
SUMMARY AND CONCLUSIONS 
 
Borehole-radar reflection logging using  

60-MHz omni-directional and directional antennas 
was conducted at the Project Shoal Area, Churchill 
County, Nevada. The overall quality of the radar data 
is marginal, ranging from very poor to good. Six 
boreholes were logged (HC-1, HC-2, HC-5, HC-6, 
HC-7, and HC-8), but the data from one borehole 
(HC-1) were uninterpretable. Of the five boreholes 
interpreted, four (HC-5, HC-6, HC-7, and HC-8) were 
logged using a directional receiving antenna capable 
of providing the information to determine the reflector 
orientation.  

Twenty-seven reflectors were interpreted 
from the directional radar reflection logs. Histograms 
summarizing the range of interpreted azimuths (strike) 
and dips are shown in figures 11 and 12. Azimuths are 
concentrated in two orientations — northeast-
southwest and east-west to slightly northwest - 
southeast. Reflectors are moderate to steeply dipping. 
The mean reflector dip is 72.6°; the median is 73° 
with a standard deviation of 10.1°.  Reflector length 
was estimated for each reflector using a straight-ray 
reflection path approximation. Reflector length ranged 
from less than 7 to more than 133 m, with a mean of 
47 m, median of 34.5 m, and standard deviation of 
37.3 m. 

Reflector quality scores from 1 (best) to 5 
(worst) were assigned to each reflector to provide a 
sense of the spatial continuity of the reflectors and the 
comparison of the field data relative to an ideal planar 
reflector.  The average reflector continuity score is 3.6 
(fair to poor range, fig. 13), consistent with fractures 
or fracture zones that contain localized to moderate 
discontinuities but which are still relatively 
continuous over a scale of tens of meters.  

The orientation confidence scores are low, 
generally about 4.0 (fig. 14). The low scores reflect 

the general data quality, but also indicate that the 
behavior of most reflectors departs from the ideal 
planar case.  The low scores are consistent with 
reflections from fracture zones containing numerous, 
closely spaced, sub-parallel fractures.  

An equal-area stereo-net that summarizes 
interpretations from all of the boreholes logged at the 
PSA is shown in figure 15. In general, the most 
continuous reflectors are those having the steepest 
dips, and either north-south or east-west strikes. 

Direct-wave analysis performed on the radar 
reflection logs was used to generate logs of radar 
velocity and amplitude. Zones of low radar velocity 
correlate with decreases in direct-wave amplitude, 
most likely indicating the presence of saturated 
fracture zones. In boreholes HC-5, HC-6, and HC-7, 
direct-wave amplitudes increase with depth; this 
suggests an overall increase in electrical resistivity, 
possibly due to changes in mineral assemblage and
(or) to a decrease in the specific conductance of 
ground water. In boreholes HC-6 and HC-7, at depths 
below 300 m, the direct-wave amplitudes increase 
over the same interval where direct-wave velocities 
are decreasing. This observation is consistent with an 
increase in primary or secondary porosity coupled 
with a decrease in specific conductance of ground 
water, and (or) a change in mineral assemblage. 
Another observation is the similarity between the 
direct-wave logs from HC-6 and HC-7 when the HC-7 
log is shifted upward about 50 m. The similarities 
suggest that HC-6 and HC-7 are connected by 
structural features with a down-dip component in the 
direction of HC-7. The results of the borehole-radar 
reflection logging indicate that even where data 
quality is marginal, these data can provide useful 
information for ground-water characterization studies 
in fractured rock, and provide insights into the nature 
and extent of fractures and fracture zones in and near 
boreholes.  
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Figure 12.  Distribution of interpreted borehole-radar reflectors sorted by dip, Project Shoal Area, Churchill 

County, Nevada. 

Figure 11.  Distribution of interpreted borehole-radar reflectors sorted by azimuth, Project Shoal Area, Churchill 
County, Nevada. 
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Figure 13.  Distribution of interpreted borehole-radar reflectors sorted by the continuity of the reflectors, Project 
Shoal Area, Churchill County, Nevada. 
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Figure 14.  Distribution of interpreted borehole-radar reflectors sorted by orientation confidence, Project Shoal 
Area, Churchill County, Nevada. 
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Figure 15.  Lower hemisphere equal-area stereo-net showing poles of all interpreted radar reflectors, weighted 
by reflector length and combined reflector quality, Project Shoal Area, Churchill County, Nevada. 
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