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A 50-year record of NOx and SO2 sources in
precipitation in the Northern Rocky Mountains, USA
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Abstract

Ice-core samples from Upper Fremont Glacier (UFG), Wyoming, were used as proxy records for the chemical
composition of atmospheric deposition. Results of analysis of the ice-core samples for stable isotopes of nitrogen
(δ15N, NO−

3 ) and sulfur (δ34S, SO2−
4 ), as well as NO−

3 and SO2−
4 deposition rates from the late-1940s thru the

early-1990s, were used to enhance and extend existing National Atmospheric Deposition Program/National Trends
Network (NADP/NTN) data in western Wyoming. The most enriched δ34S value in the UFG ice-core samples
coincided with snow deposited during the 1980 eruption of Mt. St. Helens, Washington. The remaining δ34S values
were similar to the isotopic composition of coal from southern Wyoming. The δ15N values in ice-core samples
representing a similar period of snow deposition were negative, ranging from -5.9 to -3.2 ‰ and all fall within the
δ15N values expected from vehicle emissions. Ice-core nitrate and sulfate deposition data reflect the sharply
increasing U.S. emissions data from 1950 to the mid-1970s.

Introduction
The chemical quality of snowfall deposited in high-eleva-
tion areas in the Rocky Mountain region can be affected
by energy generation and associated population growth
[1,2]. High elevation areas in the Wind River Range
(WRR) of Wyoming (figure 1) exceed 4 km above sea
level and are adjacent to areas of accelerating energy
development [3]. For example, over 3,000 natural gas
wells are being installed in the Green River Basin, directly
west of the WRR. Full development of the Jonah gas field
could result in the production of 1,480 metric tons/yr of
NOx and 25.7 metric tons/yr of SO2 [3].
Thin soils and dilute surface-water systems in high-

elevation areas have limited capacities to buffer
increased acidity associated with the airborne contami-
nants of NOx and SO2. Trends in precipitation chemis-
try at NADP/NTN sites in the western United States
have indicated an increase in total N deposition and a

decrease in SO2−
4 deposition from 1981-1998 [4]. In

addition to monitoring trends in N and S deposition,
the isotopic composition of snow, firn, and ice has been
used to differentiate natural and anthropogenic solute

sources. Stable isotope ratios of sulfur in SO2−
4 ,

expressed as δ34S, were monitored in bulk snowpack
samples collected from a network of 52 high-elevation
sites in the Rocky Mountains from 1993 to 1999 [5].
The δ34S values indicated that snowpack S in high-ele-
vation areas is primarily derived from anthropogenic
sources [5].
Changes in δ34S values in firn and ice-core samples

have been used to reconstruct changes in sulfate sources
to central Asia, Greenland, and Antarctica. The variation
in δ34S values in a firn core from central Asia allowed
for the identification of S derived from marine evapor-
ites (+15 ‰) during high dust deposition events and
anthropogenic emissions (+5.4 ‰) [6]. Preindustrial δ34S
signatures in Greenland ice cores were comprised of
marine biogenic emissions, continental dust sources,
background volcanism, and continental biota [7]. Begin-
ning in 1870 A.D., δ34S signatures in the ice-core sam-
ples indicated anthropogenic S sources.
In Antarctica, shallow firn cores collected from the

South Pole contained δ34S values that were used to con-
firm and contrast the different S isotopic signals between
the low-latitude Agunge volcanic eruption in 1963 and
background marine biogenic sulfate [8]. Composited ice-
core samples representing coastal and plateau regions on
the Antarctic ice sheet were found to have similar δ34S
values over the past 1,100 years, indicative of no temporal
change in influencing sources of S [9]. Values of δ34S in
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two ice cores from east Antarctica over the complete gla-
cial/interglacial cycle were significantly lighter than pre-
vious measurements of δ34S from the South Pole [10]. A
likely mechanism for the observed isotopic difference was
Rayleigh-type fractionation as S species are oxidized and
transported toward the East Antarctic Plateau [10]. Mea-
surements of δ34S values in an ice core collected from
west Antarctica were found to be a mixture of marine
and volcanic S sources during the time period from
1935-1976. [11].
Stable isotopes have also been used to gain a better

understanding of N sources in atmospheric deposition.
Historical records of the isotopic composition of N2O in
trapped gases (ice cores) from Greenland and interstitial
air (snowpack) from the South Pole have been used to
differentiate between natural and anthropogenic sources
[12]. The δ15N value of atmospheric N2O has dropped
by 1.7 ‰ during the 20th century, likely due to increas-
ing agricultural activities [12]. In support of these mea-
surements, simulations of N2O(g) have indicated a -1.8
‰ shift in δ15N over the last two centuries, primarily
due to anthropogenic influences [13]. The δ15N of NO−

3
in wet deposition from 33 sites in the northeastern Uni-
ted States was strongly correlated with the location of
coal-fired powerplants [14]. Ice-core samples from
Greenland indicated decreasing δ15N (NO−

3 ) values
with increasing NO−

3 concentrations; however, more

information is needed to confirm this trend and differ-
entiate source area vs. post-depositional processes dur-
ing the firn-to-ice transition [15]. A more recent ice-
core record from Greenland, spanning deposition from
1718 to 2006, revealed a clear trend of decreasing δ15N
(NO−

3 ) values from 11 ‰ (pre-industrial) to -1 ‰
(~1996-2006) [16].
Although previous studies have shown that δ15N

(NO−
3 ) values of snow and ice samples have excellent

potential for providing information on NO−
3 sources,

post-depositional changes in the concentration and iso-

topic composition of NO−
3 needs to be considered

[17,18]. Year-round measurement of δ15N (NO−
3 ) values

in snow pits from Dome C, Antarctica, indicated strong
enrichment relative to atmospheric NO−

3 and loss of

NO−
3 mass from the snow surface due to UV-photolysis

[17]. In contrast to the Antarctica results, a similar
study in Greenland [18] indicated minimal influence of

photolysis on the isotopic composition of δ15N (NO−
3 )

in firn and ice. One possible reason for the different
research results between the two studies may be the
higher snow accumulation rates at the Greenland study
site [18]. Higher rates of snow accumulation were found
to mitigate the magnitude of post-depositional proces-
sing and loss of NO−

3 in the snowpack [19].

Wyoming

WY98

WY06
DH-98-4

DH-91-1

Wind
River
Range

109O37’30”
43O08’15”

43O07’30”
Base from U.S. Geological Survey 
Fremont Peak North, 1:24,000 1993 

CONTOUR INTERVAL 12.2 METERS 
NATIONAL GEODETIC VERTICAL DATUM OF 1929

Upper Fremont 
Glacier

Wind River 
Range

0                0.2 KM 

109O36’15”

                     Explanation 

              DH-91-1         Ice-coring site 

                 WY06          National Atmospheric 
                                     Deposition Program (NADP)  
                                     Monitoring site 
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Glaciers present in the high elevation regions of the
WRR, Wyoming, present a unique opportunity to couple
short-term (1980 to present) NADP/NTN data (sites
WY06 and WY98) trends in the chemistry of atmo-
spheric deposition with similar and longer term data
preserved in glacial ice from the nearby UFG (figure 1).
The UFG is the only glacier within the continental U.S.
where ice cores have been documented to contain
paleoenvironmental and paleoclimatological records
[20-27]. Characteristics present at UFG conducive to
preserving paleonvironmental signals include: (1) ice-
coring site altitudes that exceed 4 km above sea level
(ASL) to minimize meltwater modification of the snow
and ice chemistry and (2) large ice thicknesses (ranging
from 60 to 172 m in the upper half of the glacier) to
provide long-term paleoenvironmental records.
Ice cores exceeding 160 m in length were recovered

from UFG in 1991 and 1998 [23,24]. The 1991 ice core
was estimated to contain 250 years of record as deter-
mined from carbon-14 dating of an insect leg recovered
from near the bottom of the core [23]. This length of
record was subsequently confirmed by a higher-resolu-
tion chronology established with continuous electrical
conductivity measurements [26]. On the basis of these
data, ice at the bottom of UFG in proximity to the 1991
and 1998 drilling sites was likely deposited as snow
prior to 1710 AD.
The overall objective of this paper is to demonstrate

the effectiveness of using the isotopic composition and

concentration of NO−
3 and SO2−

4 in ice-core samples

collected from the UFG to supplement and extend exist-
ing NADP/NTN records. Specific objectives are to: (1)
determine atmospheric deposition sources since the late

1940s by determining the isotopic values of δ34S (SO2−
4 )

and δ15N (NO−
3 ) in ice-core samples; (2) reconstruct

changes in SO2−
4 and NO−

3 wet deposition rates from

ice-core samples representative of snow deposited from
the early-1950s to early-1990s; and (3) couple the results
from objectives 1 and 2 with existing NADP/NTN
deposition records and NOX/SO2 emission records to
identify processes controlling long-term trends in the
loading of S and N at high-elevation sites.

Methods
Field
Ice cores were collected from UFG in 1991 and 1998
using a thermal drill as described in [23]. The ice cores
were collected in 1- and 2-m segments. On-site proces-
sing of the cores included visual inspection, logging, and
density determinations by personnel wearing Tyvek suits
and powder-free Latex gloves. The cores were sealed in
polyethylene bags, placed in plastic core tubes, and

stored in snow vaults until removal from the site to a
freezer truck via a 10-minute helicopter flight. The UFG
ice cores are currently archived at the National Ice Core
Laboratory (NICL) in Lakewood, Colorado.

Laboratory
Ice-core samples were melted according to strict protocols
[21] to minimize sample contamination. Ice cores were
subsampled using a bandsaw frequently cleaned with etha-
nol in cold room laboratories at NICL. Multiple core sec-
tions from each interval were composited in order to
obtain sufficient S and N mass for isotopic analyses. The
surface ice from each subsample was scraped away with a
stainless steel microtome. Each ice sample was thoroughly
rinsed with ultrapure (18.0 megaohm) deionized water
and placed in a prerinsed and covered plastic container.
Each sample was allowed to melt at room temperature for
one hour (or until approximately 15 mL of meltwater had
accumulated). After this initial melt period the sample was
rinsed in the accumulated meltwater, and the melt was
discarded. The remaining sample was allowed to melt in
the covered plastic container at room temperature.
For S isotopic analysis, meltwater volumes corre-

sponding to 90-100 micrograms of sulfate (0.5-6 L) were
evaporated to dryness within covered canisters flushed
by dry nitrogen. The samples were transferred from 4-L
Pyrex beakers to smaller Savillex beakers when they had
been reduced to about 100 mL. Drydown salts were
redissolved in a few mL of deionized water which was
pipetted into tin capsules and evaporated a few hundred
microliters at a time. One to 2 mg of powdered V2O5

was added and the capsules were pinched closed.
Filled capsules were combusted in an elemental analy-

zer to produce SO2 for analysis by isotope ratio monitor-
ing using a Micromass Optima [28]. The elemental
analyzer-mass spectrometer system was standardized
using reference materials previously calibrated against
IAEA-SO-5 and NBS 127 assuming δ34S values for them
of -34.05 and 21.1 ‰, respectively [29]. To evaluate accu-
racy, synthetic Ca2+-Na+-K+ solutions were prepared
with reagents of known isotopic composition and then
dried and analyzed. Sodium-dominated solutions gave
δ34S values indistinguishable from the reagents used to
prepare them; however, solutions with Na+:Ca2+ ratios
equivalent to the UFG samples were about 1 ‰ low. The
cause of this inaccuracy is uncertain. No attempt was
made to correct the UFG measurements for a possible
similar inaccuracy. The S isotopic compositions are
reported in δ-notation relative to Vienna Canon Diablo
troilite. Reproducibility for triplicate analysis of sample
ISO-1 was ±0.4 ‰ (one standard deviation).
For N isotopic analysis, meltwater volumes correspond-

ing to 1.2 micrograms of nitrate (6-80 mL) were
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evaporated to <5 mL by the same method used for sulfur.
Nitrous oxide (N2O) was produced by the denitrifier
method using the Pseudomonas chlororaphis bacterium
(ATCC 43928) [30,31], and the isotope ratios were mea-
sured using a ThermoFinnigan Delta Plus XL equipped
with an autosampler and gas bench device. To calibrate
the measurements and correct for media blanks, aliquots
of the reference materials USGS32 KNO3 (δ

15N = 180 ‰),
USGS34 KNO3 (δ15N = -1.8 ‰), and USGS35 NaNO3

(δ15N = 2.7 ‰) were analyzed along with the unknowns.
Because the NO−

3 in UFG samples is atmospheric in

origin, it is likely to contain excess 17O (commonly
expressed as values of Δ17O greater than zero) [32]. For
single bacterium experiments like those carried out in this
study, excess 17O leads to δ15N results that are erroneously
high by 1 ‰ per 18.8 ‰ increase in Δ17O [33]. Our δ15N
determinations for USGS35, which has a Δ17O value of
21.1 ‰, showed an error corresponding to 1 ‰ per 18.3
‰ increase in Δ17O. The highest Δ17O values that have
been observed to date in modern and ancient atmospheric
nitrate are 39 and 20 ‰, respectively [34-36], and the
results of a global model for the modern atmosphere sug-
gest that Δ17O of atmospheric nitrate is unlikely to exceed
about 30 ‰ in the western United States [37]. If the NO−

3

in UFG samples has Δ17O values of 30 ‰ or lower, the
error in our δ15N results is no more than 1.6 ‰. The N
isotopic compositions are reported in δ-notation relative
to atmospheric N2(g). Reproducibility for triplicate analysis
of USGS34 was ±0.27‰ (one standard deviation).
After filtration with 0.45 μm disposable polysulfone fil-

ters, a modified ion chromatography procedure for low
ionic strength samples was used for the analysis of NO−

3

and SO2−
4 [38]. A Dionex DX-120 was configured with a

250 μL loop to increase instrument sensitivity. Ten per-
cent of each sample batch consisted of quality control
standards. Seven-point calibration curves covering the
range of solutes being measured were run daily. Each
batch contained sets of blanks (18.2 megaohm deionized
water) and a series of USGS standard water reference
samples (SRWS) at intervals of approximately every 10
ice-core samples. SRWS and blanks were monitored dur-
ing sample runs. If the SRWS were not within 10% of
expected values or the blanks were above detection lim-
its, the sample run results were rejected and repeated.
All chemical data from the ice-core analyses can be

found in additional file 1.

Results and Discussion
Ice-core chronology
Tritium, chloride-36, and carbon-14 age-dating methods
[23,39] were combined with the timing of major volca-
nic eruption signals that were evident in the core [26] to

establish an ice-core chronology. The polynomial fit for
the age-depth profile in the ice core [26] was deter-
mined to be

Age (in years) = 0.00739(D)2 + 0.5558(D) (1)

where D is depth below glacier surface, in m. This
age-depth profile is in excellent agreement with known
time horizons in the ice core that include (1) 1963 tri-
tium and 1958 chloride-36 peaks from above-ground
nuclear testing; (2) 1883 Krakatau volcanic eruption; (3)
1815 Tambora volcanic eruption; and (4) 1729 (± 95
years) carbon-14 age date of an insect leg entrapped in
the ice (figure 2).

Variation of δ34S in ice
Seven composite ice-core samples and one snow sample
collected from UFG were analyzed for δ34S (figure 3). The
ice-core samples represent a time period from approxi-
mately 1946 to 1988 and δ34S values in the ice ranged
from 5.1 to 8.1 ‰. Sulfate in snow and corresponding gla-
cier ice can be derived from a variety of natural and
anthropogenic sources such as sea-salt aerosols, biogenic
emissions, entrained dust particles, fossil fuel combustion,
and metal smelting. Volcanic eruptions can also provide

an intermittent short-term source of atmospheric SO2−
4 .

The highest δ34S value in the UFG ice-core samples was
associated with snow deposited primarily during 1980,
coinciding with the eruption of Mt. St. Helens, Washing-
ton, during May 1980. Comparison of the δ34S value in
the ice core (8.1 ‰) with a mean δ34S value of volcanic
ash from the 1980 eruption of Mt. St. Helens (8.3 ‰) [40]
indicates a similar isotopic composition. Corresponding
geochemical signatures of the 1980 Mt. St. Helens volcanic
eruption in the UFG ice-core samples include elevated Hg

Figure 2 Plot of reported volcanic events and isotopic age
dates used to generate a polynomial fit for an age-depth
profile of the Upper Fremont Glacier ice core collected in 1991
[26], Wind River Range, Wyoming. A slightly modified age-depth
profile was developed for the 1998 ice core (DH-98-4) to account
for the additional snow deposited between 1991 and 1998.
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concentrations [27] and elevated electrical conductivity,

SO2−
4 , and Cl- [26]. Ice samples collected from a 1980

deposition horizon on Knifepoint Glacier, approximately 4
km southwest of UFG, contained ash material that had
morphology and chemical composition similar to Mt. St.
Helens ash [20].
Except for the elevated δ34S value in the layer corre-

sponding to atmospheric deposition from Mt. St.
Helens, the remaining δ34S values in the ice-core sam-
ples ranged from 5.1 to 6.8 ‰ (figure 3). The δ34S

values in the UFG ice core were substantially enriched

relative to biogenic SO2−
4 sources (-2.4 ‰) [41] and

massive sulfide deposits in Arizona (0 ‰) [42]. The δ34S
values of massive sulfide deposits were assumed to be
representative of smelter emissions associated with ore
processing in Arizona and New Mexico [5]. Marine
aerosols, which have a δ34S value of +20 ‰ [5], could

not be a large source of SO2−
4 to UFG due to the much

lighter δ34S isotopic values found in the ice.
The WRR and UFG are in close proximity to large

expanses of arid and semi-arid lands composed of soils,
sedimentary rocks, and dry lakebeds containing gypsum
and anhydrite [5]. Therefore, dry deposition of dust on the
surface of UFG during the summer and dust solute
sources associated with snow deposition could comprise a

large natural SO2−
4 source and corresponding isotopic sig-

nal. Marine and non-marine evaporites have δ34S values
that range from +9 to +33 ‰ [43] and are much heavier
relative to δ34S values found in UFG ice-core samples (fig-

ure 3). Median δ34S values of water soluble SO2−
4 from

dry lake beds in arid regions of the southwestern US are
+7.5 ‰ [44], slightly enriched relative to non-volcanic δ34S
values in the UFG ice core. Based on the isotopic composi-

tion of snowpack SO2−
4 samples collected from high-ele-

vation sites in northern New Mexico and southern
Colorado from 1993 to 1999, it was concluded that soils

and lakebeds were not dominant SO2−
4 sources [5]. The

mean δ34S of snow collected from Wyoming during 1993-
1999 had the same δ34S as a snow sample collected from
the surface of UFG in 2001 (figure 3). This suggests that

soils and lakebeds are not dominant SO2−
4 sources; how-

ever, two of the δ34S samples (mid-1960s and mid-1970s)
may reflect contributions from lake-bed sulfate.
Coal from southern Wyoming, commonly used in

electricity-producing power plants in close proximity to
UFG, has a mean δ34S composition of 5.1 ‰ for organic
S [45], similar in isotopic composition to the δ34S values
in ice-core samples from UFG (figure 3). Assuming lim-
ited isotopic fractionation during coal combustion, the
δ34S isotopic composition in the ice-core samples indi-
cates that coal-fired powerplant emissions could be a
dominant source of S deposition to high-elevation areas
of the WRR. Based on U.S. emissions data compiled for
1998, electric utilities contributed the majority of SO2

emissions, representing 68% of total national SO2 emis-
sions [46]. Coal combustion comprised over 90% of
electric utility emissions on a national scale.

Variation of δ15N in ice
Seven composite ice-core samples representing the time
period of deposition from 1951 to 1988 were collected
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from UFG and analyzed for δ15N in NO−
3 (figure 4).

The δ15N values in the ice were all negative and had
similar isotopic composition, ranging from -5.9 to -3.2
‰. Nitrate in snow and corresponding glacier ice can be
derived from a variety of natural (lightning, biogenic soil
processes, and wildfires) and anthropogenic sources
(generation of electricity, industrial processes, and vehi-
cle exhaust) [14]. The mean δ15N value in the UFG ice-
core samples (-4.0 ‰, n = 7) was equal to the mean
δ15N value of six archived precipitation samples col-
lected during 2000 at NADP/NTN site WY98 (C. Ken-
dall, U.S. Geological Survey, written commun., 2008).
The similarity in mean δ15N values between the ice-core
and NADP samples suggests similar NO−

3 source(s).

Ice-core δ15N values were compared with δ15N values
from potential NOX sources from previously published
data (figure 4). Although δ15N values from coal deposits
in the western U.S. were not available, ice-core δ15N
values were substantially lighter than δ15N values of
NOX from coal-fired powerplants in South Africa [47],
simulated lightning [48], or kerogen in North American
coal deposits [49]. Ice-core δ15N values were signifi-
cantly enriched relative to soil-released biogenic NO
values [50]. The δ15N of the ice-core samples all fall
within the δ15N values expected from vehicle emissions
[47,50]. Based on national NOX emission data compiled
by the U.S. Environmental Protection Agency [46], on-
and off-road vehicle emissions comprised 53% of NOX

emissions during 1998 as opposed to electrical genera-
tion (25%) and industrial combustion (12%). Data com-
piled for the western United States indicate that on- and
off-road mobile sources comprise 67% of the anthropo-
genic NOx emissions, with stationary sources comprising
only 22% of the anthropogenic NOx emissions [51].
Based on the comparisons of the tightly constrained
UFG ice-core δ15N values with existing end-member
data, it appears likely that vehicular NOX emissions may

have a large impact on NO−
3 sources in snowfall depos-

ited in the WRR of Wyoming.
The ice-core results conflict with a recent study in the

more densely populated eastern United States where it
was found that NOx emissions from stationary sources
were strongly correlated with spatial variation of δ15N
(NO−

3 ) in wet deposition [14]. One possible reason for

the observed discrepancy with the ice-core results could
be the lower number of stationary NOx sources in the
western United States to support the lower population
density. Additional δ15N values of NOX emissions from
regional biogenic sources, as well as natural gas produc-
tion facilities and coal-fired power plants in the western
U.S. are needed to better assess NO−

3 sources.

Reconstruction of SO2−
4 and NO−

3 deposition
In addition to the S and N isotope data, the ice-core sam-

ples were used to provide an archive of annual SO2−
4 and

NO−
3 deposition amounts that could be used to qualita-

tively extend the NADP/NTN records to the early-1950s.

Dissolved (0.45 μm) SO2−
4 and NO−

3 concentrations from

the 1998 ice-core samples (site DH-98-4) were used in
combination with the average ice-core density value of
0.90 g/cm3 (n = 12) to calculate deposition masses in kilo-
grams/hectare (kg/ha). The age of each ice-core sample
from site DH-98-4 was determined from the modified
age-depth profile developed for the 1991 ice core to
account for the additional snow deposited between 1991
and 1998. Once an age was assigned to each ice-core
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sample, the SO2−
4 and NO−

3 masses from the same year

were summed to represent an annual deposition mass that
could be directly compared to the NADP/NTN deposition

data from sites WY06 and WY98 [52]. Annual SO2−
4 and

NO−
3 masses in kg/ha were calculated for snow deposited

on UFG from 1951 through 1993 (figure 5).
Comparison of the NO−

3 wet deposition data from the

NADP/NTN sites to UFG data suggests that NO−
3

deposition in the WRR may have been less prior to
1980 (figure 5). During the time period of overlapping
NO−

3 data there is some general agreement between
UFG and NADP/NTN annual deposition masses (i.e.
1985, 1988, 1992, 1993, and 1994). Other years of over-

lapping data indicate substantially less annual NO−
3

deposition from the ice-core record relative to NADP/
NTN sites WY06 and WY98 (i.e. 1982, 1983, 1984,
1990, and 1991).
A number of reasons may explain the time periods

when NO−
3 deposition rates recorded in the UFG ice

core were different than the measured deposition rates
at the NADP/NTN sites. At 4,000 m ASL, the UFG ice-
coring site is subject to wind erosion of previously

deposited snow and the corresponding NO−
3 deposition

mass. An on-site snow depth sensor on UFG was used

in combination with snow-density measurements to
document significant snow removal by wind events after
deposition [25]. Data collected on UFG during 1999-
2000 indicated that the snow removal events were less
during the spring, likely due to warmer air temperatures,
resulting in higher-density snowfall. At an elevation of 4
km ASL, UFG is subject to free tropospheric and some-
times stratospheric air, increasing the likelihood of
receiving atmospheric deposition from hemispheric
sources relative to the lower elevation NADP/NTN
sites. The NOx produced from the oxidation of nitrous
oxide in the stratosphere should contain a δ15N of ~ 19
‰ [35], which is significantly enriched relative to the
δ15N (NO−

3 ) values observed in the UFG ice-core sam-

ples (figure 4).
Post-depositional elution of solutes from the snowpack

deposited on UFG could also contribute to lower NO−
3

masses relative to similar time periods at the NADP/
NTN sites. However, chemical and isotopic analyses of
ice from both cores indicate the low-resolution preser-
vation of historical records of environmental change,
including above-ground nuclear weapons testing, air
temperature, volcanic eruptions, and the chemical qual-
ity of atmospheric deposition such as sub-μg/L concen-
trations of atmospheric mercury [20-27].
The deposition data from UFG (1951 through 1993)

indicates an increasing trend in SO2−
4 deposition until

approximately 1980 (figure 5). Beginning in 1980, both
the NADP/NTN (1980 to 2006) sites and the UFG data

indicate slightly decreasing to stable SO2−
4 deposition.

During the time period of overlapping SO2−
4 deposition

data from both UFG and NADP/NTN sites, there is
only one year where similar deposition masses occur
(1986). All remaining years of overlapping data indicate

substantially less annual SO2−
4 deposition from the ice-

core record relative to the NADP/NTN sites. Similar
processes controlling NO−

3 deposition also are likely

affecting the annual SO2−
4 deposition rates on UFG

relative to the NADP/NTN sites.

The annual NO−
3 and SO2−

4 deposition data from

UFG was compared with total U.S. emissions of NOX

and SO2 from 1950 to 1998 (figure 5) as compiled by
the U.S. Environmental Protection Agency. Although
this comparison does not address the overall higher
NOX and SO2 emissions in the eastern U.S. relative to
Wyoming deposition rates, it does provide a historical
perspective on the initiation of the NADP/NTN pro-
gram relative to total emission amounts. The effect of
sharply increasing NOX and SO2 emissions from 1950
to the mid-1970s occurred before the beginning of the
NADP/NTN program; however, the UFG ice-core
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SO4 DEPOSITION, IN KG/HA/YR
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Figure 5 Nitrate (A) and sulfate (B) annual wet deposition at
NADP/NTN sites WY06 and WY98 and total deposition
calculated from ice core DH-98-4 compared to total U.S.
emissions of NOx (A) and SO2 (B) from 1950 to 1998 [46].
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samples provide a record of the NO−
3 and SO2−

4

deposition effects during this time of increasing emis-
sions (figure 5). Although post-depositional elution pro-

cesses may have decreased the total NO−
3 and SO2−

4

masses, the trends in deposition from 1950 to the mid-
1970s appear to reflect the sharply increasing U.S. emis-
sions data during this same time period. The NADP/
NTN program sites in Wyoming were initiated after the
peak national SO2 emissions in 1973 and substantially
smaller annual NOX emissions after 1978. The decrease
in U.S. SO2 emissions after the early-1970s is not
reflected by the UFG ice-core data (figure 5).

Given the observed increase in SO2−
4 and NO−

3 deposi-

tion in the UFG ice-core samples since the mid-1940s, it is
unclear why no distinctive temporal trend in the isotopic
composition is observed during the same time period.

This may suggest that most of the SO2−
4 and NO−

3

deposition to the WRR since the mid-1940s has been
dominated by anthropogenic inputs from a common
source and any increases in deposition amounts contain
similar isotopic signatures. Additional reasons for the lack
of an isotopic trend could include: (1) limited period of
record starting after the existence of anthropogenic inputs;
(2) large sample composites for isotope samples covering
multiple years of deposition that mask finer scale trends

evident in the SO2−
4 and NO−

3 deposition data; (3) vary-

ing deposition amounts from local, regional, and global
sources; and (4) isotopic fractionation from postdeposi-
tional processes in the firn and ice. Additional studies are
needed to assess the impact of postdepostional processes

on the preservation of δ34S (SO2−
4 ) and δ15N (NO−

3 )

values at the UFG coring site. Recent work at the Summit
site, Greenland, found a potentially minimal influence of

photolysis on the isotopic composition of NO−
3 in firn

and ice, in part due to high accumulation rates [18].
Isotopic analyses from other sections of the UFG ice

core (including pre-industrial) would provide additional
insight into the existence of isotopic trends. Unfortunately,

the low concentration of NO−
3 and SO2−

4 combined with

an insufficient amount of ice-core samples representing
atmospheric deposition prior to ~ 1945 does not allow for
sufficient sample mass to support S and N isotopic ana-
lyses. Despite this short-coming, results from these ice-
core data provide insight to the long-term wet deposition

of NO−
3 and SO2−

4 in pristine areas of the western United

States that were previously not available.

Summary
Glaciers in the WRR present a unique opportunity to
couple short-term (1980 to present) NADP/NTN data

trends in the chemistry of atmospheric deposition with
longer-term data, including stable isotope data, pre-
served in glacial ice. The δ34S values in seven ice-core
samples representing snowfall deposited from approxi-
mately 1946 to 1988 were similar, ranging from 5.1 to
8.1 ‰. The highest δ34S value in the UFG ice-core sam-
ples was associated with snow deposited primarily dur-
ing 1980 and coincident with the eruption of Mt. St.
Helens, Washington, during May 1980. The measured
δ34S value of 8.1 ‰ in the ice core was in close agree-
ment with the mean δ34S value of 8.3 ‰ of volcanic ash
from the 1980 eruption. The remaining δ34S values from
ice-core samples were substantially enriched relative to

biogenic SO2−
4 sources and slightly depleted relative to

δ34S values of water-soluble SO2−
4 from dry lake beds in

arid regions of the southwestern United States. Coal
used in power plants in close proximity to UFG was
similar in δ34S isotopic composition suggesting that
power plant emissions may be a dominant source of S
deposition to the WRR.
The mean δ15N value in the UFG ice-core samples

(-4.0 ‰, n = 7) was equal to the mean δ15N value of six
archived precipitation samples collected during 2000 at
NADP/NTN site WY98, suggesting similar NO−

3 source

(s). Ice-core δ15N values were substantially depleted
relative to δ15N values of NOX from coal-fired power-
plants, North American kerogen deposits, or simulated
lightning and were substantially enriched relative to
soil-released N. The ice-core samples were similar in
isotopic composition to δ15N values measured from
vehicle emissions. This similarity in isotopic composi-
tion is consistent with NOX emission data compiled for
the U.S. during 1998 that indicates vehicle emissions as
the dominant source of NOX.

Comparison of NO−
3 and SO2−

4 wet deposition data

from the NADP/NTN sites to UFG data suggests an
increasing trend in annual deposition from 1950 to the
installation of the NADP/NTN sites in western Wyom-
ing during the early-1980s. Post-depositional elution

processes may have decreased the total NO−
3 and SO2−

4

masses preserved in UFG ice-core samples; however, the
ice-core deposition data reflect the sharply increasing U.
S. emissions from 1950 to the mid-1970s. Integration of
the UFG ice-core data with the existing NADP/NTN
data provides a longer-term, yet more qualitative, histor-
ical perspective on atmospheric deposition in the WRR.
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