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An important challenge in microbial ecology is developing methods that simultaneously examine
the physiology of organisms at the molecular level and their ecosystem level interactions in complex
natural systems. We integrated extensive proteomic, geochemical, and biological information from
28 microbial communities collected from an acid mine drainage environment and representing a
range of biofilm development stages and geochemical conditions to evaluate how the physiologies of
the dominant and less abundant organisms change along environmental gradients. The initial
colonist dominates across all environments, but its proteome changes between two stable states as
communities diversify, implying that interspecies interactions affect this organism’s metabolism.
Its overall physiology is robust to abiotic environmental factors, but strong correlations exist
between these factors and certain subsets of proteins, possibly accounting for its wide environmental
distribution. Lower abundance populations are patchier in their distribution, and proteomic data
indicate that their environmental niches may be constrained by specific sets of abiotic environmental
factors. This research establishes an effective strategy to investigate ecological relationships between
microbial physiology and the environment for whole communities in situ.
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Introduction

Advances in cultivation-independent ‘-omics’ techniques are
beginning to allow for the study of microbial populations in
natural environments at both a functional biomolecular level
and a whole-community level (proposed in Prosser et al, 2007;
Little et al, 2008). The combination of environmental metage-
nomic and proteomic approaches opens the possibility for
exploration of basic ecological rules underlying the functioning
of microorganisms and the communities they form in nature
(proposed by Warnecke and Hugenholtz, 2007; Raes and Bork,
2008). Recent metagenomic studies have revealed the phyloge-
netic diversity and functional capacity of microbial systems
(Tyson et al, 2004; Tringe et al, 2005; DeLong et al, 2006; Rusch

et al, 2007; Kunin et al, 2008), and community proteomics can
enable the analysis of physiological characteristics in situ
(Lacerda et al, 2007; Delmotte et al, 2009; VerBerkmoes et al,
2009). Although this work has greatly advanced our knowledge
of natural microbial communities, comprehensive analyses of
these systems are often limited by their inherent complexity. To
circumvent this issue, one option is to study model commu-
nities of reduced complexity, such as biofilm communities
found growing in acid mine drainage (AMD) environments
(Denef et al, 2010b). Here, we integrated community proteomic
and environmental data (physical, chemical, and biological)
from 28 natural AMD biofilm communities to reveal relation-
ships of the environment with the whole community, and with
the molecular physiology of the individual populations.
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Chemoautotrophic biofilm communities sustained by
oxidation of iron and sulfur grow underground at the inter-
face between air and sulfuric acid solutions within the
Richmond Mine at Iron Mountain, California. In general,
initial colonists form few microns thick films that mature
into much thicker, differentiated communities with higher
species richness (Wilmes et al, 2009). Although the thickness
of the biofilm is correlated with maturity, other abiotic factors,
such as local flow rates, seem to influence the thickness of
individual films. Biofilms develop over the weeks to months
and either sink and degrade or are flushed from the system
by high flow rates following seasonal rainfall events. Their
high biomass production rates and low species richness
have enabled extensive metagenomic and proteomic char-
acterization (Tyson et al, 2004; Lo et al, 2007; Denef et al,
2009) and make them an ideal system for exploring principles
of microbial ecology at the molecular level (Denef et al,
2010b).

Results

Sample collection and characterization

Twenty-eight biofilm communities were collected from the
air–solution interface at seven sites (Supplementary Figure S1)
between January 2004 and August 2007. Temperature and
solution chemical parameters (including pH, sulfate, metal,
nitrate, and nitrite concentrations) were measured at each
sample site (Supplementary Table S1). The average tempera-
ture and pH values were 40.9±2.81C and 0.93±0.18 (±s.d.),
respectively, and mine discharge was 196±176 l/min. ATP
synthesis and all carbon fixation are driven by the high Hþ

and Fe2þ concentrations (182±0.07 mM) that result from
the dissolution of pyrite (FeS2) (Druschel et al, 2004). The
community structure (CS) (i.e. composition and population
abundance) of biofilms was defined using fluorescent in situ
hybridization (FISH; Supplementary Table S2) (Amann et al,
1990).

Community membership patterns

Proteomic and FISH data were used to determine community
membership across the 28 biofilm communities. 2D-LC
MS/MS-based proteomics performed on each biofilm sample
identified an average of 2182±411 proteins from each
community (Supplementary Table S3), and 6296 proteins
across all communities (http://compbio.ornl.gov/biofilm_
amd_ecological_succession). Proteins from iron-oxidizing
Leptospirillum Group II bacteria dominated all proteomic data
sets (49.6±11.5% of proteins; Figure 1A). Mature biofilms
with proportionally lower representation of Leptospirillum
Group II had higher abundances of proteins from later biofilm
colonizers. The subdominant groups included another iron-
oxidizing species, Leptospirillum Group III (13.7±5.5%), and
two potentially mixotrophic archaea, G-plasma (9.0±4.9%),
and A-plasma (4.6±3.8%) (Figure 1A). A small number of
proteins also derived from Actinobacterium 1, Actinobacter-
ium 2, and Firmicutes sp. and other archaea (E-plasma,
I-plasma, Ferroplasma Types I and II, and ARMAN-2). Proteins
without an organismal affiliation were grouped as unassigned.
This category is associated with many different low abundance
organisms, and represented a relatively constant fraction of
each proteome (Figure 1A; CV¼0.11).

The relative abundances of community members deter-
mined by FISH were in good agreement with proteomic
relative abundance data (R2¼0.80; Supplementary Figure S2).
Perfect concordance is not observed, though, as proteins from
high abundance organisms are slightly underrepresented in
proteome samples and proteins from low abundance organ-
isms are overrepresented. The reason for this deviation from a
1:1 relationship is partly due to the dynamic exclusion filters
set during the mass spectrometer run, which will bypass
highly abundant peptides after they have been selected once
for MS/MS analyses.

Using only FISH data (Supplementary Table S2), biofilms
clustered into two distinct patterns of CS that represent
different maturation stages, and are distinguished
primarily by changes in the relative abundance of archaea to

Figure 1 Community structure of biofilm samples. (A) Percent composition of each community proteome based on the organismal assignments for each protein
identified. X-axis labels represent biofilm community names. (B) Clustering of biofilm communities (column labels) using community structure data collected by FISH.
Color scale is based on the percent composition of each community.
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Leptospirillum Group II (Figure 1B). Biofilms from cluster 1
were typically thin (B10–30 mm in thickness) (Wilmes et al,
2009), and mostly composed of Leptospirillum Group II
(78±9.0% of cells). Cluster 2 biofilms were more mature,
thicker (B30–200mm) (Wilmes et al, 2009), and had a more
complex composition, with significantly higher concentrations
of archaea (43±11%, t-test—Po2e�6).

Leptospirillum Group II’s wide distribution, dominance
across all samples, and high proteomic activity shows its wide
niche breadth within the AMD system. In contrast, Leptospir-
illum Group III organisms, like many other low abundance
community members, seemed to have a patchier distribution
as determined by FISH (Figure 1B), and their proteomes were
highly variable across all communities (Figure 1A; CV¼0.40).
The lower abundance and more restricted distribution of these
subdominant populations relative to Leptospirillum Group II
indicates their comparatively smaller ecological niches within
the AMD system.

Changes in organismal physiology and
distribution with environmental conditions

To explore possible relationships between environmental
factors and species distribution trends, we tested for signifi-
cant correlations between proteomic data and biotic and
abiotic environmental data. Semiquantitative measurements
of protein abundance (normalized spectral abundance
factor (NSAF) values) were derived from normalized spectral
count values for peptides (Florens et al, 2006). Hierarchical

clustering of these values allows for comparison of relative
abundances of proteins across samples, enabling efficient
detection of patterns within these large multivariate data sets.
Communities (columns in Figure 2A) were clustered based on
the abundances of all proteins within each proteome and
individual proteins (rows in Figure 2A) were clustered based
on their relative abundance patterns across all communities.
To avoid biases due to the presence or absence of proteins in
individual communities and to ensure the fidelity of the
results, clustering was performed multiple times with specific
subsets of the data (Supplementary Figure S3A). Twenty-three
of the communities reproducibly clustered into two groups
based on their protein abundance levels (green and blue
highlights in Figure 2A). Five communities could not be
consistently grouped (P36, P37, P38, P40, and P43) due in
part to unusual abundance patterns for some A-plasma and
plasmid proteins (Supplementary Figure S3B). A separate
form of analysis, non-metric multidimensional scaling
(MDS) (Torgerson, 1952), supported the division of protein
expression patterns among communities into two groups
(Figure 2B).

Changes in measured environmental parameters (tempera-
ture, flow, sample collection site, pH, and CS; see Supplemen-
tary Table S1) were correlated with variations in the protein
abundance patterns using the BIOENV statistical procedure
(Clarke and Ainsworth, 1993; Oksanen et al, 2007). Significant
correlations emerged despite the use of highly complex
proteomic data sets comprised of hundreds of variables.‘Flow’
was the only factor to show consistent correlation with the
protein abundance patterns for all organisms (Table I).

Figure 2 Hierarchical and MDS clustering of whole-community proteomes. (A) Clustering of samples using protein abundance data for proteins detected in at least
30% of samples. Column labels represent sample names and are highlighted in green and blue to represent the two groups of samples reproducibly clustered together.
Unhighlighted samples showed variability in their clustering patterns. (B) MDS of samples using all protein abundance data. Sample names are given for each point
and stress value, which represents the goodness-of-fit, is reported in top-right corner of the graph (values range from 0.00 to 1.00 and lower values indicate better fit).
Green and blue groups from (A) (pale oval regions) are discriminated along coordinate 1. Notably, the blue cluster has a wider distribution along the second coordinate
(Y-axis) than the green cluster, suggesting a higher degree of variability in the expression pattern of communities in this group. Source data is available for this figure at
http://www.nature.com/msb.
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The founding and dominant species
For Leptospirillum Group II, CS bore the strongest correlation
to protein expression patterns (Table Ia). This relationship is
illustrated by an MDS created using proteomic data for this
organism (Figure 3), with circles superimposed over each
sample point representing the two CS clusters from Figure 1B.

Clear metabolic differences in Leptospirillum Group II that
coincided with changes in the composition of the surrounding
community were detected for the 23 whole-proteome data sets

classified as either high or low developmental stage. Use of the
significance analysis of microarrays (SAM) technique (Tusher
et al, 2001) revealed 474 proteins of Leptospirillum Group II
with significant abundance level differences between stages
(o4.7% false-discovery rate (FDR); Table II). These Leptospir-
illum Group II proteins were usually widely distributed across
all proteomes, with a majority being detected in 495% of
samples (median¼96.4%). In addition, these proteins gen-
erally comprised a large proportion of each individual
proteome (38±2%), suggesting that the presence of surround-
ing community members influences the overall metabolism of
the Leptospirillum Group II population.

Of the 474 Leptospirillum Group II proteins that showed a
significant relationship with CS, 370 are overrepresented in
high and 104 in low developmental stage biofilms. Clustering
of samples using these proteins revealed two metabolic states
when growing within low versus high developmental stage
biofilms with high within-cluster correlations (�r¼0.89±0.05;
Pearson correlation coefficient; Figure 4A). Leptospirillum
Group II proteins associated with this metabolic reorganiza-
tion were grouped into functional categories and significant
biases were defined. Ribosome biosynthesis, which includes
ribosome structural proteins, and transcription, which in-
cludes RNA polymerase proteins and proteins involved in
transcriptional regulation, were significantly elevated in low
developmental stage biofilms, as well as proteins involved in
physical and chemical stress defense, unknown functions, and
associated with mobile genetic elements (Figure 4B). In the
high developmental stage biofilms, we detected increased
investment in proteins involved in chaperone and protein
turnover functions, and environmental signaling, chemotaxis,
and motility (Figure 4B). There was also a shift in metabolism
away from ribosome biosynthesis towards proteins involved
in biosynthesis of extracellular components, carbohydrates,
and amino acids.

When the effects of only physical and geochemical
parameters on the Leptospirillum Group II proteome were
considered, it was noted that the overall physiology of
Leptospirillum Group II was largely uncorrelated with indivi-
dual abiotic variables (Table II). Although some significant

Table I BIOENV results displaying the correlations of combinations of environmental factors with organismal proteomes

Organism proteome Environmental factorsa �r (All) �r (Single)

(a) All factors consideredb

Leptospirillum Group II Community structure, flow 0.48*** 0.39***

(b) Physical and geochemical factors consideredc

Leptospirillum Group II Flow, temperature 0.34** 0.28*
A-plasma Site, temperature, flow 0.40** 0.26w

G-plasma Temperature, flow 0.31* 0.25w

Ferroplasma Type I Temperature, flow 0.40** 0.25w

Ferroplasma Type II Temperature, flow 0.42*** 0.30*
Leptospirillum Group III pH, flow 0.24* 0.15

aFactors in bold represent the single, strongest correlating factor.
bA numerical measure of community structure for each biofilm was determined using FISH and included as a factor for the Leptospirillum Group II proteome. This factor
was not used in correlations with proteomes of low abundance organisms (A-plasma, G-plasma, Ferroplasma Type I, Ferroplasma Type II, and Leptospirillum Group III)
as their presence only in mature biofilms is inherently linked to community structure shifts.
cPhysical and geochemical factors include pH, temperature, solution discharge rates (flow) on the day of sample collection, and a numerical measure representing the
site of collection for each sample (site).
w P-value o0.10; *o0.05; **o0.01; ***o0.001.

Figure 3 Correlation of the community structure factor with Leptospirillum
Group II proteomes. An MDS separating samples using only Leptospirillum
Group II protein abundance data is shown. Symbols for each point represent
community structure clusters from Figure 1B and blue and green highlights
represent expression groups from Figure 2. All biofilms of the protein expression
group labeled green in Figure 2 represent low developmental stage biofilms and
correspond to cluster 1 of Figure 1B (i.e. all green samples are small circles).
All but two communities (P25 and P33, noted by arrows) from the high
developmental stage protein expression group labeled blue in Figure 2 are
consistent with biofilms from cluster 2 of Figure 1B (i.e. all but two blue samples
are large circles). P25 and P33 are classified as the high developmental stage
samples because their whole-community proteomes included many proteins
from low abundance organisms and their Leptospirillum Group II proteomes fall
at cluster edges. Stress value is reported in top-right corner of the graph.
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Table II Number of Leptospirillum Group II proteins determined to be significantly associated with different environmental factors

Factor Total proteins (+) Correlation/
high dev. stage

(�) Correlation/
low dev. stage

Unique
correlationsa

FDRb

Dev. stage 474 370 104 250 (53%) 0.05
Calcium 360 40 198 58 (16%) 0.04
Sulfate 247 241 6 24 (10%) 0.08
Nitrate 150 101 49 40 (27%) 0.09
Temperature 129 122 7 48 (37%) 0.08
Arsenic 109 87 22 1 (1%) 0.10
pH 13 13 0 0 (0%) 0.08
Copper 0 0 0 0 —

aNumbers in parentheses represent the percent of total correlations that are unique to each respective factor.
bFalse-discovery rate (FDR) estimates the percentage of proteins falsely identified to exhibit protein expression changes at an assigned level of significance (i.e. false
positives, Tusher et al, 2001).

Figure 4 Correlations of proteins of Leptospirillum Group II with environmental factors. (A) Clustering of samples using abundance values of differentially detected
proteins (significance analysis of microarrays with a false-discovery rate o0.05) of Leptospirillum Group II (474 proteins, see Supplementary Table S4 for the complete
list of proteins). Column labels signify sample names and green and blue highlights represent expression group designation from Figure 2. (B) Functional differences of
Leptospirillum Group II between developmental stages. Values represent the bias in total proteins overrepresented in either high or low developmental stages. Positive
values (blue bars) signify categories overrepresented in high developmental stage biofilms and negative values (green bars) signify categories overrepresented in low
developmental stage biofilms. Asterisks note categories significantly overrepresented (98% confidence interval). (C) Pairwise scatter plots of measurements of selected
environmental factors strongly correlated to the abundances of a given protein. Source data is available for this figure at http://www.nature.com/msb.

Physiology of communities revealed by proteomics
RS Mueller et al

& 2010 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2010 5

http://www.nature.com/msb


correlations between protein abundances and specific abiotic
factors were uncovered, the total numbers of proteins were
smaller than for those correlated with changes in CS, and very
few proteins were uniquely correlated to a given abiotic factor
(Table II). For example, only 59 of the 360 proteins with
significant correlations to calcium levels were uniquely
correlated with this parameter.

Of the proteins that were significantly correlated with
specific physical and geochemical parameters, many perform
related roles. For example, abundances of the cold shock
protein from Leptospirillum Group II decreased as tempera-
tures increased (Supplementary Table S5a) and abundances
of a greater than expected number of proteins involved in
fatty acid biosynthesis positively correlated with increased
temperatures. Also, B40% of all detected ribosomal proteins
showed positive correlations with nitrate (Figure 4C; Supple-
mentary Table S5b). Additional significant and strong correla-
tions were observed between sulfate levels and protein
processing components and calcium levels and proteins
involved in various biosynthesis pathways (Figure 4C; Sup-
plementary Table S5c and S5d). Many of these proteins may
ameliorate physical stresses associated with the range of
abiotic conditions encountered.

Subdominant, later-colonizing taxa
The variable distribution of community members other than
Leptospirillum Group II across samples (Figure 1) may result
from constraints on their environmental niches. We found that
different sets of physical and geochemical parameters were
best correlated with each organism’s proteome. Temperature
showed the strongest correlation with protein abundance
patterns of most archaea (A-plasma, G-plasma, and Ferroplasma
Types I and II), whereas pH showed a correlation with the
proteome of Leptospirillum Group III (Table Ib). We further
examined these relationships by analyzing the skew in the
total numbers of proteins of A-plasma, G-plasma, and
Leptospirillum Group III that correlated positively or nega-
tively with temperature, pH, conductivity, Fe2þ and Cu
concentrations. Biases reflect differences in how individual
factors may influence the abundance, activity level, or both of
each organism (Figure 5A).

The associations of A-plasma and G-plasma proteins to
physical factors were generally opposite, despite their close
phylogenetic relationship. Temperature and copper were the
exceptions, with more proteins from both organisms being
positively than negatively correlated with increases in these
factors. This is consistent with the BIOENVresults that showed
a high correlation of temperature with both organisms’
proteomes (Table Ib). In contrast to both these archaea,
correlations of Leptospirillum Group III proteins with abiotic
factors suggest that this organism favors lower stress environ-
ments (i.e. higher pH, lower ionic strength, lower temperature,
lower copper; Figure 5A).

Although more Leptospirillum Group III and A-plasma
proteins correlated positively than negatively with increasing
pH (Figure 5A), their pH optima seemed to be different.
Clustering of proteins with strong correlations to pH revealed
that Leptospirillum Group III proteins were most abundant at
pH B0.95 and A-plasma proteins at pH B1.12 (Figure 5B).

Further support for the conclusion that Leptospirillum
Group III’s environmental niche is distinct from other
subdominant populations was revealed when the relative
abundances of this organism’s proteome was considered
against those of the Alphabet-plasma group of archaea
(i.e. A-, E-, G-, and I-plasma). Here, a strong negative
relationship was observed between these groups, demonstrat-
ing that as one group increases in activity the other
concomitantly decreases (�r¼�0.89; Pearson correlation co-
efficient; Figure 5C).

Discussion

Value of environmental proteomic approaches for
the study of microbial communities

We have used environmental proteomic techniques to
examine ecological and physiological processes in a natural
model microbial community. Extensive sampling of commu-
nities across environmental and temporal gradients provided
insight into relationships between environmental parameters
and physiological state. Importantly, this work has examined
these processes in situ, capturing processes ongoing in the
natural environment. An advantage of this approach is that it
is cultivation independent, enabling analysis of many coexist-
ing difficult to culture populations. Insights were attained at a
community ecology level (i.e. how population abundances
within a community change as the environment changes) and
at a functional molecular level (i.e. how an individual
population changes its physiology as the environment
changes). The approach differs from traditional CS profiling
(e.g. 16S rRNA gene surveys) used in many microbial ecology
studies. Although CS profiling could have shown that
Leptospirillum Group II remains the dominant population
throughout succession, demonstration that its metabolism
changes significantly as biofilms mature relied on the
application of proteomic analysis.

Community assembly patterns in AMD biofilms

The finding that Leptospirillum Group II is dominant in all
biofilm developmental stages is atypical relative to most
patterns of ecological succession for plant and animal
communities (Connell and Slatyer, 1977). Similar to patterns
of forest establishment in clearings (Glenn-Lewin et al, 1992)
and colonization of lava fields (Del Moral and Bliss, 1993), the
founding colonist in the AMD system conditions the environ-
ment—in this case by fixing carbon and initiating biofilm
construction (Goltsman et al, 2009)—enabling the propaga-
tion of secondary colonizers. However, in marked contrast to
these macroscale examples, Leptospirillum Group II is not
ultimately outcompeted and replaced by these later arrivals q
as more diverse communities develop (Figure 1). Another
exception to this model from macroecology are the ‘fertile
islands’ of the African savanna established by Acacia trees
(Dean et al, 1999). As in the ‘fertile islands,’ secondary
colonists in AMD biofilms most likely depend on persistence of
the initial colonist to maintain their niche. This strong and
continuing dependence in these systems may be linked to
environmental constraints. In both AMD communities and the
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‘fertile islands,’ the combination of many physical challenges
and the low variety of energy resources probably acts to
restrict the diversity of competitors able to perform similar
community-essential roles, aiding in the initial colonist’s
persistence.

Another feature of plant and animal communities is that the
most widely distributed species are also commonly the most
abundant locally (Hanski et al, 1993). Similarly, Leptospir-
illum Group II was found in all communities and was also the
most abundant population member (Figure 1). The ecological
specialization hypothesis proposes that this is due to an ability
to ‘tolerate conditions and acquire sufficient resources’
(Brown, 1984), an explanation that also may apply to this
organism. Adaptation of this type could be accomplished
either by evolution of a stable metabolism that ensures
functionality over a wide range of conditions or by continuous
modulation of the core metabolism as geochemical parameters
change. The finding that the Leptospirillum Group II proteome
is not strongly correlated with abiotic environmental perturba-
tions indicates adaptation through a relatively stable, broadly
adapted metabolism (Tables I and II). Notably, we identified
two stable proteome states that are strongly correlated to

microbial community composition. This finding strongly
indicates that interspecies interactions directly impact the
physiology of this organism.

In summary, we propose that the physiological state of
Leptospirillum Group II is largely predicated on interactions
with other organisms, which may include resource competi-
tion, but that its core metabolism is relatively unchanged by
abiotic conditions, such as pH, temperature, and measured
geochemical factors. Thus, by augmenting biotic surveys that
document the spatial and temporal distribution of a bacterium
with direct information about its physiological responses over
a range of growth conditions, we were able to evaluate the
ecological specialization hypothesis at both a physiological
and species level.

Leptospirillum Group II physiological changes:
ecological and evolutionary implications

The nature of the Leptospirillum Group II population proteome
shift as communities diversify (Table I; Figure 4) provides
insight into how biologically imposed constraints may affect

Figure 5 Correlations of the proteins of low abundance organisms with geochemical factors. (A) Percent of A-plasma (n¼509 proteins), G-plasma (n¼639 proteins),
and Leptospirillum Group III (n¼936 proteins) identified proteomes either positively (positive values) or negatively correlated (negative values) to a various environmental
factors (temperature, pH, conductivity, [Fe2þ ], and [Cu]). (B) Hierarchical clustering of proteins and samples from A-plasma and Leptospirillum Group III with high
correlation to pH using protein abundance data. Values reported at the top of each column represent pH measurements recorded for each sample. Unsupervised
clustering of proteins (Y-axis tree) resulted in well-defined groups of A-plasma and Leptospirillum Group III proteins. (C) Scatter plot of relative abundances of
Leptospirillum Group III proteins versus those of the Alphabet-plasma Group Proteins (i.e. A-, E-, G-, I-plasma) for high developmental stage whole-community
proteomes. Source data is available for this figure at http://www.nature.com/msb.
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physiology during ecological succession. The shift may be
related to density-dependent or complexity-dependent effects
that typify the transition from an r- to K-environment
(MacArthur and Wilson, 1967). In an r-like environment
where resources are abundant and predation is low (e.g. early
succession where community diversity is low), it is proposed
that traits such as rapid growth and dispersal are favored.
Conversely, in K-environments (e.g. late succession stages),
higher biological diversity, competition for resources, and
predation should favor slower growth and the ability to take up
and use diminishing resources.

We propose that the functional biases comprising the
metabolic shift observed for Leptospirillum Group II
(Figure 4B) reflect growth in r- versus K-environments.
Ribosome biosynthesis, cell division, and transcription are
favored in early succession stages, as expected for rapidly
growing cells in thin biofilms that are not limited by resource
diffusion constraints, biological competition, and/or preda-
tion. In later succession stages, processes such as the
metabolism of cellular components (e.g. carbohydrates,
nucleotides, amino acids) and environmental sensing are
favored. Increases in the abundance of carbohydrate biosynth-
esis proteins may be a result of increased biomass accumula-
tion in exopolymeric biofilm matrix. Also, deficits in the
intracellular amino acid pool may be driven by the demands of
general protein synthesis in earlier developmental stages. This
is supported by the result that tRNA synthetases are often
found in greater abundances in late developmental stage
biofilms. This diversification of metabolism and enhancement
of the ability to detect chemical gradients in thickening
biofilms may be advantageous in a K-like environment where
density-dependent effects are higher.

It was also observed that proteins involved in iron oxidation
and the electron transport chain are overabundant in late
developmental stages. These include nine subunits from the
NADH dehydrogenase complex and various cytochrome-
containing enzymes (e.g. Cytochrome oxidase, Cytochrome
b/b6, and Cytochrome 572, which may oxidize Fe(II) in
Leptospirillum Group II; Jeans et al, 2008). Differential
abundances of these enzymes may reflect increased iron
oxidation by this organism in high developmental stages. In
addition, some enzymes involved in the reductive TCA cycle,
likely the major carbon fixation pathway in Leptospirillum
Group II (Goltsman et al, 2009), are more abundant in late
compared with early developmental stages. These include
subunits of pyruvate synthase, aconitate hydratase, and
succinyl-CoA synthetase. However, as these constitute only a
small portion of the overall pathway and given that some may
have multiple roles in different metabolic pathways, it is
difficult to hypothesize whether carbon fixation rates change
with developmental stage.

Despite the relative stability of the Leptospirillum Group II
proteome with respect to changes in abiotic factors, specific
subsets of proteins correlated with abiotic perturbations and
may be involved in specific environmental adaptation
mechanisms (Supplementary Table S5). For example, the
abundances of lipid biosynthesis proteins correlate with
increasing temperature, consistent with observations of lipid
composition changes in membranes of organisms under
temperature stress (Allen and Bartlett, 2002). In addition, it

was found that ribosomal proteins increase with nitrate levels,
which are normally at nanomolar levels within the ecosystem
and may be growth limiting for Leptospirillum Group II.
We also observed significant and strong correlations of protein
processing enzymes with sulfate concentrations and of many
different metabolic pathways with calcium concentrations
(Supplementary Table S5). It is not known what physiochem-
ical interactions may be underlying these relationships, and it
may be that other unmeasured abiotic factors that correlate
strongly with calcium and sulfate levels may be true causal
participants.

It is interesting to note that fine-scale genetic variation
occurs within Leptospirillum Group II, some of which may
have functional significance in responding to changes in
environmental conditions during succession (Tyson et al,
2004; Lo et al, 2007; Simmons et al, 2008). Two genotypic
groups have been identified in AMD biofilms, but they do not
always co-occur (Denef et al, 2009). In most early succession
stage biofilms, only the UBA genotypic group occurs. The five-
way genotypic group co-occurs with the UBA type in most late
succession stage biofilms. On the basis of strain-resolved
proteomic analysis, it was proposed that niche adaptation is
associated with both differential regulation of shared genes
and differences in gene content (Denef et al, 2010a). As only 4
of the 12 high developmental stage samples from our current
study show greater numbers of five-way cells than UBA cells
(determined by FISH counts, Denef et al, 2010a and see
Supplementary Table S2), we conclude that the proteome
changes observed in here can be attributed partially to strain
composition changes, but mainly to an overall shift in the
metabolism of both strains found in each community. We
propose that the synthesis of our results with those of Denef
et al (2010a) suggests that the effects of community interac-
tions that motivate proteomic shifts are driving genotypic
divergence that will ultimately lead to speciation.

Environmental niche selection of low abundance
community members

The abundances and activities of subdominant bacterial and
archaeal populations that grow in late succession stages are
more variable than those of Leptospirillum Group II (Figure 1).
We used changes in proteomic patterns of these organisms
to explore their relationships with various abiotic factors and
to develop hypotheses about their possible environmental
niches. The BIOENV analysis (Table Ib) revealed that the
factor showing the most consistent correlation pattern for all
organisms was ‘flow,’ which measures AMD solution dis-
charge on the day of sampling and mirrors precipitation cycles
(Supplementary Figure S4). Flow likely impacts many solution
geochemical and physical parameters (Edwards et al, 1999;
Druschel et al, 2004), accounting for the wide correlation with
all proteomes. Temperature generally correlated strongly with
the proteomes of the archaeal populations, whereas pH
correlated with the proteins abundance patterns of the
Leptospirillum Group III population.

To further evaluate the inferences that high temperature
selects for archaea and high pH for Leptospirillum Group III in
more mature biofilms, we tested for significant correlations

Physiology of communities revealed by proteomics
RS Mueller et al

8 Molecular Systems Biology 2010 & 2010 EMBO and Macmillan Publishers Limited



between the abundances of individual proteins and specific
abiotic factors (Figure 5A). Results indicated that the closely
related archaea, A-plasma and G-plasma, have different
environmental niches. For example, A-plasma growth may
be favored in hot, higher pH, lower ionic strength solutions,
whereas G-plasma may prefer hot, lower pH, higher ionic
strength solutions (Figure 5A). In addition, the analyses
demonstrated that Leptospirillum Group III activity/
abundance was inversely related to the activities/
abundances of various archaeal populations (Figure 5C) and
that the former may prefer lower stress environments
(Figure 5A). Preference for less stressful environments is
consistent with this Leptospirillum Group III’s patchy distribu-
tion in biofilms and its growth as small microcolonies within
the biofilm interior (Wilmes et al, 2009). Other support for
these niche hypotheses derives from experimentally manipu-
lated laboratory bioreactors where biofilms were grown
under low and high pH conditions (pH¼0.8 and 1.4). The
abundances of archaeal proteins were greater in lower pH
bioreactors, whereas Leptospirillum Group III proteins were
more abundant at high pH (Belnap, 2009). Thus, we conclude
that specific combinations of geochemical factors restrict the
environmental niches of subdominant populations within
mature biofilms.

Summary

Community proteomics applied to a suite of biofilm commu-
nities enabled an unprecedented level of insight into the
activities of multiple coexisting microbial members across the
range of physiochemical conditions. A striking finding is that
the activities of lower abundance organisms are predicated on
restrictive environmental conditions. Perhaps more impor-
tantly, the dominant community member exhibits a shift
from one physiological state to another that correlates with
increased activity of less abundant bacteria and archaea. The
strong correlation between physiological state and community
membership outweighs any correlation with a single or
combination of measured physical or geochemical factors.
These findings support a long held, but rarely quantified,
axiom in microbial ecology stating that interspecies interac-
tions strongly shape physiological responses in microbial
communities.

Materials and methods

Sample collection and metadata measurements

Collection sites for the 28 samples used in this study are shown on the
map of the Richmond Mine, Iron Mountain, CA (40140038.4200N,
122131019.9000W, elevation of B900 m) in Supplementary Figure S1.
Sample collection was performed as described earlier (Denef et al,
2009). The pH, conductivity, temperature, and Eh of all samples were
determined in situ. The standards used for pH measurement were pH
1.00 and pH 1.68 (Ricca Chemical Company) together with standards
prepared from standardized sulfuric acid (Fisher Scientific) for the pH
range 0–2 as described (Nordstrom et al, 2000). Each in situ sample
measured was bracketed by the standard with closest pH and repeated
until the pH reading of the bracketing standard agreed within 0.05 pH
units. The platinum electrode for the Eh measurements was checked
against Zobell’s solution (Ricca Chemical Company). Conductivity
standards (12.9 and 111 mS/cm, Thermo Scientific Orion), corrected to
in situ temperature, and used to calibrate the conductivity probe

on-site. Values of ‘flow’ were measured as the total outflow of AMD
(l/min) from the mine on the day of sampling.

All water samples were collected in HDPE bottles and filtered as
soon as possible. Samples for nitrate, nitrite and iron (II)/total iron
were filtered within the mine with 0.1mm syringe filters (Supor
membrane, Pall Corporation). Samples for all other analyses were
0.1 mm filtered (Supor membrane, Pall Corporation) with either a 47 or
142 mm filtering manifold. Filtering was competed within 6 h of
sample collection. Water samples were preserved for each analysis
according to U.S.G.S. protocols (McCleskey et al, 2004), except for
nitrate, which was stored at 41C in a completely filled 4 ml amber glass
bottle, and nitrite, which was frozen on dry ice immediately after
filtering and stored at �801C until analyzed.

Ferrous and total iron concentrations were measured spectro-
metrically following the ferrozine method (To et al, 1999). Nitrate and
nitrite were determined at U.S.G.S., Boulder with a chemiluminescent
nitric oxide detector (Sievers Analytical, Model NOA 280), using a
method modified from Baeseman et al (2006). The detection limit was
10 nM for nitrate and 5 nM for nitrite. Metals were determined by
inductively coupled plasma-optical emission spectroscopy (ICP-OES),
run at either UC Berkeley with a Perkin Elmer 5300 DV or at U.S.G.S.,
Boulder with a Leeman Labs Direct Reading Echelle. Replicate samples
run in both laboratories agreed within 5%. Sulfur was determined by
ICP-OES with the UC Berkeley instrument. Given the geochemical
relationships within the AMD system, all the sulfur measured in
solution is assumed to be sulfate (Druschel et al, 2004). U.S.G.S. acidic
reference waters AMW 4, SCREE, and PPREE were run several times
during each analytical run to monitor analytical accuracy for metals
and sulfate.

Numerical representations of sampling site were calculated by using
the AB drift site as the seed and assigning whole numbers to the
remaining sites based on approximate distances relative to AB drift.
For example, the UBA site where P35 was collected was given a value
of �3 due to its outlying location relative to other sites. Conversely,
samples from the C75 site (P8, P9, P10, P36, P37, P38, and P49)
were given a value of þ 3 as this site lies on the opposite end of the
mine from UBA. Values for all parameters are listed in Supplementary
Table S1.

FISH of AMD biofilm samples

Characterization of the CS of each biofilm was performed using FISH
(Amann et al, 1990). Protocols for biofilm disruption and oligonucleo-
tide probe design, hybridization, microscopy, and CS estimation were
followed as described earlier (Bond et al, 2000). Oligonucleotide
probes and fluorescent labels used in this study for identification of
individual species and groups were as follows: (1) Cy5-LF655 (all
Leptospirillum Group bacteria), (2) Cy3-L2UBA353 (Leptospirillum
Group II—UBA type bacteria), (3) FITC-L2CG353 (Leptospirillum
Group II—five-way type bacteria), (4) Cy5-ARC915 (all Archaea), (5)
Cy3-EUBMIX (all Eubacteria), and (6) FITC-LF1252 (Leptospirillum
Group III bacteria).

Protein extraction, mass spectrometry, and
peptide identification

Whole-cell protein fractions from each sample were extracted,
prepared, and approximately equal amounts of total protein were
analyzed through 24 h nano-2D-LC (strong cation exchange-reversed
phase)—MS/MS on a hybrid LTQ-Orbitrap mass spectrometer
(Thermo Fisher Scientific, San Jose, CA) for 23 samples using a
previously described protocol (Denef et al, 2009). The remaining
proteome samples (P1, P2, P26, P27, and P35) were the first proteomes
collected for this project and, as such, were originally run on a stand-
alone LTQ mass spectrometer (Thermo Fisher Scientific) using similar
amounts of total protein (Ram et al, 2005; Denef et al, 2009). At least
three technical replicates were analyzed for each sample.

Each spectrum obtained from tandem MS scans was searched
against the Biofilm_AMD_CoreDB_04232008 database containing
peptide sequence information derived from the previously published
UBA and five-way community genomic data sets (Tyson et al, 2004;
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Lo et al, 2007) using the Sequest program (Eng et al, 1994) as outlined
earlier (Tyson et al, 2004; Denef et al, 2009). Proteins contained within
the search database belong to 16 genomic classifications, including:
Leptospirillum Group II five-way (2760 proteins) and UBA strains
(2629 proteins), Leptospirillum Group III (2730 proteins), A-plasma
(2379 proteins), E-plasma (1846 proteins), G-plasma (1893 proteins),
I-plasma (1855 proteins), Ferroplasma Type I (2140 proteins) and Type
II (2409 proteins), ARMAN-2 (1006 proteins), Actinobacterium 1 (2590
proteins), Actinobacterium 2 (1770 proteins), Firmicutes sp. (1409
proteins), and plasmid (471 proteins), viral (663 proteins), and
unassigned (22 045 proteins) categories. The unassigned category is
highly redundant and includes many sequences for variants of proteins
already included in the main assemblies, many of which occur at low
abundance. Also included in this category are unresolved fragments
from low abundance organisms and mobile elements. The database
also included common contaminants such as trypsin, human keratins,
and so on, to ensure that these would not mistakenly be classified as
biofilm components.

The DTASelect program (Tabb et al, 2002) was used to parse the
results using the filters described earlier (Lo et al, 2007). Proteins from
Leptospirillum Group II five-way and UBA strains were condensed into
one Leptospirillum Group II genome containing unique proteins and
orthologous proteins from each strain. For orthologous proteins, single
spectral counts of shared peptides were summed along with unique
peptides from each strain to obtain the number of total spectral counts
for a given protein. Protein identification was based on the following
criteria: (1) at least two peptides identified within the same run, and
(2) each matched spectra must have Xcorr values 41.8 (þ 1), 2.5
(þ 2), and 3.5 (þ 3) and DCN values 40.08. Similar numbers of total
spectra (B150 000–160 000) were obtained for all runs. We have
established false-positive rates with this system at B1–5% with these
filters in earlier studies (Ram et al, 2005; Denef et al, 2009). All
databases, peptide and protein results, MS/MS spectra and Supple-
mentary Tables are archived and made available as open access
through the following link: http://compbio.ornl.gov/biofilm_amd_
ecological_succession.

Proteome data preparation for statistical analyses

Spectral counts for filtered peptides with scores exceeding the above
cutoffs were summed for a given protein across all three technical
replicates to obtain the total number of spectra corresponding to that
protein. An NSAF was calculated for each protein of the 28 different
proteomes according to the method proposed by Florens et al
(2006). Two values of the NSAF were calculated for each protein.
The first is the result of the normalization with respect to all of the
proteins in a community proteome (wcNSAF) and determines each
protein’s relative abundance compared with all proteins in the sample.
The second normalizes individual proteins to the total proteins from
the specific organism that particular protein is derived from
(orgNSAF), allowing for a relative abundance within each organism’s
proteome to be determined. As both orgNSAF and wcNSAF values
essentially represent percentages, all data were arcsine transformed
(ASIN) to approximate a normal distribution. In addition, zeros were
substituted for missing values across all 28 proteomes, as proteins not
detected in the mass spectrometry analysis are assumed to be
below the detection limit and in low abundance. Clustering of data
without zeros gave similar results (data not shown). For each
possible combination of paired technical replicates in each sample, a
test of concordance was conducted using R2 values, which represent
the proportion of variability in that is accounted for by a linear
regression model for each pairwise comparison. Replicates
demonstrated high reproducibility with an average R2 value of
0.974±0.010 for all pairwise comparisons across all samples
(Supplementary Table S6).

Hierarchical clustering and non-metric MDS of
proteomic and FISH data

ASIN-transformed, mean-centered and scaled wcNSAF and orgNSAF
values for each protein were clustered with the Cluster v 3.0 program

(de Hoon et al, 2004). Hierarchical clustering was performed on
proteins and samples using an uncentered Pearson correlation
distance matrix and distances between groups were calculated using
average or centroid linkage clustering methods. Cluster files were
visualized using Java TreeView (Saldanha, 2004).

As biases can be introduced into clustering results based on the
presence or absence of proteins across samples, multiple clustering
analyses were performed on subsets of the whole-proteome data.
These subsets included proteins detected in 41% of all samples up to
100% of samples using a step size of 10% (i.e. sets containing only
proteins present in 410% of samples, 420%y100%). Consistent
clustering of a sample within 10 of the 11 trials allowed for confident
assignment of that sample to its designated cluster (Supplementary
Figure S3).

Using the vegan (Oksanen et al, 2007) and MASS packages of the
R software distribution, non-metric MDS was performed on ASIN-
transformed wcNSAF and orgNSAF values for all samples. Distance
matrices were created using the Bray–Curtis dissimilarity index. This
allows for a graphical representation of the relatedness between
different samples based on their protein expression patterns within
a two-dimensional plane. Hierarchical clustering and MDS using
ASIN-transformed orgNSAF values gave similar results.

Hierarchical clustering of untransformed FISH data was performed
similar to the protocol for proteomic data. Clustering was performed
on samples using an uncentered, absolute Pearson correlation distance
matrix and distances between branches were calculated using the
complete linkage method. A numerical representation of the related-
ness between samples was calculated by measuring the branch length
between each sample and sample P4. Values of branch length are
reported in Supplementary Table S1 and are used in the BIOENV
analysis as the measure of CS.

Correlation of measured variables with protein
expression profiles using the BIOENV analysis

Using a method developed by Clarke and Ainsworth (1993), various
measured environmental (both abiotic and biotic) variables were
correlated to the wcNSAF and orgNSAF values for all samples. Similar
results were obtained for both and the results of the orgNSAF analyses
are reported. Environmental variables included: sampling site (i.e.
site), CS, total mine drainage outflow on the day of sample collection
(i.e. flow), pH, and temperature (1C). Raw values of flow and
temperature were log-transformed. Values for site and CS were
obtained as described above.

These correlation analyses were performed using the ‘BIOENV’
function within the vegan package of the R software distribution
(Oksanen et al, 2007). This method involves obtaining Spearman’s
rank correlations between dissimilarity matrices for samples based on
all environmental variables in all combinations or by themselves and a
dissimilarity matrix for samples based on protein abundance data.
Distance matrices using NSAF values of all samples were made using
the Bray–Curtis dissimilarity index, whereas dissimilarity matrices
were constructed for measured environmental variables using a
Euclidean distance metric. Permutation tests were performed using
an in-house script to determine the significance of each correlation.
Briefly, this script creates 1000 random permutations of the
matrix of environmental variables and compares these with the real
protein expression dissimilarity matrix. Top scoring random
correlations are recorded and the distribution of these is compared
with the real correlations to obtain an approximate P-value for
each real value.

Use of SAM for detecting significant differences in
protein abundance

Although the SAM software was originally developed for detection of
significant expression differences between microarray experiments
(Tusher et al, 2001), it has previously been applied to proteomics data
(Roxas and Li, 2008). This analysis was performed on ASIN-
transformed wcNSAFand orgNSAF values of all samples, and orgNSAF
results for Leptospirillum Group II are reported. The two groups in this

Physiology of communities revealed by proteomics
RS Mueller et al

10 Molecular Systems Biology 2010 & 2010 EMBO and Macmillan Publishers Limited

http://compbio.ornl.gov/biofilm_amd_ecological_succession
http://compbio.ornl.gov/biofilm_amd_ecological_succession


analysis were defined as the low and high developmental stage
samples as defined in Figure 2 and Supplementary Figure S3 (blue and
green highlight). The SAM software was run using the ‘sam’ function
of the siggenes package of the R programming environment. Tests were
performed using a paired experimental design and the standard
F-statistic, and at least 100 permutations were run. Differentially
detected proteins identified with a o4.7% FDR were considered
statistically significant.

Significant proteins from the SAM analysis were grouped into
functional categories based largely on their cluster of orthologous
groups classifications (Tatusov et al, 2003), and biases were
evaluated. In this analysis, the total number of proteins from each
functional category overrepresented in either low or high develop-
mental stage biofilms was summed separately and divided by the total
proteins for each developmental stage to give a percentage. Biases in
each category were calculated by separately normalizing each
percentage to the total and then subtracting the low developmental
stage normalized percentage from the high developmental stage
normalized percentage. Significant biases for each category were
determined using a bootstrap re-sampling technique, implemented by
the perl script ‘All_scrambler.pl’ (Lauro et al, 2009). Re-sampling
the pool of total proteins identified in SAM created 1000
replicate subsamples (n¼250 proteins). Significant differences be-
tween the numbers of proteins identified to be overrepresented in
either high or low developmental stages were assessed at a 98%
confidence level.

Correlations of individual protein abundances with
geochemical and physical parameters

Proteins of Leptospirillum Group II with significant correlations to
various environmental factors were also determined using the
significance of microarrays technique (samr package of R). This
analysis was performed using all ASIN-transformed orgNSAF values
from samples with corresponding metadata measurements (e.g.
temperature, pH, [NO3

�], [SO4
2�], [Cu], [As], and [Ca]). Correlations

with other factors were not considered due to strong intercorrelations
between them (e.g. total iron concentrations correlate with [Fe2þ ]
levels). Tests were generally performed using a quantitative experi-
mental design and the standard test. The exception was for tests with
nitrate, where a rank test was performed due to the exponential
nature of the measured nitrate values. One thousand permutations
were run for tests with each parameter. Groups of proteins
identified with o0.10 FDR and with j�r ABj40.4 were considered to
have a strong and significant correlations to each individual factor.
Proteins meeting these thresholds were grouped by functional
categories and differences between observed and expected numbers
of proteins were detected based on the distribution of the number of
proteins in each functional category for the entire detected proteome of
Leptospirillum Group II.

Spearman rank correlations of the abundances of proteins from
subdominant populations (Leptospirillum Group III, A-plasma, and
G-plasma) with environmental factors were determined using the ‘cor’
function of R. Samples were not included in this analysis if a given
protein was not detected (i.e. no zero NSAF values were included in
correlations). Also, proteins that were present in less than half of the
samples with corresponding measures of environmental variables
were not included in this analysis to prevent false correlations due
to under-sampling. Similar results were seen when wcNSAF and
orgNSAF values were used (data not shown).

Strong correlations between environmental factors and abundances
of proteins from low abundance organisms were defined as j�r ABj40.4
(Ideker et al, 2001). Biases in the number of proteins of each proteome
either strongly positively or negatively correlated to individual
parameters were determined. The total number of proteins with
strong negative and strong positive correlations with each environ-
mental factor was summed separately, and each sum was divided by
the total number of proteins from each respective proteome (‘Total’
column, Supplementary Table S3). Strong biases in the total number of
proteins from an organism either positively or negatively correlated
with a specific factor were inferred to represent a response of that
organism to that factor.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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