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Abstract Highly resolved time series data are

useful to accurately identify the timing, rate, and

magnitude of solute transport in streams during

hydrologically dynamic periods such as snowmelt.

We used in situ optical sensors for nitrate (NO3
-) and

chromophoric dissolved organic matter fluorescence

(FDOM) to measure surface water concentrations at

30 min intervals over the snowmelt period (March

21–May 13, 2009) at a 40.5 hectare forested watershed

at Sleepers River, Vermont. We also collected discrete

samples for laboratory absorbance and fluorescence as

well as d18O–NO3
- isotopes to help interpret the

drivers of variable NO3
- and FDOM concentrations

measured in situ. In situ data revealed seasonal, event

and diurnal patterns associated with hydrological and

biogeochemical processes regulating stream NO3
-

and FDOM concentrations. An observed decrease in

NO3
- concentrations after peak snowmelt runoff and

muted response to spring rainfall was consistent with

the flushing of a limited supply of NO3
- (mainly from

nitrification) from source areas in surficial soils.

Stream FDOM concentrations were coupled with flow

throughout the study period, suggesting a strong

hydrologic control on DOM concentrations in the

stream. However, higher FDOM concentrations per

unit streamflow after snowmelt likely reflected a

greater hydraulic connectivity of the stream to leach-

able DOM sources in upland soils. We also observed

diurnal NO3
- variability of 1–2 lmol l-1 after snow-

pack ablation, presumably due to in-stream uptake

prior to leafout. A comparison of NO3
- and dissolved

organic carbon yields (DOC, measured by FDOM

proxy) calculated from weekly discrete samples and in

situ data sub-sampled daily resulted in small to

moderate differences over the entire study period

(-4 to 1% for NO3
- and -3 to -14% for DOC), but

resulted in much larger differences for daily yields

(-66 to ?27% for NO3
- and -88 to ?47% for DOC,

respectively). Despite challenges inherent in in situ

sensor deployments in harsh seasonal conditions, these

data provide important insights into processes con-

trolling NO3
- and FDOM in streams, and will be
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critical for evaluating the effects of climate change on

snowmelt delivery to downstream ecosystems.

Keywords Nitrate � FDOM � Snowmelt �
Forested � Diurnal

Introduction

In seasonally snow covered catchments, snowmelt

often represents the single largest hydrologic event

driving annual water yields (Sebestyen et al. 2009;

Oczkowski et al. 2006; Boyer et al. 1997; Hornberger

et al. 1994; Murdoch and Stoddard 1992) and has

important implications for catchment nutrient and

organic matter budgets (Sebestyen et al. 2008, 2009;

Mitchell et al. 1996). Climate change is predicted to

alter snowmelt runoff in upland forested catchments

in the northeastern U.S. through the next century

(Hayhoe et al. 2007), with changes in streamflow

linked to an increase in the proportion of winter

precipitation as rainfall, a decrease in snowpack depth,

and earlier spring melt (Huntington et al. 2004, 2009;

Hodgkins and Dudley 2006a, b). Therefore, a better

understanding of snowmelt dynamics and constituent

variability is needed to assess the dominant drivers and

the potential effects of climate change on downstream

yields of nutrients and organic matter.

The sources and magnitude of nutrient and organic

matter fluxes from rivers during snowmelt are difficult

to quantify given rapid changes in water flow paths,

solute source areas and biogeochemical processes

(Sebestyen et al. 2008; Campbell et al. 2007; Boyer

et al. 2000). Traditional stream sampling approaches

that collect discrete samples at daily to weekly

intervals may not adequately reveal subtle shifts in

sources, capture the full range of biogeochemical

transformations, or allow the accurate calculation of

solute budgets (Raymond and Saiers 2010; Sebestyen

et al. 2008; Kirchner et al. 2004). While higher

frequency water chemistry data are needed, high per-

sample analytical costs and difficult logistics associ-

ated with field sampling are challenges to overcome as

hydrologists and ecologists seek to better understand

stream solute variations during hydrological events.

The application of in situ optical sensors to

measure nitrate (NO3
-) using UV absorbance and

dissolved organic matter (DOM) using fluorescence

has largely been limited to marine and coastal

systems, but several recent studies have demonstrated

that collecting high temporal frequency data in rivers

and streams yields valuable insights into catchment

processes. For example, recent studies have used

in situ optical sensors in freshwater systems to

assess diurnal variability in chromophoric DOM

fluorescence (referred to hereafter as FDOM) and

NO3
- (Pellerin et al. 2009; Spencer et al. 2007a),

storm-driven FDOM dynamics (Saraceno et al. 2009;

van Verseveld et al. 2008), and nutrient uptake

(Heffernan and Cohen 2010). However, no published

data are available to assess the use of in situ optical

sensors for capturing the rapid changes in NO3
- and

FDOM concentrations during snowmelt. In particu-

lar, the application of in situ optical sensors for NO3
-

and FDOM in cold winter conditions with ice cover

has not previously been evaluated.

The primary goal of our study was to assess the

seasonal and high frequency variability of NO3
- and

FDOM and infer the primary drivers of variability

during snowmelt in a forested watershed at Sleepers

River, Vermont, USA. Specific objectives were to:

(1) assess the timing and magnitude of NO3
- and

FDOM variability during the snowmelt period using

in situ measurements, and (2) infer the hydrologic

and biological controls on NO3
- and FDOM dynam-

ics during and after the snowmelt period from in situ

and discrete data including concentration data, optical

properties, and d18O–NO3
- isotopes. FDOM repre-

sents the small fraction of the bulk DOM pool that

absorbs light in the UV range (*370 nm) and

fluoresces at longer wavelengths (*430 to 460 nm),

with the magnitude of FDOM emission often propor-

tional to the concentration of dissolved organic carbon

(DOC) (Saraceno et al. 2009; Downing et al. 2009).

Our results suggest that highly resolved time series are

important to accurately determine NO3
- and FDOM

dynamics, and will improve our ability to measure the

effects of hydrologic events such as snowmelt on

constituent pulses to downstream ecosystems.

Methods

Site description

The in situ snowmelt study was conducted at the

40.5 ha Watershed 9 (W-9) in the Sleepers River

Research Watershed of northeastern Vermont, a
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USGS Water, Energy and Biogeochemical Budgets

(WEBB) site (Glynn et al. 2009). Sleepers River has

been intensively studied as a representative northern

hardwood forest that is affected by elevated nitrogen

deposition (Campbell et al. 2004) and to quantify

responses of stream nutrient yields to climate change

(Sebestyen et al. 2009). The elevation of W-9 ranges

from 519 to 686 m, the mean annual temperature is

4.6�C (-30 to ?30�C range), and the mean annual

precipitation is 1,320 mm. Precipitation is evenly

distributed throughout the year with 20–30% accu-

mulating as snow from December until snow melts in

March or April. Streamflow and nutrient loadings are

distinctively seasonal due to large snowmelt events

(Shanley and Chalmers 1999; Shanley et al. 2002).

In situ monitoring and discrete sampling was

conducted in a second-order tributary at the outlet of

the Sleepers River W-9 (Fig. 1). On hillslopes, a

dense basal till at 1–3 m depth is overlain by

moderately to excessively well-drained inceptisols

and spodosols, with histosols in wetlands (about 5%

of the catchment area) and riparian areas (Shanley

et al. 2003). Stream discharge was calculated from a

stage-discharge relationship, with stage measured

every 5 min at a 120� v-notch weir instrumented

with a float-driven potentiometer. Snow water equiv-

alent (SWE) was determined weekly in an open field

(R-1A) about 1 km from the W-9 stream gage using

an Adirondack snow sampling tube as described in

Sebestyen et al. (2008). Precipitation amount was

measured with a weighing bucket gauge at a mete-

orological station (R29) in a forest clearing adjacent

to the W-9 stream gauge.

In situ optical measurements

In situ optical measurements of NO3
- absorption and

FDOM were made at 30-min intervals in the center of

the channel just upstream of the v-notch weir

between March 21 and May 13, 2009. The water

sample was pumped to a WETLabs (Philomath, OR)

flow-through WETStar FDOM fluorometer that uses

a single excitation/emission pair (370/460 nm; with

10 and 120 nm full width at half maximum excita-

tion/emission bandpass filters, respectively) to esti-

mate the quantity of fluorescent, humic-like DOM

similar to Peak C as reported by Coble (1996). The

linear response of the sensor (r2 [ 0.99) was con-

firmed up to 167 ppb quinine sulfate equivalents

(QSE), greater than three times the maximum values

measured in this study. The FDOM fluorometer was

installed for continuous measurements throughout the

year and water was not filtered during the snowmelt

period given the relatively low turbidity values (\50

FNU) throughout most of the sampling period.

The pumped sample passed from the WETStar

through pre-rinsed Tygon tubing and a FiberFlo 0.2

micron cartridge filter (Mar Cor Purification, Phila-

delphia, PA) to an in situ ultraviolet spectrophotometer

(ISUS, Satlantic, Nova Scotia, Canada) which calcu-

lates NO3
- concentrations from absorption measure-

ments in the spectrum from 217 to 240 nm (Johnson

and Colletti 2002). The filter was changed midway

through the study (April 14) to minimize system back

pressure and reduce the likelihood of fouling. The

instrument precision as reported by the manufacturer

and verified in our laboratory was ±0.5 lmol l-1 and

the accuracy was ±2 lmol l-1 with a detection limit

of 0.2 lmol l-1 (Johnson and Colletti 2002). Ancillary

measurements of water temperature, specific conduc-

tance, and turbidity were measured every 5 min using

a YSI 600 OMS equipped with YSI 6136 turbidity

meter (YSI Inc, Yellow Springs, CO) deployed

adjacent to the fluorometer.

Data handling and processing

In situ FDOM data were logged to a Campbell

Scientific CR1000 datalogger (Campbell Scientific,

Logan, UT) following a 2-min sample flush and

warm up period. FDOM data were collected at 1 Hz

for 30 s, with the last 10 s of each sampling period

(e.g. ‘‘burst’’) averaged to a single mean and standard

Fig. 1 Location of the Sleepers River watershed in the

northeastern USA and the snowmelt study sampling location

(W-9)
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deviation. The FDOM data was converted from

signal voltage to units of ppb QSE (fluorescence of

1 ppb quinine sulfate dihydrate in 0.1 N H2SO4) by

multiplying the blank corrected output sample volt-

age of the Wetstar fluorometer by an instrument

specific conversion factor of 63.5 ppb per volt

supplied by the manufacturer.

ISUS NO3
- raw absorption spectra were logged to

the internal datalogger and later processed by ISUS-

Pro version 4.0 (Satlantic, Nova Scotia, Canada). The

last 10 s of a 30 s sampling period (1 Hz data) was

averaged to give a mean and standard of deviation

NO3
- concentration. Data were corrected for a

blank water offset by a linear interpolation between

pre- and post-deployment blanks (-6.7 and -8.5

lmol l-1, respectively) due to lamp degradation. We

also corrected for the effect of temperature on the

ISUS. While previous studies have reported a small

effect of temperature in saline waters due to the

presence of bromide (Sakamoto et al. 2009), our tests

demonstrated a temperature offset of 0.23 lmol l-1

N per �C of the internal temperature of the instrument

(r2 [ 0.99; Supplemental Fig. S1) when operated

under field conditions. The nitrate data was corrected

according to this relationship using the internal

temperature (Tinternal, �C) logged during the field

deployment to calculate a temperature-corrected

NO3
- concentration using Eq. 1:

NO3 temp corrected
� ðlmol l�1Þ

¼ NO3 raw
� � 0:23 � 18:5� Tinternalð Þð Þ ð1Þ

Several data gaps occurred due to service breaks or

instrument performance, resulting in missing in situ

NO3
- and FDOM data on April 1–2 (65 measure-

ments) and April 6–9 (147 measurements). In addi-

tion, FDOM data were not measured between March

21 and 25 (196 measurements). Missing NO3
- data

represents 8% of the 2,543 possible in situ NO3
-

measurements in our study and data gaps were not

filled for concentration data. Missing FDOM values

(408 measurements total) were estimated for all gaps

based on a relationship between FDOM and stream-

flow on the 1–3 days prior to and after each data gap

(r2 [ 0.96; data not shown).

Discrete measurements

Discrete stream water samples were collected man-

ually at weekly intervals between January and May

2009, with additional samples collected during storm

event periods using an ISCO autosampler at intervals

of minutes to hours. In addition, we collected hourly

samples over a 24 h period (May 12–13, 2009) to

verify diurnal NO3
- variability observed with in situ

measurements. Samples were collected in 500-ml

(grab) or 1-l (autosampler) acid-washed polyethylene

(PE) bottles. Samples were returned to the lab where

they were kept chilled and filtered within 24 h

into 40-ml pre-baked amber glass vials for DOC

and spectral analyses (0.7-lm GF filters) or pre-

rinsed 60-ml PE bottles for NO3
- concentrations and

d18O–NO3
- isotopes (0.45-lm polysulfonate filters).

Samples for NO3
- concentration were frozen and

shipped to the Water Chemistry Lab of the USDA

Forest Service in Grand Rapids, MN and were

measured using suppressed conductivity detection on

a Dionex DX500 ion chromatograph (Dionex, Sunny-

vale, CA) with a detection limit of 1.4 lmol l-1. The

standard deviation of triplicate check standards was

±0.31 lmol l-1 and duplicate samples differed by

less than 4%. Subsets of the discrete samples were sent

to the Stable Isotope Facility at the University of

California in Davis to measure the natural abundance

of d18O in NO3
- (i.e. d18O–NO3

-) using the denitrifier

method (Casciotti et al. 2002). The NO3
- was

converted to nitrous oxide by the bacteria Pseudomo-

nas aureofaciens and analyzed on a Europa Integra

mass spectrometer (Sercon Ltd., Cheshire, UK), with

values reported in% relative to the VSMOW standard.

Samples for DOC and optical analysis were

shipped overnight to the USGS Carbon Lab in

Boulder, CO and measured within 1 week of sample

collection. DOC concentrations were determined

using an O.I. Analytical Model 700 TOC Analyzer

(OI Analytical, College Station, TX) via the platinum

catalyzed persulfate wet oxidation method (Aiken

1992). Ultraviolet (UV) absorbance was measured at

room temperature using a quartz cell with a path-

length of 1 cm on a Hewlett-Packard Model 8453

photo-diode array spectrophotometer (Agilent Tech-

nologies, Inc., Santa Clara, CA). Specific UV absor-

bance (SUVA254) was determined by dividing the

absorbance coefficient (in units of m-1) determined

at k = 254 nm by DOC concentration and provides

an ‘‘average’’ molar absorptivity of DOM (Weishaar

et al. 2003) reported in units of l mg C-1 m-1.

Spectral slope (S290–350), an indicator of DOM

composition (Blough and Del Vecchio 2002;

186 Biogeochemistry (2012) 108:183–198
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Boss and Zaneveld 2003), was calculated using a

nonlinear least squares curve fitting technique on

the spectral range of 290–350 nm as described in

Saraceno et al. (2009). Fluorescence excitation-

emission matrices (EEMs) were measured on room

temperature samples using a Horiba Jobin–Yvon

Fluoromax-3 spectrofluorometer (Horiba Jobin–

Yvon, Inc., Edison, NJ). Samples were diluted with

degassed organic-free DI water to a UV absorbance

of 0.2 absorbance units at 254 nm (1 cm pathlength)

when necessary to eliminate inner filter effects as

described by Spencer et al. (2007b). EEMs were

collected over an excitation range of 240–450 nm

every 5 nm, and an emission range of 300–600 nm

every 2 nm and scans were blank subtracted, Raman

normalized, and corrected for inner-filter effects

(Ohno 2002). Fluorescence index (FI) was calculated

on corrected EEMs as the ratio of emission intensities

at 470 and 520 nm at an excitation wavelength of

370 nm (Cory and McKnight 2005).

Nitrate source apportionment

We used a two-component mixing model as described

by Sebestyen et al. (2008) to estimate stream NO3
-

contributions from direct atmospheric inputs (fATM)

and nitrified sources flushed from near-stream or

upland soils (fNIT) using d18O–NO3
- data. A single

rainfall sample collected on March 31, 2009 had an

d18O–NO3
- value (?82.5%) that rainfall was not

significantly different (t test, P = 0.3) from the

average value of previous years, so we used the mean

of ?86.0% (±1 standard deviation of 4.8%,

range = ?77.1 to ?96.3%) from snowmelt 2004 as

the atmospheric end-member value (cATM). We also

used the mean d18O–NO3
- of -2.7% for waters

samples from three piezometers collected during the

snowmelt event of 2004 in a near-stream area where

groundwater discharges to the stream as the nitrified

end-member (CNIT; Sebestyen et al. 2008). The

uncertainty of the mixing analysis was calculated

using the approach of Genereux (1998), with the error

(Wc) calculated using both the analytical precision of

0.8 and 6.1% to bound a range of uncertainty values

for the source apportionment. The larger error term is

used as a reasonable estimate of the spatial variability

of nitrified d18O–NO3
- values across W-9 and

variability of d18O–NO3
- values among years based

on previous samples (Sebestyen 2008).

Nitrate and DOC yields

To calculate NO3
- yields (e.g. flux/area), in situ

concentrations were multiplied by the corresponding

stream runoff in the 30 min interval bracketing the

sample based on the time midpoint. For DOC yields,

continuous in situ FDOM values were used as a proxy

for DOC concentrations based on a regression using

67 discrete samples collected between March 4 and

May 30, 2009 and calculated as described for NO3
-

yields. Yields for 8 days with incomplete in situ

records for NO3
- (e.g. those with\48 samples day-1)

were estimated from the relationship between water

yield and NO3
- yield for adjacent periods (r2 \ 0.98).

Yield estimates based on hypothetical reduced sam-

pling frequencies were calculated by assuming a

single daily in situ data point at a given time (8 a.m.,

12 p.m. or 5 p.m.) multiplied by the daily stream

runoff, while weekly yields were based on discrete

sample concentrations (including DOC) multiplied by

the total stream runoff bracketing the sample based on

the day midpoint between successive samples.

Results

The maximum snowpack depth occurred in late

February and snowmelt started on March 24, 2009 as

indicated by increasing streamflow and decreasing

SWE (Fig. 2a, b). The time from peak SWE to bare

ground was approximately 50 days. The active melt

period included several rain-on-snow events, includ-

ing one that generated peak streamflow on April 4

(Fig. 2b). Additional spring rainfall events occurred

after the snowpack melted, resulting in short duration

rainfall-runoff events (Fig. 2b). Daily baseflow var-

ied up to 28% during the early and middle phases of

snowmelt, but showed little diurnal variability during

baseflow after the April 22 rainfall event. Water

temperatures increased from 1�C in early April to

10�C in the latter part of the study (Fig. 2b) and

showed diurnal variability throughout the study

period.

Discrete NO3
- concentrations incrementally

increased from 13 lmol l-1 during the early winter

period to 20 lmol l-1 at peak streamflow and rapidly

decreased following peak streamflow to baseflow con-

centrations of 7–10 lmol l-1 (Fig. 3). Stream d18O–

NO3
- varied from -3.3% prior to melt to ?10.3% just
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prior to peak streamflow and subsequently decreased

to *0% following peak streamflow (Fig. 3). The

estimated direct contribution of atmospheric NO3
- to

the stream ranges from 0 to 15% (Table 1), with the

maximum percentage of atmospheric NO3
- (March

28) occurring before peak streamflow. The uncer-

tainty was 1% or less when Wc equaled 0.8% and 10%

or less when Wc equaled 6.1% (e.g. the standard

deviation of all potentially nitrified soil water and

groundwater samples from W-9; Sebestyen 2008).

In situ NO3
- concentrations were validated against

lab NO3
- concentrations (r2 = 0.97, NO3

-
lab =

1.24*NO3
-

in situ -1.40; Fig. 4a: inset) for the 75 dis-

crete samples collected between March 27 and May

13, 2009. In situ NO3
- concentrations were typically

biased lower than discrete samples (mean differ-

ence = 1.6 lmol), but were not calibrated against lab

data. In situ NO3
- concentrations had a mean

standard deviation of ±0.3 lmol l-1 on continuous

burst samples (range = 0.1–0.6 lmol l-1), resulting

in a coefficient of variation for bursts ranging from 1

to 7% (mean = 3%; data not shown).

In situ NO3
- concentrations were elevated during

early snowmelt prior to peak streamflow, with a peak

NO3
- concentration of 20 lmol l-1 during the April

3–4 rain-on-snow event (Fig. 4a). In situ NO3
-

concentrations subsequently declined to concentra-

tions of *8 lmol l-1 after April 17 when the

snowpack had melted. Daily maximum and minimum

stream NO3
- concentrations varied by 1–2 lmol l-1

when baseflow conditions prevailed through the

remainder of the study and NO3
- responses to

subsequent spring rainfall events resulted in small

increases in NO3
- concentrations (Fig. 4a).

In situ FDOM concentrations were validated against

laboratory-measured peak fluorescence at an excita-

tion of 370 nm and emission of 460 nm for 61 discrete

samples (r2 = 0.92, P \ 0.001; FDOMlab(R.U.) =

0.0065*FDOMin situ - 0.0106) collected between

March 4 and May 30, 2009 (Fig. 4b: inset). Temporal

patterns in FDOM concentrations were associated with

streamflow, but the magnitude of the FDOM response

relative to streamflow increased during the latter part of

the study period. For example, the highest FDOM
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concentrations ([60 ppb QSE) were observed during a

late season storm (5/11/09) when peak streamflow

reached only half the magnitude of peak streamflow

during snowmelt (Fig. 4b).

Discrete optical measurements that are surrogates

for aromatic organic compounds indicated SUVA254

(1.6–4.3 l mg-1 m-1) and FI (1.31–1.46) were

within the range of values typically reported for

terrestrially derived DOM sources. The relationship

of SUVA254 and FI to streamflow exhibited two

distinct regimes during the study period, with higher

SUVA254 and lower FI during spring rainfall events

than during the active snowmelt period despite

similar baseflow values (Fig. 5). Spectral slope

(S290–350), another commonly used surrogate for

DOM character (Blough and Del Vecchio 2002;

Boss and Zaneveld 2003) varied within a range

common for higher molecular weight, terrestrially

derived DOM (-0.013 to -0.016), but was not

correlated with streamflow during either period

(r2 = 0.004–0.008; data not shown).

In situ data revealed diurnal NO3
- variability

1–2 lmol l-1 during baseflow, with the highest

NO3
- concentrations in early morning and lowest

in late afternoon (Fig. 6). Cross correlation analysis

of in situ data showed that maxima in NO3
-

concentrations co-varied with daily streamflow and

FDOM minima and lead both parameters by approx-

imately 2–3 h (Fig. 7a) during the early to middle

phase of the snowmelt period (r = -0.76 and -0.82,

respectively, for April 13–18, 2009). Diurnal NO3
-

variability in the period after snowmelt (e.g. April

Table 1 Discrete sample

NO3
- concentrations,

d18O–NO3
- (%) and the

estimated percentage

contribution of

atmospherically derived

NO3
- to streamflow in W-9

Sample

date

Sample

time

NO3
-

(lmol l-1)

d18O–NO3
-

(%)

Atmospheric

NO3
- (%)

Uncertainty

(%)

1/20/09 14:45 12.8 -2.35 0 10

2/2/09 14:45 14.6 -3.34 0 10

3/17/09 16:15 16.9 6.98 11 9

3/19/09 9:26 19.2 3.52 7 9

3/20/09 15:13 18.1 3.59 7 9

3/27/09 17:50 20.6 9.95 14 9

3/28/09 12:00 19.9 4.34 8 9

3/28/09 15:00 19.4 10.32 15 9

3/29/09 9:00 21.7 3.71 7 9

3/29/09 15:00 21.1 8.27 12 9

3/31/09 12:25 21.6 2.45 6 10

4/1/09 17:00 19.8 1.51 5 10

4/2/09 15:00 19.0 7.06 11 9

4/3/09 19:10 20.7 7.11 11 9

4/3/09 19:40 20.3 8.70 13 9

4/4/09 1:00 22.1 5.04 9 10

4/6/09 13:00 17.9 1.96 5 10

4/6/09 17:00 16.5 3.62 7 10

4/6/09 21:00 16.4 3.48 7 10

4/7/09 1:00 17.1 2.82 6 10

4/10/09 17:11 14.3 0.53 4 10

4/11/09 17:00 12.9 0.87 4 10

4/15/09 17:00 11.4 -0.15 3 10

4/17/09 17:00 10.7 0.62 4 10

4/21/09 12:00 10.0 -0.07 3 10

4/23/09 17:00 10.0 0.65 4 10

4/28/09 11:45 7.9 -0.75 2 10

5/2/09 1:28 10.0 4.60 9 10
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25–30; Fig. 7b) was largely independent of stream-

flow, but had a weak negative correlation with

minima in FDOM (r = -0.34, 4 h lag behind NO3
-).

Calculated NO3
- yield (as N) based on 30-min

data from the in situ measurements at W-9 was

1.04 mg m-2 day-1 for the 56-day study period

(Table 2). Approximately 72% of the total NO3
--N

yield occurred during the period when snow melted

(SWE [ 0), with 35% of the total yield occurring in

the 1 week bracketing peak flow and peak instanta-

neous yield on April 3 at 20:00. Stream DOC yields

were also calculated for the study period based on a

strong proxy relationship between in situ FDOM and

lab DOC concentrations in 67 samples collected

between March 4 and May 30, 2009 (r2 = 0.87,

P \ 0.001; DOClab = 0.090*FDOMin situ ? 0.01)

with uncertainty at the 95th percentile of approxi-

mately ±5% of the DOC concentration (data not

shown). The calculated daily DOC yield from the

30-min FDOM data was 12.99 mg m-2 day-1

(Table 2), with approximately 60% of the total

DOC yield occurring during active melt and 29%

during the week bracketing peak streamflow. A

comparison of yield estimates based on in situ data

and lower frequency daily sub-sampling (8 a.m.,

12 p.m. and 5 p.m.) or weekly discrete sampling

showed differences in NO3
- and DOC yields of -4

to ?1 and -14 to -3%, respectively, for the study

period (Table 2). However, a comparison of esti-

mated daily yields from discrete weekly sampling

with yields calculated from in situ data showed

differences of -66 to ?27% for NO3
- yield and -88

to ?45% for DOC during the study period (Fig. 9).

Discussion

NO3
- and FDOM dynamics during snowmelt

High frequency in situ optical measurements revealed

seasonal, event and diurnal variability in NO3
- and

FDOM concentrations during snowmelt at Sleepers

River. Stream NO3
- concentrations were highest

early in the snowmelt period and decreased following

peak streamflow (Fig. 4a) as observed in prior years

at Sleepers River (Sebestyen et al. 2008, 2009; Ohte
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et al. 2004; Shanley et al. 2002). While NO3
-

concentrations increased during baseflow prior to

snowmelt, the highest in situ NO3
- concentration

during 2009 snowmelt (20 lmol l-1) was closely

coupled temporally with peak streamflow (Fig. 4a).

The dampened response of NO3
- to subsequent

spring rainfall events is consistent with the

interpretation of the flushing of a finite pool of

NO3
- from soils and the snowpack to streams at

Sleepers River. The early pulse in NO3
- likely

resulted from the transport of snowpack water on or

near the stream channel (Sebestyen et al. 2008), while

our estimate of \15% direct input of atmospheric

NO3
- to stream runoff (Table 1) indicates soil

nitrification as the dominant NO3
- source during

the study.

In contrast to NO3
-, changes in FDOM concen-

trations were tightly coupled temporally with changes

in streamflow throughout the entire study period and

were consistent with a transport limitation of DOC

rather than a source limitation at Sleepers River

(Sebestyen et al. 2008). For example, peak FDOM

concentrations lagged peak streamflow by less than

60 min for both the April 3 peak snowmelt event and

3.5 cm rainfall event on May 9–10. This tight

coupling is consistent with previous studies that have

shown DOC concentrations to be strongly correlated

with quickflow along surficial flow paths at Sleepers

River (Sebestyen et al. 2008) and is indicative of

DOC production occurring along organic-rich flow

paths in upland and riparian soils (Doctor et al. 2008;

McGlynn et al. 1999).

While FDOM dynamics were coupled with

streamflow, our high frequency data revealed a

counter-clockwise hysteresis relationship between

streamflow and FDOM concentration during events

(Fig. 8). We hypothesize that the FDOM–discharge

hysteresis observed in our study is indicative of the

delayed contribution of surface and shallow subsur-

face flow paths on the hillslope that have higher DOC

concentrations than the stream (Sebestyen et al. 2008;

McGlynn et al. 1999). Inamdar et al. (2006) also

reported DOC peaks lagging peak discharge in a

forested watershed in New York and attributed the

pattern to the delayed transport of DOC from valley-

bottom riparian areas. Previous work has shown a

counter-clockwise hysteresis between hillslope

groundwater levels and streamflow at Sleepers River

(Kendall et al. 1999), supporting our hypothesis that

hillslope water during the falling limb was the

dominant source of higher DOC concentrations

during rainfall and snowmelt.

In contrast to our study, Raymond and Saiers

(2010) found in a study of 30 forested watersheds in

the Northeastern U.S. that all sites followed a

clockwise DOC–discharge hysteresis. Why a similar
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hillslope response is not observed in the sites studied

by Raymond and Saiers (2010) is not clear, but a

clockwise DOC–discharge hysteresis pattern has

previously been ascribed to a temporary depletion

of the terrestrial DOC supply flushed prior to peak

flow (Ågren et al. 2008; Boyer et al. 2000; Hornber-

ger et al. 1994) or changes in the connectivity of

riparian and hillslope flowpaths to the stream channel

(Pacific et al. 2010; McGlynn and McDonnell 2003).

Sleepers River W-9 has a slightly higher percentage

(5%) of wetlands than the sites studied by Raymond

and Saiers (\1%), and previous studies have shown

that stream DOC concentrations are often correlated

with wetland abundance (Raymond and Hopkinson

2003; Eckhardt and Moore 1990; Mulholland and

Kuenzler 1979). However, Kendall et al. (1999)

found that riparian groundwater levels at Sleepers

River increased on the rising limb of the stream

hydrograph, suggesting that a riparian DOC source

would have resulted in a clockwise FDOM–discharge

hysteresis in our study. Alternatively, the upslope

extension of the riparian saturated zone at Sleepers

River—resulting in the downslope flux of hillslope

water along shallow flow paths (McGlynn et al.

1999)—may be indicative of the importance of

riparian wetlands for facilitating DOM transport by

hydrologically connecting streams to organic-rich

flowpaths in upslope areas.

In situ fluorometers also show that the magnitude

of FDOM response to streamflow during individual

events varies during the study period (Fig. 4b). The

observed FDOM–streamflow hysteresis during peak

snowmelt (April 3–6) and a large spring rainfall event

(May 9–13) indicated a steeper FDOM response

during the spring rain event on both the rising and

-1.0

-0.5

0.0

0.5

1.0

FDOM
Streamflow

Lag period (hours)
-10 -8 -6 -4 -2 0 2 4 6 8 10

N
O

3-  C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
ts

-1.0

-0.5

0.0

0.5

1.0
FDOM
Streamflow

(a)

(b)

Fig. 7 Lag plot for cross correlation between in situ NO3
-

concentration (lmol l-1) and FDOM (ppb QSE) or streamflow

(mm h-1) during 5 day periods: a April 13–18, 2009 and

b April 25–30, 2009

Table 2 Daily yields of NO3
- and DOC (mg m-2 day-1) calculated from in situ optical measurements, sub-sampled daily con-

centrations and discrete weekly samples over a 56-day period (March 18–May 12, 2009)

Sample frequency NO3
- yield

(mg N m-2 day-1)

NO3
-

difference (%)

DOC yield

(mg C m-2 day-1)

DOC

difference (%)

30 min data 1.04 na 12.99 na

Daily—8 a.m. 1.04 1 11.93 -8

Daily—12 p.m. 1.01 -2 11.64 -10

Daily—5 p.m. 0.99 -4 12.58 -3

Weekly 1.01 -2 11.22 -14

Percent differences are calculated relative to the 30-min in situ data

Streamflow (mm hr-1)
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falling limb of the hydrograph (Fig. 8). Discrete

optical measurements showed that DOM exported

after snowmelt also had a higher SUVA254 and lower

FI at an equivalent streamflow than DOM exported

during snowpack melting (i.e. maximum to zero

SWE; Fig. 5). While these patterns indicate a general

shift toward more aromatic DOM with higher

streamflow as reported previously by Schuster et al.

(2008), we hypothesize that compositional differ-

ences between early and late in the study period

reflect greater connectivity to organic matter-rich

shallow flowpaths in upland soils during spring

events with high antecedent soil moisture (Sebestyen

et al. 2008). However, changes in DOM production

and leaching with increasing temperatures deserve

further attention as a possible driver of seasonal

differences (Raymond and Saiers 2010).

Diurnal NO3
- Variability

While several recent studies have observed diurnal

NO3
- and FDOM variability in rivers and streams

(Pellerin et al. 2009; Saraceno et al. 2009; Roberts

and Mulholland 2007; Spencer et al. 2007a; Mulhol-

land et al. 2006; Harrison et al. 2005; Scholefield

et al. 2005), few studies in freshwater systems have

collected concentration data at sufficient resolution to

evaluate diurnal NO3
- and FDOM dynamics during

an extended event such as snowmelt. Our in situ

measurements revealed diurnal NO3
- variability of

1–2 lmol l-1 during baseflow periods throughout

study (Fig. 4a). During the early to middle stages of

melt, diurnal NO3
- variability occurred in concert

with diurnal streamflow and FDOM concentrations

with daily NO3
- minima occurring 2–3 h before the

maximum daily FDOM and streamflow (Fig. 7).

While the inverse relationship between streamflow

and NO3
- concentrations in our study suggests a

hydrologic control on diurnal variability, diurnal

NO3
- variability continued at approximately the same

amplitude after the diurnal runoff pattern ceased and

was largely independent of discharge and FDOM

concentrations (Fig. 7b).

Diurnal NO3
- variability in streams has been

attributed to a number of processes including biolog-

ical assimilation, nitrification and denitrification as

well as hydrologic drivers (Heffernan and Cohen

2010; Pellerin et al. 2009; Mulholland et al. 2006;

Harrison et al. 2005). We hypothesize that the inverse

diurnal relationship of NO3
- concentrations with

discharge and FDOM during the active melt period

(Fig. 7a) was largely influenced by hydrology, as the

daily melt pulses diluted baseflow contributions of

soil NO3
- from the previous growing season and

recent production under the snowpack. The initial

snowmelt pulses also resulted in a greater relative

contribution of atmospheric NO3
- as shown by

elevated d18O–NO3
- values and consistent with past

findings at W-9 of higher direct snowpack contribu-

tions with daily peak snowmelt discharge (Sebestyen

et al. 2008; Ohte et al. 2004).

Biological transformations are expected to be less

important controls on stream NO3
- concentrations

during high flow periods such as snowmelt when

large volumes of water and solutes are rapidly

transported through stream reaches (Mulholland

2004; Fisher et al. 1998). However, the diurnal

NO3
- variability observed after snowmelt suggests

that in-stream biological processes may be driving

NO3
- concentrations despite water temperatures less

than 15�C (Fig. 2). Other studies in forested water-

sheds have reported high diurnal NO3
- uptake in

streams during spring due in part to high light

availability fueling autotrophic production before leaf

out (Rusjan and Mikoš 2010; Mulholland et al. 2006,

2009; Roberts and Mulholland 2007). While stream

NO3
- uptake rates were not measured as part of our

study, we can estimate the maximum daily stream
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NO3
- uptake velocities (tf; Stream Solute Workshop

1990) necessary for autotrophic assimilation to

explain the observed diurnal variability during the

post-melt period. The tf value is a commonly used

metric of nutrient spiraling calculated from the daily

maximum (Cmax) and minimum (Cmin) NO3
- con-

centrations and the daily hydraulic load (HL) as

described in Wollheim et al. (2006). Daily NO3
-

drawdown in our study could be described by median

tf values over the entire study period of 1.1 mm

min-1 (25th and 75th percentiles = 0.8–1.8 mm

min-1; data not shown), comparable to a median tf

value of 1.4 mm min-1 calculated from a synthesis

of stream NO3
- experiments in a range of second

order streams by Ensign and Doyle (2006) (25th and

75th percentiles = 0.4–3.3 mm min-1).

NO3
- addition experiments or concurrent in situ

dissolved oxygen measurements (e.g. Heffernan and

Cohen 2010) would be needed to confirm gross

primary production and uptake at W-9 during the

snowmelt period, particularly given the uncertainties

inherent in measuring the small range of diurnal

variability (1–2 lmol l-1) with optical sensors in

cold conditions. However, our estimates of tf support

uptake by in-stream autotrophs as a possible driver of

diurnal NO3
- variability between snowmelt and leaf

out. The relative importance of biological processes

during active snowmelt deserves further attention,

particularly given the consistent magnitude and

timing of baseflow NO3
- variability during both the

melt and post-melt period in our study. While the

observed differences are small relative to the mag-

nitude of diurnal NO3
- variability reported in agri-

culturally influenced rivers (Pellerin et al. 2009;

Harrison et al. 2005), subtle shifts in in-stream

retention during the snowmelt period may have

important implications for understanding stream

nitrogen dynamics and predicted responses to climate

change.

Snowmelt NO3
- and DOC yields

Previous studies have highlighted the potential error

in calculating constituent yields with temporal sam-

pling that does not adequately capture the variability

in hydrology or constituent transport (Raymond and

Saiers 2010; Sebestyen et al. 2008). For example,

Raymond and Saiers (2010) found that 60% of the

DOC flux from forested watersheds in the eastern U.S.

occurs during the rising limb of storm events and 26%

of the DOC flux on the declining limb. In situ NO3
-

concentrations allowed for the estimation of NO3
-

yields with high accuracy over the 56-day snowmelt

study (e.g. n = 2,330 measurements) at Sleepers

River. Similarly, a strong correlation between

30-min in situ FDOM data and lab DOC concentra-

tions (r2 = 0.87, P \ 0.001) allowed for the estimate

of high resolution DOC fluxes via optical proxy

measurements. Average NO3
- (as N) and DOC yields

in our study were 1.04 and 12.99 mg m-2 day-1

(Table 2), with approximately one-third of the yield

occurring during the 7-day period bracketing peak

streamflow during snowmelt on April 3–4. Sebestyen

et al. (2008) reported mean annual yields for NO3
-

and DOC of 158 ± 48 mg N m-2 year-1 and

1309 ± 362 mg C m-2 year-1 respectively, for W-9

between 1992 and 2003, indicating that the 56-day

study period would have accounted for about 37% of

NO3
- and 56% of DOC flux in an average year.

A comparison of yield estimates based on contin-

uous in situ data and weekly sampling in our study

revealed relatively small to moderate differences in

yields for the study period (-2 and -14% for NO3
-

and DOC, respectively; Table 2). Calculated yields

based on hypothetical once per day sampling at

different times (8 a.m., 12 p.m., or 5 p.m.) also

showed a relatively small to moderate sampling bias

with estimated yields of -4 to ?1% for NO3
- and

-10 to -3% for DOC relative to 30-min in situ data

(Table 2). The small error in NO3
- yields associated

with lower frequency sampling is likely due to the

small range in NO3
- concentrations and relative

insensitivity of NO3
- concentrations to streamflow

following peak snowmelt (Fig. 4a). In contrast, error

as high as -14% for DOC yields occurs at the same

weekly sampling frequency with low percent NO3
-

error, consistent with differences in the dominant

drivers and availability of NO3
- (source limited) and

DOC concentrations (transport limited) in this study.

The relatively low bias observed for NO3
- and

DOC yields in our study using sampling frequencies

varying from 48 samples per day to 1 sample per

week suggests that traditional discrete sampling

approaches may be appropriate for yield calculations

in some systems and during certain times of year.

However, daily fluxes used to calculate these values

indicate day to day variability in yield estimates by

the two approaches (weekly discrete versus in situ) of
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-66 to ?27% for NO3
- and -88 to ?45% for DOC

(Fig. 9). In particular, DOC yields calculated from

discrete samples resulted in large underestimates

(-30 to -88%) during days with moderate mean

daily streamflow due to rainfall (Fig. 9). Therefore,

caution should be exercised when interpreting yields

for the entire study period, particularly for constitu-

ents such as DOC that are closely coupled with runoff.

Conclusions

Our study demonstrates the utility of in situ optical

sensors for measuring changes NO3
- and DOM in

freshwater systems despite challenges associated with

winter and spring deployments (e.g. ice cover, limited

solar power, and high flow conditions). Our data

revealed seasonal, event and diurnal patterns in NO3
-

and FDOM concentrations during the snowmelt

period at Sleeper River that were consistent with

hydrological and biogeochemical processes regulat-

ing the variation of stream concentrations. An early

peak in NO3
- concentrations and subsequent decrease

after peak streamflow suggests the flushing of a finite

source of NO3
- (atmospheric and soil-derived) from

the landscape to the stream, while the relationship

between FDOM concentrations and streamflow

throughout the entire study period suggests a tight

coupling between the lateral transport along shallow

hillslope flow paths to stream concentrations.

Our dataset also provides two examples (FDOM–

discharge hysteresis and diurnal NO3
- variability)

where high frequency optical data revealed subtle

shifts over time-scales that are often difficult to

measure with discrete sampling approaches. Given

the inherent difficulties in traditional approaches for

measuring and modeling DOM–discharge hysteresis

(Raymond and Saiers 2010; Butturini et al. 2008),

high resolution in situ data ensure data across the

hydrograph and new opportunities for model valida-

tion for a range of hydrologic events. Similarly,

continuous data allowed for a more comprehensive

view of the magnitude and patterns in NO3
-

variability, as well as new hypotheses about the

relative importance of hydrologic and in-stream

biological drivers of NO3
- dynamics during the

snowmelt period.

Climate projections for the northeastern U.S.

predict increases in winter precipitation and the

intensity of extreme events (Hayhoe et al. 2007),

likely affecting DOC and NO3
- yields by altering the

amount of lateral flow along surficial flow paths and

biogeochemical cycling (Campbell et al. 2009;

Sebestyen et al. 2009). Understanding these processes

and the impacts of other episodic events such as ice

storms (Judd et al. 2007; Houlton et al. 2003) and

insect defoliation (Riscassi and Scanlon 2009; Lewis

and Likens 2007) on stream NO3
- and FDOM

concentrations will benefit from data that accurately

capture rapid responses and subtle shifts in biogeo-

chemical cycles. In situ optical sensors coupled with

discrete measurements will likely yield significant

new insights into these processes and will conse-

quently improve our ability to evaluate the effects of

climate change on constituent pulse to downstream

ecosystems.
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