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The Secret to Successful Solute-Transport
Modeling
by Leonard F. Konikow

Abstract
Modeling subsurface solute transport is difficult—more so than modeling heads and flows. The classical

governing equation does not always adequately represent what we see at the field scale. In such cases, commonly
used numerical models are solving the wrong equation. Also, the transport equation is hyperbolic where advection
is dominant, and parabolic where hydrodynamic dispersion is dominant. No single numerical method works
well for all conditions, and for any given complex field problem, where seepage velocity is highly variable, no
one method will be optimal everywhere. Although we normally expect a numerically accurate solution to the
governing groundwater-flow equation, errors in concentrations from numerical dispersion and/or oscillations may
be large in some cases. The accuracy and efficiency of the numerical solution to the solute-transport equation are
more sensitive to the numerical method chosen than for typical groundwater-flow problems. However, numerical
errors can be kept within acceptable limits if sufficient computational effort is expended. But impractically long
simulation times may promote a tendency to ignore or accept numerical errors. One approach to effective solute-
transport modeling is to keep the model relatively simple and use it to test and improve conceptual understanding
of the system and the problem at hand. It should not be expected that all concentrations observed in the field can
be reproduced. Given a knowledgeable analyst, a reasonable description of a hydrogeologic framework, and the
availability of solute-concentration data, the secret to successful solute-transport modeling may simply be to lower
expectations.

Introduction
The practice of numerical modeling of groundwater

flow and transport processes is now in its fifth decade.
During this time, the availability, cost, and computational
power of computers have greatly evolved and improved,
and so have the art, science, and practice of groundwa-
ter modeling. During the first decade or two of practice,
applications were dominated by those who developed or
modified the computer source code for each model appli-
cation to a specific site, area, or aquifer. Today, applica-
tion of groundwater models is dominated by the use of
widely accepted, generic, public-domain codes, such as
MODFLOW (McDonald and Harbaugh 1988; Harbaugh
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et al. 2000; Harbaugh 2005) and MT3DMS (Zheng and
Wang 1999), coupled with the use of pre- and postpro-
cessing software (Graphical User Interfaces or GUIs) to
facilitate model application and analysis of results for
complex three-dimensional (3D) problems. In fact, GUIs
make it easier for some with little experience in analyzing
groundwater transport problems to apply a solute-transport
model to a field problem.

Modeling groundwater flow (and head distributions)
is much more common than simulating solute transport
(and concentration distributions) in groundwater. Expe-
rience indicates that the latter is more difficult and less
successful than the former, although “success” certainly
depends on the context of the problem. One reason is that
solute-transport modeling for a specific area requires an
accurate model of the flow field, so the transport model
must be linked to and added on to a flow model. But
a flow model does not require a solute-transport model.
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So groundwater-flow models are inherently simpler, in
that they simulate just one primary process, whereas
solute-transport models are inherently more complex, in
that they require simulation of both flow and transport
processes. There are several additional fundamental dif-
ferences between flow and transport modeling that cause
the latter to be more difficult, more complex, and generally
less reliable.

Because many site contamination problems involve
the design of remediation plans for reactive chemicals,
many recent practical applications of solute-transport
models involve the use of reactive transport models. How-
ever, the consideration of geochemical and microbiologi-
cal reactions adds much complexity to the numerical and
data aspects of the simulations relative to simulating the
advection and dispersion of a single nonreactive species,
which is basic to understanding and modeling reactive
transport. Similarly, if a contaminant is immiscible or
partly miscible with water, the physics of the problem
becomes much more complex.

The purpose of this paper is to review determin-
istic solute-transport modeling and discuss some funda-
mental differences between flow and transport modeling,
the development and application of transport models to
practical problems, and whether the basic processes and
mathematical aspects of advective-dispersive transport
of nonreactive species are adequately understood. (For
brevity, we do not review stochastic approaches, which
are less commonly applied by practicing groundwater
scientists and engineers.) The focus is on nonreactive
solutes that are miscible with water—while recognizing
that many serious contamination problems involve trans-
port of reactive species and(or) fluids that may not be
fully miscible with water. The issues are characterized
in a framework of four major areas of concern. The
first is conceptualization (how well does the classical
governing equation describe the processes controlling
solute transport?). The second is numerical accuracy (how
well do standard numerical methods solve the governing
equation?). The third issue focuses on parameter estima-
tion (how accurately and precisely can we measure and
describe the boundary conditions and properties that affect
solute transport?). The final issue is a broader one that
includes general concerns about model complexity and
predictive accuracy.

Conceptual Issues
The theoretical basis and underpinning of a solute-

transport model is the governing equation that is solved by
the model. It is reasonable to ask, how well does the clas-
sical solute-transport equation describe the processes and
solute behavior observed in complex field environments?
As transport is dependent on flow, so the solute-transport
equation is intimately linked with the groundwater-flow
equation.

A general form of the equation describing the tran-
sient flow of a compressible, single-phase fluid of uni-
form density in a heterogeneous anisotropic aquifer

may be derived by combining Darcy’s law with the
continuity equation. A general groundwater-flow equation
may thereby be written in Cartesian tensor notation as:

∂

∂xi

(
Kij

∂h

∂xi

)
= Ss

∂h

∂t
+ W ∗ (1)

where Kij is hydraulic conductivity (a second-order ten-
sor) [L T−1]; h is hydraulic head [L]; SS is specific stor-
age [L−1]; t is time [T]; W* is volumetric flux per unit
volume [T−1]; and xi are the Cartesian coordinates [L].
The equation can generally be applied if Darcy’s law
applies (and gradients of hydraulic head are the only
driving force) and can be modified appropriately if fluid
properties (density and viscosity) are variable.

The migration of chemicals dissolved in groundwater
by advective and dispersive processes will be affected by
the velocity of the flowing groundwater. Given the head
distribution calculated by solving Equation 1, groundwa-
ter velocities can be calculated by dividing the specific dis-
charge, computed using Darcy’s law, by the active cross-
sectional area through which flow occurs, as follows:

Vi = qi

ε
= −Kij

ε

∂h

∂xj

(2)

where Vi is the seepage velocity (also called average lin-
ear velocity or average interstitial velocity) [L T−1]; qi is
specific discharge [L T−1]; and ε is the effective porosity
of the porous medium.

An equation describing the transport and dispersion
of a nonreactive dissolved chemical in flowing ground-
water may be derived from the principle of conservation
of mass (Bear 1979; Bear and Cheng 2010; Domenico
and Schwartz 1998; Bredehoeft and Pinder 1973). Con-
servation of mass requires that the net mass of solute
entering or leaving a specified volume of aquifer dur-
ing a given time interval must equal the accumulation
or loss of mass stored in that volume during the interval.
This relation may then be expressed mathematically by
considering all fluxes into and out of a representative ele-
mentary volume (REV), as described by Bear (1979) and
Bear and Cheng (2010). This leads to the development of
the following classical form of the advection-dispersion
equation (ADE):

∂(εC)

∂t
= ∂

∂xi

(
εDij

∂C

∂xj

)
− ∂

∂xi

(εCVi) − C ′W ∗ (3)

where C is the concentration [M L−3]; Dij is the coeffi-
cient of hydrodynamic dispersion (a second-order tensor)
[L2 T−1]; and C ′ is the concentration of the solute in the
source or sink fluid [M L−3]. Domenico and Schwartz
(1998, p. 298) state, “The advection-dispersion equation
is the workhorse of modeling studies in ground-water
contamination.”

The first term on the right side of the ADE represents
the rate of change in concentration due to hydrody-
namic dispersion, which includes both molecular diffu-
sion as well as mechanical dispersion. This expression
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is analogous to Fick’s Law describing just a diffusive
flux. This Fickian model assumes that the driving force
is the concentration gradient. The relatively smooth and
gradual spreading indicated by a Fickian diffusion model,
however, is not always consistent with field observations
and is the subject of much ongoing research and field
study. The second term represents advective transport and
describes the movement of solutes at the average seepage
velocity of the flowing groundwater. The third term rep-
resents the effects of mixing with a source fluid that has a
different concentration than the groundwater at the loca-
tion of the recharge or injection. Additional terms can be
added to the right side of Equation 3 to represent addi-
tional processes, such as geochemical reactions, radioac-
tive or microbial decay/degradation, and matrix diffusion
(dead-end pores or dual porosity) (e.g. Grove 1976;
Domenico and Schwartz 1998; Zheng and Bennett 2002).

By assuming that the storage effects associated with
transient flow are negligible and that the porosity term is
constant spatially (Zheng and Bennett 2002; Goode 1992),
Equation 3 can be further simplified to

∂C

∂t
= ∂

∂xi

(
Dij

∂C

∂xj

)
− ∂

∂xi

(CVi) − C ′W ∗

ε
(4)

Although the assumption that porosity is spatially
constant may be quite reasonable and induce very little
error even when it varies spatially, it tends to mask another
issue of concern about porosity that is generally over-
looked or ignored. Specifically, the porosity term on the
left side of Equation 3 reflects the mass storage of solute
within a volume of aquifer, and hence reflects the total
(or bulk) porosity. The right side of Equation 3, however,
reflects a porosity that is effective for the fluxes of water
and solute—more a measure of mean cross-sectional area
at the pore scale and interconnectedness of pores—and
which will have a value less than that of the total porosity.
If a single value representative of the effective porosity is
used, then the solute storage capacity (and mass stored)
would be underestimated; if a single value representative
of the total porosity is used, then the average seepage
velocity would be underestimated. Although dual poros-
ity (matrix diffusion) models explicitly handle this, such
models are typically applied to fractured rock systems and
not to classical porous media.

A potentially more serious flaw in the governing ADE
relates to the Fickian dispersion model in which the con-
centration gradient is the driving force for the spreading
of solute. Bear (1979) presents a derivation of the gov-
erning partial differential equation by averaging over an
REV around a point. Bear (1979, p. 232) argues that the
mass flux of a solute at a point in a porous medium
consists of two terms—the advective transport (solute
moving with the average velocity of the water) and “an
additional flux at the macroscopic scale—the dispersive
flux—introduced by the process of averaging.” The lat-
ter represents the solute flux carried with the fluctuating
velocity—that is, at water velocities that deviate from the
mean. He further states, “This new phenomenon at the

macroscopic scale (as it does not exist at the microscopic
one) represents the loss of information by the passage
from one scale of description to another, larger, one.”
One way to view this is that the upscaling recognizes that
(1) the bulk of the dispersive flux is actually related to
a variance in velocity (and advection); and (2) the actual
population of velocities cannot be explicitly measured or
known.

Bear (1979) then develops the classical form of
the dispersion term from the statement, “As a working
hypothesis, we shall assume that the dispersive flux can
be expressed as a Fickian type law,” and then proceeds
to develop the classical description of hydrodynamic dis-
persion in the governing equation. Mechanical dispersion
is a function both of the intrinsic properties of the porous
media (such as heterogeneities in hydraulic conductivity
and porosity) and of the fluid flow. These relations are
commonly expressed as:

Dij = αijmn

VmVn

|V | + Dm, i, j, m, n = 1, 2, 3 (5)

where αijmn is the dispersivity of the porous medium (a
fourth-order tensor) [L]; Vm and Vn are the components
of the flow velocity of the fluid in the m and n directions,
respectively [L T−1]; Dm is the effective coefficient of
molecular diffusion [L2 T−1]; and |V | is the magnitude
of the velocity vector [L T−1] (Scheidegger 1961; Bear
1979; Domenico and Schwartz 1998).

From the perspective of Bear’s “working hypothe-
sis,” the Fickian model for mechanical dispersion does
not have a completely rigorous mathematical derivation.
Bear’s assumption indicates that the spreading of solute
caused by deviations in velocity from the mean can be rea-
sonably approximated by a conceptual model in which the
spreading is driven by the concentration gradient. This is
the weak theoretical link because the concentration gradi-
ent, for the most part, is not the actual driving force. Does
this make any practical difference? Although the Fickian
model appears reasonable in some (or even many) sit-
uations, especially for relatively homogeneous media, I
think that in many cases and field applications its con-
ceptual weakness makes more of a difference than most
hydrogeologists suspect.

Several key characteristics of a Fickian dispersion
model are listed in Table 1. The order listed reflects a sub-
jective assessment (and ranking from least to most) of how
serious the concern is in terms of impact on the applica-
tion of solute-transport models to practical field problems.
First, after a solute or contaminant is introduced at a point
in the porous medium, the exact solution to the equation
indicates that there will be non-zero positive values of
its concentration everywhere in the system. However, the
values at even moderate distances may be so small as to
have no practical significance. Nevertheless, the concep-
tual model indicates unrealistically that some molecules
travel great distances in very short times.

A second issue is upstream dispersion (although this
derives from the sixth issue listed). If groundwater flow
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Table 1
Selected Characteristics of Fickian Model for

Hydrodynamic Dispersion

1. C > 0 for t > 0 at all locations
2. Upstream dispersion
3. Irreversible spreading
4. No scale effects (macrodispersion)
5. Gaussian normal distribution
6. Dispersive flux proportional to concentration gradient

Figure 1. Schematic representation of concentration con-
tours for a plume emanating from a hypothetical constant-
concentration source in a steady uniform flow field under
(A) conventional conceptualization of advection and hydro-
dynamic dispersion, and (B) conceptualization that mechan-
ical dispersion is driven by variability in advective velocity
with local mixing.

is toward a contaminant source (or peak concentration),
then the hydraulic gradient will be in the opposite direc-
tion than the concentration gradient, which will drive a
dispersive flux in opposition to the advective flux and the
plume will spread in an upstream direction (Figure 1A).
However, if spreading is actually related to deviations in
velocity about the mean, both in magnitude and in direc-
tion at multiple scales, and all velocity vectors are in
the same general (downstream) direction, then all solute
will migrate downstream, though at a range in rates
and with transverse spreading (Figure 1B). The velocity

distribution will yield an apparent dispersion in the down-
stream direction due to advective variability (analogous
to one that would be driven by a concentration gradi-
ent) and local pore-scale mixing, but would not yield
any upstream migration or spreading due to mechanical
dispersion—contrary to what is predicted by the Fickian
dispersion model—because there are no macroscale fluid
velocity components in the upstream direction.

Third, the Fickian model also implies irreversible
spreading. That is, if a plume evolves from a point source
in a unidirectional flow field, one would expect longitu-
dinal spreading in the direction of flow and transverse
spreading perpendicular to flow. If, at some later time,
the flow field is perfectly reversed, the transport direc-
tion would be in the opposite direction, but the plume
should not then shrink back toward the original source;
instead, it should continue to disperse relative to the new
flow direction. However, consider a layered system in
which each layer has a different hydraulic conductiv-
ity (Figure 2). After a solute is introduced with a step
increase in concentration at a fluid source, it migrates
and spreads in response to velocities that can vary sub-
stantially between layers. This would lead to a relatively
small amount of local dispersion within each layer, but a
much greater macrodispersion because of substantial dif-
ferences in advective transport distances between layers.
Mercado (1967), Matheron and de Marsily (1980), and
Güven et al. (1984), among others, examined this type of
stratified system and concluded that for flow and disper-
sion parallel to the bedding, and with little to no transverse
dispersion, Fickian behavior will require very large travel
distances or not occur at all and the classical ADE does not
apply.

If observations of the details of the concentration dis-
tribution were limited and only available from relatively
long or fully penetrating wells that sampled and mixed
water from the entire thickness of the aquifer (such as
well “a” in Figure 2), it would appear that the system
had a relatively high dispersivity. On the other hand,
breakthrough curves from point samplers would reflect
smaller values of dispersivity. Ignorance of the detailed

Figure 2. Illustration of solute migration in a hypothetical idealized layered aquifer system having substantial differences in
average velocity among individual layers within the aquifer.
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distribution of velocities (and large-scale variations in
advective transport) is compensated by increasing disper-
sion in the framework of a Fickian model. If pumping
on the left side were used to reverse the flow field, then
after some time the vertically averaged solute distribution
would appear to partly reverse itself—seemingly (but not
actually) contradicting the principle of irreversibility. The
small spreading within each layer would continue to grow
after flow reverses, but the bulk of the initial spreading by
differential advection seen in Figure 2 would be reversed
by advection.

One might counter that this reversibility is an artifact
of being ignorant of important internal structure within
the aquifer and not explicitly accounting for the individ-
ual layers. That is true, and the issue of reversibility is
not itself a major concern, but the point is that the gov-
erning equation is derived by averaging up from the pore
scale to the microscopic scale, and our numerical models
upscale further on the same principle to a macroscale and
field scale. At whatever scale we operate, some internal
structure will be present at the smaller scale, and we will
likely be ignorant of most of it and of the true velocity
distribution. Field observations of “non-Fickian” solute
behavior are consistent with the notion that the Fickian
process inherent in the assumed governing equation is not
actually the process controlling or driving most of the
observed spreading.

Stochastic theory helps resolve some of these issues.
Frind et al. (1987) examined a conceptually similar but
more generalized case of microstatification based on the
tracer test site at Borden, Canada (Sudicky, 1986). Their
results show convergence of effective dispersivity to the
theoretical macrodispersivity value over a travel distance
of about 50 correlation lengths of hydraulic conductiv-
ity. The transfer of mass between neighboring streamtubes
of different velocity, resulting from transverse dispersion
and molecular diffusion, would reduce or eliminate any
apparent reversibility.

Next, the dispersivity parameter is conceived as a
measurable physical parameter that primarily reflects the
nature of the heterogeneity in the system. There is noth-
ing in the classical conceptualization of the dispersivity
parameter indicating that its value should be scale-
dependent, yet that is what field observations tend to
indicate and some stochastic transport theories allow. For
example, most reported values of the longitudinal dis-
persivity component (αL) fall in a range from 0.01 to
1.0 times the scale of the measurement (Anderson 1984;
Gelhar et al. 1992). The apparent scale dependence of
dispersivity values may simply arise from the conceptual-
ization deficiency of mechanical dispersion being driven
by the concentration gradient rather than by the velocity
variability. Nevertheless, we usually estimate the value of
dispersivity in a model by calibration (history matching)
to observed concentrations in a tracer test or historical
plume, and then expect that value to yield accurate pre-
dictions when the model is used to simulate transport
over longer times and greater distances than previously
experienced.

Another related issue is that the Fickian dispersion
model is consistent with a Gaussian normal distribu-
tion in the spreading of solute about the center of mass
(unless otherwise influenced by boundary conditions).
But observed breakthrough curves across scales from lab
experiments to field studies often show anomalous early
arrivals and long tails. The expected normal distribution in
spreading implies that the deviations in velocity about the
mean across a face of the REV are normally distributed (or
nearly so, or sufficient time has elapsed to damp out any
extremes). This might occur in an ideally homogeneous
porous medium, or otherwise if variable hydraulic prop-
erties are themselves randomly and normally distributed.
But there is much hydrogeological evidence that hetero-
geneity is more complex and occurs across a range of
scales, including microscopic and extending to very large
field scales (termed “megascopic” by Bear and Cheng
[2010]). Neuman and Di Frederico (2003) state, “Geol-
ogy is ubiquitously heterogeneous, exhibiting both dis-
crete and continuous spatial variations on a multiplicity
of scales.”

Zinn and Harvey (2003) elucidate the importance of
considering the connectedness of high-conductivity mate-
rials in porous media, which can yield pathways for
enhanced solute transport and overall non-Fickian trans-
port behavior. Fractures in consolidated rock aquifers
would represent one extreme example of highly con-
nected, high-conductivity regions or zones, but simi-
lar connectedness can form by stratigraphic controls in
unconsolidated sediments deposited in a variety of geo-
logic settings. In fact, the layers represented in Figure 2
clearly have a high connectedness and spatial persistence
of their hydraulic properties in the horizontal direction.
Such patterns of persistence in heterogeneity are not con-
sidered in the REV-based derivation of the governing
equation and would not yield a smooth and normal distri-
bution of velocities across a face of the REV analogous
to a Fickian dispersive flux. One might wonder, “How
representative is the Representative Elementary Volume?”

Finally, perhaps most basic of the issues, and one
which threads through the previous five, is that the Fick-
ian model relates the dispersive flux to the concentration
gradient. This is reasonable for molecular diffusion, but
that is typically just a very small component of hydro-
dynamic dispersion. However, it may not be reasonable
for mechanical dispersion in that much of the appar-
ent dispersive flux arises from unknown variability in
advective transport. The Fickian model (with or without
macrodispersivity) remains a “working hypothesis” that
often works well, but sometimes does not.

A better governing equation is needed, and some
promising research is directed toward that goal. Multi-
rate mass-transfer models account for solute flux between
mobile and immobile porewater by adding additional
terms to the classical transport equation, which can help
explain some of the observed non-Fickian tailing phenom-
ena (e.g., Haggerty and Gorelick 1995). Formulating the
transport equation in terms of fractional derivatives can
account for non-Fickian long-tailed breakthrough curves
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(e.g., Benson et al. 2000; Baeumer et al. 2001). The con-
tinuous time random walk (CTRW) approach essentially
accounts for non-Gaussian distributions and persistence in
hydraulic properties and velocity, enabling CTRW to sim-
ulate non-Fickian transport behavior (e.g., Berkowitz et al.
2006). Cvetkovic and Haggerty (2002) develop a com-
bined framework of CTRW with multiple-rate exchange
that can simulate anomalous transport behavior in hetero-
geneous media. These alternative conceptual approaches,
however, impose additional data requirements for estimat-
ing new or different parameters that may not be hydro-
logically intuitive or readily measureable.

Numerical Issues
Regardless of any flaws or weaknesses in the con-

ceptualization of the classical solute-transport equation,
for now it represents the widely accepted state of the art
in practical transport modeling. Thus, it is appropriate to
ask, how accurately can we solve this equation?

The partial differential equations describing ground-
water flow and transport can be solved mathematically
using either analytical solutions or numerical solutions.
The advantages of an analytical solution, when it is pos-
sible to apply one, are that it provides an exact solution
to the governing equation and is often relatively simple
and efficient to evaluate. But obtaining the exact analytical
solution to the partial differential equation requires that the
properties and boundaries of the flow and transport sys-
tem be highly and perhaps unrealistically idealized. For
most field problems, the mathematical benefits of obtain-
ing an exact analytical solution are probably outweighed
by the errors introduced by the simplifying assumptions
for the complex field environment that are required to
apply the analytical model.

The solute-transport equation is, in general, more
difficult to solve numerically than the groundwater-flow
equation, largely because the mathematical properties of
the transport equation vary depending upon which terms in
the equation are dominant in a particular situation. When
solute transport is dominated by advection, as is common
in many field problems, then Equation 3 approximates a
hyperbolic type of equation. But if a system is domi-
nated by dispersive fluxes, such as might occur where
fluid velocities are relatively low and aquifer dispersiv-
ities are relatively high, then Equation 3 becomes more
parabolic in nature (similar to the transient groundwater-
flow equation).

The numerical methods that work best for parabolic
partial differential equations are not best for solving
hyperbolic equations, and vice versa. Thus, no one numer-
ical method or simulation model will be ideal for the entire
spectrum of groundwater-transport problems likely to be
encountered in the field. Further compounding this diffi-
culty is the fact that in a complex field environment, the
seepage velocity of groundwater is highly variable, even if
aquifer properties are relatively homogeneous (because of
the effects of complex boundary conditions). Thus, in low-
permeability zones or near stagnation points, the velocity

may be close to zero and the transport processes will
be dominated by diffusion; in high-permeability zones or
near stress points (such as pumping wells), the velocity
may be several meters per day and the transport processes
will be advection-dominated. Furthermore, in a numerical
model, local advective dominance is also affected by grid
spacing and dispersivity, as reflected in the grid Peclet
number (e.g., Zheng and Bennett 2002). The consequence
is that for the same system, the governing equation may
be more hyperbolic in one area (or at one time) and more
parabolic in nature in another area (or at another time).
If that is the case, no matter which numerical method is
chosen as the basis for a simulation model, it will not be
ideal or optimal over the entire domain of the problem,
and numerical errors (in the form of numerical disper-
sion or oscillations) might be introduced somewhere in
the solution (e.g., Bredehoeft 1971; Zheng and Bennett
2002). These numerical errors and issues typically are
not so large as to impinge on the overall value and use-
fulness of the model, but one needs to recognize these
inherent difficulties, strive to minimize and control the
numerical errors, and not confuse numerical precision
with predictive accuracy. These numerical issues have
also led to numerous attempts to develop alternative oper-
ator splitting numerical methods that will work better
for solving the transport equation than standard numer-
ical methods (such as method of characteristics [MOC]
[e.g., Konikow and Bredehoeft 1978], random walk [e.g.,
La Bolle et al. 1996], and Eulerian-Lagrangian Localized
Adjoint Method [ELLAM] [e.g., Celia et al. 1990]).

Numerical dispersion can be controlled by reducing
the grid spacing, decreasing time-step size, or adjusting
the formulation of the difference equations. Unfortunately,
many approaches that eliminate or minimize numerical
dispersion introduce oscillatory behavior, causing over-
shoot behind a moving front and undershoot ahead of the
front. Undershoot can result in the calculation of negative
concentrations, which are obviously unrealistic. However,
overshoot can introduce errors of equal magnitude that
may go unnoticed because the value is positive in sign
(although greater than the source concentration, so still
unrealistic). Oscillations generally do not introduce any
mass-balance errors (unless negative values are artificially
reset to zero), and they often dampen out over time. Many
approaches to reducing numerical errors require increased
computational times, so tradeoffs between accuracy and
efficiency may have to be assessed.

Numerical solution of the groundwater-flow equation
usually is relatively efficient. Solving the transport
equation for the same simulation time as the flow
equation, however, may require substantially greater com-
putational time. In practical terms, a simulation of solute
transport over a period of years to decades using a fine
discretization for a large region may require many hours
or days to complete on a modern personal computer.

In solving the transport equation, classical numeri-
cal methods exhibit the proportionately largest numerical
errors where the relative (or dimensionless) concentrations
(C/Cmax) are lowest. Dougherty and Bagtzoglou (1993)
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show that the error-to-signal (or noise-to-signal) ratio can
become quite large (more than 0.1) where the relative
concentrations are less than 0.01. In contaminated ground-
water systems, samples from supply wells and monitoring
wells frequently indicate concentrations less than 0.01 of
the source concentration, though such relative concentra-
tions are often greater than regulatory limits, so caution
in accepting and assessing simulated values is warranted.

In designing and applying a solute-transport model
for a field site, one must specify appropriate boundary
conditions for the problem domain. Contaminants typ-
ically enter a groundwater system with a fluid source
(recharge) that contains the contaminant. Consequently
a third-type solute boundary condition is a logical
match—in which the source concentration is specified
and associated with fluid recharge but the solute con-
centration in the aquifer is associated with outflow. It
is common to specify a first type (specified-value or
constant-concentration) boundary condition to selected
nodes of the grid. When a constant-value condition is
imposed in a transport model, a solute flux will be forced
into or out of that cell in order to maintain the speci-
fied value of concentration, and the flux can occur by
both advection and dispersion processes (e.g., Konikow
et al. 1997). However, it is rare that hydrogeological and
geochemical conditions in the field will be such that the
concentration of a solute at a point will remain fixed
in time regardless of changes in the accompanying flow
field or in local concentration gradients. Batu (2010) fur-
ther demonstrates that the use of a constant-concentration
boundary condition for a solute subject to degradation can
induce mass-balance errors or lead to an overestimation
of the value of the degradation rates. Thus, except perhaps
to represent concentration in a large open body of water
bounding an aquifer, or for a boundary far from an area
containing a solute plume of interest, it would rarely be
realistic or appropriate to apply a constant-concentration
boundary condition to a field problem.

A numerical experiment illustrates the possible effects
of the numerical solution algorithm on the accuracy of
the calculated concentrations. The example implements a
variety of solution algorithms used in two widely available
public-domain solute-transport models (MT3DMS and
MODFLOW-GWT [Konikow et al. 1996]) and compares
results obtained after applying them to a hypothetical
contamination problem for a nonreactive solute species.

The test problem represents an analog based on,
and greatly simplified from, the groundwater contamina-
tion problem at the Rocky Mountain Arsenal, Colorado
(Konikow 1977). The aquifer is a thin, gently sloping,
alluvial system with moderate hydraulic conductivity. The
source of contamination (C ′ = 1000 mg/L) is an unlined
disposal pond, represented in the model as two adjacent
injection wells. A freshwater reservoir (lake) is located on
the north boundary of the model, and a river is located
along the south boundary of the model. It is assumed that
the aquifer receives no recharge from precipitation and has
a uniform hydraulic conductivity (K = 1 × 10−4 m/s), an
effective porosity that varies spatially in an uncorrelated

Figure 3. Boundary conditions, finite-difference grid, and
calculated steady-state heads for solute-transport test prob-
lem.

random manner about a mean value of 0.20, and a steady-
state two-dimensional flow field.

The boundary conditions produce groundwater flow
that is generally from north to south, influenced by irreg-
ular lateral and two internal impermeable zones as well as
the river acting as a sloping constant-head boundary on the
southern edge of the model domain (Figure 3). Grid cells
are 100 m on a side. No analytical (or “true”) solution is
available for this problem, although it is presumed that the
documented numerical methods will converge to the true
solution as grid size and time-step size are reduced. It is
not the goal of this numerical experiment to assess which
model is better or best in any sense, in part because the
relative strength of one method over another can change
greatly depending on the characteristics of the test prob-
lem. Instead, the goal is to demonstrate possible variability
in answers as affected by the choice of generic model and
numerical algorithm while using typical grid spacing for
the scale of the problem.

This test problem was simulated for 20 years
using various solution algorithms available in both
MODFLOW-GWT (Konikow et al. 1996; Heberton et al.
2000) and MT3DMS (Zheng and Wang 1999), includ-
ing two finite-difference algorithms (finite-difference solu-
tion, FD and total-variation-diminishing finite-difference
method, TVD) and seven different Eulerian-Lagrangian
methods (ELLAM and six varieties of the MOC). Table 2
compares the results for these simulations for several mea-
sures of accuracy and efficiency. Note that the indicated
run times for the MT3DMS simulations do not include
the small time required to solve the groundwater-flow
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Table 2
Comparison of Several Measures of Accuracy and Efficiency for Simulating the Test Problem for 20 Years

Using Various Solution Algorithms Available in Public-Domain Solute-Transport Models

MODFLOW-GWT MT3DMS

MOC MOCWT1 MOCIMP ELLAM MOC MMOC HMOC FD TVD

Transport time steps 190 99 99 99 194 194 194 433 433
Run time (s)2 15.5 5.7 8.7 8.5 3.0 2.5 3.0 2.9 5.1
Maximum concentration

(mg/L)
1009 1001 1026 1342 999 999 999 986 1053

Minimum concentration
(mg/L)

−3.0 −4.0 −38 −88 0 0 0 0 −9

Mass-balance error (%) 2.3 7 × 10−6 0.6 4 × 10−5 2.8 5.7 3.3 2 × 10−5 1 × 10−4

Solution algorithms: MOCIMP = method of characteristics with implicit finite-difference solution for dispersive flux; MMOC = modified method of characteristics;
HMOC = hybrid method of characteristics.
1Spatially varying initial distribution of particles, ranging from 25 to 4 per cell, decreasing in number with distance from plume.
2MT3DMS run times are for transport only, and do not include time to solve flow equation using MODFLOW.

Figure 4. Calculated concentration distributions after simulating 20 years of advection and dispersion with two of the
available solution algorithms.

equation using MODFLOW-2000 (approximately 0.3 s),
whereas it is included in the run time for the MODFLOW-
GWT simulations. Several methods produced noticeable
undershoot and overshoot, especially the ELLAM results.
The MOC methods (except for the weighted particle
method) had notable mass-balance errors. The computa-
tional times varied by about a factor of six. Note that the
relative characteristics of each algorithm listed in Table 2
are representative of the properties and characteristics of
this particular test problem only.

Perhaps more importantly, the computed concentra-
tions also can vary substantially depending on the numer-
ical solution scheme. Figure 4 compares the computed
plumes after 20 years using two different algorithms.
Although the direction of plume migration is identical
in all simulations, the solute distributions are not. In
Figure 4, the plume computed using the method of charac-
teristics with volume-weighted particles (MOCWT) algo-
rithm shows much higher concentrations downgradient
than does the MOC solver of MT3DMS. The variation
in the results is also reflected in the range of arrival
times and breakthrough curves at selected observation
points (Figure 5). For example, if the detection limit or

Figure 5. Comparison of simulated breakthrough curves
at three observation points (locations shown in Figure 4).
Source concentration (C ′) is 1000.

action level were at 1% of the source concentration (i.e.,
C = 10), then the first arrival at observation point 2 might
have been predicted to occur between about 8.5 and
11 years, depending just on the solution algorithm (and
not considering any uncertainties or errors in the model
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parameters and boundary conditions). At this same obser-
vation location, the computed concentration after 20 years
ranged from about 700 to 980. The differences appear
large enough to be of concern, and they arise solely from
the choice of numerical solution algorithm. In a regulatory
or litigation arena, these differences might actually make
a difference.

Some methods yield breakthrough curves at loca-
tion 1 that converge to values above or below the known
limit of 1000, reflecting some loss of accuracy. The
several MOC solutions exhibit some jumpiness in their
breakthrough curves, in which the deviations about their
best-fit trend lines reflect some loss of precision. The
numerical accuracy and computational efficiency of calcu-
lating concentrations in flowing groundwater are notably
lower than for calculating heads. These numerical issues
indicate that we need better numerical methods to solve
the governing solute-transport equation.

Parameter Estimation
Regardless of weaknesses in the governing equation

and our ability to solve it numerically, a number of public-
domain advection-dispersion codes are widely available
and commonly used for simulating solute transport. Thus,
it is next appropriate to ask, how reliable and accurate will
a field application of a solute-transport model be? Not only
is the solute-transport modeler faced with uncertainties
and errors in estimating values for the parameters that rep-
resent the coefficients in the governing ADE, but there is
widespread uncertainty about what these parameters actu-
ally represent and how (or if) they can be meaningfully
measured.

One critical parameter is the effective porosity (some-
times called kinematic porosity or advective porosity),
which directly affects the seepage velocity, thereby affect-
ing both mechanical dispersion and advective transport.
From the perspective of Equation 2, one can view the
effective porosity as simply the number by which you
divide the specific discharge to obtain the average lin-
ear velocity. Interestingly, effective porosity is not in the
groundwater-flow equation, so calibrating a flow model in
itself may yield no information about the range of values
of the effective porosity.

The total porosity represents a volumetric fraction
available for fluid storage—specifically, the ratio of the
volume of interstices (or voids) to the total volume of
the rock or soil sample (Lohman et al. 1972). The effec-
tive porosity, on the other hand, refers to the amount of
interconnected pore space available for fluid transmission
relative to the total volume (Lohman et al. 1972). The
degree to which effective porosity is less than total poros-
ity will vary greatly and depend on a number of geological
characteristics of the material. Domenico and Schwartz
(1998, p. 14) note that “effective porosity can be over
one order of magnitude smaller than total porosity, with
the greatest difference occurring for fractured rocks.” The
difference between the two reflects the difference between
mobile and immobile water content. Immobile water may

reside stagnantly in dead-end pore space or may include
slow flowing parts; the transition may be gradual and
the distinction between mobile and immobile water not
as sharp as the terms imply (Nimmo 2004). Regardless,
the mobile water in interconnected pore spaces governs
the average seepage velocity, but the immobile water is
available for storage of solute—with transfer of solute
between mobile and immobile water governed mostly by
diffusion. If the transfer rate is relatively slow, downgra-
dient breakthrough will exhibit tailing not consistent with
a single-porosity Fickian model. The governing equation
has often been modified to include terms representing this
dual-porosity process, which in fractured rocks may dom-
inantly reflect the diffusive transfer of solute between fast
pathways through fractures and slow pathways in the adja-
cent rock matrix. Application of a solute-transport model
based on the conventional advective-dispersive equation
(Equation 3 or 4) to a system with a substantial frac-
tion of relatively immobile water may represent an undue
conceptual simplification that leads to substantial predic-
tive errors, even if an observed solute distribution can be
closely matched during model calibration.

Because the total porosity is a volumetric fraction, it
should have no directional properties. However, the pore
interconnectedness (and effective cross-sectional area for
flow of mobile water) is not simply a volumetric measure,
so it is possible the effective porosity can vary with direc-
tion of flow within a given volume. Neuman (2005) states
that field tracer tests indicate that effective porosity may
exhibit directional dependence and that this parameter is
a second-rank tensor (similar to permeability). Determin-
ing such directional dependence is problematic, however,
and none of the widely available solute-transport models
allow directional dependence of effective porosity.

Another critical transport parameter is dispersivity.
The dispersivity tensor for an isotropic porous medium
can be defined by two constants—the longitudinal dis-
persivity of the medium, αL, and the transverse dispersiv-
ity of the medium, αT (Scheidegger 1961). However, in
anisotropic media the number of independent dispersiv-
ity values increases (Bear and Cheng 2010). For example,
in transversely isotropic porous media under nonuniform
flow conditions (consistent with typical MODFLOW mod-
els where Kh �= Kz ), six independent dispersivities are
needed. Most documented applications of transport mod-
els to groundwater problems have been based on the
simpler two-value formulation for isotropic media, even
for cases in which the hydraulic conductivity is assumed
to be anisotropic, despite the conceptual inconsistency.
SUTRA (Voss and Provost 2002) incorporates an addi-
tional level of sophistication by defining two transverse
dispersivities and allowing those and αL to vary with flow
direction. Sand-box experiments (Silliman et al. 1987) on
samples of anisotropic media indicated that αL in the high-
K direction can differ by as much as a factor of ten from
the αL in the low-K direction. Directionally dependent
dispersivity is a useful generalization of the classical dis-
persion paradigm. For example, it may be expected that
flow parallel to layering in a layered medium and flow
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perpendicular to the layering do not necessarily have the
same longitudinal dispersivity. But both MT3DMS and
MODFLOW-GWT are more restrictive and only allow
the specification of two unique values for αT —one for
dispersive transport in the vertical direction and one for
transverse dispersive transport in the horizontal direc-
tion—following the ad hoc model of Burnett and Frind
(1987). If advective transport of a contaminant is mostly
horizontal in part of the flow system and mostly vertical
in other parts of the flow system through typical strat-
ified geological media, then use of an isotropic αL can
lead to erroneous dispersive fluxes somewhere in the sys-
tem. Note that such errors would not be reflected in the
numerical mass balance for the solute, as would be the
case for other conceptual weaknesses in dispersion the-
ory (that is, a perfect solute mass balance in a numerical
model does not prove that you have the right answer). Any
conceptual errors arising from simplification of the mathe-
matically rigorous expansion of the dispersion term cannot
be reduced by adjusting the grid spacing or time-step
size.

Although conventional theory holds that αL is an
intrinsic property of the aquifer, it is found in practice to
be dependent on and proportional to the scale of the mea-
surement. Most reported values of αL fall in a range from
0.01 to 1.0 times the scale of the measurement, although
the ratio of αL to scale of measurement tends to decrease at
larger scales (Anderson 1984; Gelhar et al. 1992). Field-
scale dispersion (macrodispersion) results primarily from
large-scale spatial variations in hydraulic properties (and
hence in velocity). Yet one can often adequately cali-
brate a groundwater-flow model to observed heads using
a relatively coarse grid and relatively uniform hydraulic
properties that do not represent heterogeneities that affect
transport. If that is the framework for the transport model,
calibration will likely lead to erroneously large values of
dispersivity (e.g., Davis 1986). Similarly, representing a
transient flow field by a mean steady-state flow field, as
is commonly done, inherently ignores some of the vari-
ability in velocity and must be compensated for by using
increased values of dispersivity (primarily transverse dis-
persivity) (Goode and Konikow 1990).

Perhaps the most important parameter controlling
transport is hydraulic conductivity, through its control
on velocity (Equation 2). Hydraulic conductivity can vary
greatly over short distances, and heterogeneity can exhibit
large spatial correlations, persistence, and connectedness.
Overall, the more accurately and precisely a simulation
model represents the actual distribution of K , the better
it can simulate the “true” velocity distribution in space
and time. Consequently, more solute spreading will be
represented by differential advection, so uncertainty in
estimating dispersivity and conceptual flaws in the mathe-
matical representation of the dispersion process will mat-
ter less. Thus, much of the research in solute transport in
recent years has focused on how to better describe (either
explicitly or statistically) the heterogeneities in aquifer
properties that control the velocity of groundwater flow
and its variability.

Figure 6. Array of wells and multilevel samplers used to
conduct groundwater tracer experiments at the Cape Cod,
Massachusetts, research site (from LeBlanc 2006).

One research approach has been through comprehen-
sive field “laboratories,” where test sites are comprehen-
sively instrumented to measure heads and distributions of
K and to enable detailed observations of changes in solute
distribution over time for both pre-existing contaminant
plumes and injected tracers in controlled experiments.
One well-studied site (Figure 6) is at Cape Cod, MA, in
an unconfined aquifer composed of permeable, stratified,
unconsolidated, sand and gravel outwash (LeBlanc 2006;
LeBlanc et al. 1991). The site has a mean K of about
0.1 cm/s and a variance of Ln(K) of about 0.2 (Hess et al.
1992), so the site can be characterized as mildly hetero-
geneous. Comprehensively monitored tracer tests at this
site and applications of numerical solute-transport models
indicate that conventional numerical models based on the
Fickian ADE can adequately simulate transport of non-
reactive and reactive solute species in this aquifer (e.g.,
Garabedian et al. 1991; Zhang et al. 1998; and Parkhurst
et al. 2003).

Another well-studied tracer-test site is the
Macro-Dispersion Experiment (MADE) site in Columbus,
Mississippi (Boggs et al. 1992). In contrast with the Cape
Cod site, the aquifer at the MADE site consists of highly
heterogeneous fluvial sediments (variance of Ln(K) is
about 4.5) (Rehfeldt et al. 1992; Molz et al. 2006). Anal-
ysis of a 20-month natural-gradient tracer test indicated
“dramatically non-Gaussian behavior” (Adams and Gelhar
1992). Molz et al. (2006) report that “numerous theoret-
ical, laboratory, and field studies have demonstrated that
the classical advection-dispersion model failed to capture
the key characteristics of solute-transport behavior at the
MADE site.” They further state that a dual-domain model
led to conceptually simple, successful simulations with “a
significantly better match to the observed plumes for all
three natural gradient tracer tests.”

Somewhat less heterogeneous than the MADE site
is the shallow, unconfined, glacial aquifer in North Bay,
Ontario, where the spatial variability of hydraulic con-
ductivity was studied in great detail and characterized
geostatistically (Sudicky et al. 2010). The mean hydraulic
conductivity was about 3.5 × 10−3 cm/s (much less than
at the Cape Cod site) and the variance of Ln(K) was
about 1.8 (less than half that at the MADE site). The
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effective hydraulic conductivity and macrodispersivity
tensors were calculated using the 3D stochastic theory
of Gelhar and Axness (1983). Subsequent application of
the HydroGeoSphere model (Therrien et al. 2005)—a
3D, variably-saturated flow, advection-dispersion trans-
port model—reasonably reproduced “the extent and
migration rates of the observed contaminant plume that
was monitored using a network of multilevel samplers
over a period of about 5 years” (Sudicky et al. 2010).

The overarching lessons from the several compre-
hensively sampled and monitored field “laboratories”
include that geological heterogeneity is ever present, that
heterogeneity strongly influences plume evolution, and
that detailed and expensive site characterization may be
required to enable the development of reliable solute-
transport models. Even then, the application of classi-
cal advection-dispersion models may prove inadequate
because the plume is evolving in a non-Fickian manner at
the scale of the observations.

Boundary conditions required for the solution of
the solute-transport equation in a complex field prob-
lem may be uncertain and difficult to define. In that
sense, they can also be considered another parameter to
be estimated—perhaps using automated inverse modeling
tools. For example, the source term in the solute-transport
equation (last term on right side of Equation 3) is the
mathematically simplest part of the equation. In typi-
cal contamination problems, however, defining the source
term for a solute-transport model is especially difficult
because the historical timing, location, and strength of
releases of solute mass into an aquifer system are rarely
known or accurately reported (and, in fact, are commonly
the very point of contention in litigation).

We need better methods to measure parameter val-
ues and their spatial variability and connectedness. Use of
geostatistical methods of estimation and hydrogeophysi-
cal methods of measurement show great promise in the
determination of hydraulic properties controlling advec-
tive transport.

The dispersivity parameters remain problematic, and
the costs of field measurements (using tracer tests) are
high and may yield estimates that are indicative of the
scale and duration of the tracer test but that have little
value for predictive purposes in modeling future responses
over longer times and distances. In advection-dominated
systems, such as site studies dominated by pumping wells,
dispersion may not be detectable and the selected values of
dispersivity may not matter much. In general, it is a good
idea to use preliminary models to assess the sensitivity of
the system to uncertainty in dispersivity before investing
much effort in trying to measure it.

Model Complexity
As computer power has increased over the years,

there seems to be a parallel trend toward developing and
applying more complex models to field problems. From
the simplest applications of groundwater solute-transport
models some 40 years ago, various studies have added

variably-saturated flow, variable-density flow, multiphase
flow and transport, reactive transport, microbial processes,
ecological problems, multiscale simulations (e.g., using
telescopic or adaptive meshes), finer 3D discretization,
detailed deterministic or geostatistical representations of
heterogeneity, dual-domain models, and consideration
of stochastic processes. These add additional levels of
sophistication, realism, and power to the simulation. But a
downside is that they also impose additional requirements
for data that may be difficult or expensive to obtain.

One advantage of a simpler model is that it is
relatively easy to understand (Figure 7); as complexities
are added, the model behavior becomes more difficult to
understand and to explain to other interested parties, such
as water managers. Model development at an optimal level
of complexity (or simplicity) requires experience and good
judgment, and must be done in light of model objectives.
The objectives of the investigation should also influence
the data-collection process, because time and effort should
not be wasted on collection or analysis of data not relevant
to the scale and objectives of the model.

Development and application of a groundwater model
should be viewed as an evolutionary process. In develop-
ing a solute-transport model, one should start simple and
add increasing degrees of complexity in small increments
so that the effects of the added complexity (whether in
processes, parameters, dimensionality, or boundary condi-
tions) can be easily discerned. This will lead to a greater
understanding of both the model and of the problem at
hand. A model is by definition a simplification of a very
complex reality, so an end point will never be reached
where a model is a precise representation of reality—and
that, of course, would be a futile goal to strive for. At
some point during its evolution, a model will need to
be accepted as usable and appropriate if it is to be of
any value. Whether this “point” has arrived is a decision
that should be made in light of (1) the objectives of the
model study and the nature of the problem that needs to
be solved; and (2) incremental costs of further improve-
ments (and data collection) relative to benefits. Clement
(in press) clearly poses this as, “When should we say
enough is enough?”

Various modeling approaches for analyzing solute
transport in groundwater are listed in Table 3 in order
of increasing complexity of process. Various types of

Figure 7. General hypothetical relation between model com-
plexity and ease of understanding model behavior.
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Table 3
Modeling Approaches to Solute-Transport Problems Ranked in Order of Increasing Conceptual Complexity

Complexity Rank Concept Value Example Generic Model

0 Hydrologic budget/mass balance Mass in/mass out/mass stored
1 Flow equation Head/flux/direction MODFLOW
2 Advective transport Velocity vectors/time of travel MODPATH
3 Advection-dispersion Concentration distribution MT3DMS
4A Stochastic Probabilities/uncertainties/nature

of heterogeneity
4B Non-Fickian transport Non-Gaussian distributions and

breakthroughs

lumped-parameter, black box, and mixing cell models are
available. These are sometimes applied to environmental
tracers used to estimate groundwater age where details
of a groundwater-flow system are poorly known. They
generally offer little insight into flow and transport pro-
cesses except at a regional scale, and such models are
generally unsuitable for small-scale site investigations.
Groundwater-flow models (such as MODFLOW [Har-
baugh 2005]) can yield much insight into transport direc-
tions and where solutes will migrate. Advective transport
models (such as MODPATH [Pollock 1994]) go an addi-
tional step and help define both where solutes will go
and how fast they will travel, but cannot predict concen-
trations. Given a well-calibrated flow model, advective
transport models can accurately and efficiently calculate
pathlines and travel times consistent with the simulated
heads—generally adding substantial value for minimal
additional effort. However, advective transport can be
very sensitive to small errors and uncertainty in computed
heads and head gradients.

The next level of complexity comes with solving the
ADE, using a model such as MT3DMS (Zheng and Wang
1999). As discussed earlier, however, ADE models have
some theoretical weaknesses, numerical solution errors,
and practical limitations in estimating parameters. Recog-
nition of these limitations has led to the development and
application of a variety of stochastic approaches, both in
terms of defining parameters and describing processes, as
well as for solving equations (e.g., Dagan and Neuman
1997). For the most part, stochastic transport models, as
well as other non-Fickian conceptualizations, have been
limited in their use to the research community and have
not yet seen widespread general application.

Some aspects of model complexity, discretization,
and resolution of defining heterogeneity are illustrated
with an analysis of transport from a hypothetical leaky
borehole that releases contaminants into a fractured
dolomite—a thin permeable unit overlying the Waste Iso-
lation Pilot Plant (WIPP) transuranic waste repository near
Carlsbad, NM (e.g., Meigs and Beauheim 2001; Altman
et al. 2002).

The geostatistical characteristics of the aquifer
(Table 4) provided the basis for generating one realization
of a spatially correlated distribution of transmissivity

Table 4
Selected Aquifer and Model Properties for

Simulation of Hypothetical Leaky Borehole in
Dolomite Aquifer at the WIPP Site in New Mexico

Property Value

Mean transmissivity 3.4 × 10−5 m2/s
Variance log10(T ) 1.0
Correlation length 50 m
Thickness 4 m
Effective (fracture) porosity 0.01
Total (matrix) porosity 0.16
Dispersivities (αL & αT) 0.5 and 0.05 m
Regional hydraulic gradient 0.0026
Retardation factor 1.0, 12.5, and 200
Simulation time 50–10,000 yrs1

1Effective simulation time depends on assumed values for porosity and
retardation factor (e.g., t = 10,000 yrs for ε = 0.16 and Rf = 12.5; solution
is identical at t = 50 yrs for ε = 0.01 and Rf = 1.0).

on a 2-m grid spacing using the turning bands method
(Zimmerman and Wilson 1990). Heads and solute con-
centrations were simulated in two dimensions using
MODFLOW-GWT on a very fine grid (�x = �y = 2 m)
over a relatively large area (1.4 × 3.0 km) (Figure 8A).
The same system was then re-simulated on a 50-m grid
spacing after upscaling transmissivity using the geomet-
ric mean transmissivity of the 625 values at the finer
discretization for each coarser cell. (The boundary con-
dition representing the leaky borehole was adjusted only
to assure that an identical mass of contaminant was
released into the aquifer.) The results (Figure 8B) showed
that computed heads and flow directions were essentially
unchanged, but that the computed plume was substantially
more sensitive to the coarsening of the grid and resolution
of defining heterogeneity. There was now a greater lateral
spreading of the plume, particularly close to the source,
and the relatively high concentrations did not migrate as
far downstream as previously. To evaluate, in part, the
effects of discretization and resolution of defining hetero-
geneity, heads for the coarser transmissivity pattern were
simulated again using a 2-m grid spacing (Figure 8C).
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Figure 8. Effect of scale of discretization and resolution of heterogeneity on calculated heads and concentrations for case of
hypothetical contaminant release from a leaky borehole in a regional aquifer: (A) grid spacing = 2 m; (B) grid spacing =
50 m; and (C) T defined on 50-m spacing from B, but numerical solution obtained using grid spacing = 2 m.

Again, the flow field and heads were insensitive to these
changes, but there was a marked change in the computed
plume—with the plume now much narrower and having
very high concentrations migrating much further down-
stream, a result which can have important implications in
a regulatory framework.

A similar analysis of the MADE site (Zheng and
Gorelick 2003) indicated that “the relative preferential
flowpaths and flow barriers resulting from decimeter-scale
aquifer heterogeneity” strongly influence plume-scale
solute transport and cause asymmetrical non-Gaussian
solute patterns. They conclude by stating the ultimate goal
is to develop a practical sound alternative to the classical
ADE model.

Expectations for Transport Model Applications
In designing and applying a solute-transport model

to a field problem, one should first define the questions
to be asked and the purpose of the model, and develop a
comprehensive conceptual model of the problem. Specify
what the expectations are.

Some (if not most) of the difficulties with transport
models arise from errors, inadequacies, and uncertainties
in the data used to estimate parameters and to calibrate the
model, and in related errors in the conceptualization of the
system and problem being simulated. Groundwater-flow
models are calibrated with observed head and flux data.
Changes in head propagate fairly rapidly (as a pressure
wave) through a porous medium, and variations between

measurement points are typically smooth and gradual.
On the other hand, field measurements of concentration
can change by large amounts over very small times and
short distances, and solute moves slowly through a porous
medium (with the speed of the water molecules), so local
differences do not dampen out quickly. Concentrations in
a sample are also much more sensitive to the length of
the well screen (or sampling interval) than are observed
heads—even within a single aquifer. Mixing within a
borehole can substantially dilute the peak concentration
at a sampling location, and possibly lead to overestimates
of dispersivity.

Reproducing or simulating large concentration dif-
ferences over small distances inherently requires the use
of a finer grid than that typically needed to reproduce
observed heads, and a finer grid is also important for lim-
iting numerical errors in solving the transport equation.
A large increase in the number of nodes, however, may
lead to impractical computational times. Unfortunately,
this tradeoff may be an incentive for some to ignore or
accept numerical errors. We expect flow models to repro-
duce most observed heads within a few meters or less.
But for transport models, we should not expect that the
calculated concentrations will accurately match all varia-
tions observed in the field, or even in a single observation
well. Rather, one should aim to reproduce major trends
and locally averaged values.

One must be careful in specifying initial and bound-
ary conditions. In many contamination problems, the
source term (which is the mathematically simplest part
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of the governing equation) is poorly known from histor-
ical records—or its definition may actually be an objec-
tive of the modeling. Inverse modeling sounds like an
appealing approach. However, even with a well-calibrated
flow model of a contaminated area, an inverse modeling
approach to defining the transport source term may be a
futile exercise because of the many complex interdepen-
dent processes affecting solute concentrations, conceptual
uncertainty in the governing equation, inability to define
heterogeneities, and errors in the numerical solution.

First arrivals and early detections of contaminants at
relatively low concentrations are especially sensitive to
numerical errors and differences among alternative solu-
tion algorithms. So one should not expect high accuracy
in such calculations or predictions.

The paths and travel times of calculated plumes will
be sensitive to how heterogeneity is represented in the
model, and a resolution for defining heterogeneity that
is adequate for a groundwater-flow model may not be
adequate for a transport model (especially in the vertical
direction). This is another reason that discretization scale
can affect transport model calculations more than flow
models—so grid size matters.

A good rule of thumb in applying solute-transport
models is that the more accurately and precisely one can
define the velocity field, the less one has to worry about
errors and uncertainty in the dispersion process. For sites
and scales beyond the strong influence of a converging
flow field around a pumping well, accurately computing
the velocity field will require defining hydrogeological
heterogeneities. But defining heterogeneity, particularly
connectedness, at relevant scales remains an expensive
and challenging venture. There are practical limits to how
well one can define heterogeneity and the details of the
velocity field; however accurately it is defined, it can
always be defined more accurately and precisely if time
and funding are available to collect additional data. Good
judgment and sensitivity analyses may help in balancing
costs and benefits and in deciding when existing data are
good enough.

Conclusions
Well-documented public-domain solute-transport

models are readily available and widely used. There are a
number of conceptual weaknesses and flaws in the under-
lying theory and classical governing equation, and the
numerical solutions will inevitably contain some numer-
ical errors. Furthermore, it is rare that sufficient reliable
data will be available or obtainable to uniquely define the
parameters and boundary conditions for the problem at
hand. Solute-transport models should be viewed more for
their value in improving the understanding of site-specific
processes, hypothesis testing, feasibility assessments, and
evaluating data-collection needs and priorities; less value
should be placed on expectations of predictive reliability.
On the basis of an improved understanding, one can pre-
sumably develop a better strategy to deal with the problem
at hand.

Awareness of the conceptual weaknesses and sources
of error will help the model user minimize the errors
and account for them when interpreting the model results
and predictions. Experience indicates that errors in the
conceptual model of a flow and transport problem may be
the predominant source of predictive error.

Some stochastic approaches can readily simulate
both Fickian and non-Fickian transport phenomena, but
stochastic theory is still evolving. Stochastic methods need
to move from the realm of academic research into the
domain of standard practice; this will undoubtedly occur
with time.

When applying a solute-transport model to a complex
field problem, one should start relatively simple and add
complexities in small increments. It is typical and logical
to calibrate a flow model first. It often is beneficial and
cost effective to then apply an advective transport model
(e.g., MODPATH) to gain insight into solute travel direc-
tions and times. For a 3D problem, the use of 3D visu-
alization and animation tools can greatly aid the process
of assessing the model and analyzing results. However,
for the transport model, whether advective, advective-
dispersive, or advective-dispersive-reactive, do not lock
yourself into accepting all the same conceptual and numer-
ical simplifications that were adequate and acceptable for
the flow model; instead, expect that further refinement
might be needed to develop a meaningful transport model.

We typically expect and achieve reasonably reliable
results when developing and calibrating a groundwater-
flow model. In comparison, when simulating histori-
cal concentrations or predicting future plume migration
and evolution, we should not expect equivalent degrees
of reliability. In that sense, the secret to successful
solute-transport modeling may simply be to lower your
expectations.

Acknowledgments
I appreciate the encouragement of Mary P. Anderson

to prepare this manuscript. I have benefitted greatly from
conversations with many USGS colleagues over several
decades of studying solute transport, and I particularly
want to acknowledge the insight gained from numer-
ous discussions with J.D. Bredehoeft, D.J. Goode, A.M.
Shapiro, C.I. Voss, A.M. Provost, and T.E. Reilly. I
also thank A.M. Shapiro, A.M. Provost, P. Clement, E.O.
Frind, and one anonymous reviewer for their very helpful
comments on the manuscript. Any use of trade, product,
or firm names is for descriptive purposes only and does
not imply endorsement by the U.S. Government.

References
Adams, E.E., and L.W. Gelhar. 1992. Field study of dispersion

in a heterogeneous aquifer: 2. Spatial moments analysis.
Water Resources Research 28, no. 12: 3293–3307.

Altman, S.J., L.C. Meigs, T.L. Jones, and S.A. McKenna. 2002.
Controls of mass recovery rates in single-well injection-
withdrawal tracer tests with a single-porosity, heterogeneous

NGWA.org L.F. Konikow GROUND WATER 49, no. 2: 144–159 157



conceptualization. Water Resources Research 38, no. 7.
DOI:10.1029/2000WR000182.

Anderson, M.A. 1984. Movement of contaminants in ground-
water: Groundwater transport—Advection and dispersion.
In: Groundwater Contamination, 37–45. Washington, DC:
National Academy Press.

Baeumer, B., D.A. Benson, M.M. Meerschaert, and S.W.
Wheatcraft. 2001. Subordinated advection-dispersion equa-
tion for contaminant transport. Water Resources Research
37, no. 6: 1543–1550.

Batu, V. 2010. Estimation of degradation rates by satisfy-
ing mass balance at the inlet. Ground Water 48, no. 4:
1745–6584. DOI:10.1111/j.2009.00671.x.

Bear, J. 1979. Hydraulics of Groundwater, 569. New York:
McGraw-Hill.

Bear, J., and A.H.-D. Cheng. 2010. Modeling Groundwater Flow
and Contaminant Transport, 834. Dordrecht: Springer.

Benson, D.A., S.W. Wheatcraft, and M.M. Meerschaert. 2000.
Application of a Fractional Advection-Dispersion Equation.
Water Resources Research 36, no. 6: 1403–1412.

Berkowitz, B., A. Cortis, M. Dentz, and H. Scher. 2006. Mod-
eling non-Fickian transport in geological formations as a
continuous time random walk. Reviews of Geophysics 44:
RG2003. DOI:10.1029/2005RG000178.

Boggs, J.M., S.C. Young, and L.M. Beard. 1992. Field study
of dispersion in a heterogeneous aquifer, 1, Overview and
site description. Water Resources Research 28, no. 12:
3281–3291.

Bredehoeft, J.D. 1971. Comment on ‘Numerical Solution to
the Convective Diffusion Equation’ by C. A. Oster,
C. Sonnichsen, and R. T. Jaske. Water Resources Research
7, no. 3: 755–756.

Bredehoeft, J.D., and G.F. Pinder. 1973. Mass transport in
flowing groundwater. Water Resources Research 9, no. 1:
194–210.

Burnett, R.D., and E.O. Frind. 1987. Simulation of contaminant
transport in three dimensions, 2. Dimensionality effects.
Water Resources Research 23, no. 4: 695–705.

Celia, M.A., T.F. Russell, I. Herrera, and R.E. Ewing. 1990.
An Eulerian-Lagrangian localized adjoint method for the
advection-diffusion equation. Advances in Water Resources
13, no. 4: 187–206.

Clement, T.P. Complexities in hindcasting models—When
should we say enough is enough? Ground Water , in press.

Cvetkovic, V., and R. Haggerty. 2002. Transport with multiple-
rate exchange in disordered media. Physical Review E 65.
DOI:10.1103/PhysRevE.65.051308.

Dagan, G., and S.P. Neuman, ed. 1997. Subsurface Flow and
Transport: A Stochastic Approach. Cambridge, UK: Cam-
bridge University Press.

Davis, A.D. 1986. Deterministic modeling of dispersion in het-
erogeneous permeable media. Ground Water 24, no. 5:
609–615.

Dougherty, D.E., and A.C. Bagtzoglou. 1993. A caution on the
regulatory use of numerical solute transport models. Ground
Water 31, no. 6: 1007–1010.

Domenico, P.A., and F.W. Schwartz. 1998. Physical and Chem-
ical Hydrogeology, 2nd ed., 506. New York: John Wiley &
Sons, Inc.

Frind, E.O., E.A. Sudicky, and S.L. Schellenberg. 1987. Micro-
scale modeling in the study of plume evolution in hetero-
geneous media. Stochastic Hydrology and Hydraulics 1,
263–279.

Garabedian, S.P., D.R. LeBlanc, L.W. Gelhar, and M.A. Celia.
1991. Large-scale natural-gradient tracer test in sand and
gravel, Cape Cod, Massachusetts: 2. Analysis of spatial
moments for a nonreactive tracer. Water Resources Research
27, no. 5: 911–924.

Gelhar, L.W., and C.L. Axness. 1983. Three-dimensional anal-
ysis of macrodispersion in a stratified aquifer. Water
Resources Research 19, no. 1: 161–180.

Gelhar, L.W., C. Welty, and K.R. Rehfeldt. 1992. A critical
review of data on field-scale dispersion in aquifers. Water
Resources Research 28, no. 7: 1955–1974.

Goode, D.J. 1992. Modeling transport in transient ground-water
flow: An unacknowledged approximation. Ground Water
30, no. 2: 257–261.

Goode, D.J., and L.F. Konikow. 1990. Apparent dispersion in
transient groundwater flow. Water Resources Research 26,
no. 10: 2339–2351.

Grove, D.B. 1976. Ion exchange reactions important in ground-
water quality models. In: Advances in Groundwater Hydrol-
ogy. 409–436. American Water Resources Association.
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