Reston Microbiology Lab

Research

The Reston Microbiology Laboratory (RML) conducts research in the fields of microbial ecology, geomicrobiology, environmental microbiology, biogeochemistry, and the hydrologic sciences. Our goals are 1) to understand interactions between microbes and their environment, and 2) to link environmental microbial community structure with microbial function. This work is important because microbes, the unseen majority of organisms on our planet, drive reactions of global importance, which have critical impacts on water quality, environmental health, and energy production.

We use an interdisciplinary approach in our research, combining traditional microbiology methods with molecular biology and biogeochemistry techniques. We specialize in studying anaerobic microorganisms (those that are intolerant to oxygen), microbial processes, and the genetics of microbial communities and isolates.

Research projects we are currently involved in include:

  • Oil and gas development
  • Carbon cycling
  • Coal bed methane
  • Crude oil and chlorinated solvent bioremediation
  • Gut microbiome

    RML_Venn_20180817_transparent.png

    Our research incorporates expertise and methods in microbiology, chemistry and hydrogeology.

    Current Projects

    Microbes and Energy

    USGS scientist collecting water-quality samples on a wastewater disposal facility in West Virginia to assess potential environmental impacts due to activities at the site. Microbes can impact energy production by 1) reducing risk of contaminants from energy development 2) enhancing energy production. We are investigating how microorganisms lessen risks to the environment and human health from waste produced during oil and gas development and crude oil spills.

    US energy demands have increased focus on novel energy resources including coal bed methane (CBM) and enhanced oil recovery (EOR). We are studying how microbes can be used to enhance CBM production through stimulating in place microbial coal conversion to methane. We are studying how geologic CO2 sequestration and microbial processes can be used for enhanced oil or natural gas recovery in depleted petroleum reservoirs.

    For more information see these USGS webpages: Fate and Effects of Wastes from Oil and Gas Development, Crude Oil Contamination in the Shallow Subsurface—Bemidji, Minnesota, Geologic CO2 Sequestration, Coalbed Gas

    Snail Gut Microbiome

    Host-microbiome interactions are a hot topic in health studies, with research showing that microbes can control various aspects of host health from digestion to bioavailability of toxins. Our research is focused on developing a new approach using the gut microbiome of a model species to assess the environmental health effects of contaminants. Our model organism is Lymnaea stagnalis, an aquatic snail species that is ubiquitous and routinely cultured in the laboratory. The snail is known to bioaccumulate contaminants from aqueous and dietary exposure pathways. This work is in collaboration with Dr. Marie-Noele Croteau (USGS).

    Acetylene Fermentation

    Acetylene degrading bacteria. Acetylene can be degraded as a carbon/energy substrate by aerobic and anaerobic microorganisms, with the acetylene hydratase (AH) enzyme catalyzing the anaerobic reaction. Despite the detection of acetylene fermentation in variety of environments, little is known about the diversity of acetylene fermenting bacteria and their AH genes. It is important to study acetylene degraders because acetylene can inhibit reactions of global importance, including chlorinated solvent degradation and methanotrophy (methane consumption).

    Chlorinated solvents pose a significant risk to drinking water supplies because they are carcinogens and the most common groundwater contaminant. Chlorinated solvents can be detoxified but existing strategies have limited effectiveness. Recent research has shown that microbial degradation of acetylene can increase the effectiveness of biological chlorinated solvent degradation.

    To better understand how acetylene degraders impact globally important processes we are investigating the diversity and genetic mechanisms of these organisms. This work is in collaboration with Dr. Ronald Oremland (USGS) and Dr. Janna Fierst (University of Alabama).

    Contaminant Biogeochemistry

    Sampling in the Permian Basin Environmental contamination from anthropogenic activities is an issue that affect the quality and availability of our Nation's resources. Microorganisms are uniquely poised to affect contaminants through natural attenuation or bioremediation, which is the ability of organisms to naturally reduce, eliminate, or contain hazardous particles. The Reston Microbiology Lab (RML) researches how microorganisms can attenuate or remediate contaminants from Cold War Era activities (radionuclides, heavy metals, and chlorinated solvents) and energy development. Our goal is to develop tools that can be used to improve water quality and environmental health. This work is in collaboration with Dr. Kirsten Küsel (Friedrich Schiller University Jena), Dr. Michelle Lorah (USGS), Dr. Isabelle Cozzarelli (USGS), and others.

    Geomicrobiology of Pristine Environments

    Photo of the Herrenberg Cave As microbes are the drivers of biogeochemical cycles, understanding their impact on water resources and ecological processes starts with an understanding of their biodiversity in pristine habitats. We study microbial biodiversity in surface water, groundwater, soils, and sediments to better understand the microbial role in nutrient cycling and important global processes. This work is in collaboration with Dr. Kirsten Küsel (Friedrich Schiller University Jena) and others.