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Abstract Changes in water temperatures caused by climate
change in California’s Sacramento–San Joaquin Delta will
affect the ecosystem through physiological rates of fishes
and invertebrates. This study presents statistical models that
can be used to forecast water temperature within the Delta
as a response to atmospheric conditions. The daily average
model performed well (R2 values greater than 0.93 during
verification periods) for all stations within the Delta and
San Francisco Bay provided there was at least 1 year of
calibration data. To provide long-term projections of Delta
water temperature, we forced the model with downscaled
data from climate scenarios. Based on these projections, the
ecological implications for the delta smelt, a key species,

were assessed based on temperature thresholds. The model
forecasts increases in the number of days above temper-
atures causing high mortality (especially along the Sacra-
mento River) and a shift in thermal conditions for spawning
to earlier in the year.
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Introduction

In freshwater and near-coastal marine ecosystems, water
temperatures provide an important constraint on ecological
function (Coutant 1976). Examples include effects on fish
spawning (Hotta et al. 2001), swimming performance
(Myrick and Cech 2000), metabolism (Das et al. 2005;
Scheller et al. 1999), and mortality (Coutant 1976; Johnson
and Evans 1996) as well as effects on aquatic invertebrates
(Vannote and Sweeney 1980; Ward and Stanford 1982).
Specific examples of species of concern within the
Sacramento–San Joaquin Delta that are sensitive to water
temperatures at various points in the life cycles include the
Sacramento winter run Chinook salmon Oncorhynchus
tshawytscha (Baker et al. 1995), the Sacramento splittail
Pogonichthys macrolepidotus (Moyle et al. 2004), and the
delta smelt Hypomesus transpacificus (Bennett 2005;
Swanson et al. 2000).

Climate change is projected to result in increases in
mean annual air temperature of 2.2–5.8°C in the coming
century averaged across the state of California (Loarie et al.
2008). An increase in air temperature will lead to earlier
snowmelt, more precipitation falling as rain (vs. snow), and
changes in the operation of California’s water delivery
system (Barnett et al. 2008; Vanrheenen et al. 2004). To
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analyze the effects of climate change on fish populations,
however, we require projections of water temperature under
global warming scenarios.

In tidal systems, the water temperature at a particular
location is determined by the interplay between atmospher-
ic forcing, tidal dispersion, and riverine flows (Monismith
et al. 2009). Formal models of tidal dispersion are not
currently feasible for projections of temperature over
centuries given the magnitude of the computational require-
ments. In view of this limitation, we have developed a
statistical model of temperature in the Sacramento–San
Joaquin Delta. Our emphasis in this paper is on under-
standing the dynamics of water temperatures and their
possible effects on aquatic species.

Study Location

This study focuses on California’s Sacramento–San Joaquin
Delta (the Delta) and nearby environs, which are located at
the upstream end of the San Francisco Estuary. Detailed
descriptions of the Delta can be found in Kimmerer (2004)
and Lund et al. (2007). It consists of a network of channels
(Fig. 1) that are fed by freshwater flow from a number of
rivers that drain California’s Central Valley, most
significantly the Sacramento and San Joaquin Rivers
(Kimmerer 2004). The Delta serves as the hub of
California’s water system, draining roughly 45% of the
state’s area (Lund et al. 2007) and providing water supply
to approximately two thirds of its population. In its
unaltered state, the Delta was a system of sloughs and
marshlands (both of which were open to influence from
river flows and tidal effects), but currently it is a system of
leveed, subsided farmlands separated by channelized tidal
sloughs and rivers (Kimmerer 2004).

California’s water distribution system relies heavily on
the Delta because reservoir releases must move through the
Delta on their way to pumping stations for delivery to water
users throughout the state (Lund et al. 2007). The most
important of these stations are located in the southern Delta
and provide water for the Delta Mendota Canal and the
California Aqueduct, both of which carry water to
municipal and agricultural users south of the Delta
(Kimmerer 2004). The levees, dams, and diversions have
drastically altered the hydrologic system from its native
state. The ecology of the delta has been similarly altered, as
it has responded to the changing hydrology as well as
introductions of non-native fish, clams, and aquatic plants
(Kimmerer 2004). Climate change will impact the Delta in
a number of ways; examples include hydrologic change as
the proportion of precipitation falling as snow declines in
the Sierra Nevada mountain range (Vanrheenen et al. 2004),
local heat budget adjustment to a warmer atmosphere, and
estuarine response to sea level rise.

Data

Measured Water Temperature Data

We downloaded time series of measured water temperatures
from the Interagency Ecological Program (http://www.iep.
ca.gov), which receives the data from the California
Department of Water Resources, the United States Geologic
Survey, the California Data Exchange Center, and the
United States Bureau of Reclamation, for locations
throughout the Delta (Fig. 1). For many stations, water
temperature data collection started in the mid-1980s and
extends to the current time. The data have been collected at
either 15-min intervals or hourly. For consistency among
the data sets, we averaged the 15-min data to give hourly
datasets. To handle outliers, we deleted all points outside 4
standard deviations from the mean of 20-h windows of the
data. At locations where two or more agencies collected
data, we averaged the data to create one dataset for each
location. We calculated the daily maximum, average, and
minimum water temperatures from these data for model
calibration and verification.

Measured Forcing Data

We downloaded hourly air temperatures and insolation
from the California Irrigation Management Information
System (CIMIS; http://www.cimis.water.ca.gov) at seven
locations within the Delta (Fig. 1; stations were Lodi,
Brentwood, Manteca, Twitchell Island, Lodi West, Tracy,
and Concord). We downloaded an additional six air
temperature locations from the Interagency Ecological
Program (locations 2, 9, 10, 13, 14, and 15 on Fig. 1). As
an initial processing step, we removed physically impossi-
ble values (air temperatures less than −5°C or greater than
45°C; insolation less than 0 W/m2 or greater than the solar
constant (1,368 W/m2; Rubin and Davidson 2001)) from
both datasets.

To handle outliers in the air temperature data, we deleted
all points outside 4 standard deviations from the mean of
20-h windows of the data. Model verification requires
continuous forcing because the model output depends on
the output from the previous time step. For this reason and
for verification use only, we created a second air temper-
ature dataset wherein gaps in the data shorter than 72 h
were filled. We filled small gaps (<6 h) in this second
dataset through linear interpolation. We filled longer gaps
(<72 h) by first linearly interpolating and then adding a
diurnal pattern defined by the diurnal cycles during
adjacent (within 1 week) time periods spanning the same
time of day as the gap. The daily cycle was defined by an
average based on the time of day and was then added to the
linear interpolation of the gap itself to produce synthetic
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data that match the daily patterns of the surrounding
measured data. We did not fill gaps larger than 72 h.

We found that in the data of interest for these
projections, the variation in air temperature and insolation
across the locations was quite small. Therefore, we took the
arithmetic mean of the data over the stations to provide
representative values of air temperature and insolation for
the Delta. Since the climate projections to be used to force
the projections provided only daily maximum and mini-
mum air temperature, we used the hourly data to produce
these quantities for our historical domain.

Forcing for Water Temperature Projections

Projected scenarios of daily air temperatures were used to
evaluate potential impacts of climate change on water
temperatures in the Delta. The scenarios were derived from
simulations of twenty-first century climate variations and

trends by two global climate (or general circulation) models
(GCMs) under each of two future global greenhouse gas
emissions scenarios. The GCMs used here were the
Geophysical Fluid Dynamics Laboratory’s (GFDL) CM2.1
coupled ocean–atmosphere GCM (Delworth et al. 2006)
and the National Center for Atmospheric Research’s
Parallel Climate Model (PCM) coupled ocean–atmosphere
GCM (Washington et al. 2000). Daily temperatures from
simulations by these two models, under A2 (rapidly
accelerating) and B1 (eventually leveling) greenhouse gas
emissions scenarios, were obtained from the Program for
Climate Diagnosis and Intercomparison at the Lawrence
Livermore National Laboratory (Meehl et al. 2007). The
GCM simulations were made on global grids with about 2°
to 3° latitude and longitude resolution (about 250 km at the
latitude of the Delta), and thus, the original GCM scenarios
were too spatially coarse for the purposes of this study. The
GCM outputs were “downscaled” onto a 12-km grid over

Fig. 1 California’s Sacramento–San Joaquin Delta and environs. The
Delta is forced primarily by Sacramento River flow from the north,
San Joaquin River flow from the south and tides from San Francisco

Bay in the west. The locations of the temperature stations are
numbered; stations with circles had greater than 1 year’s worth of
data. CIMIS weather stations are denoted with stars
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the conterminous USA by a method called constructed
analogs (Hidalgo et al. 2008). This statistical downscaling
method is applied to each day’s simulated climate condition
in turn and is based on fitting a linear combination of
historical weather patterns (aggregated onto the GCM grid)
that best reproduces the GCM pattern for the day. The
coefficients necessary to make this linear fit are then
applied to high-resolution versions of the weather on the
same historical days. This approach ensures that, day by
day, the weather simulated by the GCM is faithfully carried
down to the 12-km scale and tends to yield particularly
realistic temperature relations across areas with sharp
geographic gradients (Cayan et al. 2009). When applied to
the historical record, as a validation exercise, the method
reproduces daily temperature variations quite accurately on
the 12-km grid given only historical temperatures as
observed on the GCM grids as inputs (Hidalgo et al.
2008), indicating that the downscaled future-climate pat-
terns are likely to also be realistic. The method was applied
to climate simulations spanning the period from 1950 to
2100, to obtain daily, gridded temperature patterns of
twenty-first century warming over California and the Delta.

The air temperature data were sub-sampled for the Delta
region and then averaged to produce an equivalent forcing
time series for 2000 though 2100 to those used during the
calibration/verification stage. The data from the scenarios
included maximum and minimum daily air temperatures.
The climate projections did not provide insolation, so we
derived the average insolation based on Julian day of the
year. We extended this dataset to create a 100-year record
under the assumption that insolation will be relatively
constant over these climatic time scales.

Data Analysis

Temporal Variability

The daily water temperature data show strong yearly cycles
as well as shorter time scale variation (Fig. 2). Although
short-term variation exists, the yearly cycle dominates at all
Delta locations. The amplitude of the yearly cycle,
however, varies from year to year and between locations.
This is most apparent starting in 1998 at Ripon (station 3),
where, following a particularly wet winter season, the
summer peak temperatures are reduced for 2 years (dis-
cussed further below). Although shorter time scale varia-
tions are evident, yearly variations (on the order of 15°C at
the locations in Fig. 2) dominate the signal. These shorter
time scale features are likely forced by a combination of
short-term atmospheric conditions, local mixing, tidal
advection of longitudinal temperature gradients, and possi-
bly local precipitation.

Spatial Variability

Once the water temperature data were processed, we
performed a principal component analysis (PCA) on a
subset of the data; the subset chosen was the eight stations
(2, 3, 9, 10, 13, 14, 15, and 16) that had data from 1998 to
2002 because this was the longest uninterrupted dataset
available. An overview of PCA can be found in Stacey et
al. (2001); a more complete discussion is in Preisendorfer
and Mobley (1988). This analysis is designed to decompose
spatiotemporal data in such a way as to explain the
maximum amount of total variance in the dataset in the
first principal component (PC) and its associated temporal
structure. Each principal component of a spatiotemporal
dataset is a spatial structure which explains the maximum
amount of variance possible within the dataset when
combined with its associated temporal structure. The
temporal structure, the amplitude of the principle component,
defines the variability that is shared by the stations. Each
successive principal component then explains the maximum
amount of variability that remains in the dataset after
removing the contributions of the previous principal compo-
nents. All the PCs are mutually orthogonal to each other.

PCA at the eight locations that had data from 1998
through 2002 demonstrates the dominance of the yearly
cycle in the temperature signal. Over 90% of the combined
variance is described by the first principal component,
whose amplitude represents the yearly cycle (Fig. 3).
Overland and Preisendorfer’s (1982) test of significance

Fig. 2 Daily averaged water temperature at three locations from 1996
to 2003: a San Joaquin River at Antioch (station 2), b Ripon (station
3), and c Rio Vista (station 15)
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(“rule N”) suggests that the higher modes of variation (PC2,
3, etc.) are not significant. In this test, the results of the
PCA of the dataset of interest are compared to PCA of
multiple random, normalized datasets to determine whether
each principal component is significantly different from
random noise. For this analysis, only PC1 passed rule N
likely because autocorrelation in water temperatures caused
so much variance to be captured in PC1, leaving so little
left for higher modes of variation.

The PCA approach also displays spatial variability of the
yearly cycle within the Delta (Fig. 4). Annual variability
was strong at all locations, but, notably, PC1 is the
strongest near the central Delta and the weakest toward
the edges (north, south, and west); these are areas
dominated by single water sources (Sacramento River,
San Joaquin River, San Francisco Bay tides, respectively.)
This indicates that these peripheral locations have annual
cycles somewhat independent of the rest of the Delta. The

time variability in the central Delta is complicated by the
interaction of the three main water sources; the mixing of
waters from these three water sources causes water temper-
atures in the central Delta to be near-uniform spatially.

Methods

Water temperature has been modeled extensively over the
years for a number of different locations. Modeling
techniques have been split between deterministic models
(Marce and Armengol 2008; Sinokrot and Stefan 1993;
Uncles and Stephens 2001, for example) and statistical
models (Caissie et al. 2001; Bradley et al 1998; Marce and
Armengol 2008; Mohseni et al. 1999; Benyahya et al.
2007; Lemos et al. 2007, for example). Our approach here
is to create a statistical model that is based on variables
known to be important for deterministic models.

Development of Statistical Temperature Model

Assuming complete lateral and vertical mixing, the water
temperature dynamics at a point in an estuarine channel can
be defined

@Tw
@t

þ @UTw
@x

¼
P

H

rwzCp
þ @

@x
Kx

@Tw
@x

� �

ð1Þ

where Tw is water temperature, t is time, x is the direction of
flow (along-axis), U is the velocity in the x-direction, H
refers to atmospheric heat fluxes (defined below), ρw is the
density of water, z is the depth of the water column, Cp is
the specific heat of water, and Kx is the dispersion
coefficient in the x-direction. The atmospheric heat fluxes
are broken down

X
H ¼ HsþHe þ Hl# þ Hl" þ Hsw: ð2Þ

Following Fischer et al. (1979), Miyakoda and Rosati
(1984), and Uncles and Stephens (2001), atmospheric heat
fluxes (watts per square meter) into the surface of a body of
water can be defined using bulk formulae:

Sensible heat flux : Hs ¼ raCsCpaW Ta � Twð Þ ð3Þ

Evaporative heat loss : He ¼ raCeLwW Qa � Qwð Þ ð4Þ

Long� wave heat radiation from water vapor : Hl#

¼ 5:18 � 10�13 1þ 0:17C2
� �

273þ Tað Þ6 ð5Þ
Fig. 4 Principal component 1 of the water temperature data for the
years 1998–2002. The x-axis represents longitude and the y-axis
represents latitude

Fig. 3 The amplitude of PC1 divided by its largest absolute value
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Long� wave heat loss from the water surface : Hl"

¼ �5:23 � 10�8 273þ Twð Þ4 ð6Þ

Short� wave radiation from insolation : Hsw

¼ R 1� að Þ ð7Þ
For all heat fluxes, heating of the water column is

represented by positive signs and cooling by negative. The
symbols are defined as follows:

α Albedo (dimensionless)
C Fractional cloud cover (dimensionless)
Ce Empirical exchange coefficient (∼1.5×10−3;

dimensionless)
Cs Empirical exchange coefficient (∼1.5×10−3;

dimensionless)
Cpa The specific heat of air (1.012×103 J/kg °C)
Lw Latent heat of evaporation (2.4×106 J/kg)
ρa The density of air (∼1.2 kg/m3)
R Insolation (W/m2)
Qa Atmospheric mixing ratio (see Fischer et al. 1979;

dimensionless)
Qw Saturation mixing ratio at the ocean surface for Tw

(dimensionless)
Ta Air temperature (°C)
Tw Water temperature (°C)
W Wind speed at 10 m (m/s)

Typical values of calculated atmospheric heat fluxes
within the Delta (Table 1) show the dominance of the long-
wave and short-wave radiation terms. Bartholow (1989)
observed that river water temperatures are typically not
influenced by reservoirs more than 25–30 km upstream.
This suggests that longitudinal gradients in water temper-
ature are likely to be small and contributions from terms
dependent on this gradient (advection and diffusion) are
small by the time a water parcel reaches the Delta. Thus,
combining Eqs. 1 and 2 and eliminating terms, we can
write:

dTw
dT

ffi Hl# þ Hl" þ Hsw

rwzCp
ð8Þ

Or simplified even further:

dTw
dT

ffi f Ta; Tw;Rð Þ ð9Þ

Equation 9 could be discretized as

TðtÞ ffi T t � $tð Þ þ $t f Ta;T ;Rð Þð Þ; ð10Þ
where T represents modeled water temperature; we drop the
subscript w in order to emphasize that the model’s predicted
water temperature will depend on the model’s output from
the previous time step and not on measured values.
Equation 10, although deterministic, is the basis for our
statistical model. Based on the historical water temperature
data, we applied a simple regression to relate the day’s water
temperature to the air temperature and insolation from the
same day and water temperature from the day preceding it:

TðnÞ ¼ aTaðnÞ þ bT n� 1ð Þ þ cRðnÞ þ d ð11Þ
where n is the day on which the temperature is being
calculated, a is the coefficient on the current day’s air
temperature, b is the coefficient on the previous days water
temperature, c is the coefficient on the current day’s
insolation, and d is a constant offset. This model can be
used to model maximum, minimum, or average water
temperatures. The insolation, R, used was the average
insolation for each Julian day of the year.

We used our regression model to accurately reconstruct
historical water temperatures with a minimal amount of
data needs or computational cost. To verify the model, we
calculated regression coefficients for Eq. 11 using the first
half of the dataset (the calibration period), then used these
coefficients to force the model during the entire dataset
(both calibration and verification periods). To project water
temperatures for the coming century, we calibrated with the
entire historical dataset and forced with the downscaled
climate data and the annual insolation cycle.

Performance Metrics

We measured model performance through the root mean
squared error (RMSE), the coefficient of determination
(R2), and the Nash–Sutcliffe coefficient (NSC). The first
gives an idea of the magnitude of the errors. The latter two
quantify how well the model performed on the whole.

The final metric, the Nash–Sutcliffe coefficient, has been
used widely to evaluate the performance of hydrologic
models and is defined (Nash and Sutcliffe 1970) as

NSC ¼ 1�
P

N
i¼1 Oi � Pið Þ2

P
N
i¼1 Oi � Oð Þ2 ; ð12Þ

where O represents observed data with N realizations and P
represents predicted data. Values of NSC range from −∞ to

Table 1 Typical values for the surface heat fluxes into (+) and out of
(−) the water column for Stockton Ship Canal at Burns Cutoff (station
10)

Stockton–Manteca

Month Hs He Hl" Hl# Hsw ∑H

January −3.5 −9.3 −331.0 270.6 55.0 −18.3
August −12.0 −102.3 −416.4 346.8 277.0 93.1
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1.0. Higher values indicate better agreement. A value of
zero indicates that the predicted values are no better than
the mean of the observations as a predictor; negative values
indicate that the observed mean is a better predictor. The
NSC has been criticized as a metric because it (like R2)
gives too much weight to outliers. Additionally, Garrick et
al. (1978) have argued that it is possible to get high values
for the NSC with poor models while good models do not
score much higher.

Results

Calibration and Verification of Statistical Temperature
Model

Figure 5 presents time series of the calibration and
verification periods from a long-term record on the San
Joaquin River at Antioch (station 2). The annual cycle is
clearly well-predicted, as are shorter time scale variations,
particularly weekly to monthly fluctuations. A more
difficult test is shown in Fig. 6, for which temperature data
were only collected during the spring at San Joaquin River
at Prisoner’s Point (station 5); the model was still able to
capture the annual cycle sampled at the end of the
verification period. This is most likely because the range
of the data was close to the annual range in temperature.

The model performed very well at locations where more
than 1 year of data were available for calibration. After
locations with less than 1 year of data were removed, the
model fit the data well (Table 2) with R2 values greater than

0.930 (and generally over 0.965) and NSC values greater
than 0.890 (and generally over 0.950) for verification
periods for all locations except Ripon (station 3), which is
on the Stanislaus River and farther from tidal influence than
the other stations.

Projections of Water Temperatures for Climate Scenarios

Model projections predict long-term changes in water
temperatures throughout the Delta (model coefficients are
reported in Table 3). Figure 7 shows an example of these
projections, showing projected water temperatures on the
San Joaquin River at Antioch (station 2) under PCM A2
forcing. In this particular case, both the yearly high and
low water temperatures increase over the 100-year time
horizon.

Discussion

Model Limitations

One major concern is the ability of a statistical model to
project water temperatures in a changing system. The
model predicts the seasonal cycle as well as capturing
much of the short-term variability compared to measured
data. These seasonal fluctuations (the dominant mode of
variability) are much larger than the long-term trends
expected with climate change. On the other hand, increases
in water temperatures could lead to increases in evaporative
cooling and ultimately cause a leveling off of water

Fig. 6 Calibration (a) and verification (b) at San Joaquin River at
Prisoner’s Point (station 5). The measured values are indicated with
the solid line; the modeled values are indicated with the gray line.
R2 values are 0.976 for calibration and 0.974 for verification

Fig. 5 Calibration (a) and verification (b) at the San Joaquin River at
Antioch (station 2). The measured values are indicated with the solid
line; the modeled values are indicated with the gray line. The
calibration R2 was 0.981; verification R2 was 0.978
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temperatures near some maximum (Mohseni et al. 1999).
While this dynamic is not included in the model, the model
is effective at predicting the maximum temperatures
contained in the historical record of the current regime.

While this approach has been successful at reproducing
water temperatures at locations of long-term records, the
local spatial variability of the system is not captured. The
statistical approach essentially projects the water tempera-
ture that would be measured at the instrumentation site. It is
unclear if those temperature measurements are representa-
tive of the local or regional water temperature. Depending
on the station and the method of deployment of the
instrument, there are likely to be both lateral and vertical
gradients in water temperature that would reduce the
applicability of the results for locations other than the
instrument sites. Further, variation between stations may
not be linear but may change abruptly at channel junctions
or other Delta features. Finally, all of the long-term stations

are located along either the Sacramento or San Joaquin
River channels, so the applicability of the results to other
sloughs and channels in the Delta is unclear.

Flow Effects

The model skill evident in our verification periods indicates
that riverine flows are not required to effectively predict
water temperatures in the Delta on long time scales.
However, on shorter time scales, large flows create features
that the model is unable to accurately forecast.

Although flow effects on water temperatures are, to great
extent, overwhelmed by atmospheric influences, flow does
appear to have significant effects over shorter time scales, and
some events have longer-term implications. We performed a
PCA on each year from 1998 to 2002 individually to evaluate
the inter-year stability of the annual cycle. The comparison of
the first PC (the yearly cycle) for these years (Fig. 8) shows a

Station RMSE−Cal (°C) RMSE−Ver (°C) R2−Cal R2−Ver NSC−Cal NSC−Ver

2 Tmax 0.74 0.78 0.98 0.97 0.98 0.97

T 0.66 0.70 0.98 0.98 0.98 0.98

Tmin 0.67 0.71 0.98 0.98 0.98 0.98

3 Tmax 1.88 2.06 0.79 0.89 0.79 0.80

T 1.74 1.90 0.79 0.89 0.79 0.80

Tmin 1.63 1.52 0.78 0.92 0.78 0.85

5 Tmax 0.65 1.42 0.97 0.93 0.97 0.89

T 0.65 0.90 0.97 0.98 0.97 0.95

Tmin 0.64 0.98 0.97 0.97 0.97 0.94

6 Tmax 0.68 0.77 0.97 0.97 0.97 0.96

T 0.63 0.69 0.98 0.97 0.98 0.97

Tmin 0.63 0.70 0.97 0.97 0.97 0.97

9 Tmax 0.85 0.89 0.96 0.96 0.96 0.96

T 0.75 0.73 0.97 0.97 0.97 0.97

Tmin 0.72 0.77 0.97 0.96 0.97 0.96

10 Tmax 1.17 1.00 0.96 0.97 0.96 0.97

T 1.17 1.00 0.96 0.97 0.96 0.97

Tmin 1.18 1.04 0.96 0.97 0.96 0.97

13 Tmax 1.36 0.97 0.91 0.96 0.91 0.96

T 1.08 0.75 0.94 0.97 0.94 0.97

Tmin 1.01 0.85 0.95 0.96 0.95 0.96

14 Tmax 1.21 1.23 0.96 0.95 0.96 0.95

T 1.20 1.22 0.95 0.95 0.95 0.95

Tmin 1.20 1.23 0.95 0.95 0.95 0.95

15 Tmax 0.92 0.93 0.97 0.97 0.97 0.96

T 0.94 0.94 0.97 0.96 0.97 0.96

Tmin 0.94 0.96 0.97 0.96 0.97 0.96

16 Tmax 0.86 1.13 0.97 0.97 0.97 0.96

T 0.84 1.10 0.97 0.97 0.97 0.96

Tmin 0.83 1.09 0.97 0.97 0.97 0.96

Table 2 This table lists calcu-
lated performance metrics for
each variable with at least 1 year
of calibration data for both
calibration and verification peri-
ods. Cal calibration, Ver verifi-
cation, RMSE root mean squared
error, R2 coefficient of determi-
nation, NSC Nash–Sutcliffe
coefficient
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temporary increase in the strength of this PC over the western
Delta and a weakening of this PC at Ripon (station 3), the
most eastern station and the one farthest from tidal influence.
This shift comes in conjunction with a large El Niño with
accompanying large flows during the winter of 1997–1998.
The western stations have higher PC1 for 1998 than for other
years, perhaps because high flows of that year forced a
downstream shift of the interaction of Bay and river waters,
making the western stations more like the up-estuary reaches
of the Delta during a typical year. The western stations
recovered their normal yearly cycle within 1 year; Ripon does
not re-align with the Delta until 2002. This is presumably the
result of elevated reservoir releases that persisted for more
than a year following the large flows of 1997–1998.

Another notable example of this effect is at Rio Vista
(station 15) on the Sacramento River. Water temperatures
were lower than predicted during the exceptionally high
flows of the 1997–1998 winter, but once the water temper-

Fig. 7 One hundred-year projection of daily max water temperatures
on the San Joaquin River at Antioch (station 2) under PCM A2
forcing

Station a b c d

2 Tmax 0.393±0.027 0.080±0.003 0.890±0.004 0.001±0.000

T 0.283±0.017 0.068±0.002 0.909±0.002 0.001±0.000

Tmin 0.263±0.020 0.063±0.002 0.913±0.003 0.001±0.000

3 Tmax 0.434±0.096 0.079±0.009 0.890±0.011 0.001±0.000

T 0.406±0.081 0.080±0.007 0.891±0.010 0.000±0.000

Tmin 0.647±0.109 0.094±0.010 0.850±0.014 0.000±0.001

5 Tmax 0.755±0.198 0.114±0.016 0.811±0.023 0.004±0.001

T 0.343±0.078 0.076±0.006 0.889±0.010 0.002±0.000

Tmin 0.314±0.092 0.074±0.008 0.891±0.012 0.002±0.001

6 Tmax 0.427±0.043 0.057±0.004 0.905±0.006 0.001±0.000

T 0.304±0.021 0.050±0.002 0.922±0.003 0.001±0.000

Tmin 0.289±0.026 0.050±0.002 0.922±0.004 0.001±0.000

9 Tmax 0.596±0.045 0.082±0.004 0.871±0.006 0.001±0.000

T 0.383±0.026 0.060±0.002 0.909±0.003 0.001±0.000

Tmin 0.377±0.032 0.059±0.003 0.907±0.004 0.001±0.000

10 Tmax 0.130±0.027 0.082±0.003 0.900±0.004 0.002±0.000

T 0.090±0.015 0.062±0.002 0.922±0.002 0.001±0.000

Tmin 0.086±0.018 0.058±0.002 0.926±0.003 0.001±0.000

13 Tmax 0.536±0.055 0.091±0.005 0.866±0.007 0.001±0.000

T 0.299±0.025 0.066±0.002 0.908±0.003 0.001±0.000

Tmin 0.425±0.045 0.076±0.004 0.883±0.006 0.001±0.000

14 Tmax 0.398±0.043 0.137±0.005 0.825±0.006 0.003±0.000

T 0.323±0.039 0.130±0.004 0.835±0.006 0.002±0.000

Tmin 0.298±0.042 0.129±0.005 0.835±0.006 0.002±0.000

15 Tmax 0.226±0.024 0.078±0.003 0.895±0.004 0.001±0.000

T 0.171±0.018 0.069±0.002 0.908±0.003 0.001±0.000

Tmin 0.147±0.020 0.065±0.002 0.913±0.003 0.001±0.000

16 Tmax 0.204±0.050 0.077±0.006 0.896±0.008 0.001±0.000

T 0.184±0.046 0.073±0.006 0.901±0.008 0.001±0.000

Tmin 0.179±0.051 0.072±0.006 0.901±0.008 0.001±0.000

Table 3 Model coefficients and
their 95% confidence intervals
at locations with at least 1 year
of calibration data
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atures began to warm in the spring, the model prediction
again matched the observations (Fig. 9). Bartholow’s
(1989) observations indicate that it is unlikely that this
divergence in model performance is caused by influence
from upstream dam releases; more likely, this divergence is
due to either local precipitation and run off or changes in

mixing in the north Delta region. Through model calibra-
tion using data that span multiple years, the model is
optimally designed to capture as much variability as
possible during a typical year for a location, including
accounting for the relative contributions of San Francisco
Bay and riverine waters at a site. During high flow events,
riverine influences on Delta water temperatures increase
while Bay influence decreases. This affects the thermal
dynamics at a site across years, just as it affects it within
years. Further, the inundation of the Yolo Bypass (a flood
plain conveyance that is active during high flows) may
have altered the thermal dynamics in the vicinity of Rio
Vista, which is near the outflow of the Bypass. In the Rio
Vista example (Fig. 9), high flows are associated with lower
temperatures during model divergences for a period of a
couple of months. However, once spring warming began in
March, the model converges on the observed temperatures,
including two warming–cooling events in March and April.
Notably, the model also diverges during the following
summer prior to cooling during the fall.

Another process that might cause short-term anomalies
in model performance is the effect of flows on thermal
dispersion within the Delta. Monismith et al. (2009) found
a strong positive correlation between the thermal dispersion
coefficient and river flow along the San Joaquin River. A
visual analysis of the residuals of our model (Fig. 10)
indicates that flows may have an effect on the performance
of the model in this area of the Delta; however, the
correlation between residuals and flows (R2=0.14) is low
enough that integrating flow into the model is unlikely to
improve performance. Similar analyses at locations on the
Sacramento River show no correlation between residuals
and flow (max R2=0.07).

Fig. 10 Potential flow effects on model performance at Stockton Ship
Channel at Burns Cutoff (station 10). The gray line represents the
model residuals (measured temperature minus modeled temperature)
at station 10; the thick black line represents San Joaquin River flows
nearby at the Garwood Bridge

Fig. 9 Short-term model deviations due to large flows on the
Sacramento River at Rio Vista (station 15). The measured values are
indicated with the solid line; the modeled values are indicated with the
gray line. The circle highlights model deviations from measurements
during the winter of 1997–1998

Fig. 8 PC1 for each year from 1998 to 2002 taken individually for the
stations that had data for that time period (2, 3, 9, 10, 13, 14, 15, and
16). The x-axis represents longitude and the y-axis represents PC1
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Temperature Trends

Under the selected climate-change scenarios, both daily
maximum and daily minimum water temperatures are
expected to increase. This increase varies from one scenario
to another and from one location to another within each
scenario. For example, a comparison of the predicted yearly
cycle of the daily average temperature at Rio Vista (station
15) in 2097-2099 yields very different results for each of
the four scenarios (Fig. 11). Under all of our climate
scenarios, the yearly cycle peaks later in the year than in
1997–1999, with the GFDL A2 scenario giving a sharper,

higher peak than the others. All four projections are consider-
ably warmer (∼3–6°C) in late summer than 1997–1999.

Ecological Implications

One informative way to evaluate the increase in water
temperatures is to look at ecological thresholds. The Delta
smelt, a federally listed threatened species endemic to the
Delta, has high mortality above a temperature of about
25°C (Bennett 2005). If we look at the number of days at a
location that the daily maximum temperature exceeds the
25°C threshold, then temperature trends (from an ecological
standpoint) become easier to see. Although all areas are

Fig. 13 Long-term shift in water temperatures on the Sacramento
River at Rio Vista (station 15) under GFDL A2 forcing. Using
projected temperatures, each day is grouped as it impacts the Delta
smelt: spring spawning (daily average temperatures from 15°C to 20°
C in light gray), stress (daily average temperatures from 20°C to 25°C
in dark gray), and lethal (daily maximum temperatures >25°C in
black)

Fig. 12 Spatial variability in heating. Dot area is proportional to the
average number of days per year exceeding 25°C (the Delta smelt’s
thermal limit) at each location under GFDL A2 forcing. The black
dots represent the measured data; the dark gray dots are for 2010–
2030; the light gray dots are for 2070–2090

Fig. 11 Projected yearly cycle of water temperatures at Sacramento
River at Rio Vista (station 15) averaged from 2097 to 2099. The mean
of the measured water temperatures at the same location from 1997 to
1999 is included for comparison

Fig. 14 Projected shift in the median day of the spawning period due
to temperature on the Sacramento River at Rio Vista (station 15). The
median day of the spawning period was calculated for each year under
each scenario. The medians were smoothed with a 10-year running
average
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projected to warm in response to increased air temperatures,
the ecological effects would not be uniform across the Delta
(Fig. 12). Notably, the Sacramento corridor shows the
greatest change with respect to this threshold mostly
because other areas of the Delta are already frequently
exceeding the threshold.

Delta smelt require water temperatures between about
15°C and 20°C during spring months for spawning, and
juvenile delta smelt are stressed between 20°C and 25°C
during the summer (William Bennett, personal communi-
cation). Since the spawning temperatures occur during the
spring warming cycle and the rate of warming is relatively
insensitive to climate-change scenarios, the number of days
within these ranges does not change much in response to
climate change (Fig. 13), but the timing can be affected. If
the timing of the temperature variations in these ranges
were to drift out of phase with other ecological variables
(i.e., flows, sunlight, etc.), it could have an important
impact on the populations of these species. Over the
100 years projected here, the model predicted shifts on
the order of 10–15 days of the median day of the spawning
period under three of our four scenarios (Fig. 14). The
fourth scenario, GFDL A2, would cause the greatest shifts,
on the order of 25 days.

Summary

We present a simple, computationally efficient model for
water temperatures within the Sacramento–San Joaquin
Delta. The statistical model is based on physical principles;
calibration and verification demonstrate the ability of our
statistical approach. The model’s skill allows consideration
of the long-term effects of climate change on water
temperatures. Driven by climate-change scenarios, the
model forecasts considerable changes throughout the Delta.
These changes will affect ecosystem function in a variety of
ways. For example, timing of spring spawning temperatures
for Delta smelt will shift earlier in the year. Lethal
temperatures for Delta smelt will be more frequent in all
four climate scenarios.

Our approach has potential weaknesses. While model
forecasts appear to predict that Delta smelt are doomed under
some climate-change scenarios, the forecasts are spatially
limited and do not account for thermal refugia which may
exist within the Delta. Additionally, model calibration utilized
data collected from 1983 through 2007 and did not sample the
same range of temperatures that are likely to be seen in the
future. We expect the long-term trend, however, to be small
relative to the yearly cycle, and we expect the calculated
coefficients to be robust. Flow regimes and water depths in the
Delta might be expected to change in the future, as snowmelt
arrives earlier and sea level rises. We expect the flow regime

to have little effect on the effectiveness of the model; however,
it will play a role in setting temperature dynamics over shorter
time scales, as it controls the balance between riverine and
Bay influences within the Delta.
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