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ABSTRACT 

Geophysical tomograms are used increasingly as auxiliary data for geostatistical 

modeling of aquifer and reservoir properties. The correlation between tomographic estimates and 

hydrogeologic properties is commonly based on laboratory measurements, co-located 

measurements at boreholes, or petrophysical models. The inferred correlation is assumed 

uniform throughout the interwell region; however, tomographic resolution varies spatially due to 

acquisition geometry, regularization, data error, and the physics underlying the geophysical 

measurements. Blurring and inversion artifacts are expected in regions traversed by few or only 

low-angle raypaths. In the context of radar traveltime tomography, we derive analytical models 

for (1) the variance of tomographic estimates, (2) the spatially variable correlation with a 

hydrologic parameter of interest, and (3) the spatial covariance of tomographic estimates. 

Synthetic examples demonstrate that tomograms of qualitative value may have limited utility for 

geostatistics; moreover, the imprint of regularization may preclude inference of meaningful 

spatial statistics from tomograms.  

INTRODUCTION 

Geophysical tomography can provide valuable qualitative information about aquifer or 

reservoir properties and structure where conventional, direct measurements are unavailable. 

Increasingly, hydrogeologists and engineers are capitalizing on tomograms as conditioning data 

for more quantitative estimation and stochastic simulation of hydrologic parameters, such as 

permeability, solute concentration, or saturation [e.g., Hubbard et al., 2001; McKenna and 

Poeter, 1995]. Geostatistical modeling, in this context, utilizes sparse direct measurements at 

boreholes (i.e., hard data), tomograms between boreholes (i.e., auxiliary or soft data), and a 

correlation between the geophysical property and hydrologic parameter of interest. The 

correlation between hard and soft data is based on comparison of co-located measurements at 

boreholes bounding the tomogram, laboratory measurements, or petrophysical models. This 
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relation is then assumed to hold over the interwell region; however, it is well established in the 

geophysical literature that resolution varies over the tomogram as a function of measurement 

error, acquisition geometry, regularization, and the physics underlying the measurement process 

[e.g., Menke, 1984; Alumbaugh and Newman, 2000].  

A second use of tomography for geostatistics involves inference of the spatial structure 

(e.g., the spatial covariance) of hydrologic properties from tomograms of correlated geophysical 

properties [e.g., Hubbard et al., 2001; McKenna and Poeter, 1995]. Unfortunately, tomograms 

bear the imprint of data acquisition geometry and prior information. Two tomograms inverted 

from a given data set can differ markedly in structure depending on the chosen regularization 

criteria; hence the spatial covariance of a tomogram may largely reflect the rather subjective 

choice of regularization.  

 The objectives of this study are to evaluate (1) the assumption of spatially uniform 

correlation between hard data and soft tomographic data, and (2) the reliability of structural 

models calculated from tomograms. We address these goals in the context of radar traveltime 

tomography and estimation of the logarithm of permeability, logk. Formulas are derived to 

model the resolution-dependent variance of tomographic slowness estimates, correlation between 

logk and estimated slowness, and spatial covariance of estimated slowness. Synthetic examples 

illustrate the effects of data error, borehole offset, scale of heterogeneity, and regularization. 

Although the examples are based on radar tomography, our results have clear implications for 

application of geostatistics to other forms of tomography.  

BACKGROUND 

Tomographic Resolution 

Tomographic inversion commonly entails minimization of the sum of two terms: the 

misfit between predicted and observed data, and a measure of solution complexity based on an a 
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priori covariance model or Tikhonov regularization. Myriad inverse approaches are documented 

in the literature. Here, we use simple least-squares inversion [e.g., Day-Lewis et al., 2003]. The 

vector of slowness estimates, s , is found by solving a linear system, given traveltime data, t; the 

measurement error covariance matrix, CD; the a priori covariance matrix, CM; and the 

geophysical model, G, relating traveltimes to slownesses, t=Gs, under the straight-ray 

approximation:  
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where u is a unit vector. The estimation allows for an unknown slowness mean. For 

regularization based on minimization of image roughness,  is replaced by the term,1−
MC DDTα , 

where  is a 2nd-order spatial derivative filter, and α weights the regularization relative to data 

misfit.     

D

 The resolving power of cross-hole tomography depends on the information content of the 

data, the assumed data errors, and regularization. In general, resolution varies inversely with both 

well offset and assumed error, and in a complex fashion with applied prior information. Some 

parameters may be resolved uniquely, whereas others are estimated as local averages; thus, the 

degree of smoothing and occurrence of artifacts are expected to vary over the tomogram. 

Resolution is quantified by the model resolution matrix, R, which is, conceptually, the filter 

through which the inversion sees the study region [e.g., Alumbaugh and Newman, 2000]:   
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Each row of R describes the resolution of a parameter, i.e., pixel radar slowness: 

∑
=

=
N

j
jiji sRs

1

ˆ ,          (3) 

4 



where,  is the estimated slowness in pixel i, and  is the true slowness in pixel j. For a purely 

overdetermined problem, R is an identity matrix; however, tomographic inverse problems are 

commonly underdetermined, and an infinity of models can match the data equally well. 

iŝ js

Geostatistics  

Geostatistical modeling of aquifer and reservoir properties is an active area of research 

with abundant examples in the recent literature. The interested reader is referred to Deutsch and 

Journel [1998] and references therein. Here, we focus on the use of tomograms as soft data. 

Conditional estimation includes cokriging [e.g., Cassiani et al., 1998] and Bayesian approaches 

[e.g., Hubbard et al., 2001]; conditional simulation techniques include sequential Gaussian 

simulation, indicator simulation [e.g., McKenna and Poeter, 1995], and simulated annealing.   

Few applications of geostatistics to tomograms have addressed the local averaging 

inherent to geotomography. McKenna and Poeter [1995] noted deterioration of the correlation 

between seismic velocity and hydraulic conductivity compared to the correlation observed for 

higher-resolution sonic logs; to compensate for this effect, they applied a uniform correction to 

tomograms based on sonic logs. To infer spatial structure from radar tomograms, Hubbard et al. 

[2001] accounted for measurement support scale in the spectral domain. Cassiani et al. [1998] 

noted that the correlation between logk and estimated seismic velocity degraded in regions of 

poor model resolution.  

MODELING RESOLUTION-DEPENDENT CORRELATION AND STRUCTURE 

 We derive formulas to assess the resolution-dependent utility of tomograms for 

geostatistics, assuming that slowness and logk are normally distributed, second-order stationary, 

and share the same covariance structure. According to Eq. 3, tomographic slowness estimates 

can be modeled as weighted averages of true slowness values. The statistical properties of local 

averages of random functions can be predicted using random field averaging [Vanmarcke, 1983]. 
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Of interest here are the variance of the local average, correlation between the local average and a 

second property, and covariance between local averages calculated at different locations. 

Consider a homogeneous random function, X, with covariance structure 
jXiX ,σ , and define linear, 

weighted averages, 1X  and 2X : 
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where a and b are weights. The covariance between weighted averages is  
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The variance of a single weighted average can be found by defining 2X = 1X . Of additional 

interest is the relation between a weighted average of X and second point-scale property, Z, 

correlated with X:   
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 The cross-covariance between X at location i and Z at location j can be approximated 

using the Markov Model 2 [Journel, 1999]:  

jXiXXZZXjZiX ,
22

,, σσσρσ ≈ .        (7) 

where ZX ,ρ is the correlation coefficient between co-located X and Z. 

Modeling estimated pixel slowness as a weighted average using Eq. 3, applying Eqs. 5-6 

to the results, and modeling the cross-covariance between slowness and logk,
jkis log,σ̂ , with Eq. 7, 

we find: 
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Equations 8-10 provide insights into (1) how the variance of estimated slowness, , 

compares to that of true slowness; (2) how the correlation between estimated slowness and co-

located logk, 

2
ˆˆ
isσ

ii ks log,ˆρ̂ , varies spatially and is diminished by inversion compared to the true, point-

scale correlation, ks log,ρ ; and (3) whether the spatial covariance of estimated slowness, 
ki ss ˆ,ˆσ̂ , 

reflects true structure or merely the applied regularization. The variance predicted by Eq. 8 

should not be confused with estimation error; rather it indicates the inversion’s tendency to 

diminish variations in slowness. For pixels of lower , the inversion will underestimate high 

values and overestimate low values to a greater degree.  

2
ˆˆ
isσ

For simplicity, we have assumed a linear petrophysical relation between the geophysical 

property and hydrologic parameter of interest; however, the approach is readily adapted to 

nonlinear relations. For each pixel, a linear relation between  and  can be derived from the 

calculated 

iŝ is

isis ˆ,ρ̂ and 2
ˆˆ
is

σ . A nonlinear function could be used to transform the resulting Gaussian 

distribution to compare tomographic estimates and hydrologic parameters.   

EXAMPLES  

A series of synthetic examples demonstrates the impact of limited and variable model 

resolution on the utility of tomograms for geostatistics. We consider the effects of (1) the 

standard error of measurements, σd; (2) the crosswell aperture, defined as the ratio of vertical 

borehole length to horizontal offset, h/L; (3) the scale of heterogeneity, i.e., covariance range; 

and (4) the chosen regularization criteria.  

The tomogram is parameterized as a grid of 0.25-m square pixels, with 40 pixels in the 

horizontal, and 40 or 20 in the vertical, depending on the example (Table 1). The acquisition 
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geometry consists of raypaths between antennas at 0.25-m intervals along each borehole. Radar 

slowness and logk are normally distributed with, respectively, means of 1.51x10-8 s/m and 4.35 

log-darcies, and standard deviations of 3.12x10-10 s/m and 0.5 log-darcies. Realizations were 

generated using sequential Gaussian simulation [Deutsch and Journel, 1998]. An exponential 

covariance model is assumed. The relation between slowness and logk is linear, with a 

correlation coefficient, , of -1. Perfect correlation is not an assumption required by our 

approach but yields results that can be viewed as best-case scenarios. For simplicity, we assume 

straight rays and calculate traveltimes as line integrals of slowness. In the base case (example 1), 

σd is equal to half the period of the assumed dominant frequency (100 MHz) following Bregman 

et al. [1989]. In practice, sources of error include inaccurate antenna positions or well deviations, 

simplifications of the underlying physics, and picking error.  

ks,logρ

Table 1. Setup of synthetic examples 
Example 

# 
σd 

(ns) 
h/L 

(m/m) 
Covariance 
range (m) 

Regularization  
Method 

1 5 10/10 2.5 Covariance  
2 10 10/10 2.5 Covariance  
3 5 5/10 2.5 Covariance  
4 5 10/10 2.5 2nd derivative filter 
5 5 10/10 10 Covariance 

 

The columns of Figure 1 show (a) the slowness field, (b) the tomogram; (c) 2
ˆˆ
isσ  as a 

fraction of the true variance of slowness; (d)
ikis log,ˆρ̂ ; and (e) the covariance of estimated 

slowness, averaged over all pairs of pixels separated by different directional lag vectors and 

normalized by the variance of estimated slowness. The results shown in columns (c), (d), and (e) 

were calculated using Eqs. 8-10; these results are independent of any realization-tomogram pair 

and are thus unaffected by ergodic fluctuations. For example 1, the inverted tomogram captures, 

albeit indistinctly, the large-scale high- and low-valued slowness anomalies. Both 2
ˆˆ
isσ  and 
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ikis log,ˆρ̂  vary spatially, with 2
ˆˆ
isσ  ranging between about 10 to 25% of the true variance of 

slowness, and the correlation deteriorating from -1 in truth to about -0.3 in parts of the 

tomogram; both are poor in the top- and bottom-center sections of the tomogram, where ray 

density and angular coverage are low. Comparisons between examples enable the following 

insights:  

1. Larger data error (example 2) results in more smoothing, reduced 2
ˆˆ
isσ , and weaker 

ikis log,ˆρ̂ ; 

the pattern of correlation is similar to the base case.     

2. A decrease in crosswell aperture (example 3) exacerbates blurring and weakens 
ikis log,ˆρ̂ ; the 

spatial patterns of 2
ˆˆ
isσ  and 

ikis log,ˆρ̂  are altered from the base case. 

3. Regularization using a second-derivative filter (example 4) results in a weaker
ikis log,ˆρ̂ , 

especially at the tomogram boundaries; the pattern of 2
ˆˆ
isσ  contrasts sharply with results for 

covariance-based regularization.  

4. For larger-scale heterogeneity (example 5), 
ikis log,ˆρ̂ improves and becomes more uniform, as 

the effect of local averaging is less when imaging larger targets.   

5. For all examples, 
ikis log,ˆρ̂ is weaker near boreholes than at the center of the tomogram, where 

data provide more independent information, and model resolution is superior.  

 Our results demonstrate that the statistical distribution of slowness estimates and the 

correlation with logk vary spatially and are strong functions of regularization, data error, 

acquisition geometry, and the scale of heterogeneity; furthermore, the covariance of estimated 

slowness poorly reflects the model covariance of synthetic slowness (fig. 1e). Although the latter 

is isotropic and stationary, the former is anisotropic and a function of position. Due to the limited 

angular coverage afforded by the cross-hole geometry, resolution of lateral variation tends to be 

poor; thus, tomograms are commonly smoother and show greater horizontal than vertical spatial 
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correlation. For some examples, the covariance between slowness estimates for pixels separated 

by larger lag distances is stronger than for pixels separated by intermediate distances; this 

apparent “hole” effect indicates that tomographic inversion is prone to generating spurious 

spatial periodicity. 

 

 
 
Figure 1. Results of the examples: (a) synthetic slowness; (b) the slowness tomogram; (c) the variance of estimated 
slowness, normalized by the variance of synthetic slowness; (d) the predicted correlation coefficient between logk 
and estimated slowness; (e) the isotropic slowness model covariance (black), normalized by the variance of 
synthetic slowness; the predicted horizontal (blue) and vertical (red) covariances of estimated slowness averaged 
over the entire tomogram, normalized by the variance of estimated slowness.  
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CONCLUSIONS  

 We presented a framework to understand the resolution-dependent relations between 

tomographic estimates and correlated hydrologic properties. Synthetic examples underscored 

important limitations arising from the imperfect and variable resolution inherent to 

geotomography, which lead to several caveats regarding geostatistical utilization of tomograms: 

1. Relations between hydrologic and geophysical properties based on lab or petrophysical 

relations may not apply to tomograms due to resolution-dependent correlation reduction.  

2. Correlations derived from co-located tomographic estimates and hydraulic tests at boreholes 

may have limited applicability, as correlation varies between wells.  

3. The spatial structure of tomograms is a strong function of survey geometry and applied 

regularization, the selection of which is rather arbitrary. Inference of aquifer structure from 

tomograms must be performed with caution.  

4. The variance of tomographic estimates varies spatially as a function of regularization and 

survey geometry; thus, likelihood functions based on co-located tomographic estimates and 

borehole data may hold limited value for Bayesian estimation. 

Although this work was based on radar traveltime tomography, the approach is extensible 

to, and the results have clear implications for, geostatistical use of other tomographic techniques. 

Possible extensions include (1) consideration of a forward model or alternative parameterization 

more consistent with the measurement physics; (2) design of field surveys and inversion 

strategies to ensure tomograms of value for geostatistics; and (3) development of geostatistical 

methods that account for spatially variable correlation between hard and soft data.  
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