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Abstract Surface water samples were collected in
2006 from a lead mine–mill complex in Missouri to
investigate possible organic compounds coming from
the milling process. Water samples contained rela-
tively high concentrations of dissolved organic carbon
(DOC; greater than 20 mg/l) for surface waters but
were colorless, implying a lack of naturally occurring
aquatic humic or fulvic acids. Samples were extracted
by three different types of solid-phase extraction and
analyzed by electrospray ionization/mass spectrometry.
Because large amounts of xanthate complexation
reagents are used in the milling process, techniques
were developed to extract and analyze for sodium
isopropyl xanthate and sodium ethyl xanthate. Although
these xanthate reagents were not found, trace amounts
of the degradates, isopropyl xanthyl thiosulfonate
and isopropyl xanthyl sulfonate, were found in

most locations sampled, including the tailings pond
downstream. Dioctyl sulfosuccinate, a surfactant and
process filtering aid, was found at concentrations
estimated at 350 μg/l at one mill outlet, but not
downstream. Release of these organic compounds
downstream from lead–zinc mine and milling areas
has not previously been reported. A majority of the
DOC remains unidentified.

Keywords Leadmine . Tailings . Organic
compounds . Xanthates . Mass spectrometry

1 Introduction

Ores containing lead, zinc, copper, and other metals
have been mined from southern Missouri for more
than 300 years. The most productive deposits were in
the Old Lead Belt in southeastern Missouri and in
Kansas and Oklahoma, which were depleted by the
1970s. Mining in these areas left behind contaminated
land and water resources due to inefficient extraction
technologies available at the time, and early mining
predated environmental regulation (Brumbaugh et al.
2005; Schmitt et al. 1993, 2002, 2007a, b).

Discovery of the Viburnum Trend, containing
significant lead–zinc reserves, led to the development
of the New Lead Belt mining district in southeastern
Missouri during the 1960s (Goldhaber et al. 1995).
Mines and mills of the New Lead Belt operated under
contemporary environmental regulations and utilized
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the most efficient extraction and treatment technologies
available (Wixson and Jennett 1975; Wixson 1977).
Nevertheless, elevated metal concentrations and effects
on biota inhabiting these streams have been reported
(Jennett and Callier 1977; Brumbaugh et al. 2005,
2007; Besser et al. 2007, 2009; Allert et al. 2009a, b;
Schmitt et al. 1993, 2002, 2007a, b).

By the 1980s, mining activity in the Viburnum Trend
declined as ore deposits were depleted, but exploration
revealed additional deposits to the southwest. The
exploration area is within the Mark Twain National
Forest that includes springs, caves, a National Park, and
a federally designated Wild and Scenic River. A
multiyear interdisciplinary investigation was initiated
to evaluate the potential environmental effects of
expanded mining in the exploration area (Imes 2002).
The study described here, which represents part of the
larger investigation, was focused in the New Lead Belt
as a model for the potential consequences of expanded
mining elsewhere in southern Missouri.

Lead–zinc mining and mineral extraction in the
New Lead Belt generate large quantities of solid
wastes (Doe Run Company 2003). Mining-related
environmental studies have focused on the release of
metals and other inorganic materials and the effects of
these releases on air quality, surface water and
groundwater quality, and biota. However, modern
metal beneficiation processes rely heavily on poten-
tially toxic organic compounds such as xanthates,
alcohols, and other reagents (Wixson 1977; Okibe and
Johnson 2002), which are used in substantial quanti-
ties. Xanthates are toxic to aquatic organisms at
concentrations <1 mg/l and degrade rapidly in aquatic
ecosystems (Xu et al. 1988). Although early reports
indicated that organic materials released to streams
stimulated heterotrophic growth (Wixson 1977), little
else is known about the composition or environmental
fate of these compounds or their potential effects. The
primary objective of our study therefore was to
investigate organic chemicals derived from metal
mining and beneficiation in effluents and receiving
streams at an active mine–mill complex in the New
Lead Belt. This area offers an optimum environment
for assessing potential environmental effects of
mining in southeastern Missouri.

Compounds used in the milling process, their
function, and usage are listed in Table 1 (US
Environmental Protection Agency 1994). Xanthate
reagents are used in the flotation of base and precious

metals, which is the standard method for separating
valuable minerals, such as gold, copper, lead, or zinc
minerals, from host rock containing nonvaluable
minerals such as limestone or quartz (gangue). Most
of the xanthate reagent is consumed in the process.

Although many of the compounds used in the
metal beneficiation process are known (Table 1), the
types of organic compounds being discharged from a
milling process were unknown. The compounds that
can be detected by environmental organic analysis
depend on the extraction technique used to isolate
analytes and the analytical technique used to analyze
the sample extracts. The goal of an extraction
technique is to isolate and concentrate the analytes
of interest from the sample matrix (Pawliszyn 2003).
In this study, a variety of extraction techniques were
applied to samples obtained from a typical lead–zinc
mine and milling site in 2006. Previous samples from
2005 had been extracted by semipermeable membrane
devices (SPMDs) and polar organic chemical integra-
tive samplers (POCIS). The SPMD and POCIS are
integrative samplers that are submerged in water at a
sample site to uptake organic compounds from water
over an extended period. The SPMDs simulate uptake
by biota and preferentially uptake hydrophobic or less
water-soluble organic compounds (USGS 2004a). The
POCIS is designed to uptake more polar organic
compounds than the SPMD (USGS 2004b). However,
extracts from the SPMD and POCIS integrative sam-
plers analyzed by electrospray ionization/mass spec-
trometry (ESI/MS) were not significantly different than
their corresponding field blanks which accompanied the
samplers during deployment, retrieval, and transporta-
tion and were processed and analyzed exactly as
deployed samplers. Analysis of the SPMD extracts by
gas chromatography/mass spectrometry had indicated
that samples were devoid of pesticides and acid/base/
neutral extractable semivolatile organic compounds,
such as polycyclic aromatic hydrocarbons.

For the 2006 samples, extraction techniques were
tailored for very polar organic compounds. The Oasis
hydrophilic–lipophilic balance (HLB) solid-phase
extraction (SPE) phase isolates a wider range of polar
organic compounds than the more traditionally used
octadecyl or C-18 phase (Waters Corp. 2003). The
sequential XAD-8 and XAD-4 resin column extraction,
using a macroporous methylmethacrylate polymer resin,
has been widely used for 30 years for the isolation of
dissolved organic carbon (DOC) containing very polar

432 Water Air Soil Pollut (2011) 217:431–443



organic compounds (Leenheer 1981). The Oasis weak
anion exchange (WAX) SPE, which is a relatively new
phase for extraction of specific anions, was selected
specifically to isolate xanthate reagents (Waters Corp.
2003) due to their toxicity and heavy usage in the
milling process.

Sample extracts were then analyzed by full-scan
positive and negative ESI/MS, which is designed to
analyze water-soluble, polar organic compounds (Cole
1997). Negative mode preferentially and specifically
ionizes polar acidic organic compounds, whereas
positive mode is less selective and more comprehen-
sive and ionizes polar basic organic compounds in
addition to almost any polar organic compound that
can be protonated. Nonpolar organic compounds, such
as alkanes and polycyclic aromatic hydrocarbons, are
not ionized (transparent) in either mode.

2 Methods

2.1 Chemicals and Reagents

All solvents used were Burdick & Jackson UV grade
(VWR Scientific, Philadelphia, PA). Sodium dioctyl
sulfosuccinate was purchased from Sigma-Aldrich
(St. Louis, MO). Starch (soluble powder) was from
Mallinckrodt (St. Louis, MO). Fresh samples of
technical processing grade of sodium isopropyl
xanthate and sodium ethyl xanthate were graciously
provided by a local metallurgical mineral processing
company.

2.2 Study Area

The site selected for investigation was associated with
a New Lead Belt mine–mill complex (Fig. 1). The
Fletcher complex, which is located in Reynolds
County, includes mines, a mill, and an impoundment
that receives water pumped from the mine, and a
zero-discharge tailings disposal area and pond
(Fig. 1). The mill includes circuits that recover lead,
zinc, and copper.

2.3 Sample Description

In October of 2006, triplicate 1-l water samples were
obtained from the Fletcher Mill at two separate outlet
pipes (Fletcher Mill Out 1, pH 5.25, and Fletcher Mill
Out 2, pH 8.0), indicative of the initial mining-waste
stream, and from the Fletcher Tailings Pond (desig-
nated Fletcher Pond, pH 7.6) to represent possible
input into the groundwater system after mixing and
dilution. Water samples were filtered through glass
fiber filters in the field into Teflon bottles prior to
shipment on ice to the laboratory.

2.4 Extraction of Samples

Triplicate water samples obtained in October 2006
were extracted using three types of SPE tailored for
isolation of very polar organic compounds. The first
liter was extracted at ambient pH using an Oasis
hydrophilic–lipophilic balance (HLB) high-capacity
6-ml, 200-mg SPE cartridge (Waters Corp., Milford,

Table 1 Flotation reagents, their function, and usage from the Fletcher Mill

Chemical Function Tons per year

Zinc sulfate Depressant for sphalerite 960

Sodium isopropyl xanthate Primary collector for galena and sphalerite 857

Isopropyl ethyl thionocarbamate Collector for sphalerite and chalcopyrite 6

Mixed alcohol Frothing agent 30

Sodium cyanide Mineral depressant 1

Ammoniated cupric chloride Activator for sphalerite 126

Sulfur dioxide pH regulation for copper flotation 360

Starch Lead depressant 54

Caustic soda Mixed with starch 18

Sodium dichromate Lead depressant in copper flotation and zinc circuit 34

Sodium dioctyl sulfosuccinate Filter aid to improve concentrate dewatering 8
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MA) using a Zymark Autotrace automated SPE
workstation (Zymark Corp., Hopkinton, MA) and
eluted with methanol. The second liter was fraction-
ated on Amberlite XAD resin into two fractions
based on increasing polarity: a hydrophobic fraction
and a transphilic fraction. The sample was acidified
and passed through XAD-8 resin to isolate the
hydrophobic fraction and then passed directly
through XAD-4 to isolate the transphilic fraction
(Leenheer et al. 2000). After rinsing with dilute
formic acid, the XAD columns were eluted with 3:1
acetonitrile/water. The third liter was extracted at
ambient pH by SPE on an Oasis WAX high-capacity
6-ml, 30-μm, 150-mg cartridge (Waters Corp.) using
the automated SPE workstation, rinsed with 25 mM
acetate buffer and methanol and dried for 10 min.
The cartridges were eluted with 20:80 methanol/
acetonitrile with 2% (v:v) ammonium hydroxide, and
the eluates were concentrated and solvent-exchanged
to a final volume of 100 μl of 90:10 water/methanol
prior to electrospray analysis. Recovery of mining
reagents (sodium isopropyl xanthate and sodium
ethyl xanthate) spiked into tap water at 13 mg/l had
been verified with this WAX method. Extracts were
concentrated under a stream of dry nitrogen, trans-
ferred to autosampler vials, and refrigerated before
analysis.

2.5 Sample Analysis

Samples were analyzed using both positive and
negative electrospray ionization on an Agilent
Series 1100 single quadrupole mass spectrometer

(Agilent Technologies, Wilmington, DE) with unit
resolution. Using direct injection analysis, 2 μl of
the sample were injected into an isocratic stream of
25:75 water/methanol at 0.2 ml/min, transferring
the sample directly into the ion source. In this
initial investigation, direct injection (without liquid
chromatographic column) rapidly pinpointed ions of
interest without loss of reactive compounds. No
buffer was used in the mobile phase to eliminate its
effect on ionization and to minimize adducts
(Rostad and Leenheer 2005). Analytical conditions
for formation of molecular ions, while minimizing
dimers or multiply charged species without fragmen-
tation or adduct ion formation, had been optimized
previously by using a variety of polyacid standards
(Leenheer et al. 2001, 2002; Rostad and Leenheer
2004). Nitrogen drying gas was introduced at 350°C
at 12 l/min with 35 psi nebulizer pressure, at a
capillary voltage of 4,000 V. The source fragmentor
(capillary exit) was set at 50 V to minimize
fragmentation while ensuring effective ion transmis-
sion, and the quadrupole mass spectrometer was
scanned from 100 to 1,000 mass-to-charge ratio
(m/z) per second. Although the quadrupole instrument
can scan down to m/z 50, this was precluded by the
possibility of interference from solvent ions. Sam-
ples were injected every minute, with triplicate
analyses for every sample. Tandem mass spec-
trometry was performed on an Applied Biosystems
2000 QTRAP tandem mass spectrometer with
negative electrospray ionization (Life Technologies
Corp, Darmstadt, Germany) using a wide range of
fragmentation conditions.

Viburnum Trend, 
Old and New Lead 

Belt areas 

Fletcher Mine and Mill Complex 

St. Louis

Study
areas

MISSOURI

Kansas
City

St. Louis

Study
areas

Mill Complex

Fletcher Mill Out-2

Fletcher Mill Out-1

Fletcher Pond

Surface Water site
Monitoring well

Surface-water Sites
Monitoring wells

0 2000 4000 Feet

Fig. 1 Map of Missouri
with study areas shown,
80 miles southwest of St.
Louis
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3 Results

Samples of the technical processing grade of milling
reagents, sodium isopropyl xanthate and sodium ethyl
xanthate, were analyzed to verify proper ionization
and determine if unknown inert materials were
present. Negative-ion spectra of the mining reagents
of sodium isopropyl xanthate, in current use at the
mill (Fig. 2a), and sodium ethyl xanthate (Fig. 2b)
show that only the active ingredients ionized at m/z
135 and 121, respectively, and no inert components
were observed.

Water samples contained relatively high concen-
trations of DOC but were colorless, implying an
absence of naturally occurring aquatic humic or fulvic
acids (Suffet and MacCarthy 1989). Of the com-
pounds listed in Table 1, those that could contribute to
high DOC include sodium isopropyl xanthate, iso-
propyl ethyl thionocarbamate, mixed alcohol, starch,
and sodium dioctyl sulfosuccinate. However, isopro-
pyl ethyl thionocarbamate (molecular weight 147,
expected negative ion m/z 146) is not water soluble,

and a reference standard of starch, when analyzed
under these conditions, did not respond to electro-
spray ionization.

3.1 Extraction Comparison

Although samples were analyzed by both positive
and negative modes, positive ionization produced
complex spectra typical of natural DOC (Leenheer
et al. 2001; Rostad and Leenheer 2002a, b, 2004),
which was not applicable for specific analysis (data
not shown), and therefore only negative ionization
spectra will be shown.

Analysis by ESI/MS of the samples from the
WAX extraction, the most specific method
employed, produced an intense response from the
Fletcher Out 1 sample (Fig. 3a) but relatively weak
response from the Fletcher Out 2 (Fig. 3b) and
Fletcher Pond (Fig. 3c). No ions indicative of
isopropyl xanthate (m/z 135; or ethyl xanthate (m/z
121)) were observed in these extracts. The WAX
extract of Fletcher Mill Out 1 produced strong
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Fig. 2 Negative electrospray
ionization/mass spectrum of
milling reagents. a Sodium
isopropyl xanthate, [(CH3)2–
CH–O–C(=S)–S]−; b sodium
ethyl xanthate, [CH3–CH2–
O–C(=S)–S]−
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molecular anions at m/z 421, 309, and 193. The
Fletcher Out 2 produced ions at m/z 143 and 195.
The Fletcher Pond extract produced a dominant ion
at m/z 195. Identification of the ions is discussed
below.

The Oasis HLB extraction isolates a much broader
spectrum of organic compounds. All three sample
sites produced an intense response by ESI/MS. The
Fletcher Mill Out 1 produced strong molecular anions
at m/z 421, 247, and 215 (Fig. 4a). The Fletcher Out 2
(Fig. 4b) and Fletcher Pond (Fig. 4c) extracts
produced dominant ions at m/z 215 and 247. Except

for m/z 421, the ions isolated by HLB were different
than those isolated by WAX.

The sequential XAD extraction produced two
extracts per sample. The XAD-8 extract isolates
more hydrophobic acidic compounds, whereas the
XAD-4 extract isolates relatively less hydrophobic
(i.e., transphilic), acidic compounds (Leenheer et
al. 2000). Of the XAD-8 extracts, the Fletcher Mill
Out 1 produced the strongest response, whereas
the Fletcher Out 2 and Fletcher Pond produced
relatively weak response. The Fletcher Mill Out 1
spectrum had strong ions at m/z 421, 309, 247, and
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Fig. 3 Electrospray ioniza-
tion mass spectra of sample
extracts from solid-phase
extraction using weak anion
exchange (WAX). a WAX
extract of Fletcher Mill Out
1, b WAX extract of
Fletcher Out 2 (weak), c
WAX extract of Fletcher
Pond (weak)
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a small 215 (Fig. 5a). The relative intensities of the
m/z 421 and 309 were similar to the response in the
WAX extract (Fig. 3a). The Fletcher Out 2
(Fig. 5b) and Fletcher Pond (Fig. 5c) extracts
produced weak ions at m/z 215 and 247, in similar
relative intensities as seen in their HLB extracts
(Fig. 4b, c).

The XAD-4 extracts had relative responses that
were comparable to the XAD-8 extracts, i.e., strong
response from Fletcher Mill Out 1 and weak
response from the Fletcher Out 2 and Fletcher
Pond. The XAD-4 spectrum of Fletcher Out 1
(Fig. 5d) produced intense ions at m/z 199, 309, and

421. Extracts of Fletcher Out 2 (Fig. 5e) and Fletcher
Pond (Fig. 5f) were dominated by m/z 199 and 215,
although with different relative intensities. The m/z
199 was not observed in extracts by WAX, HLB, or
XAD-8. The XAD-8 and XAD-4 extracts do not
appear to provide a clear separation because the m/z
421 and 309 appear in both extracts, in different
relative amounts.

The relative intensities of the dominant ions in
each sample spectrum are listed for each type of
extraction in Table 2 for comparison, which clearly
shows that the compounds isolated vary considerably
with the type of SPE used.
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Fig. 4 Electrospray ioniza-
tion mass spectra of sample
extracts from solid-phase
extraction using HLB. a
HLB extract of Fletcher
Mill Out 1, b HLB extract
of Fletcher Mill Out 2, c
HLB extract of Fletcher
Pond
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Fig. 5 Electrospray ioniza-
tion mass spectra of sample
extracts from sequential
XAD-8 XAD-4 resin
column extraction. a
XAD-8 extract of Fletcher
Mill Out 1, b XAD-8
extract of Fletcher Mill Out
2, c XAD-8 extract of
Fletcher Pond, d XAD-4
extract of Fletcher Mill
Out-1, e XAD-4 extract
of Fletcher Mill Out 2, f
XAD-4 extract of Fletcher
Pond
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3.2 Compound Identification

Identification of the ions began with examination of
the reagents used at the site. In spite of heavy usage in
the mill process, no isopropyl xanthate reagent was
found by any of the extraction methods.

The m/z 421 was tentatively identified and verified
with an authentic reference standard as dioctyl
sulfosuccinate (see Fig. 6), a reagent used in the mill
process as a filtering aid. This reagent was only found
at Fletcher Out 1, not at Fletcher Out 2 or downstream
at the Fletcher Pond, by all three extraction techni-
ques. The concentration of dioctyl sulfosuccinate,
based on response from the reference standard, at the
Fletcher Mill Out 1 site was 350 μg/l based on the
HLB extract and 100 μg/l based on the WAX extract.

The m/z 309 ion was probably octyl sulfosuccinate
(Fig. 6), a degradation product resulting from loss of
the alkyl side chain from dioctyl sulfosuccinate (Hales
1993). A reference standard for octyl sulfosuccinate
was not available. Octyl sulfosuccinate was detected
in Fletcher Mill Out 1 by WAX and XAD extraction,
but not by HLB. Whether the octyl sulfosuccinate was
present in the technical reagent or was generated as a
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Fig. 5 (continued)

Table 2 Relative intensities of ions from samples from 2006
using various extraction techniques

m/z

143 193 195 199 215 247 309 421

Fletcher Out 1

WAX 25 50 100

HLB 30 20 100

XAD-8 10 95 50 100

XAD-4 100 30 10

Fletcher Out 2

WAX 90 100

HLB 100 50

XAD-8 100 60

XAD-4 50 100 10

Fletcher Pond

WAX 20 100

HLB 100 20

XAD-8 100 60

XAD-4 100 70
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degradation product is unknown. It was not present in
the high-purity reference standard of dioctyl sulfo-
succinate analyzed. This demonstrates the importance
of using technical-grade reagents (as was done for the
xanthates) in environmental studies to include the
inert and nonactive ingredients that may be present.

The proposed degradation pathway for dialkyl
sulfosuccinate by Hales (1993) described the initial
hydrolysis of the ester linkage that is most distant
from the sulfonate group, eventually progressing to
sulfosuccinic acid (molecular weight, 198). Although
sulfosuccinic acid should produce a negative ion at
m/z 197 under negative electrospray ionization, this
ion was not observed in any of these extracts. Instead,
ions at m/z 195 and 193 were observed, but formation
of double bonds or small rings to produce a lower
molecular weight, more stable ion seems unlikely. If
the sulfosuccinic acid had complexed with coincident
metal ions, it may not have been extracted or ionized
with the techniques shown here.

The m/z 247 and 215 ions were likely xanthate
concomitant contaminants or degradation products,
isopropyl xanthyl thiosulfonate at M− m/z 247, and
isopropyl xanthyl sulfonate at M− m/z 215 (Fig. 6),
via free-radical reaction pathway (Silvester and Hao

2002). Trace amounts of these xanthate degradation
products were found in most samples by HLB and
XAD extraction. Notably, and although the WAX
SPE was selected and tailored for isolation of the
isopropyl xanthate, WAX did not isolate the xanthate
degradation products. These degradation products
have not been reported downstream from milling
areas before, and reference standards for these
compounds were not available.

The m/z 199 ion, seen only in the XAD-4 extracts,
may have been from the loss of oxygen from the m/z
215 component, since they appear together at all
three sites, or from ethyl propyl dithiophosphate or
propyl benzene sulfonate, although these possible
reagents are not listed as used at this site, and
therefore further work is needed to identify it.
Although the m/z 199 ion is very intense from Mill
Out 1, it decreases in intensity in Mill Out 2 and in
the Pond.

The xanthate degradation products described by
Sun and Forsling (1997) were not found in these
samples by any of the three extractions. From the
isopropyl xanthate ROCSO−, possible xanthate deg-
radation products would include isopropyl monothio-
carbanate ROCSO− at m/z 119, isopropyl dixanthogen
[(ROCS2)2–H]

− at m/z 269, isopropyl xanthic acid
[ROCS2H–H]

− at m/z 135, and isopropyl perxanthate
ROCS2O

− at m/z 151. Xanthate degradation is pH
dependent, and therefore pH is likely carefully
controlled during the mill process.

A product ion scan using tandem mass spectrometry
performed on the most intense ions (m/z 421, 309, 247,
215) produced dominant product ions at m/z 81,
indicative of the sulfonate moiety (HSO3

−), which
was expected based on the structures in Fig. 6. This
fragment ion dominated the MS/MS spectra; no other
fragment ions were produced.

Although a list of what was reportedly used at the
sites was available, other milling reagents may also
have been used. Spectra were screened for ions
indicative of a wide range of common milling
reagents and their degradation products. Nevertheless,
negative ions indicative of the following milling
reagents were not detected: alkylated xanthates (121,
135, etc.), dialkylated dithiophosphates (185, 213,
etc.), mixed dialkylated dithiophosphates (199, 227,
etc.), alkylated dithiocarbamates (120, 134, etc.),
alkylated dithionocarbamates (132, 146, etc.), alkylated
pyridine thiones (126, 140, etc.), alkylated octyl phenols

Dioctyl sulfosuccinate,
M- = 421 

Octyl sulfosuccinate, 
M- = 309

Isopropyl xanthyl 
thiosulfonate, M- = 247 

Isopropyl xanthyl 
sulfonate, M- = 215 

Free radical pathway, Silvester and Hao,
2002 

Fig. 6 Proposed structures of observed ions

440 Water Air Soil Pollut (2011) 217:431–443



(205, 219, etc.), alkylated nonyl phenols (219, 233,
etc.), and alkylated benzene sulfonates (185, 199, etc.).

4 Summary and Conclusions

Dioctyl sulfosuccinate is an all-purpose surfactant,
wetting agent, and solubilizer used in the drug,
cosmetic, and food industries and is “Generally
Recognized as Safe” by the US Food and Drug
Administration (2007) but can cause contact dermatitis
(Lee and Lee 1998). The relatively high concentrations
of DOC were not attributable to the compounds
isolated and identified here. It is possible that the
mixed alcohol used as a frothing agent and starch used
as the lead depressant contributed to a large portion of
the DOC observed. The alcohol would not have been
isolated or ionized, and a reference standard of starch
did not ionize. Therefore, whether these compounds
contribute to the high DOC is unknown. Whether the
alcohols, or starch, or other degradation products from
the process are discharged from the mill process is
unknown. Terpenes and carbohydrates would contribute
colorless DOC and, if isolated, would not ionize with
electrospray. In order to address this, other techniques to
isolate and identify these compounds would be required.

Overall, and in spite of the large amounts of
organic compounds used for the extraction of lead,
zinc, and copper at the facilities investigated, few
milling reagents or their degradation products were
detected in process waters or the tailings pond.
Dioctyl sulfosuccinate was detected in Fletcher Mill
Out 1 by HLB, WAX, and XAD extraction but was
not detected further downstream in Fletcher Mill Out
2 or in the tailings pond. Octyl sulfosuccinate was
detected in Fletcher Mill Out 1 by WAX and XAD
extraction, but not by HLB. Small amounts of isopropyl
xanthyl thiosulfonate (m/z 247) and isopropyl xanthyl
sulfonate (m/z 215) were detected in most samples by
HLB and XAD extraction. All of these compounds are
both organic and strongly anionic.

Based on this initial exploratory investigation,
compounds found in the pond, at m/z 199, 215, and
247, are the most likely to persist or be transported
downstream. These compounds are likely from the
xanthate reagents used in the milling process. Little is
known about their fate in the environment.

Although WAX extraction was specifically tailored
to isolate isopropyl xanthate and ethyl xanthate,

these compounds were not detected. WAX extraction
also failed to isolate xanthate degradation products.
However, SPE was effective for isolation of these very
polar compounds, and the different SPE sorbents
isolated different compounds. ESI/MS was successful
for analysis, with identification of dioctyl sulfosuccinate,
octyl sulfosuccinate, isopropyl xanthyl thiosulfonate,
and isopropyl xanthyl sulfonate verified by tandemmass
spectrometry. This new application of ESI/MS to
mining/milling water samples provided a different
approach for characterizing polar organic compounds
in these samples.
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