ST-2 - Sr2 
-, or-*t-l, 

4Tt 4T 

and its derivative with respect to t is 

Sr2 ST2 
--‘k2, or-. 

4T 4Tt2 

QUESTION 

Applying the rule for differentiation of a 
product, together with the above results, 
which of the following expressions is ob- 
tained for ah/at? 
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ah V 
-=-. e-(S+/4Tt) 

at 4aTt 
ah V 
-=p. e-. (S+/4Tt) + e-(Sr*/4Tt) . 

at 4,rTt 
ah v Sr” 

-=- .-+ e- (S+/4Tt) 

at 4aTt 4Tt2 

Turn to Section: 

3 

20 

31 

36 + 

Your answer in Section 1, 

Q1= , 
2fl1 

is not correct. Darcy’s law tells us that flow 
is given by the product of hydraulic conduc- 
tivity, head gradient in the direction of flow, 
and cross-sectional area normal to the direc- 
tion of flow. In this case, as in the steady 
state flow to a well in Part III, the direction 

of flow is the radial direction and the cross- 
sectional area normal to the flow is a cylin- 
drical surface-the inner surface of the cy- 
lindrical shell shown in Section 1. In your 
answer, however, there is no factor repre- 
senting the area of this surface. The height 
of the cylinder, which is b, appears in the 
numerator of your answer; its perimeter, 
which is %rl, appears in the denominator of 
the answer which you chose. 

Return to Section 1 and choose another 
answer. 

37 + 

Your answer in Section 28, 
dV ah 
-=%irAr-, 
dt at 

is correct. As before, we will next use the 
equation of continuity to link the storage 
and flow equations. 

QUESTION 

If the expression obtained for inflow 
minus outflow is equated to that given above 

for rate of accumulation in storage, which 
of the following equations may be obtained? 

Turn to Section: 

a*h 1 ah 
r-+--z SZ 22 

ar2 2fl ar at 

32 

azh 1 ah S ah 
-+--=-- 
arz r af- T at 

27 
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Development of Addi tional Solutions by 
Superposition 

The differential equation 

a’h 1 ah S ah 
-+--=-- 
a@ r ar T at 

is linear in h ; that is, h and the various deri- 
vatives of h occur only in the first power- 
they are not squared, cubed, or raised to any 
power except 1, in any term of the equation. 
Equations of this type have the property 
that solutions corresponding to two individ- 
ual disturbances may be added to obtain a 
new solution describing the effect of the two 
disturbances in combination. This is termed 
superposition of solutions; it is a technique 
which is often used intuitively by hydrolo- 
gists-for example when calculating the 
drawdown produced by several wells, by add- 
ing drawdowns calculated for individual 
operation. 

The solution obtained in the preceding 

programed instruction was developed for an 
injection of fluid at t =O: If the injection 
does not occur at t =0, the term t in the solu- 
tion is simply replaced by At, the time inter- 
val between the injection and the instant of 
head measurement. For example, if the in- 
jection occurs at time t’, and the head change 
due to this inj,ection is measured at -some 
later time t, the interval t-t’ is used in the 
solution in place of t, giving 

V 
h,t = 

-LIIs-t., > 
*e . 

4rT(t-t’) 

Now suppose two injections occur, one at 
t,’ and one at t,‘, and the head is measured 
at some time t following both injections. Us- 
ing superposition, the head change due to 
the combined disturbances is 

VI v2 
h 

-LT(t--tp’) / 

r’t=47rT(t-t,‘) 
me + -e 

4rT(t-t,‘) 

where V, is the volume injected at t,’ and 
V, is the volume injected at t,‘. 

If we consider removal of a volume of 
water from the well, rather than injection, 
we need only introduce a change of sign, 
taking V as negative. For example, if a 
bailerfull of water is removed at t = tl’, the 
head change at time t, due to this removal is 

h,t = -e 
4?rT(t-t,‘) 

where V, is the volume removed by the 
bailer. If the well is bailed repeatedly, as 
may happen during completion, the head 
change due to bailing is obtained by super- 
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0 posing the disturbances due to each individ- 
ual withdrawal : 

h,t = - 
47rT(t-t,‘) I 

V, -4rT::t2 ‘^-(..;:J 
- se ***- SC! 

4,rT(t-t,‘) 4,rT(t-tn’) - 

113 

where t is the time at which h is measured ; 
tl’,&‘,ta’, * * * t,’ are the times at which the 
individual withdrawals are made ; and V,,, 
Vz, V,, * * * V,, are the volumes removed by 
the bailer in the successive withdrawals. The 
“bailer method” of determining transmissiv- 
ity from the residual drawdown of a well 
that has been bailed was developed from this 
equation (Skibitzke, 1963) . 

Pumping 
rate, Q 

Q(f) ------ 

t 
Time 

Now suppose a well is pumped continuous- 
ly during the time interval from zero to t, 
and we wish to know the head change at 

time t due to this continuous withdrawal. 
The rate of pumping, in volume of water per 
unit time, may vary from one instant to the 
next. The figure shows a plot of pump- 
ing rate verus time for a hypothetical case. 
Pumping starts at time = 0 and extends 
to time = t, the instant at which we wish to 
know the head change. We consider first the 
head change at t due to the action of the 
pump at one particular instant, t’, during 
the course of pumping. We consider an in- 
finitesimal time interval, dt’, extending to 
either side of the instant t’ ; the average rate 
of pumping during this interval is denoted 
Q (t’) . The volume of water withdrawn from 
the well during the interval is the product of 
the pumping rate, Q (t’) , and the time inter- 
val, dt’ ; that is, 

-V= -Q(t’)dt’. 
Again negative signs are used to indicate 
withdrawal as opposed to injection. The 
product Q (t’)dt’ is equal to the area of the 
shaded element in the graph shown in the 
preceding figure ; the height of this element 
is Q (t’), and its width is dt’. The time in- 
terval betwen the instant of withdrawal and 
the instant of head measurement is t-t’. Us- 
ing the solution obtained in the programed 
instruction for the head change due to in- 
stantaneous withdrawal of a volume of 
water, the head change at time t due to the 
withdrawal at t’ is given by 
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-v -(u;Ist*) > -Q(t’)dt’ -( ,T;lsf,) 
-c! = *I3 

4*T(t-t’) - 

The total head change at t, due to the con- 
tinuous withdrawal from zero to t, is ob- 
tained through superposition, by adding the 
head changes due to the instantaneous with- 
drawals throughout the interval from zero 
to t. 

- Q(t’) -.e-( +;;i> 
.&7 T(t -- t’) 

I I, l---kct - U-jTime t, 
0 t' t ' 

The figure shows a graph in which, instead 
of plotting only discharge versus time, we 
plot the entire function 

--Q(t’) 
-e 

4?rT(t-t’) 

versus time. The area of the element at t’ 
is now 

-Q(t’) 
--. e .dt’ 
42rT(t-t’) 

4*T(t-t’) - 

-thus it is just equal in magnitude to the 
head change at t, caused by the withdrawal 
at t’. If elements of the type shown in the 
figure are constructed all along the time 
axis, from zero to t, the area of each ele- 
ment will give the head change at t due to 
operation of the pump during the time inter- 
val represented by the element; the total 
head change at t due to all of the instan- 
taneous withdrawals throughout the inter- 
val from zero to t will therefore be equal to 
the sum of these areas, or the total area un- 
der the curve from zero to t. This total area 
is the integral of the function 

-Q(V) -(*T:f) > 

4,rT(t-t’) 

over the interval from zero to t, that is, the 
total head change is given by 

h= 
-Q(t’) -i u(t--ty / 

-e dt’. 
4rT(t-t’) 

It should be noted that we are now using t’ 
to denote the time variable or variable of in- 
tegration, rather than to specify one par- 
ticular instant. The function being inte- 
grated involves the difference, t-t’, between 
the upper limit of integration and the vari- 
able of integration. Evaluation of the inte- 
gral will yield a function of the upper limit, 
t, and of r; that is, the head change due to 
the pumping will be specified as a function 
of r and of t (the time of head measure- 
ment.) 

For the particular case when the rate of 
discharge is a constant, Q, the integral equa- 
tion can be transformed directly into a form 
suitable for computation. We have 
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/ 7-s \ 

- 4T(t-t') k ) 
.e dt’. 

The value of + corresponding to the upper 
limit of integration, t’= t, is 

h= 

The term -Q/4xT is a constant and may 
be taken outside the integral, giving 

-( 4TZ) 
dt’. 

We introduce the algebraic change of 
variable, 

$= r”S 
4T(t-t’) ’ 

We differentiate this expression with respect 
to t’, treating t, at this stage, as a constant; 
this gives 

d* r2S.4T r2S 1 
-= 
dt’ (4T(t-t’))2= 

.- 
4T(t-t’) t-t’ 

r2S 

= 4T(t-t’) 

Therefore 

and 

r2S 

4T(t- t’) 

9% 

4T 

$” 
d+=- . dt’ 

PS 

ICI” =-* 
r2S 

4T 

r2S 
tit= = 00. 

4T(t-t) 

While the value of + corresponding to the 
lower limit of integration, t’ = 0, is 

qo= r”S - r2S . 
4T(t-0) 4Tt 

We now return to our integral equation 
and substitute JI for 

r2S 

4T(t-t’)’ 

r% d+ 
-.- 

4T Q 

for 

dt’ ; 

and the values obtained above for the limits 
of integration. This gives 

-Q 
h=- 

L 

co 1 r2S d+ 
-.e-* .-.-* 

4?rT y r’s t-t’ 4T q,” 

zi 

But since 

4T 
the above integral becomes 

r%’ d+ 
&‘=- -. 

4T +” 4Tt 
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c?-* Values of the integral for various values 
of the lower limit have been computed, using 
this series, and tabulated. In the hydrologic 
literature, the value of the integral is com- 
monly referred to as W(u) or “well function 
of u.” Tables of W(u) versus u are avail- 
able in the reference by Ferris, Knowles, 
Brown, and Stallman (1962) and in numer- 
ous other references. In the forms presented 
above, the equations yield the head change, 
or simply the head, assuming h was zero 
prior to pumping. If head was at some other 
constant level, h,, prior to pumping, the ex- 
pressions are still valid for head change, 
h-h,. That is, we have 

i 
\ 
'\ 
\ 
\ 
\ 
\ 

\ 

I\ 

I' 
I' 
I/ 

I // 

/ 

//i/ // 

0 Lower 
/'O//$ 

limit 

U 

This integral is called the exponential in- 
tegral. It is a function of its lower limit, as 
suggested by the figure, which shows a graph 
of the function e-*Y/+ versus +. The area un- 
der this graph is equal to the value of the 
integral. The upper limit is infinite, and the 
function e-*/q approaches zero as + becomes 
infinite ; the area under the curve, or the 
value of the integral, depends only upon the 
point where the lower limit is taken-that 
is, upon the value of r%/4Tt. This term is 
often denoted u in the literature, so that the 
equation for head change is often written 

where 

PS 
u=-. 

4Tt 

It can be shown that the above integral is 
equal to an infinite series involving the lower 
limit. Specifically, 

r. W e-r u2 u3 f.64 
y oT+ = -0.5772 -In(u) +u-- -- -+ *** 

2.2!+3.3! 4*4! 

(24) 

where 

r “S 
?A=- 

4Tt 

or in terms of drawdown, h, - h, we have 

Q s=h,-h=- s 
00 e-u Q e-d,/,=- *W(u) 4rTu + 47rT 

The result we have obtained here is 
known as the Theis equation, after C. V. 
Theis who first applied it in hydrology 
(Theis, 1935). An excellent discussion of the 
significance of this equation in hydrology is 
given in another paper by Theis (1938). 

It was recognized by Cooper and Jacob 
(1946) that at small values of u, (that is, 
at large values of t), the terms following 
In (u) in the series expansion for 
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become negligibly small. In this condition 
the value of the integral is given simply by 

- 0.5772 -In (u) , 

or 

-0.5772--In 

The sign of the logarithmic term may be 
changed by inverting the expression in 
brackets, 

and the constant, 0.5772, may be expressed 
as the natural logarithm of another con- 
stant, 

0.6772 = In 

so that 

-0.5772+(;) -In($) -In(&) 

=*n(T)=2.3 l*gl0(:)- 

Thus when pumping has continued for a 
sufficient length of time so that u, or r2S/ 
4Tt, is small we may write 

Q 
s 
03 e-r 2.3Q 

a=- - d+- lofhl 
4=T u ti 4aT 

This is the modified nonequilibrium for- 
mula, which forms the basis of the “semilog 
plot” techniques often used by hydrologists 
in the analysis of pumping test data. These 
techniques are generally applied for values 
of u less than 0.01. 

The Theis equation and the modified non- 
equilibrium formula are extremely useful 
hydrologic tools, provided they are used 
within the limits of application established 
by the assumptions made in their derivation. 
Before leaving this subject, we will briefly 
review the assumptions that have been ac- 
cumulated during the course of the deriva- 
tion. We first developed the equation 

by 
1. 
2. 
3. 

4. 

5. 

a2h 1 ah S ah 
-+--=-- 
w2 r ar T at 

assuming that : 
The aquifer was confined ; 
There was no vertical flow; 
All flow was directed radially toward (or 

away from) the origin ; 
S and T were constant--that is, the 

aquifer was homogeneous and iso- 
tropic ; 

There was no area1 recharge applied to 
the aquifer 

In writing the solution corresponding to 
instantaneous discharge or input of a vol- 
ume of water, V, we added the assumptions 
that : 

6. The aquifer was infinite in extent; 
7. There was no lateral discharge or re- 

charge except at the well 
8. The head was uniform and unchanging 

throughout the aquifer prior to t =O. 
9. All of the injected water was taken into 

storage (or conversely, all discharged 
water was derived from storage). 

10. The well was of infinitesimal radius. 
Finally, when we integrated the above solu- 

tion to obtain the continuous discharge solu- 
tion 

Q 

J 

co e-e 
9=&--h=- --@ 

4rT 1s JI 

4Tt 
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ers have examined the problem of discharge 0 we added the condition that 
11. The discharge, &, was constant through- 

out the duration of pumping. 
These assumptions should be kept in mind 

whenever the Theis equation is applied. The 
assumption that all flow is lateral implies 
that the well must fully penetrate the aqui- 
fer and that the aquifer is horizontal. 

If the semilog approximation is used, we 
add the assumption that the time is great 
enough and radius small enough that the 
term r%S’/4Z’t is less than 0.01, and the later 
terms in the series expression for the inte- 
gral can therefore be neglected. 

The Theis equation was the first equation 
to describe flow of water to a well under 
nonequilibrium conditions. In subsequent 
work, Papadopulos and Cooper (1967 
have accounted for the effects of a finite well 
radius ; Jacob (1963) and several other writ- 

from partially penetrating wells ; Stallman 
(1963a), Lang (1963), and numerous other 
investigators have utilized image theory to 
account for lateral aquifer boundaries ; 
Jacob and Lohman (1952) have analyzed dis- 
charge at constant drawdown, rather than 
at constant rate ; numerous writers, includ- 
ing in particular Jacob (1946)) Hantush 
(1959, 1960 1967a 196713) and Hantush 
and Jacob (1955) have treated the problem 
of discharge from an aquifer replenished by 
vertical recharge through overlying and un- 
derlying strata ; and several writers, includ- 
ing Boulton (1954)) have attacked the gen- 
eral problem of three-dimensional flow to a 
well. Weeks (1969) has applied various as- 
pects of the theory of flow toward wells to 
the problem of determining vertical perme- 
ability from pumping test analysis. 



Part VI I. Finite-Difference Methods 

Introduction 

In preceding chapters we have considered cases, we are forced to seek approximate 
formal mathematical solutions to the differ- solutions, using methods other than direct 
ential equations of ground-water flow. In formal solution. In Part VII, we consider one 
pract.ice, however, we find that such formal such method-the simulation of the differen- 
solutions are available only for a small mi- tial equations by finite difference equations, 
nority of field problems, representing rela- which in turn can be solved algebraically or 
tively simple boundary conditions. In most numerically. 

1 (70 

0 
Observation 

wells 

J \ Potentiometric 

-h 
- 

1 d 0 e 2 

Three observation wells tap a confined 
aquifer. The wells are arranged in a straight 
line in the x direction at a uniform spacing, 
AX. The water levels in the three wells are 
designated h,, &, and h, as #indicated in the 
figure. 

QUESTION 

Which of the following equations gives a 
reasonable approximation for the derivative, 
ah/ax, at point d, midway between well 1 
and well O? 

Turn to Section: 

a- 7 

w- 26 

w- 12 

0 119 
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900 
0 

Your answer, hi,j, in Section 3 is correct. 

QUESTION 

Following the same conventions, which of 
the following expressions would serve as a 
finite-difference approximation to the term 

a”h a’h 
-+- 
ax2 aY2 

at the point haj? 

'Turn to Section: 

azh a'h hi-2,j+hi-1,j+ht+l,j+h*+2,j-4h{,j 
-+-- 

ax2 7321" a2 
20 

a*h azh hcr+l+hi+l,i+hc,r+2+hi+2,r-4ho 
-x 

$G+ ay* a* 
18 

a2h a*h hi-l,j+ht+l,j+hi,j-1+hi,j+1-4hr,j 

z+gg- a2 
4 

3 Del 

Your answer in Section 15, 

a*h a*h hl+h2+h3i-h4-4ho 
-w 

$G+ ay* a2 ’ 
is correct. These approximations to a*h/ax’ 
and a*h/ay* can be obtained more formally 
through the use of Taylor series expansions. 
A certain error is involved in approximating 
the derivatives by finite differences, and we 
can see intuitively that this error will gen- 
erally decrease as a is given smaller and 
smaller values. 

Now let us place a rectangular grid of in- 
tersecting lines, as shown in the diagram 

Y Column 

8 

6 

12346678 

over the x, y plane. The lines are drawn at 
a uniform spacing, a, and are numbered suc- 
cessively from the origin. Lines parallel to 
the x-axis are termed rows, while lines 
parallel to the’ y-axis are termed columns. 
The intersections of the grid lines are 
termed nodes and are identified by the num- 
bers associated with the intersecting lines. 
for example, the node 3, 4 is that formed by 
the intersection of the third column to the 
right of the y-axis with the fourth row 
above the x-axis. The spacing a, may be 
thought of as a unit of measurement; the 
node numbers then give the number of units 
of distance of a given node from the x and 
y axes. The head at a given node is indicated 
by using the node numbers for a subscript 
notation; for example, the head at node 3, 4 
would be indicated by h,,,. 

QUESTION 

Following this convention, how would we 
indicate the head at a node located i units 
to the right of the y axis and j units above 
the x axis (that is, at the point x=i.a, y= 
j.u, in the conventional Cartesian nota- 
tion) ? 

hj,i 

h ki 
h hia 

Turn to Section: 

14 
2 
5 0 
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0 4 q u 

Your answer in Section 2 is correct. We 
next consider the time axis and divide it as 
shown in the sketch into segments of length 
At, again numbering the division marks suc- 
cessively from t =O. We also introduce a 
third subscript, indicating the time at which 
a given head value is observed ; for example, 

Time *~~i..:t 
234567 

hi,i,, refers to the head at the node i, j of the 
Z, y plane at the time indicated by the nth 
division mark on the time axis. 

QUESTION 

Again assuming AX = Ay=u, which of the 
following would give the actual coordinate 
distances and time of measurement asso- 
ciated with the term h,,j,n? 

Turn to Section: 

&,,,=head at X=i.a, y=i.At, time=n*At 
9 

h,j,,=head at X=i-AX, y=i-Ay, time=n*a 
23 

hi,j,,=head at x=i.a, y= j-u, time=n-At 
10 

0 5 q u 

Your answer, hi,,i,, in Section 3 is not cor- 
rect. You have used the distances from the 
two coordinate axes as subscripts. That is, 

8 

7 

21 

12345678” 

you have used ia, which is actually the x 
coordinate of the node, or its distance from 
the y axis, as the first subscript; and you 
have used ja, which is actually the y coor- 
dinate of the node, or its distance from the 
x axis, as the second subscript. The conven- 
tion introduced in Section 3, however, does 
not have this form. If the finite-difference 
grid is superimposed on the x,y plane, as in 
the sketch, then the subscript associated 
with the point s=2a, y=3a is simply 2,3; 
the head at this point is designated h,.,. If 
we number the lines of the grid in succes- 
sion along each axis, starting with the axis 
as 0, we can obtain the subscript of a given 
node, or grid intersection, by looking at the 
numbers assigned to the two grid lines 
which intersect there ; point 2,3 is at the 
intersection of vertical line number 2 and 
horizontal line number 3. 

Return to Section 3 and choose another 
answer. 
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Your answer in Section 25 is not correct. 
Your formulation for the calculation of the 
new value of & in the first step is incorrect. 
The finite-difference equation which we de- 
veloped sta.ted that the value of h,,j should 
be the average of the values of h at the four 
surrounding nodes, that is 

The idea in the relaxation process is to com- 
pute a new value of hj,j as the average of the 
previous values of h at the four surrounding 
nodes. That is 

h,,i(New Value) =‘(hi-l,j+hi+l+i 

+ hcj--,+4hi,J+i) (Previous Values). 

When this calculation has been made, the 
idea is to compare the new value of hi,j with 
the previous value of h,,j. If these two are 
very close, everywhere in the grid, there is 
no point in continuing the process further, 
since additional iterations will produce little 
additional change. The solution, in other 
words, has converged to values of h which 
satisfy the difference equation. In the second 
step, therefore, rather than setting A& equal 
to the average of the new and previous 
values of hi,1 as in the answer you selected, 
Ri,; should be sot equal to the difference be- 
tween hi,j (New Value) and ‘hi,j (Previous 
Value). This difference may then be tested 
throughout the grid, and if it is sufficiently 
small at all points, the iteration process can 
be terminated. 

Return to Section 25 and choose another 
answer. 

Your answer in Section 1, 

h-h, 

Ax 

is not correct. In introducing the notion of a 
derivative, it is customary to begin with the 
finite-difference form-that is, to consider 
the finite change in h, Ah, occurring over a 
finite interval, ax, along the x axis. The de- 
rivative notation, dh/dx, is then introduced 
to represent the value of the ratio Ah/Ax, as 
AX becomes infinitesimal in size. Here, the 
idea is to move in the opposite direction. We 
started with1 the derivative, ah/ax, and we 
wish to approximate it by a ratio of finite 
differences. Moreover, we want an expres- 
sion which applies at point d, midway be- 
tween well 0 and well 1. The finite change 
in h occurring between these two wells is 
ho-h,. The finite distance separating them is 
Ax. 

Observation 
wells 

1 o! 0 e 2 

Return to Section 1 and choose another 
answer. 
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Your answer in Section 10 is not correct. 
You have used the correct formulation for 
the forward-difference approximation to 
@/at-that is, 

-but your approximation for (a”h/ax”) + 
(a’h/a@) is not correct. To obtain an ap- 
proximation for a2h/ax2, we move along the 
x axis, holding y constant. In this process 
i, the subscript denoting node position on the 
x axis will change, whereas j, the subscript 
denoting node position in the y direction, 
will remain unchanged. Our result will be 

- 
a”h a a hi+ l,j,s + hi-l,j,e - 2hi,j,n 
-$zs I . 
ax= a a2 

Similarly, in obtaining an approximation 
for a”h/ay?, we move along the y axis, so 
that i remains fixed, while the y-subscript, 
j, varies. The result is 

hi,j+l,n-h,j,n h,j,a-kj-1,e 
- 

a’h a a h,j+l,n+ hi,j-1.n -S,j,n 
-523 = 

3Y2 a a2 

Addition of these two expressions will 
give the correct approximation for (a2h/ 
ax? + (a2h/av2). 

Return to Section 10 and choose another 
answer. 

9 Em 

Your answer in Section 4 is not correcl. 
The subscripts i, j, n tell us that head hi,j,, 
occurs at a certain node, i, j of the finite- 
difference grid on the x, y plane and at a cer- 
tain point, n, of the finite-difference scale 
along the time axis. The coordinate values 
are found by multiplying the number of 
nodes along a given axis by the node spac- 
ing. Along the x axis the node i, j lies a dis- 
tance i-a from the origin (i nodes, each with 

spacing a). Along the time axis, the point 
n occurs at a time n-At (n time marks, each 
at a spacing At). The same procedure should 
be applied in determining the y coordinate, 
keeping in mind that there are j nodes along 
the y axis between the origin and point i, j, 
and that these nodes fall at a spacing a. 

Return to Section 4 and choose another 
answer. 
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Your answer in -Section 4 is correct. On to 
each axis, X, y, an6 t, the value of the inde- a”h a”h 
pendent variable is found by multiplying the -+- 
subscript, or node number, by the node spac- ax2 all2 
ing along the axis. Using the conventions we at the time t =nAt, and at the point x =6a, 
have adopted, therefore, the approximation y=j-a would be given by 

( a2h a2h 
\ 

hi-,,j,n+ hi+l,j,n + hr,j-qn+ hi,j+laR-4hi,j.* 
-+- sz 

a2 

Now in o:rder to simulate the differential In practical methods of computation, how- 
equation ever, the approximations 

a2h ph S ah 
-+-=-- 
ax2 av2 T at 

at the instant t =nAt we require in addition 
an approximation to ah/at at this instant. 

Time node- n-l n n+l t 

The sketch shows a graph of h versus t in 
the vicinity of this time. A reasonable ap- 
proximation to ah/at in the vicinity of the 
nth time mark would obviously be 

ah hn-ts) -b+) --= 
at At ’ 

h n+l -h, 
525 

At 

or 

hn-hn-, 
F=z 

At 

are often found’ preferable. Here, we are 
simulating the derivative, at t =nat by, re- 
spectively, a “forward difference” taken be- 
tween the times n-At and (n+l) -At, and a 
“backward difference,” taken between (n - 
1) *dt and neat. The error involved will de- 
pend largely upon our choice of At, and can 
be reduced to tolerable limits by choosing At 
sufficiently small. 

QUESTION 

Using the forward-difference approxima- 
tion to ah/at given above, which of the fol- 
lowing results is obtained as a finite-differ- 
ence simulation of the equation 

a2h ph S ah 
-=-- 

G+ay2 T at 
at the point x =ia, y = ja, and at the time 
t=nAt? 
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Turn to Section: 

ht-l,j,a~h~+l,j,n+ht,j-*,n+h,,j+I,n -b,j,n S h,j,n+l-kj,n 
=-. 

a2 T At 

hi-l,j-l,n+~t+l,j+l,n+hr+t.l,,-l,n-hr-1,j+l,n-4hcr,, S hi,j,m+l--hw,n 
=-. 

a2 T At 

hr-+j,n+h+I,j,n + hi,r-I.n+hc,r+1,n-4h{,j,n S hc,j,n+ ‘/--hem- %, 
=-. 

a2 T At 

16 

8 

19 

11 q n 

Your answer in Section 16 is not correct. 
For the steady-state condition, ah/at = 0 ; so, 
our equation, 

a”h a”h S ah 
-+-=-- 
ax* ag* T at 

becomes simply 

a’h a*h 
-+-=o. 
ax* a2/* 

To obtain a finite-difference approximation 
to this equation, we need only take our fi- 
nite-difference approximation to (a*h/ax*) 

Obnervation 
Wells 

1. %r 

12 

J I \‘ Potentiometric 
\ dmrface 

+ (a*h/ay*) and set it equal to zero. Our ap- 
proximation to this sum, using the subscript 
notation associated with the finite-difference 
grid, was 

a2 
. 

This expression can be set equal to zero, 
and the resulting equation multiplied 
through by the constant a2 to obtain the 
finite-difference equation which we require. 

Return to Section 16 and choose another 
answer. 

cl0 

Your answer in Section 1, 

is correct. Similarly the derivative at point 
e, midway between well 0 and well 2 is ap- 
proximated by 

(continued on next page) 
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h,-ho 
a-. 

Ax 

QUESTION 

Which of the following expressions gives 
a reasonable approximation for the second 
derivative, a”h/ax’, at point O-that is, at 
the location of the center well? 

13 
Your answer in Section 16 is not correct. 

The finite-difference expression approximat- 
ing 

a*h azh 
-+- 
ax2 av 

was 

L-r,j+ ht+l,j + h;,j-l+ h,j+, -4&j 
. 

a2 

Turn to Section: 

a2h 12*-h, 
-w- 27 
ax? 2Ax 

a% h,+h,-2h, 

;- (Ax)’ 
15 

h,-h, ho-h, 
--- 

azh Ax AX 

s- 2Ax 
22 

q u 

To approximate the equation 

a”h ph 
-= 

g+ay2 
0 

this finite-difference expression need only be 
equated to zero. The resulting equation can 
be multiplied through by the constant a*. 

Return to Section 16 and choose another 
answer. 

14 q u 

Your answer, hj,i, in Section 3 is not cor- 
rect. The sketch shows a diagram of the x, 
y plane, with the finite-difference grid super- 
imposed upon it. Node 2, 3 is at a distance 
2a from the y axis (z=2a) and a distance 
3a from the x axis (y=3a). That is, the 
node having the coordinates x =2a, y=3a is 

at this node is 
2,3. The same rules apply for the 

node in the question of Section 3 which was 
at a distance i*a from the y axis and a dis- 
tance ja from the x axis. The coordinates of 

choose another 
12346678’ 
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Cross section along @ axis 

Your answer in Section 12, 
a’h h, -k h, - 2h, 

G- (AX)* ’ 

is correct. If we were to consider, in addi- 
tion, the wells 3 and 4 along a line parallel 
to the y axis (see figure), we would similar- 
ly have as an approximation for a*h/ay* at 
point 0, 

a”h h,+h,-2h, 
-2% 
az/* (AY)” ’ 

QUESTION 

If the spacing of the wells in the diagram 
is uniform-that is, if AX = Ay = u-which of 
the following expressions may be obtained 
for 

a’h a*h 
3 

$$ 
Turn to Section: 

$h a*h h,+h,+h,+h,-4ho 
---+-a 3 
ax* aY2 a2 

a”h a”h h,+h,+h,+h, 
-+-sd 28 
ax* av* a2 

a”h a’h (h,+h,-h,+h,) 
-+-e 24 
ax* aI* a* 

16 q o 

Your answer in Section 10 is correct. Note of the x, y plane for some initial time, t= 0, 
that the equation which we have obtained is then the head value at each internal node 
actually an algebraic equation, involving the for the succeeding time, t = 1. At, can be ob- 
term h-l,j,n, hi+ 1,~~~ h,j-l,w k,j+,,,, h,j,,, and tained by applying the equation we have just 
h,j,n + 1; that is, we have simulated a differ- obtained at the two times 0 and 1 *At (n= 0 
ential equation by an algebraic equation. If and n= 1). This would give 
the values of head are known at all nodes 
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This equation is applied in turn at each 
internal node of the plane and solved for 
hi,j,l at eachL point, using the appropriate 
values of h from the t= 0 distribution. Ad- 
ditional conditions must be given from 
which head values at nodes along the bound- 
aries of the X, v plane at the new time can 
be determined. When the head values are de- 
termined throughout the plane for the new 
time (n = 1) , the procedure may be repeated 
to determine head values at the next point 
on the time a.xis (n = 2) ; and so on. 

This is termed the explicit procedure of 
solution. It suffers from the shortcoming 
that if At is chosen too large, errors may be 
introduced which grow in size as the step- 
wise calculation proceeds, so that for large 
values of time the solution bears no relation 
to reality, even as an approximation. To cir- : 
cumvent this difficulty, other schemes of 
computation are often used, some involving 
the backward-difference approximation to 
ah/at, and others involving entirely differ- 
ent simulations of the differential equation. 

Many of these schemes of solution involve 
iterative tech:niques, in which the differences 
between members of an equation are suc- 
cessively reduced by numerical adjustment. 
These techniques are sometimes termed re- 

17 
Your answer in Section 25 is correct. If 

we were to “flow chart” the relaxation pro- 
cedure for solution on a digital computer, 
we would have to incorporate these steps 
in some way. 

Numerous other techniques exist for the 
numerical solution of the differential equa- 
tions of flow. The efficiency of various meth- 
ods, in terms of computational labor or ma- 
chine time, varies widely depending upon 
the problem under study. Care must be ex- 
ercised in selecting a method that is well 
suited to the problem, or unreasonable in- 
vestments of time and effort may be re- 
quired to obtain a solution. 

laxation methods; they are of sufficient im- 
portance that it will be worthwhile to see 
how they operate, through a simple example. 

Suppose we are dealing with a problem of 
two-dimensional steady-state ground-water 
flow. For a steady state situation, the term 
ah/at of our differential equation, and 
therefore the term 

h,j,n+ I- hi,j,n 

At 

of our finite-difference equation, is zero.-The 
differential equation is simply 

a% a% 
-+-=o. 
ax’ aY’ 

QUESTION 

Using the notation developed above, but 
dropping the third subscript since time is 
not involved, which of the following would 
represent a valid finite-difference approxi- 
mation to this steady-state equation? 

Turn to Section: 

h~-~,j+hc+1,j+h~,j-1+hi,j+l-4h~,j=O 25 
hr-l,j+hi+l,j+ht,j-l+hl,j+l +&,j=a’ 11 

4h.j 

hi-,,,+hi+l,j+hr,j-1+hi,j+l=- 13 
a2 

q u 

In this discussion we have given only a 
brief indication of the way in which numeri- 
cal methods may be applied in ground-water 
hydrology. Numerical analysis is a broad 
and complex field in itself. Interested 
readers will find, an extensive literature deal- 
ing both with theory and with a wide range 
of applications. Examples of the use of nu- 
merical techniques in ground water may be 
found in the work of Prickett and Lonnquist 
(1971)) Stallman (1956)) Remson, Appel, 
and Webster (1965), Pinder and Bredehoeft 
(1968)) Rubin (1968), Bredehoeft and 
Pinder (1970)) Freeze (1971), Prickett and 
Lonnquist (1973)) Trescott, Pinder, and 
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Jones (1970), Trescott, (1973)) and many You have completed the programed in- 
others. An excellent summary of numerical struction of Part VII. A discussion giving 
methods as applied in ground-water hydrolo- further details of some of the standard fin- 
gy is given by Remson, Hornberger, and Molz ite-difference techniques is presented in 
(1970). standard text format following Section 28. 

18 Em 

Your answer in Section 2 is not correct. 
The sketch shows the five-well array which 
we used earlier to develop an approximation 
for (a2h/aP) + (a’h/ay’), but with the 
wells now redesignated according to the 
scheme of subscripts associated with our 

T 
i,i+J 

i-&j i, i i+Li 
2 

‘L--U- I I .’ 1 
a 

1 i, j - 1 ,,----- 

finite-difference grid. The head at the central 
well is designated hi,3 rather than h, ; the 
heads at the two wells along the x axis are 
k-l,j and h+l,j, rather than h, and h, ; and 
the heads at the two wells along the y axis 
are designated h,,j-I and hi,j+l, rather than 
h, and h,. Our previous expression for 

iyh a2h 
-+- 
ax2 av2 

was 
h,+h,+h,+h,-4h, 

. 
a2 

The question only requires that this be 
translated into the notation associated with 
the finite-difference grid. 

Return to Section 2 and choose another 
answer. 

Your answer in Section 10 is not correct. 
Your approximation for (a2h/ax2) + (ph/ 
ay”) is correct, but you have not used the 
forward-difference formulation to approxi- 
mate ah/at, as required by the question. 
The approximation which you have used, 

ah hcj,,+g - hi,j,,- s 
-= , 
at At 

is normally a more accurate approximation 
to ah/at at i, j, n, than is the forward-dif- 
ference formulation, since the difference is 

taken symmetrically about the point at 
which ah/at is to be approximated. Un- 
fortunately, however, it is not always as 
useful in the calculation of actual numerical 
solutions as is the forward-difference or 
backward-difference formulation. These for- 
mulations are unsymmetrical in the sense 
the difference is measured entirely to one 
side or the other of the time t=nat, which 
is the instant at which ah/at is to be ap- 
proximated ; but they are better suited to 
many techniques for computing solutions. 

Return to Section 10 and choose another 
answer. 
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Your answer in Section 2 is not correct. 
The upper part of the figure shows the ar- 
ray which we used in developing our finite- 
difference approximation for (a”h/ax”) + 
(a’h/ay”) . The well at the center of the ar- 
ray was labeled 0 ; the surrounding wells 
were labeled as indicated. The expression 
we obtained for 

a”h a*h 
-+- 
ax* av* 

was 

h,+h,+h,+h,-4h, 
. 

a2 

Using the notation introduced for our finite- 
difference grid, shown in the lower part of 
the figure, the well at the center of the ar- 
ray would be denoted i, j ; the remaining 
wells would be designated : i - 1, j ; i + 1, j ; i, 
j- 1; and i, j+ 1, as shown. It is simply a 
matter of substituting these designations 
for the designations, 0, 1, 2, 3, and 4 used in 
our earlier development. 

Return to Section 2 and choose another 
answer. 

Your answer in Section 25 is not correct. becomes very small everywhere in the grid. 
Your initial step, giving the formulation for Thus Ri,j should represent, the difference be- 
computing the new value of hi,j using the tween hi,j (New Value) and hJ,, (Previous 
previous values of L1,j, hs+l,j, &-I, and Value) ; and the process should be continued 
hiJ+l, is correct. However, your second step until I&j is negligible throughout the grid. 
is not correct. The idea is to continue the Return to Section 25 and choose another 
process until the difference between the pre- answer. 
vious value of hi,j and the new value of hi,j 
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Your answer in ‘Section 1% 

h,-h, ho-h, 
--- 

azh AX Ax 
-c=z5 
3X” 2AX ’ 

is not correct. The numerator in your an- 
swer gives the difference between two 
terms : (h, - h,) /Ax, which approximates 3 h/ 
ax at point e; and (ho-h,) /AX, which ap- 
proximates ah/ax at point d. 

Observation 
wells 

J I \ Potentiometric 

2 

The numerator thus represents the differ- 
ence 

El- (3 
that is, it approximates the change in ah/ax 
between point d and e. Thus if it were di- 
vided by Ax, the interval between points d 
and e, we would have an approximation to 

ax ’ 

that is, to aZh/ax2 at the midpoint, 0, of the 
interval between d and e. In the answer 
which you selected, however, the quantity 

h,-h, h,-h, 
--- 

Ax Ax 

is divided by 2Ax, rather than by Ax. 
Return to Section 12 and choose another 

answer. 

23 q u 

Your answer in Section 4 is not correct. to i, j, and the node spacing is a. The same 
The coordinate of a point, in space or time, procedure may be applied along the y and t 
is found by multiplying the number of nodes axes, keeping in mind that the node spacing 
between the origin and the point in question, along the y axis is a, while that along the 
along the appropriate axis, by the node time axis is At. 
spacing along that axis. Thus the x coordi- Return to Section 4 and choose another 
nate of a node i, j, n, is x =i*a, since there answer. 
are i nodes along the x axis from the origin 
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24 cm 
Your answer in Section 15, 

a’h a*h (h,+h2) - (h,+h,j 
-x 

gG+ ay2 a2 
is not correct. The approximate expression 
which we obtained for ph/ax2 was 

h,+h,-2h, 

(Ax)* 
or, since we have taken AX =a, 

h,+h,-2h, 

25 
The expression given in Section 15 for azh/ 
ay2 was 

h,+h,-2h,, 

(AY)” ’ 

or again, since we have taken Ay=a, 

ha+h,-2h, 

a2 

These two expressions need only be added 
algebraically to obtain an approximation for 

azh a’h 
-+-. 
ax2 av2 

Return to Section 15 and choose another 
answer. 

Your answer in Section 16 

hi-l,i+ hi+l,j+ hi,j-l+ h<,j+l -4hi,j=O 
is correct. To solve this by an iteration tech- 
nique we rewrite the equation in the form 

h<,j=l(hi-l,j + hi+l,j+hi,j-1+hi,i+*), 
4 

and we divide the x, y plane into a grid 
as shown in t,he sketch, with the grid inter- 
sections forming the nodes at which we will 
compute values of h. In the form in which 

we have written it, it is easy to see that 

no 

what our equation atitually says is that the 
head at each node must be the average of 
the heads at the four adjacent nodes. We 
begin by entering known values of head 
along the boundaries of the grid-that is, 
by applying the boundary conditions. We 
then insert assumed values of h at each in- 
terior grid point. These initial values of h 
may be anything we wish, although a great 
deal of work can be saved if we can choose 
them in a way that roughly approximates 
the final head distribution. We then move 
through the grid, in any order or direction, 
and at each interior node cross out the value 
of head, writing in its place the average of 
the head values at the four adjacent nodes. 
At each node we note not only the new value 
of h, but the change in h, from the initial 
value, resulting from the calculation. When 
we have completely traversed the grid, we 
start again, and proceed through the grid in 
the same way, replacing each h value by the 
average of the heads at the four adjacent 
nodes, and noting the change in h that this 
causes. After a number of repetitions we 
will find that the change in h caused by each 
new calculation becomes very small-in 
other words, that the value of head at each 
point is already essentially equal to the aver- 
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age of those at the four neighboring points, 
so that inserting this average in place of h 
produces little or no additional change. At 
this point our head distribution represents 
an approximate solution to our difference 
equation and thus to the differential equa- 
tion which the difference equation simulates. 

The process just described, as noted ear- 
lier, is an example of a relaxation technique. 

In general, since the head at each node is 
used in calculating the head at each of the 
four surrounding nodes, several complete 
traverses of the grid may be required be- 
fore the changes in head are everywhere 
sufficiently small. This method can readily 
be used in hand calculation; it is also well 
adapted to solution by digital computer. 

QUESTION 

Which of the following would you choose as a “shorthand” description of the method of 
calculation described above? 

Turn lo Section: 

1 
h<,j (New Value) =4(h~-l,j+hi+l,i+hi,j_l+hi,j+l) (Previous Values) 

R,, = hi,j (New Value) - hi,j (Previous Value) 
Continue calculation until I&I=0 for all points in grid. 

hc,,(New Value) =‘(hi-l,j+ h i+1,j + hd,j-I+ hi,j+l) (Previous Values) 
4 

Ri,j= hi,j (New Value) 

r7 

Continue calculation until jR,,jIBO for all points in grid. 21 

hi,j (New Value) =‘(h,+~,j-hi-l,t+hl,j+l-h~,i-1) (Previous Values) 
4 

hi,, (New Value + h,,)( Previous Value) R. _ 
t,, - 

2 
Continue calculation until IRi,jjwO for all points in grid. 6 

26 q u 

Your answer in Section 1, is not correct. This answer would be a rea- 
sonable approximation for the derivative at 
point 0, in the center of the array, because 
it gives the ratio of a change in h, h, - h,, to 
the corresponding change in distance, 2Az, 
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Observation 

wells 

over an interval which is centered at 0. For 
the derivative at point d, however, midway 
between well 1 and well 0, we can do a little 
better. The change in h over an interval 
centered at d is simply h,- h,, and the cor- 
responding interval of distance is simply 
Ax. 

Return to Section 1 and choose another 
answer. 

97n n I-II-I 

Your answer in Section 12, 

a”h h,-h, 
-e- 
ax* 2AX 

is not correct. h,- h, gives the change in h 
between points 1 and 2, and 2Ax gives the 
distance between these points. Thus the term 
(h,- h,)/2Ax is an approximation ta the 
first derivative, ah/ax, at the midpoint of 
the distance interval-that is, at point 0. 
The question however, asked for a term ap- 
proximating the second derivative, a2h&c2, 
at this p0in.t. The second derivative is ac- 
tually the derivative of the first derivative ; 
that is 

ah 
a- 

( ) a*h ax -= -* 
ax2 ax 

To obtain a finite-difference expression for 
this term, we must consider the change in 
the first derivative, ah/ax, between two 
points, and must divide this change in ah/ 
ax by the distance separating these two 
points. We have seen that ah/ax at point d, 
midway between wells 1 and 0, can be ap- 
proximated by the expression (h,- hl)/AX; 
and that ah/ax at point e, midway between 

- 

-h. 
- 

Observation 
wells 

J \ Potentiomel 

2 

wells 0 and 2 can be approximated by the 
term (h, - h,) /Ax. Points d and e are them-. 
selves separated by a distance AX, and point 
0 is at the midpoint of this interval. Thus if 
we subtract our approximate expression for 
ah/ax at d, from that for ah/ax at e, and 
divide the result by the interval between d 
and e, Ax, we should obtain an expression 
for a*h/az2 at point 0. 

Return to Section 12 and choose another 
answer. 
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Your answer in Section 15, 

a2h a2h h,+h,+h,+h, 
-+-m 
ax2 av a* 

expressions -that for a2h/ax2 and that for 
a2h/ay2. When we add these two ex- 
pressions to obtain an approximation for 
(a2h/axz) + (a2h/ay2), these terms in ho 
do not drop out. 

is not correct. The term -2h, appeared in Return to Section 15 and choose another 
the numerator of both of our approximate answer. 
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Techniques of Finite-Difference Solution of the 
Ground-Water-Flow Equation 

Certain techniques of numerical solution 
which are commonly used in ground-water 
modeling are described in the following dis- 
cussion. No, attempt has been made to dis- 
cuss such topics as stability or rate of con- 
vergence in the&etical terms ; the reader is 
referred to the paper by Peaceman and 
Rachford (I955) for discussion of these sub- 
jects. Similarly, no attempt has been made 
to give the details of the programing pro- 
cedure. The paper by Prickett and Lonnquist 
(1971) analyzes some typical programs and 
in addition provides an excellent summary 
of the hydrologic and mathematical founda- 
tions of digital modeling ; the paper by Tres- 
cott (1973) describes a versatile program 
for area1 aquifer simulation. The discussion 
presented here is limited to a description of 
some of the common techniques of approxi- 
mation and calculation. 

In Section 10 of Part VII we introduced 
two methods of approximating the time de- 
rivative in finite-difference simulations of 
the ground-water equation. One of these was 
termed the forward-difference approxima- 
tion, and one the backward-difference ap- 
proximation. Figure A shows a plot of head 
versus time which we may use to review 
these approximations. The time axis is di- 
vided into intervals of length at. The head 
at the end of the nth interval is termed h,, ; 
that at the end of the preceding interval is 
termed h,,-, ; and that at the end of the sub- 
sequent interval is termed h,,+1. We wish to 
approximate ah/at at the end of the nth in- 
terval, that is, at the time nat. If we utilize 
the head diff’erence over the subsequent time 
interval, we employ the forward-difference 
approximation to the time derivative ; if we 
utilize the head difference over the preced- 

ing interval, we employ the backward-dif- 
ference approximation. The forwarddiffer- 
ence approximation is given by 

h n+1 -hn 
w 

At 
(1) 

Where (ah/at) ,& represents the derivative 
at time ?ZAt. The backward-difference ap- 
proximation is given by 

hn-k-, 
m 

At 
(2) 

Head FIGURE A 
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n+l 

?aAt 



PART VII. FINITE-DIFFERENCE METHODS 

Forward-difference simulation: Explicit solution 
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The ground-water-flow equation, as it was 
given in Part V for two-dimensional flow, is 

a”h a’h S ah 
-+-=--‘- (3) 
ax2 ay2 T at 

where S represents storage coefficient and T 
transmissivity. In order to simulate this 
equation using either the forward-difference 
or backward-difference formulation, we 
would first write an approximate expression 
for the term 

ph ph 
-+- 
ax2 ay2 

at the time ?Ai!- that is, at point n on the 
time axis of figure A. Thus the forward-dif- 
ference simulation is characterized by the 
fact that we approximate ah/at over a time 
interval which follows the time at which we 
approximate (a2h/ax2) + (a2h/ay2), 
whereas the backward-difference simulation 
is characterized by the fact that we approxi- 
mate ah/at over the time interval which 
precedes the time at which we approximate 
( a2h/ax2) + (a2h/ay2). In the question of 
Section 10, Part VII, we obtained the follow- 
ing forward-difference simulation to equa- 
tion 3 : 

a2 

where a is the node spacing, S is the stor- 
age coefficient, and T is the transmissivity. 
We wish to know the new value of head at 
the time (n+ 1)At for the point i, j. Figure 
B shows the computation stencil for this 
simulation ; the head at node i, j at the time 
(n + 1) At depends on the head in a five-node 
array at the preceding time, nAt. The five 
values of h at the time 7ZAt are all known. 
We need only to rearrange the equation, solv- 
ing for h,j,n+u and to insert the known 

FIGURE B 

, b,n+ 1 Time = 
I (n+ l)At 
I 
I 

T At 

values of h<-,,j,,, hi+l,j,“, hi,j-l,,, hJ,j+l,,, and 
hi,j,n. There is no need to use simultaneous 
equations ; the head at each node is com- 
puted explicitly, using the head at that node 
and the four neighboring nodes from the 
preceding time. The sequence in which we 
move through the x, 1/ plane, calculating new 
values of head, is immaterial. The solution at 
one point does not require information on 
the surrounding points for the same time- 
only for the preceding time. For all these 
reasons, the forward-difference technique is 
computationally simpler than the backward- 
difference technique. 

However, as we noted earlier, the for- 
ward-difference method does suffer from a 
serious drawback. Unless the ratio at/a2 is 

kept sufficiently small, errors which grow in 
magnitude with each step of the calculation 
may appear in the result. More exactly, let 
us suppose that an error of some sort does 
arise, for whatever reason, at a certain node 
at a particular time step. Unless the ratio 
at/a2 is sufficiently small, this error will in- 
crease in magnitude at each succeeding time 
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step in the balculation until eventually the pear throughout the mesh in the first steps 
error completely dominates the solution. The of the calculation. If the restriction on At/a’ 

term “error:,” as used here, refers to any dif- is satisfied, these errors will tend to die out 
ference between the computed head at a as the computation sequence continues; the 
node i, j and time nAt, and the actual value solution is then said to be stable. If the re- 
of head-that is, the value which would be striction is not satisfied, the errors will grow 
given by the exact solution to the differential with each succeeding time step and will 
equation at that point and time. Such errors eventually destroy any significance which 
are inevitable in the normal application of the solution might have; in this case, the 
finite-difference methods ; they generally ap- solution is said to be unstable. 

hckward-difference simulation: Solution by iteration 

Because of this limitation in the forward- equation 3 through use of the backward- 
difference approach, attention has been difference approximation to the time deriva- 
given to a variety of alternative methods. tive as given in equation 2. The resulting 
One of these is simulation of the differential finite-difference equation is 

Ll,j,n+ hi+l,j,n+ h,j-l,n+ hi,j+l,n -&,a S h,j,n-h,j,n-1 
=- (5) 

a2 T At 0 

Figure C shows a diagram of the compu- 
tation stencil for equation 5. The time de- 
rivative is simulated over an interval which 
precedes the time at which (aZh/ax2) + 
( azh/av2) is simulated ; the equation incor- 
porates five unknown values of head, cor- 
responding to the time nht, and only one 
known value of head, corresponding to the 
time (n- 1) At. Clearly we cannot obtain an 

FIGURE C 
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explicit solution to a single equation of the 
form of equation 5, the way we could to a 
single equation of the form of equation 4. 
We can, however, write an equation of the 
form of equation 5 for each node in the z, ‘y 
plane ; then since there is one unknown value 
of head (for time t= nAt) at each node in 
the plane, we will have a system in which the 
total number of equations is equal to the total 
number of unknowns. We should therefore 
be able to solve the entire set as a system of 
simultaneous equations, obtaining the new 
value of &,j,n at each node. The only draw- 
back to this approach is that a great deal of 
work may be involved in solving the set of 
simultaneous equations ; off setting this 
drawback is the advantage that the tech- 
nique is stable regardless of the size of the 
time step-that is, that errors tend to di- 
minish rather than to increase as the com- 
putation proceeds, regardless of the size of 
At relative to a*. 

The work required in utilizing the back- 
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ward-difference technique depends upon the 
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size of the problem-that is, upon the num- 
ber of equations in the simultaneous set. If 
this number becomes large, as it does in most 
ground-water problems, the work entailed 
becomes very great, particularly when the 
standard direct methods of solving simul- 
taneous equations are used. For this reason 
it is worthwhile to look for efficient methods 
of solving these-sets of equations ; and it 
turns out that iteration or relaxation-the 
process described in Section 25 of Part VII, 
in connection with solution of the steady- 
state equation-provides us with a reason- 

This equation states that the head at the 
node i, j should be the average of the heads 
at the four surrounding nodes. No time sub- 
scripts are involved, since we are dealing 
with a steady-state situation. Our method is 
simply to move through the ZZ, y plane, re- 
placing the head at each node by the average 
of the heads at the four surrounding nodes. 
This process is continued until the head 
changes become negligible-that is, until the 
head at each node remains essentially un- 
changed after each traverse through the 
plane, indicating that equation 6 is satis- 
fied throughout the plane. 

ably efficient approach. 
The equation that we 

by iteration in Section 
written here using the 
tion, is 

were trying to solve 
25 of Part VII re- 
i, j subscript nota- 

In applying iteration to our nonequilib- 
rium problem, the idea is to carry out a 
similar series of traverses of the z, y plane 
at every time step, using equation 5 rather 
than equation 6 as the basis of the calcula- 
tion at each node. Thus to compute heads 
for the time nAt we would rearrange equa- 
tion 5 as follows 

We can envision an x, y plane for the time 
?ZAt, initially containing specified values of 
hi,j,, at a few nodes, corresponding to the 
boundary conditions, and trial values of 
&J,j,, at the remaining nodes. We write an 
equation of the form of equation 7 for every 
node not controlled by a boundary condition ; 
and we write equations expressing the 
boundary conditions for the nodes at which 
these conditions apply. In equation 7, the 
value of hd,j,n is expressed in terms of the 
head at the four surrounding nodes for the 
same time, and the head at the same node 
for the preceding time. In solving the set of 
equations for values of hi,j,, the values of 
hs,,,,-z actually constitute known or constant 

terms, determined in the preceding step of 
the operation. Thus equation 7 relates the 
head at each node to the head at the four 
surrounding nodes, in terms of a set of con- 
stants or known quantities. The equation is 
a little more cumbersome than equation 6 
in that instead of multiplying the sum of 
the heads at the surrounding nodes by ?,4,, 
we must now multiply by the term 

1 

and we must add the known term 
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s 
Tat 

*hi,j,n-1 
4 s 

-+- 
a2 Tht 

on the right side. These changes, however, 
do not make the equation appreciably more 
difficult to solve. We can still use the process 
of iteration; that is, we can move through 
the x, 1/ plane, replacing each original trial 
value of hi,;;,, by a new value, calculated from 
the four surrounding values by equation 7. 
At each node we note the difference between 
the new value of hc,j,, which we have calcu- 
lated, and the trial value with which we 
started. If this difference turns out to be 
negligible at every node, we may conclude 
that our starting values already satisfied 
equation 7 and that further computation of 
new values is pointless. More commonly, 
however, we will note a measurable change 
in the value of h at each node, indicating 
that the initial values did not satisfy equa- 
tion 7, and that the iteration procedure is 
producing an adjustment toward new values 
which will satisfy the equation. In this case 
we traverse the x, y plane again, repeating 
the procedure ; each value of hi,j,, which we 
calculated ,in the first step (or iteration) is 
replaced by a new value calculated from the 
heads at the four surrounding nodes by 
equation 7. Again the difference between 
the new value and the preceding value at 
each node is recorded; and a test is made 
to see whether this difference is small 
enough to indicate that the new array of 
head values approximately satisfies equation 
7. The process is continued until the differ- 
ence between newly computed and preceding 
values is negligible throughout the array, 
indicating that equation 7 is essentially sat- 
isfied at all points. 

The technique described above is often 
referred to as the Gauss-Seidel method ; it 
is basically the same procedure that was ap- 
plied in Section 25 of Part VII to the steady- 
state problem. It is an example of a relaxa- 
tion technique-a method of computation in 
which the,differences between the two sides 

of an equation are successively reduced by 
numerical adjustment, until eventually the 
equation is satisfied. There are a number of 
varieties of relaxation techniques in use, dif- 
fering from one another in the order or se- 
quence in which the x, y plane is traversed 
in the calculation and in certain other re- 
spects. 

It has been found that the number of cal- 
culations required to solve the set of finite- 
difference equations can frequently be re- 
duced by the inclusion of certain “artificial” 
terms in these equations. These terms norm- 
ally take the form 

The superscripts m and m+ 1 indicate levels 
of iteration ; that is, hi,j,nm represents the 
value of hi,j,, after m traverses of the X, Y 
plane in the iteration process, and hi,j,nm+l 
represents the value of hi,j,,, obtained in the 
next following calculation, after m+ 1 tra- 
verses. h is termed an “iteration parameter”; 
it is a coefficient which, either on the basis 
of practical experience or theoretical analy- 
sis, has been shown to produce faster rates 
of solution. As the iteration process ap- 
proaches its goal at each time step ,the dif- 
ference between the value of hi,j,n obtained in 
one iteration and that obtained in the next 
iteration becomes negligible-that is, the 
term ( hi,i,nm+l - hi,j,nm) approaches zero, SO 
that the difference equation appears essen- 
tially in its original form, without the itera- 
tion parameter term ; and the solution which 
is obtained thus applies to the original equa- 
tion. In some cases, A is given a sequence of 
different values in successive iterations, 
rather than a single constant value. Again, 
the particular sequence of values is chosen, 
either through theoretical analysis or 
through practical experience, in such a way 
as to produce the most rapid solution. When 
an iteration parameter or sequence of itera- 
tion parameters is utilized, the relaxation 
process is termed “successive overrelaxa- 
tion” a’nd is frequently designated by the ini- 
tials SOR. Discussions of this technique are 
given by Forsythe and Wasow (1960) and 
many others. 
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Alternating-direction 

The work required to obtain a solution by 
relaxation techniques is frequently tedious, 
particularly for a problem of large dimen- 
sions. For this reason, a great deal of effort 
has gone into the development of alternative 
approaches. Peaceman and Rachford (1955) 
proposed a technique of computation which 
has received wide use in a variety of forms. 
The name “alternating direction” has been 
applied to the general procedures of calcula- 
tion which they proposed. 

To simplify our discussion of their tech- 
niques we will introduce some new notation. 
We saw in Sections 12 and 15 of Part VII 
that an approximation to a”h/ax* is given by 
the term 

h, + h:t - 2h, 

(Ax)’ ; 

or, in terms of our subscript notation, 

(Ax)’ . 

In the discussion which follows, we will let 
the symbol A,,h represent this approxima- 
tion to a2h/ax2. That is, we say 

a”h hi- l,j + hi+ l,j- 2hi,j 
-=A,,h = (8) 
ax2 (Ax)* ’ 

In addition, we will use a subscript to indi- 
cate the time at which the approximation is 
taken. For example, (A,h), will indicate an 
approximation to the second derivative at 
the time ?ZAt, or specifically 

h- *,j,n + hi+ l,j,n -2h,j,n 
(A,&) n = * (9) 

(Ax)’ 

( A,h) ,,--1 will represent an approximation to 
the second derivative at time (n- 1) At, and 
so on. Similarly, we will use the notation 
A,h to represent our approximation to a2h/ 
av2, that is, 

implicit procedure 

a”h hi,j-1 + h+,j+ I- 2h4,j 
---w&h = (10) 
ay2 (AY)’ 

and again (A,,h) n will represent our ap- 
proximation to a2h/ay2 at the time nAt, 
that is 

hi,f-l,,+ hi,i+1,,-2hi,j,, 
(A&d = (11) 

(AYj2 

and so on. 
Using this notation, our forward-differ- 

ence approximation to the equation 

a*h a2h S ah 
-+-=-- 
ax2 av2 T at 

(3) 

as given in equation 4, would be rewritten 

S h,j,a + I- h,j,n 
(A,,h),+ (AYYh)n=F At . 

(12) 

In this formulation, a2h/ax2 and a2h/ay2 
are simulated at the beginning of the time 
interval over which ah/at is simulated. 

Again using the notation introduced 
above, our backward-difference approxima- 
tion to equation 3, as given in equation 5, 
would be rewritten 

S h,j,e - h,j,n- 1 
(A,&).+ (A,&),= r At . 

(13) 

In this formulation, a2h/ax2 and a2h/ayz 
are simulated at the time ?ZAi?, while ah/at 
is simulated over the time interval between 
(n-1)At and Y&hi?; thus both a2h/ax2 and 
a2h/ay2 are approximated at the end of the 
time interval over which ah/at is approxi- 
mated. 

In the form in which it was originally 
proposed, Peaceman and Rachford’s tech- 
nique is usually termed the alternating-di- 
rection implicit procedure. In this form, the 
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simulation utilizes two equations, applicable 
over two successive time intervals. In the 
first equation, a”h/ax* is simulated at the 
beginning of a time interval, and a2h/a@ at 
the end of that interval; ah/at is simulated 
using the change in head occurring over the 
interval. The second equation applies over 
the immediately following time interval ; 
here the order is reversed- a2h/ay2 is 
simulated at the beginning of the time in- 
terval, aZh/az2 is simulated at the end, and 
again ah/at is simulated using the head dif- 
ference occurring over the interval. 

Using the notation introduced above, this 
simulation may be represented by the follow- 
ing equation. pair 

S 
(A,&) n-1 + (A,&) w = y- 

hi,j,, - hi,i,,-, 

At 

(14) 
S h<,j,n+ I- h,j,n 

(A&)n+ (&zhL+~=-g 
At 

(15) 

For the first time interval, a2h/ax2 is simu- 
lated at (VP-1)At; ph/ay’ is simulated at 
nat; and ah/at is simulated by the change 
in htj between (n- l)At and nat. For the 
second time interval a2h/ay2 is simulated at 
nat; a2h/ax2 is simulated at (n+ 1)At; and 
ah/at is simulated by the change in h,,, be- 
tween nAt and (n+ 1) At. 

Figure D illustrates the form of this simu- 
lation. It may be recalled from Section 3 
that lines parallel to the x-axis in the finite- 
difference grid are termed rows and that 
lines parallel to the y-axis are termed col- 
umns. As shown in figure D, then, three 
values of h are taken along row j at time 
(n- 1)at to simulate a2h/ax2, while at the 
time ?ZAt three values of h are taken along 
column i to simulate a2h/ay2. The time 
derivative is simulated using the difference 
between the central h values at these two 
times. For the succeeding time interval, the 
three values of h along column i are taken 
first to simulate a2h/ag2 at time nht; while 
at the time (n+l)At, three values of h are 
taken along row j to simulate a2h/aX2. Again 
the time derivative is simulated using the 

difference between the central h values. 
The forward-difference and backward- 

difference techniques are characterized by 
symmetry in their simulation of the expres- 
sion ( azh/ax2) + (a*h/ap) . Both terms of 
this expression are simulated at the same 
time, using a five-node array centered about 
a single value of head, hd,j,n. However, the 

FIGURE D 
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(n - l)At 
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simulation of ah/at in these formulations is 
asymmetrical, in the sense that it is not 
centered in time about hi,j,n but extends for- 
ward or backward from the time nilt. 
In either case, however, if we allow 
At to become very small, the effects 
of this asymmetry die out; the ap- 
proximation then approaches more and 
more closely the value of .ah/at at the time 
nat. In the alternating-direction implicit pro- 
cedure, by contrast, azh/ax2 and a2h/ay2 are 
not simulated at the same time, and in this 
sense the simulation of (a2h/ax2) + (a’h/ 
ay2) cannot be termed symmetrical. It is 
again helpful, however, to visualize what 
will hapljen if At is allowed to become very 
small, so that the times (n-l)At and nAt 
at which the individual simulations occur, 
fall more and more closely together. In this 
case, (A,,h),-, should begin to approximate 
the value of a2h/ax2 at (n- I$) At, while 
(A,,h), should begin to approximate the 
value of a2h/ay2 at (n-155) At. In this sense, 
then ,the expression 

(L&J n-x+ (A,&) ,, 
can be considered an approximation to 

a2h a”h 
--l-- 
ax2 aY” 

at the time (n - l/s) At. The simulation of 
ah/at is symmetrical with respect to this 
time, since it utilizes the head difference 
h,- h,-,. Thus even though a certain asym- 
metry exists in the expression by which 
(a2h/ax2) + (a2h/ay2) is approximated in 
the alternating-direction technique, it can be 
argued that there is symmetry with respect 
to time in the simulation of ah/at. More- 
over, we may expect intuitively that if an 
error is generated by the fact that we simu- 
late a2h/ax2 prior to a2h/ay2 during one 
time interval, some sort of compensating 
error should be generated during the follow- 
ing time interval, when we simulate a2h/ay2 
prior to a2h/ax2 ; and in fact it turns out 
that this alternation in the order of simula- 
tion is essential to the stability of the meth- 
od. If the order of simulation is reversed in 

this way, then regardless of the size of the 
time step, the calculation will not be affected 
by errors which grow at each step of the 
calculation. A further condition for stability 
is that the time intervals represented in the 
two steps of the simulation (equations 14 
and 16) must be equal. The length of the 
time interval may differ from one pair of 
time steps to the next, but within a given 
pair, as used in equations 14 and 15, the two 
values of At must be kept the same. Finally, 
there must be an even number of total time 
steps; a2h/ay2 must be simulated prior to 
a2h/ax2 as often as a2h/axz is simulated 
prior to a2h/ay2. 

If equations 14 and 15 are written out us- 
ing the earlier notation we have 

(Ax)” 
&,j-,,n+hz,,+~,n -2h,,j,n S ht,j,n-h,j,n-1 

+ 
(Ay)” =r At 

(16) 

and 

hi-,,j,n+l + hi+l, j,n+l-2JLi,j,n+l 

(Ax) 2 
hd,j-l,,+ hi,j+1,,-2hi,i,, S hi,j,,+l- hi,j,n 

+ 
(Ay)” =r At ’ 

(17) 

Equation 16 involves three values of head 
along row j at time (n - 1) At and three 
values of head along column i at time nat. 
Let us assume that the head values for the 
earlier time, (n - 1) At, have been calculated 
throughout the x, y plane and that we are 
concerned with calculation of head values for 
the time YbAt. Equation 16 then contains 
three known values of head, for the time 
(n- 1)At and three unknown, for the time 
nat. Since we have three unknowns in one 
equation, we will again need to use simulta- 
neous equations. In this case the three un- 
knowns occur along a single column ; and by 
considering other equations which apply 
along this column we can develop a con- 
venient method of solution. 
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Let us suppose that there are m nodes 
along column i and that the head is specified 
at the two end nodes by boundary condi- 
tions, but must be determined for all of the 
interior nodes. The first node is identified by 
the subscript j= 1 (we assume that the x- 
axis, where j= 0, lies outside the problem 
area) ; the final node is identified by the 
subscript j:=m. Thus hbl,, and h,,,,, are spe- 
cified by boundary conditions, while hi,,, 
through h,,,,-,, must be determined. 

We can write an equation of the form of 
equation 16 for each interior node along col- 
umn i. As we set up the equation at each 
node, we pick up three known values of head 
from the (n-1)At “time plane”; these 
known values fall along a three-column band, 
as shown in figure E. Each equation also in- 
corporates three values of head for the new 
time, nAt, all lying along column i; and when 
we have set up an equation of the form of 
equation 16 for each interior node along the 
column, we have a system of m-2 equations 
in m-2 unknowns, which can be solved 
simultaneously. The solution of this set of 
equations is undertaken independently from 
the solutions for adjacent columns in the 
mesh ; thus, instead of dealing with a set of, 
say, 2,500 simultaneous equations in a 50 by 
50 array, we deal in turn with separate sets 
of only 50 equations. Each of these sets cor- 
responds to a column within the mesh ; and 

FIGURE E 
Time = 

nAt 

each is much easier to solve than the 2,500 
equation set, not only because of the smaller 
number of equations, but also because a 
convenient order of computation is possible. 
We are able to utilize this order of computa- 
tion through a technique developed by H. L. 
Thomas (1949) that is known as the Thomas 
algorithm. 

To illustrate this method, we rearrange 
equation 16, putting the unknown values of 
head, corresponding ta time r&At, on one side, 
as follows: 

The right-hand side consists entirely of 
known terms, and it is convenient to replace 
this side of the equation by a single symbol, 
D,, that is 

hi+l,j,m-l - 9 (19) 
(Ax)’ 

The single subscript, j, is sufficient to desig- 
nate D for our purposes. As suggested in 
figure E, the sequence of calculation is along 
the column i. At each node-that is, for each 
value of &there is only one value of D, 
taken from the three-column band in the 
preceding time plane. We are limiting con- 
sideration here to one set of equations, cor- 
responding to one column, and aimed at cal- 
culating the heads for one value of time ; 
the subscripts designating the column and 
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time are therefore not required. Thus we can 
omit the subscripts i and n from the values 
of h on the left side of the equation. With 
these changes, equation 18 takes the form 

Aihj_,+B,h,+Cihi+l=Dj (20) 
where, in the problem which we have set up 

1 

Ai=-, 
(AY)” 

’ 
and 

1 
c,=-. 

(AYj2 
The coefficients A, B, and C are constant for 
the problem which we have postulated. In 
some problems, however, where variation in 
T, S, or the node spacing is involved, they 
may vary from one node to another. To keep 
the discussion sufficiently general to cover 
such cases, the coefficients have been desig- 
nated with the subscript j. 

If we solve equation 20 for hj, the central 
value of the three-node set represented in 
the equation, we obtain 

D,--Ajh,-,-Cjhlfl 
hi= 

Bj 
(21) 

h, the head at the initial node of the column, 
is specified by the boundary condition. We 
apply equation 21 to find an expression for 
h2; this gives 

D,-A,h,-C,h,’ 
hz= 

& ’ 
(22) 

We rewrite this equation in the form 

hz=gz-b&s (231 
where 

Dz -A&, 
g2= 

B2 

(241 

and 

b2=$. (251 
2 

b, consists of known terms, and since h, 
is known, g2 can be calculated ; equation 23 
thus gives us an equation for h, in terms of 
the next succeeding value of head, h3. If we 
can continue along the column, forming 
equations which give the head at each node 
in terms of that at the succeeding node- 
that is, which give hj in terms of hi+l-we 
will eventually reach the next to last node in 
the column, where we will have an equation 
for h,-, in terms of h,, the head at the last 
node. Then since h, is known, from the 
boundary condition, we will be able to cal- 
culate h,-,; using this value of h,-, we can 
calculate h,-,, and so on back down the col- 
umn, until finally we can calculate h, in 
terms of h, using equation 23. This is the 
basic idea of the Thomas algorithm. We now 
have to see whether we can in fact obtain 
expressions for each head, hj, in terms of 
the succeeding head, hj+l, along the column. 

We first apply equation 21 to find an ex- 
pression for h3 obtaining 

D, -A,hz - Csh, 
h,= 

B, - 
(26) 

To eliminate h, from this equation, we sub- 
stitute from equation 23, obtaining 

D, -A, (gz - bzhn) - C,h, 
hs= . (27) 

4 
Equation 27 is now solved for h, as follows 

or 

A&2 LA - A,g, - CA 
h,- -hs= 

B2 B, 

D,-&L-C&, 
h:, = 

B, -A&, 
B2 

( ) B, 

D,--A,gz C’s 
h,= 

B,-A,bz - B,_A,b,h’. 
(28) 

Now again we have an equation of the form 

h,=g,-b,h, (29) 

where here 
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Da -k/z 
g3= (30) 

&-A&, 

the value of hi+, using equation 32, until 0 
finally a value for h, has been calculated and 
heads have been determined throughout the 
column. 

G 
b,= 

B,-A,b; 
(31) 

Since g, and b, are known from the preced- 
ing step of the calculation (equation 24 and 
25), g, and b, can be calculated, and equa- 
tion 29 then gives us an expression for h, in 
terms of h,. In effect ,we have eliminated h, 
from equation 26, so that h, is expressed in 
terms of the succeeding value of head alone. 

If we continue this process, we find that 
at each step we can obtain an equation of 
the form 

hj=g,- bjhj+l (32) 

relating the head at each node to that at the 
succeeding node ; and we find that gj and b, 
can always be determined from the preced- 
ing values of g and b by equations of the 
form of equations 30 and 31. That is, we find 
that 

Dj-Ajgj--1 
gj= (33) 

Bj-Ajbj-1 

C j 
bj= 

Bj-Ajbj-1’ 
(34) 

These general formulas apply even to the 
calculation of gz and b, if we specify the 
starting conditions g,= h, and bl=O. 

In summary, then, we may start at node 1 
and move up the column calculating values 
of gj and b,. At each node, these values are 
calculated by equations 33 and 34, using the 
preceding values, gj-1 and bj-1, and using 
the coefficients Aj, B, and Cj and the term 
Dj. 

Ultimately, at the next to last node of the 
column, g,-, and b,-, are calculated; then 
since h, is known from the boundary condi- 
tion, h,-, can be calculated from equation 
32. We then proceed back down the column, 
calculating the value of hj at each node from 

The whole process is actually one of 
Gaussian elimination, taking advantage of 
a convenient order of calculation. The solu- 
tion of the difference equation 16 is obtained 
directly for points along the column through 
this process ; we are not dealing with an 
iterative technique which solves the set of 
algebraic equations by successive approxima- 
tion. When the head has been calculated at 
all nodes along column i, the process is re- 
peated for column i+ 1, and so on until the 
entire plane has been traversed. 

In a sense, this process of calculation 
stands somewhere between the forward-dif- 
ference technique and the backward-differ- 
ence technique. In the forward-difference 
technique the head at every node, for a 
given time level, is computed independently 
from the heads at the four. adjacent nodes 
for that time level; the technique of compu- 
tation is said to be explicit. In the backward- 
difference technique, the calculation of the 
head at each node incorporates the heads at 
the four adjacent nodes for the same time 
level; the method of calculation is termed 
implicit. In the alternating-direction tech- 
nique the calculation of the head at a given 
node, as we move along a column, incor- 
porates the heads for that time level at the 
two adjacent nodes along the column, but 
not at the two adjacent nodes in the adjoin- 
ing columns. The method of calculation, for 
this step, is said to be implicit along the col- 
umns, but explicit in the transverse direc- 
tion, along the rows. 

When the heads have been calculated 
everywhere throughout the plane by the 
process of traversing the columns, calcula- 
tions for the following time, (n+ 1) At are 
initiated using equation 17. The procedure 
followed is the same as that described above, 
except that the calculation now moves along 
rows, rather than along columns. This alter- 
nation of direction again, is necessary in 
order to insure the stability of the method of 
calculation. 
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In their initial paper proposing the alter- 
nating-direction implicit procedure, Peace- 
man and Rachford point out that the tech- 
nique of solving alternately along rows and 
columns can be used effectively to iterate the 
steady-state equation. That is, suppose we 
must deal with the problem considered in 
Section 16 and 25 of Part VII, and reviewed 
earlier in the present discussion, in which 
the steady&state- equation 

a”h a”h 
-+-=() 
ax2 i3Y’ 

is to be solved. In Section 25, 
a technique of iteration, or 

(35) 

we considered 
relaxation, to 
technique we solve this equation. In this 

wrote the finite-difference approximation 
given in equation 6 as a simulation of equa- 
tion 35 ; this gave 

hi,~=l(hi_,,i+hr+l,l+hbj-l+ hi,j+d. (6) 
4 

To apply equation 6, we would move through 
the x, y plane replacing values of hi,j at each 
interior node by the average of the heads at 
the four surrounding nodes. At the end of 
one complete traverse of the plane we would 
have a set of values of hi,j which would be 
somewhat closer to satisfying equation 6 
than were the values with which we started ; 
and after several traverses, we would have 
a set of head values which would essentially 
satisfy equation 36 throughout the plane. 
This would be indicated by the fact that the 
values of h4,j obtained in each step would dif- 
fer very little from those obtained in the 
preceding step. 

Our objective here is to outline a more 
efficient technique of carrying out this itera- 

tion process, based upon Peaceman and 
Rachford’s method and the Thomas algor- 
ithm. We begin by introducing some nomen- 
clature and notation. In our discussion of 
nonequilibrium problems, we spoke of “time 
planes”-that is, representations of the X, y 
plane in which the heads calculated for a 
given time were displayed. In discussing the 
solution of steady-state problems by itera- 
tion we can similarly speak of “iteration 
planes”-that is, representations of the x, y 
plane in which the values of head obtained 
after a certain number of iterations are dis- 
played. Again, in our discussion of nonequili- 
brium problems we used the subscript n to 
designate the time level of a given head 
valu+hi,j,m referred to a head value at the 
time nAt. In a similar way, we will use a 
superscript m to denote the iteration level in 
the steady-state problem. hi,? will be used 
to designate the starting values of head, 
prior to any iterations; hiJ will indicate 
head values after one iteration-that is, the 
head values in the first iteration plane ; and 
in general, h,,, m will indicate head values 
after m iterations, or in the mth iteration 
plane. 

Next we rewrite our approximation to 
equation 35 in a slightly different form. We 
rearrange equation 6 to give 

h-*,9+ hi+l,j- 2h~,j=-hi,i-,-hi,j+l+2hi,j (36) 

This can be obtained also by rewriting equa- 
tion 35 in the form 

a”h a2h 
-= -- 
w aY’ 

and then using the approximations given in 
equation 8 and 10 for yh/ax2 and ?yh/W. 

We are interested in applying equation 36 
to calculate head values for a new iteration 
level, using head values from the preceding 
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iteration level. In the ‘procedure which we 
will employ it is necessary to consider two 
successive interation steps. Using the super- 
script notation described above, and using 
A,,h and Avilh to represent our approxima- 
tions to aZk/ax2 anda2h/ay2 as in equations 
8 and 10, the method of calculation may be 
summarized as follows 

- Arvhm = A,,hm-’ (37) 

and 

Aazh”fl = - &,hm (33) 

or, in the notation of equation 36, 

= hi- l,jm-’ + hi+ I,jnt-’ - 2hi,j”p1 
(39) 

and 

= - hi,j _ In’- hd,j+ Irn + 2hi,jmw 
(40) 

As these equations indicate, the idea here 
is first to simulate a2h/axz at one iteration 
level and azh/ay2 at the next; in the succeed- 
ing iteration, the order is reversed ; a’h/ay” 
is simulated at the earlier iteration level, and 
a2h/.ax2 at the next. Figure D, which illu- 
strated the simulation technique for the non- 
eqilibrium problem, is reproduced as figure 
F, but with the time planes now relabeled as 
iteration planes. Equation 39 relates three 
values of head at iteration level m to three 
values at iteration level m - 1; and, following 
the technique described above for the non- 
equilibrium case, we may move along col- 
umn i in iteration plane m, at each node 
picking up three known values of hm--l from 
a three column band in the preceding itera- 
tion plane, and thus generating a set of 
equations in which the unknowns are all 
values of hm along column i. 

As in the nonequilibrium case, the set of 
equations along a given column is solved di- 
rectly by the Thomas algorithm-that is, by 

FIGURE F 

Iteration level 

Iteration level 
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the process of Gaussian elimination outlined 
in equation 20 through 34. When this has 
been done for every column in the X, y plane, 
we have a new set of head values throughout 
the plane. These values, however do not nec- 
essarily constitute a solution to equation 35. 
The process we have described, of replacing 
the earlier head values with new values cal- 
culated through equation 39, accomplishes 
the same thing as the relaxation process of 
Section 25-it produces a new set of values 
which is closer to satisfying equation 35 than 
was the earlier set. This does not guarantee 
that the new set will constitute an accept- 
able solution. The test as to whether or not 
a solution has been found is carried out as 
in the relaxation technique of Section 25- 

the values of head in iteration plane m are 
compared to those in iteration plane m- 1. 
If the difference is everywhere negligible, 
equation 35 must be satisfied throughout the 
x, y plane ; otherwise a new iteration must be 
initiated. In this new iteration we would 
utilize equation 40, moving along a row of 
the model to set up a system of equations for 
the head values along that row. As in the 
nonequilibrium problem this alteration of di- 
rection is necessary for stability. In sum- 
mary then, we are utilizing an indirect 
iterative procedure of solution ; but we use 
a direct method, Gaussian elimination, along 
each individual column or row, to move 
from one set of approximate head values to 
the next during the iterative process. 

Backward-difference simulation: Solution by iteration using the 

alternating-direction method of calculation (iterative 

alternating-direction implicit procedure) 

Peaceman and Rachford found that itera- 
tion of the steady-state equation by the al- 
ternating-direction procedure was consider- 
ably more efficient than the most rapid re- 
laxation techniques that had been used prior 
to the time of their work. The use of the al- 
ternating-direction technique in this sense, 
as a method of iteration, has accordingly 
gained great popularity in recent years. As 
a method of solving the nonequilibrium 
equation 3, however, the alternating-direc- 
tion implicit procedure, as embodied in equa- 
tions 14 and 15 or 16 and 17, has not always 
proved advantageous. Although stability is 
assured, that is the calculation will not be 
affected by errors which necessarily increase 
in magnitude at each step, there is still a 
possibility for large error at any one time 
step and at any given node ; and in many 
problems these errors have proved uncon- 
trollable and unacceptable. This undesirable 
feature has inevitably led to renewed inter- 
est in the backward-difference formulation 
of equations 5 and 13. As we have noted, 

solution by this method must generally be 
accomplished through iteration, for example 
using equation 7; the systems of simultane- 
ous equations involved are usually too large 
to admit of an easy solution by direct meth- 
ods. We have seen that the alternating-di- 
rection procedure of Peaceman and Rach- 
ford provides an effective method of iterat- 
ing the steady-state equation; this suggests 
that the same technique may be used to 
iterate the backward-difference equation, 5 
or 13. Equation 13, which utilized the ab- 
brevated notation, is reproduced below 

S b,j,tt - h,j,n- 1 
(&ah),+ WOn=~. At (13) 

(A,,h), is an approximation to azh/azz at 
the time nat, while ( A,,h) n is an approxima- 
tion a”h/ay” at the time r&At. We again in- 
troduce the superscript m to indicate the 
level of iteration ; using this notation we re- 
write equation 13 as it will be used in two 
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successive steps of the iteration process un- 
der consideration, 

5’ ht,,,,” - hi,i,n - 1 
(Amh),m-l+ (A,,h)ent= r 

At 
(41) 

At . 
(42) 

Several points about equations 41 and 42 
should be noted carefully. The simulations 
of both ph/axz and a’h/az/“, in both equa- 
tions, are made at time ?ZAt ; and again, in 
both equations, ah/at is simulated by the 
change in head at node i, j from time (n- 
1) At to time nAt. In equation 41, (a2h/ 
ax*) nAt is simulated at the ( m - 1) th itera- 
tion- level, whereas (a’h/a@) nbt is simulated 
at the mth iteration level ; hi+ in the simu- 
lation of the time derivative, is represented 
at the mth iteration level. In equation 42, 
(a2h/ay*),,, is simulated at the mth itera- 
tion level, while (a2h/ax*).A, is simulated at 
the (m+ 1) th iteration level ; IQ,,, in the 
simulation of the time derivative, is again 
represented at the higher iteration level, 

CAY)’ 
+;G-(&++--)“u,nm= 

h-x,j,nm-’ - 
(Ax)~ - 

which is here m + 1. No iteration superscript 
is attached to hi,j,n-l the head at the preced- 
ing time level, in either equation. The itera- 
tion process is designed to compute heads for 
the new time level, nAt, and in this process 
the head at the preceding time level is sim- 
ply a constant; it retains the same value 
throughout the series of iterations. 

Rewriting equation 41 using the expanded 
notation for A,,h and ALrvh (as given in equa- 
tions 8 and lo), we have 

(AX)’ 
b-l,n”+ &+l,nm- 2hi,j,nm 

+ 
(AY)2 

S (hi,j,rzm-hi,i,,-d 
=- 

T At ’ 
(43) 

We wish to calculate head values at the 
new iteration level, m, on the basis of values 
which we already have for the preceding 
iteration level, m - 1. We therefore rearrange 
equation 43, placing unknown terms on the 
left and known terms on the right. This gives 

hi+Ij,nm--’ 2 s 
+ -hi,j,nm--l-- hi,j,n-l- (44) 

(Ax) 2 (Ax)’ Tat 

The unknown terms are the head values 
for iteration level m ; the known terms are 
the head values for the preceding iteration 
level, rm- 1, and one head value from the 
preceding time level, n- 1. We may there- 
fore proceed as in equation 19, replacing the 
entire right side by a single symbol, Dj, rep- 
resenting the known terms of the equation. 
We will then have an equation of the form 
of equation 20, 

Aihi-lm+ +Bihjm+Cjhj+,m=Di, (45) 
which can be solved by the Thomas algor- 
ithm, as outlined in equations 21-34. In the 
next step we utilize equation 42 ; here the 
unknown terms consist of three values of h 
for time lnht and iteration level m f 1, while 
the known terms consist of three values of h 
for time 72At and iteration level m, and again 
one value of h for the time level (n- 1)At. 
After this step, the heads which we obtain 



PART VII. FINITE-DIFFERENCE METHODS 151 

FIGURE G 
kth iteration plane- 
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iteration 

plane 

First 
iteration 

plane 

PI .ane containing 
starting values 

of head for 

Plane containing 

fbr t!Z!gF+ 

are compared with those obtained in the pre- 
ceding step. If the difference is everywhere 
negligible, the values of hmfl are taken as a 
sufficiently close approximation to the heads 
for time r&At. 

It’s important to note that while at each 
step we solve directly, (by Gaussian elimina- 
tion, along columns or rows) to obtain a new 
set of head values, these new values do not 
generally constitute a solution to our differ- 
ential equation. Rather, they form a new ap- 
proximation to a solution, in a series of 
iterations which will ultimately produce an 
approximation close enough for our pur- 
poses. We may review the sequence of com- 
putation by referring to figure G, which il- 
lustrates the process of calculation schemati- 
cally. The lowermost plane in the figure is a 
time plane, containing the final values of 
head for the preceding time level, (n - 1) At. 
The plane immediately above this contains 
the initial assumed values of head for the 
new time, nat; we use three values of head, 
/L~,~,~O, hi,],,“, and hi+lj,,’ from this plane, 
together with one value of head h~,~-~ from 
the n-l time plane, on the right side of 
equation 44. On the left side of equation 44 
we have three unknown values of head in 
the first iteration plane, hi,i-l,nl, hi,j,,tl, and 
hi,j+ l,nl- We set up equations of the form of 
equation 44 along the entire column i and 
solve by the Thomas algorithm (equations 
21-34). We then repeat the procedure along 
all other columns, thus determining head 
values throughout the first iteration plane ; 
these new head values constitute a somewhat 
closer approximation to the heads at time 
?ZAt than did the initial values. Next we 
set up a system of equations of the form of 
equation 42, arranged so that in each equa- 
tion three head values from the first itera- 
tion plane and one from the n- 1 time plane 
form the known terms, while three head 
values from the second iteration plane from 
the unknown terms. If we rewrite equation 
42 in the expanded notation and rearrange 
it so that the unknown terms appear on the 
left and the known terms on the right we 
have 
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h-l,,,,nm+l hs+*,,,nm+l 
-I- 

(Ax)’ (Ax) * 
- ( -&+&)kj,nmi’ = 

k,,-l,~m hd,j+l,n”’ 2 

(AY)* - (A?!)* 
+- h”“n (Ay) 2 

--&,j,n-1. (46) 

Applying equation 46 between the first 
and second iteration planes, m would be 
taken as 1 and (m + 1) as 2. The four known 
terms on the right side of the equation would 
consist of three head values from the first 
iteration plane hi,j-l,,, hi,j,,, and hi,j+l,,p and 
again one head value from the n- 1 time 
plane, hi,j,,-l. It is important to note that 
we return to the n- 1 time plane-the lower- 
most plane in figure G-at each iteration 
level in the series, to pick up the constant 
values of hi,i,,-l that are used in simulating 
the time derivative. On the left side of equa- 
tion 46 we would have the three unknown 
values of head corresponding to the new 
iteration level-(that is, the second itera- 
tion plane). Again we would use the Thomas 
algorithm (equations 2134) to solve for 
these new values of head throughout the 
plane. At the end of this solution procedure 
the head valules in the second iteration plane 
are compared with those in the first itera- 
tion plane. If the difference is sufficiently 
small at all points, there is nothing to be 
gained by continuing to adjust the head 
values through further calculation-equa- 
tion 3 is already approximately satisfied 
throughout the plane. If significant differ- 
ences are noted, the procedure is continued 
until the differences between the head values 
obtained in successive iteration levels be- 
comes negligible. At this point the heads for 
time ?&At have been determined, and work is 
started on the next time step, computing 
heads for the time (n+ 1) At. Thus while di- 
rect solution and an alternating-direction 
feature both play a part in this procedure of 
calculation, the technique is basically one of 
iteration, in which, using the backward-dif- 
ference formulation of equations 5 or 13, we 
progressively adjust head values for each 
time level until we arrive at a set of values 
which satisfies the equation. The method 
combines the advantages of the backward- 

difference technique with the ease of com- 
putation of the alternating-direction proce- 
dure ; it is the basis of many of the digital 
models presently used by the U.S. Geol. Sur- 
vey. It is sometimes referred to as the itera- 
tive alternating-direction implicit procedure. 

Prickett and Lonnquist (1971) further 
modify this method of calculation by rep- 
resenting the central head value, &,j only at 
the advanced iteration level ; and by repre- 
senting the head in the adjacent, previously 
processed column also at the advanced itera- 
tion level. That is, they do not simulate a2h/ 
ax* and azh/ayz in two distinct iteration 
planes, but rather set up the calculation as 
a relaxation technique, so that the new value 
of head at a given node is calculated on the 
basis of the most recently computed values 
of head in the surrounding nodes. They do, 
however, perform the calculations alternate- 
ly along rows and columns using the Thomas 
algorithm. 

In the discussions presented here we have 
treated transmissivity, storage coefficient, 
and the node spacings Ax and Ap, as con- 

stant terms in the x, y plane. In fact these 
terms can be varied through the mesh to ac- 
count for heterogeneity or anisotropy in the 
aquifer or to provide a node spacing which 
is everywhere suited to the ‘needs of the 
problem. Additional terms can be inserted 
into the equations to account for such things 
as pumpage from wells at specified nodes, 
retrieval of evapotranspiration loss, seepage 
into streams, and so on. Some programs 
have been developed which simulate three- 
dimensional flow (Freeze, 1971; Bredehoeft 
and Pinder, 1970; Prickett and Lonnquist, 
1971, p. 46) ; however, the operational prob- 
lems encountered in three-dimensional digi- 
tal modeling are sometimes troublesome. 

The reader may now proceed to the pro- 
gramed instruction of Part VIII. 



Port VI I I. Analog Techniques 

Introduction 

In Part VIII we consider another tech- 
nique of obtaining solutions to the differen- 
tial equation of ground-water ilow. This is 
the method of the electric analog. It (is a pow- 
erful ‘technique which has been widely used. 
The technique depends upon the mathemati- 
cal similarity between Darcy’s law, describ- 
ing flolw in a poro,us medium, and Ohm’s law, 
describing flow of charge in a conductor. In 

the case of nonequilibrium modeling, it de- 
pends also upon the similarity between the 
ground-water storage+head relation and the 
equation describing storage of charge in a 
capacitor; and upon the similarity between 
the electrical continuity principle, involving 
the conservation of electric charge, and the 
equation of continuity describing the con- 
servation of matter. 

1 0 

Ohm’s law states that the electrical cur- 
rent through a conducting element is direct- 
ly proportional to the voltage difference, or 
potential difference across its terminals. The 
sketch represents a conducting element, or 
resistor, across which the voltage difference 
is +1 - &. That is, the voltage at one terminal 
of the resistor is +1, while that at the other 
end is &. The current through the resistor 
is defined as the net rate of movement of 
positive charge across a cross-sectional plane 
within the resistor, taken normal to the di- 
rection of charge flow. The standard unit of 
charge is the coulomb, and current is nor- 
mally measured as the number of coulombs 
per second crossing the plane under consid- 
eration. A charge flow of 1 coulomb per 
second is designated 1 ampere. The symbol 
Z is frequently used to represent current. 

Symbol representing a conducting element, 
or resistor 

\ 

R represents value of resistance (ohms) 

For the resistor shown in the diagram, 
Ohm’s law may be stated as follows 

1 

where Z is the current through the resistor, 
and +1 -&, as noted above, is the voltage 
difference across its terminals. The term 1/ 
R is the constant of proportionality relating 
current to voltage ; R is termed the resist- 
ance of the element. It depends both upon 
the dimensions of the element and the elec- 
trical properties of the conductive material 
used. The unit of resistance is the ohm. A 
resistance of 1 ohm will carry 1 ampere of 
current under a potential difference of 1 
volt. 

QUESTION 

Suppose the voltage at one terminal of a 
500-ohm resistor is 1’7 volts, and the voltage 
at the other terminal is 12 volts. What would 
the current through the resistor be? 

Turn to Section: 

10 amperes 19 
0.10 ampere, or 100 milliamperes 8 
0.01 ampere, or 10 milliamperes 6 

0 
163 
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2 l - 

Your answer in Section 22 is not correct. 
The finite-difference form of the equation 
for two-dimensional nonequilibrium ground- 
water flow i.s 

&‘a2 Ah, 
h,+ h,+h,+;h,-4h,=-, 

T At 
while the equation for our resistance- capa- 
citance network is 

Comparison of these equations illustrates 
that resistance, R, may be considered to be 
analogous to the term l/T; voltage, 4, is 
analogous to head, h ; and capacitance, C, 
may be considered analogous to the term 
Sa2. 

In the answer which you selected, voltage 
is treated as analogous to transmissivity, in 
that the procedure calls for increasing volt- 
age in areas of high transmissivity. 

Return to Section 22 and choose another 
answer. 

3 0 

Your answer in Section 6, 

x- --$+#d, 

not a valid statement of Ohm’s law in any 
case, for Ohm’s law in terms of resistance 
was given in Section 1 as 

is not correct. The idea here is to obtain an 
expression for the current which involves 

z=$#&d. 

the resistivity, pe, of the material composing 
the resistance. Your answer involves the re- Return to Section 6 and choose another 
sistance, 22, rather than the resistivity. It is answer. 

Your answer in Section 9, 

$r,., =c$ 

is correct. The quantity C, as we have seen, 
is actually the derivative de/d+, ; thus C (d+,/ 
dt) is equivalent to (&/A/+) * (&,/dt), or 
simply &/dt. 

Without referring to it explicitly, we 
made use in Section 9 of an electrical equiva- 
lent to the hydraulic equation of continuity. 
In an electric circuit, charge is conserved in 
the same way that fluid mass is conserved in 
a hydraulic system. KirchotF’s current law, 
which is familiar to students of elementary 
physics, is a statement of this principle. .In 
the circuit of Section 9, we required that the 
rate of accumulation of charge in the capa- 

citor be equal to the time rate at which 
charge was transported to the capacitor 
plate through the resistor-that is, to the 
current through the resistor. In the circuit 

C 

I- - - 

shown in the figure, in which four resistors 
are connected to a single capacitor, the net 
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inflow minus outflow of charge, through all 
four resistors, must equal the rate of ac- 
cumulation of charge on the capacitor. Let I, 
and I, represent currents toward the capac- 
itor, through resistors R, and R, ; and let 
I, and I, represent currents away from the 
capacitor, through resistors R, and R,. Then 
the time rate of inflow of charge, toward the 
capacitor, will be I, + I, ; the rate of outflow 
charge, away from the capacitor, will be I, + 
I,. The net inflow minus outflow of charge 
will be I, -Z,+Z,-I, ; and this must equal 
the rate of accumulation of charge on the 
capacitor. That is, we must have 

de 
I,-z,+z,-I,=-. 

dt 

QUESTION 

The diagram again shows the circuit de- 
scribed above, but we now assume that the 

four resistances are equal-that 
sume 

RI=R9=Rs=R1=R. 
Let +, represent the voltage on 

is, we as- 

the capac- 
itor platethis is essentially equal to the 
voltage at the junction point of the four re- 
sistors (the resistance of the wire connect- 
ing the capacitor to the resistor junction 
point is assumed negligible). The voltages at 
the extremities of the four resistors are 
designated &, +, &, and &, as shown in the 
diagram. If Ohm’s law is applied to obtain 
an expression for the current through each 
resistor and the capacitor equation is ap- 
plied to obtain an expression for the rate of 
accumulation of charge on the capacitor, 
which of the following equations will be ob- 
tained from our circuit equation 

I,-z,+z,-I,=‘? 
dt 

Turn to Section: 

91-62+$J3-b 
=c”Q” 15 

R dt 

5 0 

Your answer in Section 22 is correct. 
This is of course one indication of the power 
of the analog method, in that problems in- 
volving heterogeneous aquifers are handled 
as easily as those involving a uniform 
aquifer. Complex boundary conditions can 
also be accommodated, and three-dimensional 
problems may be approached by construct- 
ing networks of several layers. The method 
is applicable to water-table aquifers as well 
as to confined aquifers, provided dewatering 

is small in relation to total saturated thick- 
ness. Some successful simulation has been 
done even for cases in which this condition 
is not satisfied, using special electrical com- 
ponents which vary in resistance as voltage 
changes. 

Steady-state problems are sometimes 
handled by network models constructed 
solely of resistors-that is, not involving 
capacitors-rather than by analogs con- 
structed of a continuous conductive mate- 
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rial. Such steady-state networks are par- 
ticularly useful when heterogeneity is in- 
volved. 

In some cases, the symmetry of a ground- 
water system may be such that a two-di- 
mensional analog in a vertical plane-that 
is, representing a vertical cross section 
through an aquifer, or series of aquifers- 
may be more useful than a two-dimensional 
analog representing a map view. In this 
type of model, anisotropy is frequently a 
factor; that is, permeability in the vertical 
direction is frequently much smaller than 
that in the lateral direction. This is easily 
accommodated in a network by using higher 
resistances in the vertical direction; or, 
equivalently, by using a uniform resistance 
value but distorting the scales of the model, 
so that this resistance value is used to simu- 
late different distances and cross-sectional 
areas of flow in the two directions. 

An important special type of network 
analog is that used to simulate conditions in 
a vertical plane around a single discharging 
well. The cylindrical symmetry of the dis- 
charging well problem is in effect built into 
the network;, the resistances and scales of 

the model are chosen in such a way as to 
simulate the increasing cross-sectional areas 
of flow, both vertically and radially, which 
occur in the aquifer with increasing radial 
distance from the well. 

This concludes our discussion of the elec- 
tric-analog approach. We have given here 
only a brief outline of some of the more im- 
portant principles that are involved. The 
technique is capable of providing insight 
into the operation of highly complex ground- 
water systems. Further discussion of the 
principles of simulation may be found in the 
text by Karplus (1958). The book “Concepts 
and Models in Ground-Water Hydrology” by 
Domenico (1972) contains a discussion of 
the application of analog techniques to 
ground water, as does the text “Ground- 
Water Resource Evaluation” by Walton 
(1970). Additional discussions may be 
found in papers by Skibitzke (1960)) Brown 
(1962) Stallman (1963b) Patten (1965)) 
Bedinger, Reed, and Swafford (1970)) and 
many others. 

This concludes the studies presented in 
this text. 

Your answer in Section 1 is correct. 
The resistance of an electrical element is 

given by the formula 

RCPe.L 
A 

where L is the length of the element in the 
direction of the current, A is its cross-sec- 
tional area normal to that direction, and pe 
is the electrical resistivity of the material of 
which the resistor is composed. The inverse 
of the resistivity is termed the conductivity 
of the material ; it is often designated O; that 
is, ~=l/,+ Resistivity and conductivity are 

normally taken as constants characteristic 
of a particular material, ; however, these 
properties vary with temperature, and the 
linear relationships usually break down at 
extremes of voltage. Moreover, a small 
change in the composition of some materials 
can produce a large change in electrical 
properties. Resistivity is commonly ex- 
pressed in units of ohm *metre2/metre, or 
ohm-metres. With this unit of resistivity, the 
formula, 
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will yield resistance in ohms if length is 
expressed in metres and area in square 
metres. 

QUESTION 

The sketch shows a resistor of cross-sec- 
tional area A and length L, composed of a 

material of resistivity pe. The potential dif- 
ference across the resistor is +1 - + Which 
of the following expressions is a valid ex- 
pression of Ohm’s law, giving the current 
through the resistor? 

Turp to Section: 

z= -$,_,,, 28 
Fe 
PA I=- L (h-42) 24 

A 
3 

Your answer in Section 28, the answer which you chose, flow is given as 

f&K.- 
LP inversely proportional to cross-sectional 

area, and proportional to the term L,/hl - h,, 
A, h+z which is actually the inverse of the negative 

is not correct. Darcy’s law states that flow is head gradient. 
directly proportional to cross-sectional area Return to Section 28 and choose another 
and to the (negative) gradient of head. In answer. 

8 0 

Your answer in Section 1 is not correct. pressed in volts and the resistance ohms, 
Ohm’s law was given as the quotient 

Z=$(d1-C), h-42 

R 
and the discussion pointed out that a resist- 
ance of 1 ohm would carry a current of 1 will give the correct current in amperes. 
ampere under a potential difference of 1 Return to Section 1 and choose another 
volt. Thus when the voltage difference is ex- answer. 
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Your answer in Section 21 is correct. 
If we monitor the voltage on a capacitor 

plate in a given circuit and observe that it 
is changing with time, we know from the 
relations given in Section 21 that charge is 
accumulating on the capacitor plate with 
time. An expression for the rate at which 
charge is accumulating can be obtained by 
dividing the capacitor equation by a time 
increment, At. This gives 

A< 
-C? -- IA- 

At At dt 

or, in terms of derivatives, 

d d+ 
-C-. -- 

dt dt 

The figure shows a hydraulic system and 
an analogous electrical system. The rate of 

Tank 

-- Pipe - 
- 

z-- 
31 tvvvm c 

R 

‘i 

I” 

accumulation of fluid in the tank is equal to 
the rate of flow of water through the pipe 
supplying it. Similarly, the rate of accumu- 
lation of charge on the capacitor plate is 
equal to the rate of flow of charge through 
the resistor connected to the plate. This rate 
of flow of charge is by definition the current 
through the resistor. (Recall that the units 
of current are charge/time-for example; 
coulombs/second.) We thus have 

where Z is the current through the resistor, 
and de/dt is the rate at which charge ac- 
cumulates on the capacitor. 

QUESTION 

Suppose the voltage at the left terminal 
of the resistor is 41, while the voltage at the 
right terminal, which is essentially the volt- 
age on the capacitor plate, is 4c. If we use 
Ohm’s law to obtain an expression for I, in 
terms of the voltages, and the capacitor equa- 
tion to obtain an expression for &/dt, which 
of the following relations will we obtain. (R 
denotes the resistance of the resistor, and C 
the capacitance of the capacitor.) 

Turn to Section: 

4 

R(4,-4,) =c; 

RC(4,-4,) =fk 
dt 

20 

18 

‘c 
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Your answer in Section 21 is not correct. 
The equation which we developed for the 
capacitor was 

where C was the capacitance, AC the quan- 
tity of charge placed in storage in the capa- 
citor, and A$ the increase in the voltage dif- 
ference across the capacitor plates, observed 
as the charge AC is accumulated. For the 
prism of aquifer used in developing the 
ground-water equations in Part V, we had 

aV=SAhh 

where AV was the volume of water taken in- 
to storage in the prism, Ah the increase in 
head associated with this accumulation in 
storage, S the storage coefficient, and A the 
base area of the prism. This equation can be 
rewritten 

&+!! 
Ah 

to faciliate comparison with the capacitor 
equation. 

Return to Section 21 and choose another 
answer. 

Your answer in Section 26 is correct. Note 
that this equation, 

Z 34 
-= --, 
w-b ax 

is analogous to the equation we would write 
for the component of specific discharge in 
the 2 direction, through a section of aquifer 
of width w and thickness b; that is, 

Q ah 
-a-K-. 
w-b 3% 

In practice, steady-state electric-analog 
work may be carried qut by constructing a 
scale model of an aquifer from a conductive 
material and applying electrical boundary 
conditions similar to the hydraulic boundary 
conditions prevailing in the ground-water 
system. The voltage is controlled at certain 
points or along certain boundaries of the 
model, in proportion to known values of head 
at corresponding points in the aquifer; and 

current may be introduced or withdrawn in 
proportion to known values of inflow and 
outflow for the aquifer. When the boundary 
conditions are applied in this manner, volt- 
ages at various points of the model are pro- 
portional to heads at corresponding points 
in the aquifer, and the current density vector 
in various sections of the model is propor- 
tional to the specific-discharge vector in the 
corresponding sections of the aquifer. 

QUESTION 

Suppose an analog experiment of this type 
is set up, and the experimenter traces a line 
in the model along which voltage has some 
constant value. To which of the following 
hydrologic features would this line corres- 
pond? 

Turn to Section: 
a flowline 16 
a line of constant head 21 
a line of uniform recharge 17 



160 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

12 0, 
Your answer in Section 28, 

is not correct. Darcy’s law states that flow 
is equal to the product of hydraulic con- 
ductivity, cross-sectional area, and (nega- 
tive) head gradient. The gradient of head is 

by definition a first derivativethe deriva- 
tive of head with respect to distance. The 
answer which you chose involves a second 
derivative. The correct answer must either 
include a first derivative, or an expression 
equivalent to or approximating a first de- 
rivative. 

Return to Section 28 and choose another 
answer. 

13 0, 

Your answer in Section 21 is not correct. 
We have seen in dealing with the analogy 
between steady-state electrical flow and 
steady-state ground-water flow that volt- 
age is analogous to hydraulic head, whereas 
current, or rate of flow of charge, is analog- 
ous to the volumetric rate of flow of fluid. 
In the analogy between the capacitor equa- 
tion and the storage-head relation, voltage 
must still be analogous to head, or capacitors 

could not be used to represent storage in a 
model incorporating the flow analogy be- 
tween Darcy’s law and Ohm’s law. Similar- 
ly, charge must represent fluid volume, so 
that rate of flow of charge (current) can 
represent volumetric fluid discharge. Other- 
wise the storage-capacitance analogy would 
be incompatible with the flow analogy. 

Return to Section 21 and choose another 
answer. 

14 l - 

Your answer in Section 22 is not correct. 
Increasing both R and C, as suggested in 
the answer which you chose, has the effect 
of increasing the factor RC in the equation 

$Q++,+Q.++J~~+~=RC;. 

On the other hand, an increase in 2 in the 
aquifer causes the factor Sa2/T to decrease, 
in the equation 

Saa Ah 
h,+h,+h,+hd-4ho=--. 

T At 
Thus the proposed technique fails to simu- 
late the hydrologic system. 

Notice that head and voltage are analog- 
ous and that increases in T can be simulated 
by decreases in R. 

Return to Section 22 and choose an&her 
answer. 

0 - 
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Your answer in Section 4 is not correct. 
The rate of accumulation of charge on the 
capacitor plate must equal the net rate at 
which charge is being transported to the 
capacitor through the four resistors. To set 
up the problem, we assume that the current 
is toward the capacitor in resistors 1 and 3, 
and away from the capacitor in resistors 2 
and 4 in the diagram. The current to&rd 
the capacitor in resistor 1 is given by Ohm’s 
law as 

1 I- 1-F(rp1-90)v 
while that in resistor 3 is given by 

The current away from the capacitor in re- 
sistor 2 is given by 

1 I 

- - 

while that in resistor 4 is given by 

L=$,,o-,.,. 

If it turns out that any of these currents 
are not actually in the direction initially 
assumed, the current value as computed 
above will be negative ; thus the use of these 
expressions remains algebraically correct 
whether or not the assumptions regarding 
current direction are correct. 

The net rate of transport of charge to- 
ward the capacitor will be the sum of the 
inflow currents minus the sum of the out- 
flow currents, or 

Il+I,-z,-r,. 
This term must equal the rate of accumula- 
tion of charge on the capacitor plate, Wdt, 

de d+o 
-c-. -- 

dt dt 
That is we must have 

6 
z,+I,-I~-14=C-. 

dt 
The correct answer to the question of Sec- 

tion 4 can be obtained by substituting our 
expressions for I,, I,, Z3, and I4 into this equa- 
tion and rearranging the result. 

Return to Section 4 and choose another 
auswer. 

Your answer in Section 11 Is not correct. which voltage is constant. In developing the 
In steady-state two-dimensional flows, one analogy between flow of electricity and flow 
can specify a function ‘which is constant of fluid through a porous medium, we 
along a flowlitie. However, this function- stressed that voltage is analogous to head ; 
which is termed a stream function-is not current is analogous to fluid discharge ; and 
analogous to voltage (potential) in electrical electrical conductivity is analogous to hy- 
theory; thus a flowline, or line along which draulic conductivity. 
stream function is constant, cannot cor- Return to Section 11 and choose another 
respond to an equipotential, or line along answer. 
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Your answer in Section 11 is not correct. 
The forms of Darcy’s law and Ohm’s law 
which we have used for comparison are re- 
peated below : 

Darcy’s law : 

Q 
-=-K? 
w-b ax 

where Q is the volumetric fluid discharge 
through a cross-sectional area of width w 
and thickness b, taken at right angles to the 
x direction ; K is the hydraulic conductivity ; 
and ah/ax is the derivative of head in the 
x direction. 

Ohm’s law : 
Z a+ -z-g- 

w-b 3% 

where Z is the current through a cross-sec- 
tional area of width w and thickness b, 
taken at right angles to the x direction; u is 
the electrical conductivity ; and a+/ar is the 
derivative of voltage, or potential, in the x 
direction. 

A comparison of these equations shows 
that voltage, or potential, 4, occupies a posi- 
tion in electrical theory exactly parallel to 
head, h, in the theory of ground-water flow. 
Current, I, is analogous to discharge, Q ; 
while c, the electrical conductivity, is analo- 
gous to the hydraulic conductivity, K. These 
parallels should be kept in mind in answer- 
ing the question of Section 11. 

Return to Section 11 and choose another 
answer. 

18 0 
Your answer in Section 9 iS not correct. 

The question concerns a capacitor which is 
connected to a resistor. The idea is to equate 
the rate of accumulation of charge on the 
capacitor plate to the rate at which charge 
is carried to the capacitor through the re- 
sistor-that is, to the current through the 
resistor. The rate at which charge accumu- 
lates on the capacitor plate is given by the 
capacitor equation as 

dc d+c 
-c-. -- 

dt dt 
The current through the resistor, or rate 

at which charge flows through the resistor, 
is given by Ohm’s law as 

z=-$-4Jc~. 

Return to Section 9 and choose another 
answer. 

19 0 
Your answer in Section 1 is not correct. 

Ohm’s law was given in the form 

Z=&V#J2~. 

in volts, current, Z will be in amperes. In the 
example given, +1 - (p2 was 5 volts and R was 
500 ohms. Substitute these values in the 
equation to obtain the amount of current 
through the resistor. 

Return to Section 1 and choose another 
If R is in ohms and the difference +,-4, is answer. 
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Your answer, in Section 9, 

is not correct. The rate of accumulation of 
charge on the capacitor, de/dt, is equal to C 
(d+,/dt), and this part of your answer is 
correct. However, the idea is to equate this 
rate of accumulation of charge on the ca- 
pacitor to the rate of transport of the charge 

toward the capacitor, through the resistor- 
that is, to the current through the resistor. 
This current is to be expressed in terms of 
resistance and voltage, using Ohm’s law; 
and this has not been done correctly in the 
answer which you chose. Ohm’s law states 
that the current through a resistance is equal 
to the voltage drop across the resistance di- 
vided by the value of the resistance in ohms. 

Return to Section 9 and choose another 
answer. 

97 0 

Your answer in Section 11 is correct. The 
line of constant voltage, or equipotential line, 
is analogous to the line of constant head in 
ground-water hydraulics. 

The analogy between Darcy’s law and 
Ohm’s law forms the basis of steady-state 
electric-analog modeling. In recent years, the 
modeling of nonequilibrium flow has become 
increasingly important; and just as Darcy’s 
law alone is inadequate to describe non- 
equilibrium ground-water flow, its analogy 
with Ohm’s law is in itself an inadequate 
basis for nonequilibrium modeling. The 
theory of nonequilibrium flow is based upon 
a combination of Darcy’s law with the stor- 
age equation, through the equation of con- 
tinuity. To extend analog modeling to non- 
equilibrium flow, we require electrical equa- 
tions analogous to the storage and continuity 
equations. 

The analog of ground-water storage is 
provided by an electrical element known as 
a capacitor. The capacitor is essentially a 
storage tank for electric charge; in circuit 
diagrams it is denoted by the symbol shown 
in figure A. As the symbol itself suggests, 
capacitors can be constructed by inserting 
two parallel plates of conductive material 
into a circuit, as shown in figure B. When 
the switch is closed, positive charge flows 
from the battery to the upper plate and ac- 

cumulates on the plate in a manner analo- 
gous to the accumulation of water in a 
tank. At the same time, positive charge is 
drawn from the lower plate, leaving it with 
a net negative charge. Figure C shows a 
hydraulic circuit analogous to this simple 
capacitor circuit; when the valve is opened, 
the pump delivers water to the left-hand 
tank, draining the right-hand tank. If the 
right-hand tank is connected in turn to an 
effectively limitless water supply, as shown 
in figure D, both the volume of water and 
the water level in the right-hand tank will 
remain essentially constant, while water will 
still accumulate in the left-hand tank as the 
pump operates. The analogous electrical ar- 
rangement is shown in figure E; here the 
additional symbol shown adjacent to the 
lower plate indicates that this plate has been 
grounded-that is, connected to a large mass 
of metal buried in the earth, which in effect 
constitutes a limitless reserve of charge. In 
this situation, the quantity of charge on the 
lower plate remains essentially constant, as 
does the voltage on this plate, but the bat- 
tery still causes positive charge to accumu- 
late on the upper plate. The voltage on the 
lower plate is analogous to the water level 
in the right-hand tank, which is held con- 
stant by connection to the unlimited water 
supply. 
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In a circuit such as that shown in figure 
E, it is customary to designate the constant 
voltage of the ground plate as zero. This is 
done arbitrarily-it is equivalent for ex- 
ample, to setting head equal to zero at the 
constant water level of the right-hand tank 
of figure D. With the voltage of the grounded 
plate taken as zero, the voltage difference 
between the plates becomes simply the volt- 
age, 4, measured on the upper elate. In the 
circuit of figure E, this voltage is equal to 
the voltage produced by the battery. 

Now suppose an experiment is run in which 
the battery in the circuit of figure E is re- 
placed in turn by batteries of successively 
higher voltage. At each step the charge on 
the positive plate is measured in some way, 
after the circuit has reached equilibrium. 
The results will show that as the applied 
voltage is increased, the charge which ac- 
cumulates on the positive plate increases in 
direct proportion. If a graph is constructed 
from the experimental results in which the 
charge, E, which has accumulated on the 
positive plate is plotted versus the voltage 
in each step, the result will be a straight 
line, as shown in the figure. The slope of 
this line, AC/A+, is termed the capacitance of 
the capacitor, and is designated C; that is, 

OL 
&-!z, c=-, 

W @J 
or simply 

Capacitance is measured in farads, or more 
commonly in microfarads ; a farad is equal 
to 1 coulomb per volt. 

These equations serve to define the opera- 
tion of a capacitor and provide the analog 
we require for the equation of ground-water 
storage. It will be recalled that the rela- 
tion between volume in storage and head 
can be written 
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QUESTION 

Which of the following statements cor- 
rectly describes the analogy between the 
capacitor equation and the ground-water- 
storage-head relation? 

Turn to Section: 

I 
Voltage on capacitor plate #J 

where AV is the volume of water taken into 
or released from storage in a prism of aqui- 
fer of base area A, as the head changes by 
an amount Ah. 

Charge is analogous to head, voltage 
is analogous to volume of water, 
and capacitance, C, is analogous to 
the factor SA. 13 

Charge is analogous to volume of 
water, voltage is analogous to head, 
and capacitance, C, is analogous to 
the factor SA. 9 

Charge is analogous to volume of 
water, voltage is analogous to head, 
and capacitance, C, is analogous to 
the factor 

1 

G 
10 

22 0 

Your answer in Section 4, 

is mrrect In Part VII, we obtained a finite- 
difference approximation to the differential 
equation for two-dimensional non-steady- 
state ground-water flow, 

azh a2h S ah 
-+-=--. 
ax* ay2 T at 

This approximation can be written 
h,+h,+h,-t-h,-4h, S Ah, 

=--, 
a2 T At 

or 
Sa2 Ah, 

h,+hz+h,+h,-4h,=---. 
T At 

Y 

h I 
h,- ho.. h,, x 

a- 

a 
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where h,, h,, h,, h,, and h, represent the head 
values at the nodes of an array such as that 
shown in the sketch; a is the node spacing; 
S is storage coefficient ; T is transmissivity ; 
and Ah,/At represents the rate of change of 
head at the central node. The circuit equa- 
tion which we have just obtained is directly 
analogous to this finite-difference form of 
the ground-water equation, except for the 
use of the time derivative notation d+,idt as 
opposed to the finite-difference form, Ah,/ 
At. In other words, the circuit element com- 
posed of the four resistors and the capacitor 
behaves in approxjmately the same way as 
the prism of confined aquifer which was 
postulated in developing the ground-water 
equations. It follows that a network com- 
posed of circuit elements of this type, such 
as that shown in the figure, should behave 

G indicates grounded terminal 

in the same way as a two-dimensional con- 
fined aquifer of similar geometry. The non- 
equilibrium behavior of such an aquifer map 
be studied by constructing a model of the 
aquifer, consisting of a network of this type ; 
electrical boundary conditions similar to the 
observed hydraulic boundary conditions are 
imposed on the model, and voltage is moni- 
tored at various points in the network as a 
function of time. The voltage readings con- 
stitute, in effect, a finite-difference solution 
to the differential equation describing head 

in the aquifer. The time scale of model ex- 
periments is of course much different from 
that of the hydrologic regime. A common 
practice is to use a very short time scale, in 
which milliseconds of model time may rep- 
resent months in the hydrologic system. 
When time scales in this range are employed, 
the electrical excitations, or boundary condi- 
tions, are applied repeatedly at a given fre- 
quency, and the response of the system is 
monitored using oscilloscopes. The sweep 
frequency of each recording oscilloscope is 
synchronized with the frequency of repe- 
tition of the boundary-condition inputs, so 
that the oscilloscope trace represents a curve 
of voltage, or head, versus time, at the net- 
work point to which the instrument is con- 
nected. 

QUESTION 

Suppose we wish to model an aquifer in 
which transmissivity varies from one area 
to another, while storage coefficient remains 
essentially constant throughout the aquifer. 
Which of the following procedures would 
you consider an acceptable method of simu- 
lating this condition in a resistance-capacit- 
ance network analog? 

Turn to Section: 

Construct a network using uniform 
values of resistance and capaci- 
tance, but apply proportionally 
higher voltages in areas having a 
high transmissivity. 2 

Construct a network in which resist- 
ance and capacitance are both in- 
creased in proportion to local in- 
creases in transmissivity. 14 

Construct a network in which resist- 
ance is varied inversely with the 
transmissivity to be simulated, 
while capacitance is maintained at 
a uniform value throughout the 
network. 5 
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23 0 

Your answer in Section 26, 

Z a+ 
-=--9 
w-1 ax 

is not correct. The answer which you chose 
actually expresses the component of current 
density in the x direction.’ w * I is an area 
taken normal to the x direction. If Z repre- 
sents the current through this area, Z/w *Z 
will give the component of current density 
in the x direction ; and this should equal -U 

times the directional derivative of voltage in 
the x direction, 3+/3x. However, the question 
asked for the current density component in 
the x direction ; and in fact, the problem 
stated that the current flow was two dimen- 
sional confined to the x, y plane. This im- 
plies that the current component in the ver- 
tical direction is zero, and thus that a+/~ is 
zero as well. 

Return to Section 26 and choose another 
answer. 

24 0 

Your answer in Section 6 is not correct. 
Ohm’s law was given in Section 1 as 

Z=+-,*, 

where +1-+2 is the voltage difference across 
a resistance, R, and Z is the current through 
the resistance. In Section 6 the expression 

R=,,,.k 
A 

was given for the resistance, where pe is the 
electrical resistivity of the material of which 
the resistance is composed ; L is the length 
of the resistance, and A is its cross-sectional 
area. This expression for resistance should 
be substituted into the form of Ohm’s law 
given above to obtain the correct answer. 

Return to Section 6 and choose another 
answer. 

25 0 

Your answer in Section 26, 

Z a+ 
-=--9 
W-1 3Y 

is not correct. The component of current 
density in a given direction is defined as the 
charge crossing a unit area taken normal to 
that direction, in a unit time. Here we are 
concerned with the current density compo- 
nent in the x direction; we must accordingly 
use an area at right angles to the x direc- 

tion. In your answer, the area is w * I, which 
is normal to the x direction. Again, the com- 
ponent of current density in a given direc- 
tion is proportional to the directional deri- 
vative of voltage in that direction. Since we 
are dealing with the component of current 
density in the x direction, we require the 
derivative of voltage in the x direction. The 
answer which you chose, however, uses the 
derivative of voltage with respect to y. 

Return to Section 26 and choose another 
answer. 
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26. 0 0 

Your answer in Section 28 is correct. The 
term 

hl-h, 

LP 
is equivalent to the negative of the head 
gradient, -ah/ax, so that this formulation 
of Darcy’s law is equivalent to those we have 
studied previously. Now let us compare this 
form of Darcy’s law with Ohm’s law. 

Our expression for Darcy’s law was 

hi-h, 
Q-K.-.A,. 

LP 
Our expression for Ohm’s law in terms of 

electrical conductivity was 

41-h 
z= as--A. 

L 
In terms of electrical resistivity, we ob- 
tained 

I= 
1 h-42 

-.-.A. 
P L 

In these forms, the analogous quantities 
are easily identified. Voltage takes the place 
of head, current takes the place of fluid dis- 
charge and as noted in the preceding sec- 
tion U, or l/p, takes the place of hydraulic 
conductivity. We note further that since cur- 
rent is defined as the rate of movement of 
electric charge across a given plane, while 
fluid discharge is the rate of transport of 
fluid volume across a given plane, electric 
charge may be considered analogous to fluid 
volume. 

In Part II, we noted that Darcy’s law 
could be written in slightly more general 
form as 

Q, ah 

q@=-T= -K- ax 
Qv -Kah 

qy=-= - 
A av 

and 
Q, ah 

q2=A= -K- az 
where q. is the component of the specific- 
discharge vector in the x direction, or the 
discharge through a unit area at right angles 
to the x axis ; qy is the component of the spe- 
cific-discharge vector in the 2/ direction, and 
qz is the component in the x direction. The 
three components are added vectorially to 
obtain the resultant specific discharge. ah/ 
ax, ah/& and ah/ax are the directional 
derivatives of head in the x, y, and x direc- 
tions ; and K is the hydraulic conductivity, 
which is ,here assumed to be the same in any 
direction. We may similarly write a more 
general form of Ohm’s law, replacing the 
term +1 - cp,/L by derivatives of voltage with 
respect to distance, and considering compo- 
nents of the current density, or current per 
unit cross-sectional area, in the three space 
directions. This gives 

Z 0 a+ 1 a+ 
A, 

r--s--- 
ax pe ax 

Z 

0 
a+ 1 a+ 2 y =-u--&=-,ay 

Z 

0 
a+ 1 a4 

A. 
c--s --m, 

a2 Ps az 

Here (Z/A) m is the current through a unit 
area oriented at right angles to the z axis, 
(Z/A), is current through a unit area per- 
pendicular to the II axis, and (Z/A). is the 
current through a unit area perpendicular to 
the z axis. These terms form the compo- 
nents of the current density vector. @/a%, 
a+/& and a+/az are the voltage gradients, 
in units of volts/distance, in the three direr- 
tions. These three expressions simply repre- 
sent a generalization to three dimensions 
of the equation given in Section 1 as Ohm’s 
law. 
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QUESTION 

The picture shows a rectangle in a con- 
ductive sheet, in which there is a two-dimen- 
sional flow of electricity. The flow is in the 
plane of the sheet, that is, the 2, y plane ; 
the thickness of the sheet is b, and the di- 
mensions of the rectangle are I and w. Which 
of the following expressions gives the mag- 
nitude of the component of current density 
in the x direction? 

Turn to Section: 

Z a+ 
-= -(I-- 11 
web ax 

I a+ -= -#J- 25 
W*l aTI 

I a+ -z-g- 23 
W-1 ax 

(I represents the current through the area 
utilized in the equation, we b or w -1.) 

27 0 

Your answer in Section 4 is not correct. 
The essential idea here is that the rate of 
accumulation of charge on the capacitor 
must equal the net inflow minus outflow of 
charge through the four resistors. The in- 
flow of charge through resistor 1 is the cur- 
rent through that resistor, and is given by 
Ohm’s law as 

The outflow through resistor 2 is similarly 
given by 

1 

The inff ow through resistor 3 is 
1 

za=- R (b-&J, 
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27 l -Con. 
0 

while the outflow through resistor 4 is 

L=$0-,,,. 

The net inflow minus outflow of charge to 
the capacitor is 

z,+z,-I,-I,, 

and this must equal the rate of accumula- 
tion of charge on the capacitor, dc/dt, that 
is 

z,+z,-I,-I,=&. 
dt 

According to the capacitor equation, de/ 
dt is given by 

de d+o - = IC-. 
dt dt 

The answer to the question of Section 4 
can be obtained by substituting the appro- 
priate expressions for I,, I,, I, I, and dc/dt 
into the relation 

I,+z,-I,-I,=? 
dt ’ 

and rearranging the result. 
Return to Section 4 and choose another 

answer. 

28 0 - 

Your answer in Section 6 is correct. 
Electrical conductivity, or l/resistivity, is 

the electrical equivalent of hydraulic con- 
ductivity. In terms of electrical conductivity, 
Ohm’s law for the problem of Section 6 be- 
comes 

z= $#d2, 

where u is electrical conductivity. 

The analogy between Darcy’s law and 
Ohm’s law is easily visualized if we consider 
the flow of water through a sand-filled pipe, 
of length L, and cross-sectional area A,, as 
shown in the diagram. The head at the in- 
flow end of the pipe is h,, while that at the 
outflow end is h,. The hydraulic conductivity 
of the sand is K. 

QUESTION 

Which of the following expressions is ob- 
tained by applying Darcy’s law to this flow? 
(& represents the discharge through the 
Pipe. 1 

Turn to Section: 

Q= -K.zh.A, 12 
ax2 

hi-h, 
&=&-.A, 26 

LP 

Qz-!!.- 
J% 

7 
A, h,-h, 
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