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ABSTRACT : Predicting the planform and dimensions of a channel downstream from a confluence 
of two smaller channels with known sediment and water supplies is a fundamental, well-studied 
problem in geomorphology and engineering. An analogous but less well understood problem is found 
well downstream of such confluences, where large river channels split into two or more distributary 
channels on a river delta. In this case, both the flow and sediment supplies in the downstream 
distributaries are set by the dynamics near the bifurcation of the upstream channel and by downstream 
boundary conditions. Over time, the pattern of erosion and deposition in the distributary channels 
gives rise to variations in the amount of water and sediment routed into them. In the simplest case, 
this results in channel switching on deltas, but in a more general sense these dynamics produce a rich 
suite of interesting morphologic change contributing both to the evolution of the channel distributary 
network and the overall evolution of the delta. As part of a study to develop a better understanding of 
these processes, we conducted a field study measuring the detailed morphology of the Hong-Luoc 
junction on the Red River downstream of Hanoi, Vietnam. This junction was selected for such a study 
because it has a 1,000-year history, modern observations suggest that it is currently switching 
(changing the proportion of sediment and streamflow provided to each of the distributary channels), 
and hydrologic configuration of the junction allows for the study of two bifurcations and one 
confluence in a single junction complex. In this paper, our morphologic observations are used in 
computational flow models to show how flow and sediment transport changes as a function of total 
discharge upstream of the junction. This is a key component of understanding how the junction attains 
stability over a range of flows or how imbalances in the distribution of flow and sediment transport 
lead to destabilization of the channel bifurcation.  
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INTRODUCTION 
Geomorphologists and river engineers have spent a great deal of effort characterizing the tree-like 
structure of rivers, including the development of channel-order hierarchies and downstream hydraulic 
geometry and work on the topology of channel networks. A critical element of this work is the 
concept of a junction or confluence where two channels meet to become a single channel. As a result 
of the importance of these features to river networks and routing of flow and sediment, a great deal of 
detailed work has been carried out on the hydrodynamics and sediment dynamics at river confluences. 
However, there has not been nearly as much effort spent on characterizing and understanding river 
bifurcations or splits, where a single channel divides into one or more distributaries. These features 
are at least as interesting as confluences, as they exhibit dynamics that confluences do not, such as the 
switching of flow and sediment between distributary channels over time, as is commonly observed on 
the world’s deltas (Wright et al, 1974). In addition, the dynamics of delta distributaries is of pressing 
societal concern, as a substantial portion of the human population lives on deltas and historical 
records have documented that the loss of life and property due to distributary dynamics is very real. In 
this paper, we focus on distributary channels, using measured data along with computational river 
models to investigate the controls on these features and how natural and anthropogenic changes can 
produce channel switching on deltas. 

Distributary channels are significantly different from channels that meet at a confluence. When 
channels join, if we know the water and sediment supplied to the two upstream channels, we also 
know the total water and sediment supplied to the downstream channel. As shown in Figure 1, this is 
not true when upstream channels split. Even if we know the water and sediment supply in the 
upstream channel, we generally do not know how these quantities are divided in the two downstream 
channels. In fact, it is precisely this difference which gives rise to the interesting dynamics of delta 
channels. The portions of water and sediment delivered into each distributary channels can change 
over time giving rise to a process referred to as channel switching, in which channels carrying 
relatively small amounts of water and sediment increase their loads at the expense of larger channels. 
This switching gives rise to the classical shape of deltas and their relatively uniform profiles. By 
altering the distribution of sedimentary material over time through the waxing and waning of water 
and sediment loads in the distributary channels, over long periods of time the distribution of material 
over the distal parts of the delta is more or less uniform. Anthropogenic stabilization of distributary 
channels and their water and sediment loads can impede this process and lead to instabilities that 
threaten human life and property. In this paper, the controls on the division of water discharge at a 
channel bifurcation on the Rhine River will be examined using a combination of field measurements 
of channel morphology along with model applications in order to better understand how channel splits 
work and to gain some insight into the dynamics of channel switching. At the end of this short paper, 
some speculative observations on the role of anthropogenic changes in upstream flow and sediment 
supply due to dams and/or diversions will be briefly discussed in the context of a large, complex delta 
channel bifurcation on the Red River downstream of Hanoi. 

 
                                       (a)                                                                                          (b) 
 
Figure 1 Schematic diagram of the difference between (a) a distributary channel and (b) a confluence, where 
QW and QS are the water and sediment discharges, respectively. 
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Notably, the emplacement of the large spur dike partially blocking the Pannerdens has a relatively 
modest effect on the flow split, altering the original 70%/30% split to a 74%/26% split. The local 
water-surface elevations and velocities adjust to move almost the same discharge into the channels.  

To consider far-field effects, simulations were constructed using different lower boundary 
conditions and different downstream bed elevations. In Figure 5, an example is shown where a 
simple, large bump has been added in the Pannerdens River in order to locally increase the water-
surface elevation. In this case, the effect on the split is more pronounced, with only a few centimeters 
of increased water-surface elevation in the Pannerdens resulting in a change in the split from 
70%/30% to 82%/18%. This illustrates the important controlling effect that downstream bed and 
water-surface elevations have in determining the split of discharge in distributary channels. In 
recognition of this effect, the Pannerdens actually has an adjustable gate or weir downstream of the 
reach shown; this gate is adjusted to regulate discharge in the branches for flood control and 
navigability of the channels. 
 
DISCHARGE EFFECTS ON CHANNEL SPLITS 
As part of the initiation of a study to understand channel switching and distributary dynamics on a 
large delta on the Red (Hong) River near Hanoi, Vietnam, we collected detailed bathymetric surveys 
of the Hung-Luoc junction near Hung Yen, Vietnam. The data were collected using a portable 
acoustic multibeam echo sounder along with GPS navigation. A photograph of this complex channel 
bifurcation and the measured data are shown in Figure 6, which shows a screen grab of the actual data 
collection process on the river with the boat tracks color-mapped to indicate depth. 
 

 
Figure 6 Satellite photograph overlain with multibeam acoustic bathymetry measurements. The grid shown on 
the figure has a 2-km cell size. The photograph background is several years old and reflects active movement of 
some of the channels. 
 
This channel split is more complicated than that on the Rhine, with the Red River coming from the 
west and splitting into the Luoc River (north channel) and the main stem of the Red (south channel). 
The data shown in Figure 6 was collected in December, 2011 and work continues on obtaining water-
surface elevation and other far-field information necessary to model this entire bifurcation including 
all three splits and two confluences. For this paper, we consider only the initial upstream split. The 
multi-beam bathymetry for this split is shown in Figure 7. The northern channel tends to carry more 
flow than the southern one, but the results suggest that this difference decreases as flow increases.  

Figure 8 shows flow model results for a relatively low flow of 250 m3/s and a relatively high flow 
of 20,000 m3/s. Unlike the Rhine split, the percentage of flow in each channel changes substantially as 
flow increases, with a larger fraction of the discharge flowing into the southern channel at higheflows.  
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