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Abstract The mixed finite-element approximation to
a second-order elliptic PDE results in a saddle-point
problem and leads to an indefinite linear system of
equations. The mixed system of equations can be trans-
formed into coupled symmetric positive-definite ma-
trix equations, or a Schur complement problem, using
block Gauss elimination. A preconditioned conjugate-
gradient algorithm is used for solving the Schur com-
plement problem. The mixed finite-element method
is closely related to the cell-centered finite differ-
ence scheme for solving second-order elliptic prob-
lems with variable coefficients. For the cell-centered
finite difference scheme, a simple multigrid algorithm
can be defined and used as a preconditioner. For dis-
torted grids, an additional iteration is needed. Nested
iteration with a multigrid preconditioned conjugate
gradient inner iteration results in an effective numer-
ical solution technique for the mixed system of linear
equations arising from a discretization on distorted
grids. Numerical results show that the preconditioned
conjugate-gradient inner iteration is robust with respect
to grid size and variability in the hydraulic conductivity
tensor.
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1 Introduction

Lowest-order Raviart-Thomas mixed finite-element
approximations to second-order elliptic PDEs with
variable hydraulic conductivity coefficients are recog-
nized as important methods for modeling subsurface
flow in heterogeneous media [12, 14, 16]. In this paper,
we consider the three-dimensional second-order elliptic
problem given by

—V-KVp= finQ,
p=qondQp, 1)
—KVp-n=gonoiQy,

where Q is a bounded domain in %°, p is a pressure
or hydraulic head potential, n denotes the unit outward
normal vector, f is a sink/source term, and g and g are
given functions. K is a bounded, symmetric, and uni-
formly positive-definite matrix-valued function related
to the intrinsic permeability of the porous media. The
flux v in subsurface flow models, given by the Darcy
relation

v=—-KVp, 2)
is often of primary interest. The use of a mixed
method, which approximates both the hydraulic head

and flux simultaneously, is desirable in the presence
of rough coefficients since traditional methods, using
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post-processing of primal hydraulic head solutions, gen-
erally lead to loss of accuracy when estimating the flux
vector. Mixed methods also have the advantage of con-
serving mass locally, which can be critical in modeling
subsurface flow.

Using the Darcy relation given by Eq. 2, problem 1
can be rewritten as a system of first-order equations.
When discretized using the Raviart-Thomas finite-
element spaces [25] on triangular or hexahedral ele-
ments, an indefinite system of equations results with the
form given by

T
HeiINEL]

B 0 p f
The matrix M is real symmetric positive definite and,
using the Raviart-Thomas finite element space, the
discretization satisfies the inf-sup condition [10] so that
BT has full column rank. In this paper, a lowest-order
Raviart-Thomas finite element discretization on hexa-
hedral grids is assumed.

Problem 3 can be transformed symbolically into
coupled symmetric positive-definite matrix equations,
or a Schur complement problem, using block Gauss
elimination:
{SMpzf—Bl\T/[_lg , (4)

Mv=g+B'p

where Sy = BM~!B”. A solution of this system of
equations is possible but difficult; S, must be inverted
to solve for p, and subsequently, M must be inverted
to solve for v. The system involving Sy, can be solved
using the preconditioned conjugate gradient (PCG)
method [17], but requires the evaluation of M~! for
each PCG iteration and an effective preconditioner.
These difficulties are overcome by approximating M
with a positive-definite matrix Qj,, which is relatively
easy to invert, and approximating the inverse of the
resulting Schur complement Sq,, = BQ;; B” using the
PCG method preconditioned by cell-centered multigrid
[6, 8, 30]. The system of equations in Eq. 4 is then
solved using an iterative method preconditioned by
these approximations. In this paper, we subsequently
describe the nested iteration method where the pres-
sure is approximated in the inner iteration and the flux
is approximated in the outer iteration.

An alternative approach is the mixed-hybrid
method. In this method, Lagrange multipliers are
introduced on the cell boundaries to insure continuity
of normal components of the velocity variable. The
velocity and pressure variables are eliminated to obtain
a symmetric and positive definite system of equations.
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The system of equations can then be solved using an
efficient multigrid method. A flux recovery technique
for the computed solution is also needed. An example
of the mixed-hybrid method and a flux recovery
technique is given in [13]. A multigrid algorithm for
the mixed method is described in [9].

The idea of nested iteration is widely used and can be
found in the literature. The inexact Uzawa algorithm
is studied in [7, 19] and is the motivation behind the
nested iteration. We are also motivated by [2] as it
concerns problems related to porous-media flows and
employs a multigrid method. The iterative scheme in
[2], for the mixed finite element method, is roughly
equivalent to nested iteration. The convergence analy-
sis given in [2] is desirable for its simplicity, and we
make our analysis along these lines. An important
aspect of the nested iteration described in this paper
is the idea of using conjugate gradient as the inner
iteration preconditioner. It is shown in [4] that the PCG
approximation of the inverse of Sq,, is equivalent to
the existence of another symmetric positive definite
operator, which we will denote as Q,}l R S(_le . We use
this operator to define the nested iteration presented
in this paper. The iterative convergence properties of
nested iteration are further analyzed in [27, 28].

It is shown herein that nested iteration can be an
efficient numerical solution of Eq. 3 with minimal fine
tuning of inner and outer stopping criteria. Nested
iteration in conjunction with PCG and cell-centered
multigrid are used for the numerical solution. These
methods are desirable due to their relative simplicity
and efficiency. For the case of a diagonal conductivity
tensor K on an orthogonal hexahedral grid, the nested
iteration algorithm reduces to the simpler PCG algo-
rithm associated with Eq. 4. In this case, the matrix
M is tridiagonal and an exact factorization is obtained
with minimal cost. The PCG algorithm can be used
to approximately invert S,, without directly forming
BM~'B” [14], and multigrid can be used to form an
optimal preconditioner. The more general case occurs
when the grid is distorted and/or K is no longer a
diagonal tensor; in this event, M, containing a greater
level of fill, is no longer tridiagonal. An incomplete
factorization is used to approximate M and nested it-
eration is used to solve Eq. 3.

In Section 2, the mixed finite-element method and
its relationship to the cell-centered finite difference
method is described. Section 3 defines the nested it-
eration algorithm with a convergence analysis given in
Section 3.1 and a discussion of the conjugate-gradient
inner-iteration given in Sections 3.2 and 3.2.1. Numer-
ical results confirming the theoretical results are given
in Section 4.
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2 Mixed finite-element method (MFE)

Using Eq. 2, Eq. 1 can be rewritten as a system of first-
order equations:

K!'v+Vp=0
Vv=f
p=¢q, onoQ2p, ®)

v-n=g, onadQy.

The first equation in Eq. 5 is referred to as the mo-
mentum equation and the second as the continuity
equation. The function spaces that contain (v, p) are
defined to be

V={ve L*(Q)}:V-ve L*(Q)},
Vo={veV:v.-n=00ndoQy}
P=L*Q).

Let v € V be the velocity given by v = vy + v,, where
vo € Vo and v, € V satisfy the fourth equation in Eq. 5.
The first equation in Eq. 5 is multiplied by w € V, and
integrated by parts to produce a weak version of the
momentum equation:

/Kflvo-w—/pv-w=—/qw~n—/K*1vg-w.
Q Q

Q 0Qp
(6)

Multiplying the second equation in Eq. 5 by u € P and
integrating, the weak form of the continuity equation is
obtained:

f(V~V0)u = / fu— /(V V)l (7
Q Q Q

The problem can be summarized using the bilinear
forms corresponding to Egs. 6 and 7 as follows:

Find v =vy + vg € Vand p € P such that:
M(v07w)+B*(p7 W) - _G(Q»w)_M(Vg, W), (8)
B(vo, u) = L(f, u) = B(vg, u),
Y(w,u) € Vo x P.

When 9Q2p = ¢, an additional compatibility condition,
to guarantee existence of a solution, is needed:

B(vg,u) =0, Yu € P.

The discretization of Q is defined on a logically
cubic grid consisting of / x m x n hexahedral elements

with an i, j, k indexing and are trilinear mappings of
the reference cube [20]. The finite-dimensional vec-
tor spaces V" C V and Vi C V consist of vector func-
tions, which are Piola transformations of lowest-order
Raviart-Thomas vector functions on the reference cube
[25]. A lowest-order Raviart-Thomas vector function
on the reference cube is defined by

V=(ap+ax,bo+bi9,co+eci?),

and the degrees of freedom of v are chosen to be
the values of v-n at the center of the faces of the
reference cube. The nodal values of v € V" are taken
to be the integrated fluxes across faces and are denoted
by v ko v/y.ﬂ/zqk!i, and vi,, ,, - An alternative to the
Piola transformation is proposed in [22-24]; this alter-
native transformation leads to more accurate velocity
interpolation in general hexahedral cells. The differ-
ences between the transformations are not important
to the main topic of this paper.

The finite-dimensional scalar space P" C P consists
of piecewise constant functions with cell-centered nodal
values p; ;. Throughout this paper, we will assume that
the hydraulic conductivity tensor is symmetric positive
definite and constant within each element. The discrete
divergence operator B has +1 values for its compo-
nents. The discrete adjoint of the divergence operator
(the discrete gradient) is given by —B”. The B and B”
matrices are not explicitly assembled. The mass matrix
M is assembled element by element using a Gauss
quadrature rule for the integration. The essential flux
boundary conditions [21] can be dealt with in various
ways. For example, by use of local to global ID arrays
[20] or by application of nodal parameter boundary
constraints [1]. The compressed row storage (CRS) [5]
data structure can be used for storage of the mass
matrix. In general, the finite-dimensional equivalent of
problem 8 is given in matrix form by Eq. 3.

The number of off-diagonal elements of the matrix
M can vary, depending on distortions of the grid and
fullness of the hydraulic conductivity tensor. For diago-
nal hydraulic conductivity tensors on orthogonal grids,
the mass matrix is block tridiagonal, and satisfies

M;;=2) M, 9)

j#i
Equation 9 implies M is diagonally dominant with

D IM; < 1/2[MGl (10)
J#

for all i independent of K. A distorted grid or a full ten-
sor K can result in the loss of this diagonal dominance.

@ Springer



292

Comput Geosci (2010) 14:289-299

2.1 Cell-centered finite-difference matrix problem

In this section, the relationship between the mixed
finite-element method and the cell-centered finite dif-
ference (CCFD) scheme is illuminated. The CCFD
scheme is a special case of the mixed finite-element
method when a diagonal conductivity tensor on an
orthogonal grid is assumed and a low-order quadrature
rule is used for integration. This analogy between the
mixed finite-element method and CCFD is also given
in [26].

For simplicity, a uniform partition of size A, h,, and
h in the x, y, and z directions is assumed. The hydraulic
conductivity tensor on cell (i, j, k) is given by

K 00
Kjc=| 0 K, 0
0 0 Kij

Let w € V# be a test function in the x direction with
nodal value wy,, , ;, =1 and zero otherwise. The dis-
crete momentum equation (Eq. 6), upon integration
using the trapezoidal rule and ignoring the boundary
terms, becomes

-1
<Af+1/2,;,k) Vit ik — (Pi1,ik = Pijk) =0,

where

. B ( 2hy ) Ky oKk
i+1/2, 1,k — .
R hyh: ) \ Kij + Ky ik

This result represents the hydraulic conductance in the
x direction between two adjacent cells and is consistent
with the CCFD coefficients (see [18] for example).
Similar expressions for difference equations in the y
direction and z direction are obtained using y and z
directional test functions. The discrete continuity equa-
tion (Eq. 7), under these conditions, becomes

L =¥ — ¥
fz.],k = Viry2,jk — Vie1y2,jk
y y
+ Uik T Vic12ki
z Z
t Vi)~ Vk—1/2,i

By substituting the appropriate expressions for
vl /2. jk €t the following form results:

—fijk = = AL e Pi1jk — AL i Pit1 ik
- AEV,j_l,kPi,j—l.k - Aiy,,;kpi,jﬂ,k
— AL k1 Pijk—1 — ALk Pkt
+ EijkPijk
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Here, the coefficients of the pressures correspond to the
conductances of the CCFD scheme and

Eijk= A7 o+ AL+ A

y
Lotk T Ak

z Z
A e T A

The CCFD scheme, in general, can be written as the
Schur complement problem

{SAP = f—BAilg

Av=g+B'p (1)

where

Al = [A"

iv1/2,k0 A

A

y z
/2. ki k1720

and
S,=BA"'BT.

The CCFD matrix S, is symmetric positive definite
(with appropriate boundary conditions or specified
heads). An efficient cell-centered multigrid algorithm,
well suited for solving the first equation in problem 11,
is described in [6, 8, 15]. An implementation of this cell-
centered multigrid algorithm as a PCG preconditioner
is described in [30] for the solution of CCFD equations
used in ground water modeling.

Let D = diag(M), where M is obtained from a higher
quadrature rule. For orthogonal grids with diagonal
tensor K, we have A~! = (2/3)D~!. These results sug-
gest cell-centered multigrid will make an effective pre-
conditioner for Sy,.

3 Nested iteration

In this section, a nested iteration algorithm for solving
Eq. 3 is presented. The nested iteration algorithm is
derived from the following matrix splitting:

M —-B7T | Qum —BT
B 0 | B Qp—Sgq,
_[QM—M 0 }
0 Qsz—Sq,
where Qs approximates M, Sq,, = BQ, 'B7,and Q3

approximates Sq,,. The corresponding basic iteration is
given by

] =[0] (% o s ) T
pk+1 - pk B QB_SQM l‘/; ’

where

' [e— vk —BTph
rfy - f— Bv¥ )
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Here, k denotes the iteration index. Let Equations 16 and 17 are equivalent to
Qy -—BT i||:uki| [rk} ' 2\ 12 G 02| < v 18
lg = lg . (12) M \4 ( V)Q a”V”QMv ( )
|: B Qi —So, u, r, ( )
1/2 1 /2 2
Using block-Gauss elimination to solve for uf and uf, in ‘ (SQ P) I —=Gr)Sq,p| = Blpls,,, (19)
Eq. 12, the algorithm for nested iteration follows: ,
SouP) GrSg.p| < (1+B)IIpl3 20
Algorithm 1 Nested iteration ‘( QMP) PenP PlSa (0)
1. Initialize v* and p°.
2. Fork =0, -, until convergence Do: for all vand p where
a. r*=g— MvF-BTp). Gy = Q_]/ZMQ_I/2 (21)
b. rk =f— Bvk. |
P Gr=S54.Q5'Sq.. 22
c. E = QE: (rl’g - B;)i,,lrk) r= B =Qu 22)
d. u =Q) o +Bu). Also, the following relation derived from the Cauchy-
e. vV =vEtup Schwartz inequality is useful:
£ pF! = pktuk,
3. EndDo. v.B'p) = (Q}v. @3/ "B"p) < IV, IPls,.  (23)

Nested iteration results from Q3' in step 2c, being
an iterative approximation to S(Llw' We refer to the

computation of Q' as the inner iteration.
3.1 Outer iteration

The iteration error, e* = (ek, e’;)T, after the k-th itera-

tion of algorithm 1, is related to the previous iteration
k-1

error e~ via
ek = Gek_l, (13)
where
Qu B’ ]I[QM—M 0 }
G= . (14
[B Q5 —Soy 0 Qz—Sq, (14)

In the next theorem, the iteration error for the velocity
and pressure, respectively, are measured in terms of the
following norms:

T
k2 KT k k2 k k
ek, = ()" Quet, ek, = (¢5) Souek,
and
k k k
el = max {lekllay, elsa, |- (15)

The iterative convergence rate, y, can be bounded by
these norms and the following spectral radii:

a=p(I-QyM) (16)
and
B=p(I-Q5Sq,). (17)

In the special case where Q) = M, the iteration
error is bounded by g only. In the other special case,
where Qg = Sq,,, the iteration error is bounded by «
only. In the general case, the iteration error is bounded
by a composite of @ and 8. A general result, similar
to the one found in [2], is obtained in the following
theorem:

Theorem 1

le“llc < y*ile’ll. (24)
where

y=a(+p)+8p. (25)

Proof From Eqgs. 13 and 14, we have
Quef —BTek = (Qy —M)ef !, (26)

p
Be| + (Qz —Sq,) €, = (Qz —Sq,) € . (27)

Multiplying Eq. 26 by BQ,,, subtracting from Eq. 27,
and multiplying by Sq,, Q' results in

So.eX =8y, I—Gp)Sy el

— S0, Q3'BQ;, > - Gy) Q) 7ef . (28)

Multiplying both sides of Eq. 28 by (e’[‘,)T, using the tri-
angle inequality, the Cauchy-Schwartz inequality, and
Eqgs. 18-20 give

leSliso, < Blies " lIse, +a(l+ B)les " llg,- (29)
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To obtain a bound on |e}|lq,, & and & are set to
satisfy

Qué —BTel = (Qy-Me, ', (30)

Bé = 0. (31)

This is equivalent to solving the inner iteration exactly
on the k-th outer iteration (i.e., 8 = 0) and results in

1&5lly < alley™" oy (32)
Taking the difference between Egs. 26 and 30, then
Quzi =B’z (33)

k

— ek
v — €

=

k _ ak v
» — €,. Multiplying both

sides of Eq. 33 by (zX)T and using Eq. 23, one obtains

where z e andzl =e

k
IZS oy < 1} s, - (34)

The Schur complement of the system in Egs. 30-31 can
be expressed as

So,& = —BQ,,” (1—- Gy) Q) el . (35)

After subtracting Eq. 35 from Eq. 28, the Schur com-
plement of z% is found to be

S0, =Sg. - Gp) Sy ek

+ 842 a- 6 Sg, BQy, ")

x (I—Gy) Q}lek ! (36)
Multiplying both sides of Eq. 36 by (z5)” and apply-

ing the Cauchy-Schwartz inequality and inequalities 18
and 19 gives the result

k k— k—1
128 ]1se, < Blles " Isq, + Barllet g, (37)

Finally, using Egs. 32, 34, 37, and the triangle inequal-
ity, one obtains

lelloy = &) + e — &llo,,
< 1&5lloy + lZ;lla,, (38)
< a(l+ B)lle5 [, + Blles s, -

The desired result follows immediately. O

3.2 Inner iteration

PCG iteration is used to obtain the action of Qg.l in
step 2c of Algorithm 1. That is, if S(’)L represents the

@ Springer

inversion of Sq,, by the PCG algorithm, then Q}' is
obtained by relaxing the convergence of the PCG al-
gorithm so that only m iterations are required. As these
m PCG iterations are used for each outer iteration k,
then Q' represents m(k) iterations of the PCG algo-
rithm. Because of the afore-noted similarities with the
CCFD matrix, the cell-centered multigrid algorithm is
used as the preconditioner. The cell-centered multigrid
algorithm approximates the inverse of

S, =BD 'B7, (39)
where
D = diag(Qu). (40)

Matrix-vector multiplications of the formy = BQ,/B”x
are also required in the PCG algorithm. This multiplica-
tion is performed sequentially by computing the action
of B followed by the action of Q}, followed by the
action of B.

The approximation Q, of M is obtained from a
level-0 incomplete Cholesky factorization (/LU (0))
of M:

Qu = (Lo + Do) D' (Dy + L)

where L is lower triangular and Dy is diagonal. The
action of Q/’M1 on a vector is obtained, essentially, from
a back substitution of L followed by a forward substi-
tution of LOT . When M is tridiagonal, then Q,, obtained
by this procedure is equivalent to M and, effectively,
Q;,,l = M~!. In this event, if le is sufficiently close to
Sa; (that is, a sufficient number of PCG iterations m
are used), then only a single outer iteration is necessary
to obtain a solution to Eq. 3; the algorithm is then
equivalent to the PCG algorithm presented in [14].
Computing the action of Q' in Algorithm 1 is ac-
complished using incomplete PCG iteration; as noted
previously, this application of PCG represents the inner
iteration of the nested iteration algorithm. Because S
of Theorem 1 encompasses the inversion of Qp, the
convergence factor § of the PCG algorithm is examined
and related to . In this regard, u’; is an approximation

to the exact solution ﬁ’; of the linear system
Sq, i =15 — BQ}/r} (41)
and the following result is obtained [4]:

Theorem 2 If |!ﬁ’; — l.lll.i”sQM < .§||ﬁ';||sQM, then there ex-

ists a symmetric positive definite matrix Qp such that
k _ = —1

QBllp = SQMllp and p(I — QB SQM) <Zc.

Proof See Lemma 4.2 in [4] ]
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If m(k) PCG iterations are needed to approximate
the solution to Eq. 41 with an initial guess of zero and
a convergence factor of 4, then the well-known bound
[17,31] given by

~k k k) =k
it — ul1s,,, < 28" P 55, (42)

applies to the convergence of Eq. 41. Theorem 2 and
relation 42 provide a bound such that g < 25”®. As
8 < 1 for convergence of the PCG algorithm, 8 becomes
small as m(k) increases. If m(k) is allowed to become
sufficiently large, then convergence of Algorithm 1 will
depend on « alone.

3.2.1 CCFD preconditioner

In this section, a bound for the convergence factor
8 of the PCG method is obtained when applied to
Eq. 41 while using CCFD preconditioning. The condi-
tion number « (S,'Sq,,) is defined by

Amax (SBI SQM)

- . (43)
Amin (Sp'Say)

K (SBISQM) =

It is well known [17, 31] that the convergence factor §
of the PCG algorithm is bounded by

-1
+1

B

5 <

(44)

B

Fig. 1 Flow lines obtained
from computed fluxes.
Orthogonal grid on the /left
and distorted grid on the right

In the following theorem, the condition number of
(SZ)ISQM) is bounded in terms of the condition number

of (D~'Qy):
Theorem 3
K (S5'Sqy) <« (D7'Qu). (45)

Proof Let Ay, and A, be the minimum and maximum
eigenvalues of D~'Qy,, respectively. Then, the follow-
ing are equivalent for all v

minVIV < VIDTIQuv < ApaVV
121 1/2
AminVIV < vTQAfI D 1Q1\4 V < AmaxV'V

AminV! Qv < vID 1y < dmaxV' Q3 V
Al vID 1y < viQy'v < ivID ly
Letting v = BTSZ)I/ 2p finishes the proof. O

In the case of a tridiagonal matrix M, Q» = M and
Algorithm 1 reduces to the method suggested in [14]
for the direct solution of Eq. 4 using the PCG method.
From Eq. 9 and the Gershgorin circle theorem [17], the
convergence factor of the PCG algorithm is

5 < j_j_ i ~0.27. (46)
+

3.3 Adaptive nested iteration

Forcing B to become small by increasing the number
of PCG iterations is costly because each PCG iteration
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Table 1 The convergence factor § and number of iterations for
PCG algorithm preconditioned by cell-centered multigrid with
scalar conductivity on orthogonal grid

s 8 Iterations
2 0.206 23
3 0.231 25
4 0.254 26
5 0.266 27
6 0.274 28

requires the action of Q},; and the approximation of S,
using multigrid. For a fixed o < 1, Theorem 1 implies
that Algorithm 1 is convergent for

1l -«
l4+a

B < (47)

Condition 47 is satisfied by letting

ﬁ:aG;Z). (48)

Substituting Eq. 48 into Eq. 25 results in the following
reduction rate for Algorithm 1:

y=a2—a). (49)

Using definitions from Algorithm 1, let

_ 1(T=MQ;)) rilo,

= 50
o TS G0
11— (6774
ﬁk=ak<1+ak), (51)
zl; = rl; - BQ,/r,
and
ué = PCG(Sq,. 7. o) (52)

Table 2 Power method estimates of o, Amax(D~'Qy), and
Amin(D~1Qy) for the 25% distorted grid case with variable
permeability

§ o Amax Amin 3

2 0.06 2.12 0.47 0.36
3 0.10 2.34 0.47 0.38
4 0.17 2.53 0.47 0.40
5 0.27 2.68 0.40 0.44
6 0.40 2.79 0.35 0.48

The value of § is estimated from Theorem 3

@ Springer

Table 3 Values of y, «, and § for the 25% distorted grid case of
Algorithm 1

s y o ) Iterations CPU
Outer Inner

2 0.02 0.04 0.23 6 102 0

3 0.03 0.07 0.25 7 128 0

4 0.05 0.11 0.29 8 160 2

5 0.12 0.19 0.32 11 220 26

6 0.20 0.30 0.34 15 301 314

Execution times (CPU) given in seconds rounded to zero decimal
places

where Eq. 52 is the approximate solution of Eq. 41
using the PCG method such that the preconditioned
norm of the residual is reduced by a factor less than
or equal to B¢. The actual reduction factor gy can be
estimated as follows:

Iz8 — Sq,uk s
B ~ —L . AL (53)
251,

4 Numerical results

The model problem is a cubic domain with random
heterogeneity in the hydraulic conductivity coefficient
and a flow induced by a pressure gradient imposed on
two opposite boundaries. The other boundaries have
no-flow conditions. The hydraulic conductivity tensor,
K = a(e)l, is aligned with a not necessarily orthogonal
4 x 4 x 4 coarse-grid, and in each block, e has a scalar
value a(e) = 10~” where p is a random integer such that
0 < p < 5. Numerical approximations of the fluxes and
pressures are obtained from Algorithm 1 on different-
size grids with diameter 2 =2"° for s =2,3,4,5,6.
Flow lines computed from the simulated fluxes are illus-
trated in Fig. 1. As previously noted, the action of le
is best computed by the PCG algorithm preconditioned

Table 4 Values of y, «, and 8 for the 25% distorted grid case of
Algorithm 1 using one inner iteration for each outer iteration

s y a B Iterations CPU
Outer Inner

2 0.44 0.03 0.48 30 30 0

3 0.44 0.04 0.44 30 30 0

4 0.50 0.07 0.50 36 36 3

5 0.54 0.08 0.55 41 41 31

6 0.59 0.09 0.59 48 48 315

Execution times (CPU) given in seconds rounded to zero decimal
places
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Table 5 Values of y, o, and 8 for the 25% distorted grid case of
Algorithm 1 using adaptive inner iteration tolerance

s y o B Iterations CPU
Outer Inner

2 0.02 0.03 0.02 6 27 0

3 0.03 0.06 0.03 7 31 0

4 0.05 0.11 0.05 8 37 0

5 0.12 0.18 0.06 12 44 11

6 0.29 0.30 0.06 15 59 124

Execution times (CPU) given in seconds rounded to zero decimal
places

by cell-centered multigrid. The cell-centered multigrid
preconditioning consists of one V-Cycle [11, 29] with
D — ILU smoothing as described in [5, 30]. The D —
I LU factorization is a simpler version of /LU (0). Not
only does it have zero fill-in, it ignores the off-diagonal
modifications and only the pivots are stored in the diag-
onal. For CCFD matrices, the D — I LU factorization
coincides with the /LU (0) factorization.

4.1 Orthogonal grids

In the case of an orthogonal grid with a diagonal con-
ductivity tensor, the matrix M is tridiagonal and has a
simple factorization. The Schur complement problem
(Eq. 4) is solved using the PCG algorithm precondi-
tioned by cell-centered multigrid. The norm of the error
is approximated by the actual residuals ¥ within the
PCG loop:

le¥lse, = v x*, e5) ~ By,
where By =,/ (%, S,'r%). The convergence factor §

shown in Table 1 agrees closely with the theoretical

bound § &~ 0.27 of Theorem 3 and Eq. 46. The § shown
in this table is approximated by

S~ "M ﬂ_m7

280
where m is the number of PCG iterations such that
B < 10715,

4.2 Distorted grids

As noted earlier, the matrix M for a distorted grid is
not tridiagonal because of additional fill. In this event,
an approximation Q,; of M is used; Qj, takes the form
of alevel-0 incomplete Cholesky factorization of M and
nested iteration results. The cell faces on the boundary
of the domain are kept rectangular, but the interior
intersections of the hexahedral cells are allowed to be
distorted from their orthogonal position by up to 25%
of the orthogonal cell diameter. The distorted grid is
illustrated in the right-hand side of Fig. 1. To estimate a
bound on « and g, as applied in Theorem 1, we use the
power method [3, 17]. The power method is used to es-
timate the dominant eigenvalues of I — Q;,I' M, D 'Qy,,
and Q;jD in order to estimate «, Am(D~'Qy), and
Amin(D~1Qy), respectively. The last two estimates are
used in Theorem 3 to obtain a theoretical estimate of §.
These estimates are given in Table 2.

The preconditioned residual, u* = (uf, uf)”, after
the k-th iteration of Algorithm 1 is related to the previ-
ous preconditioned residual u*~! via u* = Gu*~!. The
reduction factor, yx, on the k-th iteration is approxi-
mated by

e~ lu*~"llg
[NIe

Fig. 2 Iteration histories of 045 045
ay (on left) and yy (on right) 040 \l, 040
on distorted grid with grid d VVVVVVVV ] yVVVVVVVY
diameter & = 27 for 0.35 - 7 035 v
s=4,56 v
030~ 030 -
¥ =
2 -6 i
020- E 2 +s55  gag | &
v _.‘“ v 5=6
4 015
010+
0.05
I T T I T T T T T T I T I 0'00- T T T T T T T T T T T T T
01234567 B 5101112131415 01234567 8510111213141
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The values of y shown in Tables 3 and 4 are approxi-
mated by

N (numna)”m
7)o
where m is the number of outer iterations such that
W]l < 10719, The values of « in Tables 3, 4, and 5
and the values of g in Tables 4 and 5 are the arithmetic
means of o and Sy from Egs. 50 and 53, respectively.

The numerical results obtained from nested iteration
and the results obtained in Table 2 and the theoretical
bounds from Theorem 1 can be compared. Theoreti-
cally, the convergence rate, 8, of the PCG method in
the inner iteration should be bounded by the value
of § given in Table 2. If a sufficient number of inner
iterations are allowed so that Q' is a close approx-
imation to S(_);w then the outer convergence rate, y,
of Algorithm 1 should be bounded by the value of
a given in Table 2 since Theorem 1 indicates that g
should become negligible. The values in Table 3 can
be compared with this theoretical result. The iteration
histories of o and y, shown in Fig. 2 for s = 4,5, 6,
indicate that these values converge to the theoretical
limit.

Tables 4 and 5 show the results of limiting the num-
ber of PCG iterations. In Table 4, the number of inner
iterations is limited to one for each outer iteration. This
results in a reduction factor of 8 sufficient for Algo-
rithm 1 to converge. Although the number of outer it-
erations increase, the CPU times remain approximately
the same (compare with outer iterations and CPU times
in Table 3). The convergence factor y in Table 4 agrees
with the theoretical results from Theorem 1.

Table 5 shows the results of using the adaptive ap-
proach described in Section 3.3. The total number of
inner iterations is significantly smaller, compared to
Table 3, while the number of outer iterations remain
the same. This results in the best CPU times of all three
comparisons.

Table 6 Power method estimates of o, Amax(D~'Qy), and
Amin(D~1Qyu) for the 35% distorted grid case with variable
permeability

s o Amax Amin 3

2 0.08 2.35 0.41 0.41
3 0.17 2.63 0.38 0.45
4 0.32 2.90 0.28 0.53
5 0.54 3.09 0.18 0.61
6 0.88 3.29 0.14 0.66

The value of § is estimated from Theorem 3

@ Springer

Table 7 Values of y, o, and 8 for the 35% distorted grid case of
Algorithm 1 using adaptive inner iteration tolerance

s y o B Iterations CPU
Outer Inner

2 0.03 0.05 0.03 8 26 0

3 0.06 0.10 0.05 10 26 0

4 0.12 0.22 0.06 13 32 1

5 0.37 0.49 0.06 26 55 22

6 0.67 0.78 0.05 57 122 421

Execution times (CPU) given in seconds rounded to zero decimal
places

4.3 Further grid distortion

A higher degree of grid distortion can negatively impact
the effectiveness of the outer iteration preconditioner
Qs and also effect the inner iteration preconditioner
Q5. We experienced a failure in the /LU (0) factor-
ization when testing a grid distortion of up to 45%
with & = 273. We are able to test a grid distortion of
up to 35%. Table 6 shows that the value of « can
become detrimentally large in this case and the results
of Algorithm 1 using adaptive inner iteration tolerance
is shown in Table 7. The numerical examples pre-
sented in this paper are based on random examples.
Further testing is needed with more practical examples,
and more robust preconditioners might need to be
investigated.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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