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PRECONDITIONED CONJUGATE-GRADIENT 2 (PCG2), 
A COMPUTER PROGRAM FOR SOLVING 

GROUND-WATER FLOW EQUATIONS 
___________________________________________________ 
                                    .By Mary C. Hill                                      . 

ABSTRACT 

This report documents PCG2: a numerical code to be used with the U.S. Geological 
Survey modular three-dimensional, finite-difference, ground-water flow model commonly 
known as MODFLOW.  PCG2 uses the preconditioned conjugate-gradient method to solve the 
equations produced by the model for hydraulic head.  Linear or nonlinear flow conditions may be 
simulated 

PCG2 includes two preconditioning options:  modified incomplete Cholesky 
preconditioning, which is efficient on scalar computers; and polynomial preconditioning, which 
requires less computer storage and, with modifications that depend on the computer used, is most 
efficient on vector computers.  Convergence of the solver is determined using both head-change 
and residual criteria.  Nonlinear problems are solved using Picard iterations. 

 This documentation provides a description of the preconditioned conjugate-gradient 
method and the two preconditioners, detailed instructions for linking PCG1 to the modular 
model, sample data inputs, a brief description of PCG2, and a FORTRAN listing. 

INTRODUCTION 

Purpose and Scope 

Finite-difference numerical models commonly are used to investigate ground-water flow 
systems.  Effective use of these models requires that the matrix equations they produce be solved 
efficiently, that is, that a correct solution is produced using as little computer processing time as 
possible.  Effective use of the models also requires that the amount of computer storage be 
minimized to allow for solution on small computers and to avoid over-burdening large 
computers 

The purpose of this work is to document PCG2, a numerical code which uses the 
preconditioned conjugate-gradient method to solve the matrix equations produced by the U.S. 
Geological Survey modular three-dimensional, finite-difference ground-water flow model.  Two 
preconditioning options are included which have not previously been available for use with the 
model, and which perform better than available solvers for many problems 
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Previous Investigations 

 
Matrix equations have been solved using direct or iterative methods.  In most direct 

methods the matrix is factored exactly and the true solution is obtained by executing one 
backward and one forward substitution.  In most iterative methods an initial estimate of the 
solution is refined iteratively using an approximately factored matrix, and successive solutions 
should approach the true solution.  Solution convergence is assumed to have been reached when 
some measure of the residual and(or) the difference in results between successive iterations is 
less than some user-specified convergence criteria.  Direct solution is straightforward, but 
iterative methods are less susceptible to round-off error, are more efficient for large problems, 
and require less computer storage (Remson, Hornberger and Molz, 1971, p. 177; Aziz and 
Settari, 1979, p. 261).  

The preconditioned conjugate-gradient method (Coneus, Golub and O'Leary, 1976) is an 
iterative method which can be used to solve matrix equations if the matrix is symmetric (matrix 
element aij = aji, where the first subscript is the matrix-row number, and the second is  the matrix 
column number) and positive-definite (all eigenvalues are positive) (see Hildebrand, 1965, p. 30 
and 48 for further discussion of these terms).  The matrix produced in ground- water-flow 
models always is symmetric and positive-definite.  The preconditioned conjugate-gradient 
method has been the subject of considerable interest in recent years because of its efficiency and 
ability to solve difficult problems (Meijerink and van der Vorst, 1977).  It works well, in part, 
because the required iteration parameters are calculated internally and need not be estimated.  

Various preconditioners may be used in the preconditioned conjugate-gradient method.  
Among the different preconditioners there often is a direct relationship between increased 
efficiency and increased computer storage (Meijerink and van der Vorst, 1977).  To avoid this 
tradeoff, the only preconditioners considered are those that produce a solver that has computer 
storage requirements less than or equal to the strongly implicit procedure (SIP) as programmed 
for the ground-water flow problem.  SIP requires additional computer storage equal to four 
arrays with dimensions equal to the number of grid nodes (McDonald and Harbaugh, 1988, chap. 
12).  

The incomplete Cholesky preconditioner (ICCG) has been very popular (Meijerink and 
van der Vorst, 1977; Kuiper, 1981, 1987).  However, alternative methods of matrix 
preconditioning have been developed to achieve more efficient conjugate-gradient solvers.  
Axelsson and Lindskog (1986) presented a preconditioner that commonly is called the modified 
incomplete Cholesky preconditioner (MICCG).  It is similar to preconditioners presented by 
Dupont and others (1968), Gustafsson (1978), Wong (1979), and Ashcraft and Grimes (1988).  
In this paper, MICCG refers to Axelsson and Lindskog's (1986) method. Hill (1990) showed that 
MICCG was more efficient than ICCG in solving eight ground-water flow test cases on a scalar 
computer.  Saad (1985) presented a least-squares polynomial preconditioner (POLCG), in which 
the matrix inverse is approximated by a truncated Neuman polynomial series.  It is similar to 
preconditioners presented by Dubois and others (1979) and Johnson and others (1983).  In this 
paper POLCG refers to Saad's (1985) method.  POLCG is not as efficient as SIP or HICCG on 
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scalar computers (Scandrett, 1989; Hill, 1990), but is more efficient on vector computers 
(Scandrett, 1989; Meyer and others, 1989, p. 1445).  Storage requirements are less than for SIP: 
POLCG requires additional storage equal to three arrays with dimensions equal to the number of 
grid nodes.  

Many preconditioners were excluded from PCG2.  Modifications of ICCG presented by 
Meijerink and van der Vorst (1977; 1981), Gustafsson (1978; 1979), Wong (1979), and Ashcraft 
and Grimes (1988) apparently converge in fewer iterations than ICCG or MICCG.  These were 
not included in PCG2 because they require that several additional arrays with dimensions equal 
to the number of grid nodes be added to computer storage.  Additional polynomial 
preconditioners have been presented in several papers (Saad, 1985; Ashby, 1987; Meyer and 
others, 1989).  Based on Saad's results, POLCG was chosen because it appears to be at least as 
efficient as the other polynomial methods and it is easier to use.  However, for very large grids 
(greater than 100,000 cells) the optimal Chebyshev polynomial preconditioner (Meyer and 
others, 1989) may be more efficient, and users with large grids may wish to consider this 
alternative polynomial preconditioner.  

Watts (1981) and Hill (1990) indicate that the greatest differences in solver efficiency on 
scalar computers occur for three-dimensional, non-linear problems.  Thus, for these types of 
problems, it may be well worth the time and effort to try more than one solver.  SIP generally is a 
good alternative to consider.  

Notation  

The following notation is used in this work:  
Underlined capital letters indicate matrices:  A  
Underlined lower-case letters indicate column vectors:  r  
The element located in matrix row i and column j is designated as follows: matrix A, 
element aij  
 
Exception:  a single index is used to simplify notation in some cases.  These are described 
in the text.  

THREE-DIMENSIONAL GROUND-WATER FLOW MODEL  

In this work, selected numerical methods are presented for solving the matrix equations 
that arise when the finite-difference method is used to discretize the ground-water flow equation 
as applied to a two-dimensional aquifer or a three-dimensional layered aquifer system. The 
finite-difference model is described in detail by McDonald and Harbaugh (1988), and only 
aspects relevant to the preconditioned conjugate gradient solver are discussed here.  

The finite-difference model produces a set of linear equations which can be expressed in 
matrix notation as:  

A x = b        (1)  
 

3 



where A is a coefficient matrix which is discussed below, x is a vector of hydraulic heads at each 
grid cell, and b is a vector of defined flows, terms associated with head-dependent boundary 
conditions, and storage terms (for transient problems) at each grid cell.  Because of the rigid 
structure of the finite-difference grid, and because there are six neighboring cells to each internal 
cell of a three-dimensional grid, A is symmetric and there may be as many as six off-diagonals in 
A--three above the main diagonal and three below.  The elements on the off-diagonals equal the 
negatives of the horizontal or vertical conductances between the centers of the cells which make 
up the finite-difference grid (fig. 1).  The horizontal conductances along columns (cn of fig. 1) 
equal 111 iiiii +++ , where T)2/LT2/LT/(wTT i ∆+∆∆

w∆
i, and Ti+1. are transmissivities between two 

adjoining cells, is the width of the two cells, and iL∆  1+L∆ i  are lengths of the two cells.  
Horizontal conductances along rows (rn of fig. 1) are defined analogously. The vertical 
conductances (vn of fig. 1) equal zz ∆/AK , where Kz is the vertical hydraulic conductivity, A is 
the area of the cell, and zA  is the vertical distance between the centers of the two cells.  Each 
component on the main diagonal of A, aii, equals:  
 

          (2) i

N

jij
ijii waa +−= ∑

≠= ,1
)(

where N is the total number of nodes in the grid; aij are the off-diagonal elements of row i, which 
are negative numbers; and wi are the sum of the conductances associated with head-dependent 
boundaries and storage terms (for transient problems), which are positive numbers.  Besides 
being symmetric, A is also positive-definite (its eigenvalues are always positive) (Varga, 1962, 
p. 23, 181-188; Hildebrand, 1965, p. 48), and these properties allow equation 1 to be solved 
using the methods presented in this work.  
 

Nonlinearities occur if any aquifer is unconfined or if a head-dependent boundary 
condition is nonlinear.  If any aquifer is unconfined, the horizontal conductances are a function 
of hydraulic head, and the main-diagonal and four of the six off-diagonals of matrix A must be 
updated during the solution process. If a head-dependent boundary condition is nonlinear, the 
boundary condition may change from being head-dependent to defined flux depending on the 
hydraulic head in the aquifer adjacent to the boundary, and the main diagonal of A and vector b 
(eq. 1) must be updated.  

SOLUTION BY THE PRECONDITIONED CONJUGATE-GRADIENT 
METHOD  

The preconditioned conjugate-gradient method for solving a set of linear equations is 
iterative.  In iterative methods, it is assumed that the matrix A can be split into the sum of two 
matrices; that is A = M + N (Varga, 1962, p. 87-93; Remson and others, 1971, p. 177). M is 
called the preconditioned form of A, and the goal is to define M so that it is easy to invert and 
resembles A as much as possible.  These two criteria generally are impossible to satisfy 
simultaneously, and the optimal definition of M has been the focus of much research.  In the 
preconditioned conjugate-gradient method, M must always be symmetric and positive definite.  
(This brief description of matrix splitting does not include important requirements that M and N 
must satisfy to achieve a convergent solver. Please refer to Varga (1962) for additional 
information).  

 
 

4 



node 
(n+1)

node 
(n+NC) 

Areal view of cells in layer l showing nodes at cell centers

EXPLANATION 
 
Area accounted for by rn 
 
Area accounted for by cn 
 
Area accounted for by vn 
 
Sequential node number 
assigned to each grid node, 
and calculated as: 
n-j+NC(I-1)+(NC)(NR)( l-1) 
where, 
NC  Number of columns in 

the grid 
NR  Number of rows in the 

grid 
j       Column of node n 
i        Row of node n 
l       Layer of node n 

n 

Confining unit 

i

Rows 

Columns 
j j+1 

i+1 

Layers 
l 

l+1 

Side view of cells in row i showing nodes at cell centers

j j+1 

 

Figure 1.--Aquifer system volumes accounted for by conductances rn, cn, and vn in the finite-
difference method. 

 
 

Once M has been defined, the basic iterative equation is developed from equation 1 and 
the splitting of A, and can be written as:  

kkk xAbxMxM 1 −+=+     (3)  
where k is the iteration index.  Noting that b - A xk is the residual (rk) of the original set of 
equations at the kth iteration, and setting sk = xk+1 –xk gives 

kk rsM =      (4) 

or 
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      kk rMs 1−=      (5) 
The new heads may then be calculated as sK=1 = xk + sk.  More generally, some function of sk may 
be used to calculate xk+1. 

Conjugate-gradient methods are second-order iterative techniques because at each 
iteration the new change in x, which is called  pk is calculated using the change from the prior 
iteration,  pk-l, in addition to the vector sk of equation 5. Conjugate-gradient methods begin by 
calculating ro. = b - A xo.  The following steps are executed for each iteration, starting with k = 0:  

kk rMs 1−=      (6a) 

for k= 0 pk = sk      (6b) 

for k > 0   
⎪
⎩

⎪
⎨

⎧

+=

=

−

−−

1

11

psp
rs
rs

kkkk

kk

k
T
k

k

β

β
          

)6(

)6(

c

b

  
k

T

k

k
T
k

k pAp
rs

=α      (6e) 

xk+1 = xk + αk pk    (6f) 

rk+1 = rk + αk A pk    (6g) 
  
where the superscripted T indicates the transpose of the vector.  Because rk+l can be calculated 
using the last statement, b need not be saved within the solver.  Iteration parameters kβ  and kα  
are calculated internally such that successive updating vectors, pk are A-orthogonal to previous pk 
vectors -- that is, T

k
p A l

l
≠= k,0p  (Hestenes and Stiefel, 1952).  

Whether or not an iterative method will converge and, if so, how fast depends on the 
preconditioner and how xk is updated.  A discussion of convergence is beyond the scope of this 
report, but references are cited for the convergence properties of each solver.  See Varga (1962) 
for the general theory of convergence of iterative methods.  

Scaling of the matrix A simplifies POLCG (Dubois and others, 1979), and is 
accomplished as:  

B = ST A S      (7) 
 
where B is the scaled matrix, all off-diagonal entries of S are zero, and  
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1

s iiii a= .     (8) 
This type of scaling is called diagonal scaling, and it preserves the symmetry of the original 
matrix.  Diagonal scaling may improve the matrix characteristics that are most important to 
convergence because the scaled matrix is still symmetric and positive definite, and the condition 
number of A (the largest eigenvalue divided by the smallest eigenvalue) is minimized (Forsythe 
and Strauss, 1955).  However, although A is diagonally dominant because:  

      ∑
≠
=

≥
N

i
j

ijii

j
1

aa ,     (9) 

B may not be diagonally dominant if some of the values along the diagonal of A are much 
smaller than others.  For example, consider the following original and scaled matrices:  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
=

8.00.075.0
0.02.01.0
75.01.09.0

A   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
=

0.10.088.0
0.00.123.0
88.023.00.1

B   

 
The first row of B is no longer diagonally dominant.  The lack of diagonal dominance can 

cause problems when using MICCG.  Scaling also may cause more rounding and truncation 
errors because all components of the diagonal of A must be summed, as in equation 2.  Without 
scaling, the conductance terms can be manipulated individually to reduce rounding and 
truncation errors (Dorn and McCracken, 1972, p. 94).  Scaling was only used for POLCG.  

The precision with which numbers are stored in the computer can significantly affect 
solver performance.  For example, making the four arrays required by SIP double precision (14 
to 15 significant digits on the computer used) instead of single precision (6 to 7 significant digits) 
can make the difference between convergence and nonconvergence for some problems 
(McDonald and Harbaugh, 1988, p. A-2; A.W. Harbaugh, U.S. Geological Survey, written 
commun., 1989).  However, increasing the precision of arrays doubles the required computer 
storage space.  All the arrays required by the solvers presented in this work were declared as 
single precision.  Double-precision scalar variables were used to improve the accuracy of 
calculations, where possible.  The only double-precision array in the model is, then, the array 
used to store calculated heads (McDonald and Harbaugh, 1988, p. A-2).  In PCG2, problems 
caused by the limited precision of the solver arrays are most prevalent for POLCG (Hill, 1990).  
If the limited precision of the solver arrays is suspected as the cause of convergence problems, 
arrays V, SS, and P may be converted to double precision by doubling their allocated storage in 
PCG2AL, and declaring them as double precision in PCG2AP and SPCG2E  

Nonlinear problems are solved by Picard iterations, in which the matrix A and vector b 
are periodically updated between iterations using the newly calculated heads.  For nonlinear 
problems, convergence using the conjugate-gradient solvers was found to be most efficient if 
several iterations (called inner iterations in this report) were accomplished between Picard 
iteration updates (Kuiper, 1981 and 1987).  This allows the solver to use equations 6c and 6d to 
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calculate several orthogonal pk vectors before updating A and b, and thus take advantage of the 
orthogonality of the conjugate-gradient method.  The total number of iterations equals the sum of 
the inner iterations for all updates of A and b. For any one A and b, the inner iterations continue 
until one of the following occurs:  (1) the user-defined maximum number of inner iterations 
(ITERI of the input file) are executed; or (2) the final convergence criteria are met.  Outer 
iterations continue until the final convergence criteria are met on the first inner iteration after an 
update.  The total number of iterations required is minimized by adjusting ITER1 and re-
executing the problem.  For most problems, the optimal value of ITERI ranges from 3 to 10, 
though much larger values have been useful for some problems (L.F. Konikow, U.S. Geological 
Survey, oral commun., 2001).  

In the absence of round-off error, only inner iterations would be required for linear 
problems.  However, in practice, round-off error may adversely affect the residual calculated by 
the conjugate-gradient method (eq. 6g) when more than 50 iterations are required.  Recalculating 
the residual as r = b - A x occasionally by limiting the number of inner iterations to less than 50 
in linear problems alleviates the error.  This can be accomplished using ITER1 of the input file. 

The conjugate-gradient method fails if rk = 0 for any iteration k.  This was found to occur 
when the Drain Package was used and the hydraulic head in the drain cell was set equal to or less 
than the level of the drain.  Thus, the drain was not represented in the finite-difference equation 
first used in internal preconditioned conjugate-gradient iterations, and rk was equal to zero at the 
second internal iteration.  To accommodate this circumstance, subroutine PCG2AP checks for   
rk = 0. If it is detected, the PCG2AP response depends on the value of MXITER, the maximum 
number of external solver iterations. MXITER commonly is set to 1 if the problem is linear. 

1. If MXITER = 1, the following error message is printed and execution is stopped:  
CONJUGATE-GRADIENT METHOD FAILED.  SET MIXITER GREATER THAN ONE 
AND TRY AGAIN.  STOP EXECUTION. 

2. If MXITER > 1, a new outer iteration is initiated using the hydraulic heads from the end of 
the first inner iteration. 

A flowchart which displays most of  the steps discussed above is presented in the section 
"Documentation of PCG2" of this report.  

MICCG  

In modified incomplete Cholesky preconditioning, M = UT D U, where U is an upper 
triangular matrix with nonzero values along the main diagonal and at off-diagonal locations 
where A has nonzero values.  D is a positive diagonal matrix with dii = 1/uii.  When A is 
structured as in the finite-difference model with natural ordering of   the nodes and there are 
more than two columns in the grid, the off-diagonal components of U equal the off-diagonal 
components of A.  That is, uij = aij, for j > i.  As an example, figure 2 shows U for a problem 
with 2 rows, 3 columns and 2 layers.  To more clearly indicate the physical quantities involved, 
the variables rn, cn , and vn which are depicted in figure 1 and were described earlier in this paper, 
are used.  To be consistent, the same subscript, n, is used for the diagonal of matrix U, so that uii 
now becomes un, where n = i.   
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Calculation of the uii is explained by executing the matrix multiplication for the simple 
problem shown in figure 2.   
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Figure 2.--Matrix U for MICCG.  The rn, cn, and vn are the conductances along rows and 
columns and between layers, respectively. 
 

In matrix UT D U (fig. 3), -rn, -cn, and -vn appear in the same places they occupied in the 
A matrix.  The additional off-diagonal terms occur because UT D U is an incomplete 
factorization of A.  The un are defined such that the sum of the elements along a row of UT D U 
equals the sum of the elements along the same row of A.  To accomplish this for the matrix 
shown in figure 3:     u1 = a11, 
 

     u2 = a22 
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−− , 

 

     u3 = a33 
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u
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u
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u
r

−− ,    (10) 

     etc. 
 
The general algorithm can be expressed as (R.L. Cooley, 1992, p. 80): 
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u1 -r1 0        -c1 0 0 -v1 0 0 0 0 0
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Figure 3.--Matrix M

 
 = UT D U for MICCG.  The r , c , and v  are the conductances along  rows and columns and between layers, 

3φ

n n n

respectively.  For this example  = 0.0 and  = 1.0 in equation 11a. 
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where 

  ,     (11b) 

⎪
⎪
⎪
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⎪
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∑
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i

k
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a
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and 
   ijforuij <= 0  .
 
Again, the more general notation for components of U is used.  The fji and fij are equivalent to the 
ψn, θ n, and φ n of figure 3, and they occur off the main diagonal of UTD U.   
 

The variable α is a user-defined relaxation parameter and is used to diminish the value of 
the fij of equation lla.  Ashcraft and Grimes (1988) found that using a relaxation parameter value 
of 0.97, 0.98, or 0.99 instead of 1.00 sometimes improved convergence by as much as 50 
percent.  However, consistently using a value of 1.00 for the relaxation parameter generally 
produces solutions that are at least as efficient as those attained with other commonly used 
solvers (Hill, 1990). The variable δ is calculated internally, as described later in this section. 

The equation UT D U sk = rk is solved by a two-step process.  First UT D vk = rk is solved 
for vk by forward substitution, then D U sk = D vk is solved for sk by backward substitution.  

The MICCG preconditioned matrix presented in this paper is from Axelsson and 
Lindskog (1986), and is nearly identical to that presented by Dupont and others (1968), 
Gustafsson (1978, eq. 3.1, and 1979, eq. 6), Wong (1979), and Ashcraft and Grimes (1988). In 
the method used in this report, the overcompensation parameter, δ, used by Gustafsson (1978) to 
augment aii of equation lla usually equals zero.  Ashcraft and Grimes (1988) found that the 
number of iterations required to achieve convergence was insensitive to values of the 
overcompensation factor, so using a value of zero should not affect convergence.  An exception 
occurs, however, when equation lla produces values of uii that are zero or negative.  Manteuffel 
(1980, p. 483) suggests that these circumstances can be accommodated by making δ of equation 
lla a positive number.  Cooley (1992, p. 80) suggests that if equation lla produces values of uii 
that are zero, or negative, δ can be increased using the empirically derived algorithm                
δnew = 1.5 × δold + 0.001 until all uii values are positive.  This algorithm is used in PCG2. 

Convergence properties of incomplete Cholesky with row-sums agreement are discussed 
by Gustafsson (1978). 

POLCG  

In Neuman series polynomial preconditioning, M-1 equals the sum of several terms of a 
power-series expansion for the inverse of matrix A (Dubois and others, 1979; Johnson and 
others, 1983; Saad, 1985), so that 

    M-1 = I + A + A2 + · · · + Al .    (12)  
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Then, by weighting the terms as suggested by Johnson and others (1983) and Saad (1985), an 
approximate solution can be written as  

sk = M-1 rk = c0 : rk + c1 A rk + c2. A2 rk + A3 rk   (13) 

when , and c3=l 0, cl and c2 are coefficients chosen to optimize convergence.  For 
computational efficiency, equation 13 is calculated by the following series of steps:  

z1= c2  rk + A rk

z2 = cl rk + A z1     (14)  

sk= c0 rk + A z2  

so that the powers of A are never formed explicitly (Dubois and others, 1979, p. 259).  One of 
the advantages of POLCG is that the steps of equation 14 are efficient on vector and parallel 
computers.  

 The coefficients can be calculated using the method described by Saad (1985, p. 869-871; 

880) as: c0 = g
4
9c,g

16
27c,g

32
15

2
2

1
3 −

==
− -15 where g is the upper bound on the maximum 

eigenvalue of A, estimated as the largest sum of the absolute values of the components in any 
row of A (Varga, 1962, p. 17; Gerschgorin, 1931). For a scaled matrix, g is generally close to 2. 
Scandrett (1989) and Hill (1990) used g=2, and the number of iterations required to achieve 
solutions in their test cases were generally insensitive to changes in g.  Using NBPOL of the 
input file, the user can specify that g=2 or that g is to be estimated as described above.  
Estimation of g uses slightly more execution time per iteration.  
 

Convergence properties of polynomial preconditioners are discussed by Saad (1985).  

Convergence Criteria  

An iterative matrix solver is assumed to have converged when some measure of the 
residual and(or) the difference in results between successive iterations is less than user-specified 
convergence criteria.  In PCG2, the difference between results of successive iterations is 
measured using both the maximum absolute value of the change in hydraulic head and the 
maximum absolute value of the all-by-all residual for that iteration. Typical values for these error 
criteria are 0.01 ft and 0.01 ft3/s, respectively.  The convergence criteria are dimensional, so 
different values are required when different units are used.  For example, if the time unit is days 
instead of seconds, the equivalent maximum absolute value of cell-by-cell residual for that 
iteration would be 864 ft3/d.  

The defined convergence criteria are too large if the global ground-water flow budget 
errors calculated by the modular model (McDonald and Harbaugh, 1988, p. 3-16 to 3-22) are 
unacceptably large.  What is unacceptable depends on the problem being considered and must be 
determined by the user. For most ground-water flow problems, global budget errors greater than 
one percent are unacceptable. If unacceptably large global budget errors occur, the error criteria 
should be reduced.  

12 



The defined convergence criteria are too small if the accuracy achieved by the solver 
exceeds the accuracy required by the user.  For example, Hill (1990) found that reducing both 
error criteria from 10-3 to 10-6 increased the execution time by as much as 55 percent, and, 
especially for POLCG, resulted in lack of convergence in some test cases.  If the solver is taking 
more iterations than expected to achieve convergence and the calculated global budget error is 
smaller than required by the user, or if the solver is not converging and the convergence criteria 
are very small, the user can increase the convergence criteria.  

INPUT INSTRUCTIONS  

In MODFLOW-2000, input for PCG2 is read from a file that is type “PCG” in the name 
file. All numeric variables are free format if the option “FREE” is specified in the Basic Package 
input file; otherwise, all variables have 10-character fields.  The input for PCG2 is as follows.  

FOR EACH SIMULATION 
 
0. [#Text] 
Item 0 is optional. The “#” symbol needs to be in column 1. Item 0 can be repeated many times. 
 
l.  Data: MXITER ITER  NPCOND 
 
2  Data: HCLOSE RCLOSE RELAX    NBPOL    IPRPCG    MUTPCG   DAMP 
 

Explanation of Fields Used in Input Instructions 

MXITER----is the maximum number of outer iterations -- that is, calls to the solution routine.  
For a linear problem MXITER should be 1, unless more than 50 inner iterations are 
required, when MXITER could be as large as 10.  A larger number (generally less 
than 100) is required for a nonlinear problem.  

ITERI--------is the maximum number of inner iterations. For nonlinear problems, ITERI usually 
ranges from 3 to 10; a value of 30 will be sufficient for most linear problems.  

NPCOND---is the flag used to select the matrix preconditioning method. The following options 
are available.  
NPCOND  PRECONDITIONING METHOD  
       1      Modified Incomplete Cholesky (for use on scalar computers)  
       2      Polynomial (for use on parallel computers)  

 
HCLOSE----is the head change criterion for convergence, in units of length.  When the 

maximum absolute value of the head change at all nodes during an iteration is less 
than or equal to HCLOSE, and the criterion for RCLOSE is satisfied (see below), 
iteration stops.  Commonly, HCLOSE equals 0.01.  

RCLOSE----is the residual criterion for convergence, in units of cubic length per time.  When the 
maximum absolute value of the residual at all nodes during an iteration is less than 
or equal to RCLOSE, and the criterion for HCLOSE is satisfied (see above), 
iteration stops.  Commonly, RCLOSE equals HCLOSE.  

 
For nonlinear problems, convergence is achieved when the convergence criteria are satisfied on 
the first inner iteration.  
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RELAX------is the relaxation parameter used with NPCOND=L (MICCG). Usually, 
RELAX=1.0, but for some problems a value of 0.99, 0.98, or 0.97 will reduce the 
number of iterations required for convergence. RELAX is not used if NPCOND≠I.  

NBPOL------is used when NPCOND=2 to indicate whether the estimate of the upper bound on 
the maximum eigenvalue is 2.0, or whether the estimate will be calculated.  
NBPOL=2 is used to specify the value as 2.0; for any other value of NBPOL, the 
estimate is calculated.  Convergence is generally insensitive to this parameter.  
NBPOL is not used if NPCOND does not equal 2.  

IPRPCG-----is the printout interval for PCG. If IPRPCG is equal to zero, it is changed to 999.  
The extreme head change and residual (positive or negative) are printed for each 
iteration of a time step whenever the time step is an even multiple of.IPRPCG.  The 
printout also occurs at the end of each stress period regardless of the value of 
IPRPCG.  

MUTPCG - is a flag that controls printing of convergence information from the solver: 
0 - print tables of maximum head change and residual each iteration 
1 - print only the total number of iterations 
2 – print nothing from the solver 
3 - print as for 0, but only if solver convergence fails 

DAMP-------is a damping parameter.  Values less than l.0 can be used to aid convergence in 
nonlinear problems. 

 

Sample Data Inputs 

#Example data for a linear problem with fewer than about 50 iterations 
#Time in seconds, length in feet. 
1    50    1                                              Item 1 
.01    .01    1.    2    0    2    0.0              Item 2 
 
#Example data set for a nonlinear problem or a linear problem with more than about 50 iterations 
#Time in seconds, length in feet. 
50    5    1                                             Item 1 
.01    854.    2    0    1    0.0                  Item 2 
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LINKING PCG2 TO THE MODULAR MODEL 

LAYCON=3 layers may produce a matrix which is not diagonally-dominant when using 
the BCF package as presented in McDonald and Harbaugh (1988, p. 5-22 and 5-59).  MICCG 
(NPCOND=I) of the PCG2 package will not function if the matrix is not diagonally dominant, 
and POLCG may not converge.  To correct this, make the following change in module BCFlFM 
(M.G. McDonald, U.S. Geological Survey, written commun., 1989):  

McDonald and Harbaugh (1988) version:  
 
C7D-----WITH HEAD BELOW TOP ADD CORRECTION TERMS TO RHS AND HCOF. 

RHS(J,I,K)=RHS(J,I,K) + CV(J,I,K-I)*TOP(J,I,KT)  
HCOF(J,I,K)=HCOF(J,I,K) + CV(J,I,K-1)  

  220 CONTINUE  
 
Modified version:  
 
C7D-----WITH HEAD BELOW TOP ADD CORRECTION TERMS TO RHS AND HCOF. 
C7D-----MODIFIED TO PUT CORRECTION COMPLETELY ONTO RIGHT HAND SIDE  

RHS(J,I,K)=RHS(J,I,K) + CV(J,I,K-I)*(TOP(J,I,KT)-HTMP) 220  
CONTINUE  
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DOCUMENTATION OF PCG2  

Brief Description of Modules  

Three primary modules and two submodules were created for the preconditioned 
conjugate-gradient method.  The following is a brief description of the purpose of each of these 
modules:  

Primary modules:  
 
  PCG2AL   Allocates space for the conjugate-gradient calculations. 
 
  PCG2RP   Reads, stores and prints the input data. 
 
  PCG2AP  Performs multiple iterations of the conjugate-gradient method and checks 

the convergence criteria. 
 
Submodules:  
 
  SPCG2P  Called by PCG2AP to print the extreme head changes and residuals that 

occurred at each iteration. 
 
  SPCG2E  Called by PCG2AP to perform one matrix multiplication required by the 

polynomial preconditioner.  This submodule is executed three times for 
each iteration of POLCG.  

Flowchart  

The flowchart for the package is shown below, and includes the functions performed by 
the three Primary modules and the two submodules.  The following variable names used in the 
flowchart are taken from the FORTRAN code.  Some were defined in the input instructions; all 
are defined later in the following list of variables.  

HCLOSE,  IITER, ITERI, MXITER,  
NPCOND, PAP, RCLOSE, SRNEW, SROLD  
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Read MXITER,ITER1, and NPCOND and allocate space  (PCG2AL) 

Read other input data and print all input data (PCG2RP) 

The following is repeated for each time step 

Calculate A and b using other packages 
Enter PCG2AP 

Initialize arrays and IITER 
If NPCOND=2, scale A, x and b 

Solve sk = M-1rk (eq. 6a) using M

of MICCG (eq. 11; fig. 2 and 3) 

Solve sk = M-1rk (eq. 6a) using 

POLCG (eq. 13).  (Execute 

SPCG2E three times.) 

First internal iteration? 

Increment KITER

NPCOND = 1 NPCOND = 2

Increment IITER

pk = sk (eq. 6b) 
SRNEW = s kT r k 

SROLD = SRNEW 
SRNEW = = s kT r k 

βk= SRNEW/SROLD (eq. 6c) 
pk = sk + βk pk-1 (eq. 6d) 

PAP = p T A p 
αk = SRNEW/PAP (eq. 6e) 

Solve for new hydraulic heads and
residuals using equations 6f and 6g

yes no

Inner
Interation

Outer
Iteration

-- Exit
PCG2AP

Outer 
Iteration 
-- Exit 
PCG2AP 

START
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Largest head change < HCLOSE and 
Largest residual < RCLOSE? 

Outer 
Iteration 
-- Exit 
PCG2AP 

Outer
Iteration

-- Exit 
PCG2AP

Inner
Iteration

MXITER = 1? IITER < ITER1? 

no 
no 

MXITER = 1?

yes no 

yes yes 

First Internal Iteration? 

no 
yes 

yes 
no 

KITER = MXITER? KITER = MXITER? 

no 

yes 

no 

yes 

SOLUTION 
CONVERGED 

SOLUTION DID 
NOT CONVERGE 

Print maximum head changes and residuals fore each iteration (SPCG2P) 
Exit PCG2AP 

Complete simulation using modules 
from other packages 

END

SOLUTION DID 
NOT CONVERGE 
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Narrative for Modules  

PCG2AL  

Module PCG2AL reads MXITER, ITERl, and NPCOND, and allocates space in the X 
array for the arrays required for the solver.  Arrays SS, P and V are required for both values of 
NPCOND; array CD is required only for NPCOND=L.  Each of these four arrays are vectors 
dimensioned equal to the number of grid nodes.  Additionally, four smaller arrays are required to 
store the maximum head change and residual at each iteration (HCHG and RCHG) and the cell 
locations where these occurred (LHCH and LRCH).  

PCG2RP  

Module PCG2RP reads HCLOSE, RCLOSF,, RELAX, NBPOL, IPRPCG, MUTPCG, 
and IPCGCD, and prints all variables read for this package.  

PCG2AP  

 
Module PCG2AP performs up to ITERl iterations of the preconditioned conjugate-

gradient algorithm for solving the flow equation.  To save computational time, all arrays are 
declared one dimensional.  They are accessed by a single index which is calculated from the 
layer, row, and column indexes normally used to access the arrays in three dimensions.  

Double precision scalar variables are used for most calculations in this module to 
improve the accuracy of the results. Modification of the present use of double precision may 
affect simulated results.  

For the polynomial preconditioner, c0 and cl of equation 14 are negative in the text, but 
are calculated as positive numbers in the FORTRAN code.  The FORTRAN code is correct 
because, as programmed in the modular model, matrix A of equation l is negative definite 
instead of positive definite.  While this poses no mathematical difficulty, it does require that the 
odd-numbered coefficients of equation 14 be positive instead of negative.  

The steps executed by PCG2AP were outlined in the flowchart previously presented in 
this section.  

SPCG2P  

Submodule SPCG2P prints the extreme values of the head change (HCHG) and residual 
(RCHG) out of all cells for each iteration of a time step.  The cell location (LHCH and LRCH) 
where the values occur also is printed.  

SPCG2E  

Submodule SPCG2E calculates the matrix-vector multiplication and the vector addition 
required by each of the three parts of equation 14. It is called three times for each polynomial 
iteration.  
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Adapting SPCG2E for Computers with Vector and Parallel Architecture  

Use of the polynomial preconditioner on computers with vector and(or) parallel 
architecture will be most efficient if SPCG2E is modified to take advantage of the computer 
used.  The following points should be considered when modifying SPCG2E.  

The diagonal entries of A all equal -1.0 because A is scaled and is negative definite (see 
narrative for module PCG2AP).  Vectors CR, CC, and CV contain the off-diagonals of A along 
which nonzero entries occur.  Note that although array CV is dimensioned using NODES in 
SPCG2E and elsewhere in the model, it is originally only given storage space in X for cells in 
NLAY-1 layers (McDonald and Harbaugh, 1988, p. 4-25).  In making changes, care must be 
taken to avoid overwriting elements of array HCOF, which is stored in X after CV.  

Using w to represent rk, zl, or z2, and n to represent the cell number, the nth element of 
each vector produced by the matrix-vector multiplications of equation 14 is calculated by 
summing -w(n) with:  

CR(n) * w(n+l)      (15a) 
CR(n) * w(n)        (15b) 
CC(n) * w(n+NCOL)       (15c) 
CC(n) * w(n)        (15d) 
CV(n) * w(n+NRC)  n•NODES-NRC   (15e) 
CV(n) * w(n)        (15f) 

 

Equations 15a through 15f are vector-vector multiplications that can be calculated quickly on 
computers with vector architecture, but one problem exists.  Along with rows and columns for 
active cells, A includes rows and columns for inactive and constant-head cells.  Inactive cells are 
accounted for by setting appropriate entries of CR, CC, and CV to zero in the beginning of the 
"DO ll5" loop in PCG2AP and, therefore, cause no problem.  However, constant-head cells are 
accounted for using the IF statements in SPCG2E, and these IF statements must be eliminated to 
vectorize the multiplications.  

One way to eliminate the IF statements in SPCG2E is to add a work vector of length 
NODES (allocate space in PCG2AL) and use this vector to store CR, CC, or CV temporarily 
while performing the multiplications of equation 15 with the work vector. In the work vector, the 
entries along rows associated with constant-head cells can be set to zero prior to performing the 
multiplications.  Thus, in equation 15a, CR(n)=0 if cell n+l is constant head; in equation 15c, 
CC(n)=0 if cell n+NCOL is constant head; in equation 15e, CV(n)=0 if cell n+NRC is constant 
head.  In equations 15b, 15d, and 15f, CR(n)=0, CC(n)=0, and CV(n)=0 if cell n is constant head.  

Alternatively, vectors CR, CC, and CV may be used directly in equation 15 and the 
values that are set to zero may be stored in a separate array and replaced once the multiplication 
has been completed.  This would require a work vector with length equal to the number of 
constant-head cells in the grid.  Presently, the number of constant-head cells is not available 
when space is allocated by calling PCG2AL, and the user would have to modify the data input 
and the module to provide this information.  
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List of Variables  

Variables for the entire package are listed below.  Variables not listed below are used 
only briefly in a few calculations and their meaning can be identified from nearby lines of the 
code.  The name of the module is listed under 'Range' for variables used by only one module.  

Variable Range Definition 
ALPHA PCG2AP Double-precision field containing αk of equation 6e. 
BIGH PCG2AP Value of head change with the largest absolute value for one 

iteration. 
BIGR PCG2AP Value of residual with the largest absolute value for one iteration. 
BPOLY  PCG2AP Estimated upper bound of the maximum eigen value of A; used in 

polynomial preconditioning. 
C0, Cl, C2  PCG2AP Scalar coefficients of equations 13 and 14. 
CC Global DIMENSION (NCOLNROW,NLAY), conductance along columns 

(see fig. 1). 
CD PCG2AP DIMENSION (NCOL,NROW,NLAY), uii of equation lla. 
CDl PCG2AP The first nonzero component of CD.  Used to ensure that all values 

in CD are all ≥0 or ≤0.
CDCC, CDCR, 
  CDCV 

PCG2AP Double-precision fields containing  terms of equation lla. kkki u/u 2

CR Global DIMENSION (NCOL,NROW,NLAY), conductance along rows 
(see fig. 1). 

CV Global DIMENSION (NCOL,NROW,NLAY), conductance between layers 
(see fig. 1). 

DONE  Package Double-precision field containing a one. 
DZERO PCG2AP Double-precision field containing a zero.  
FCC, FCR, FCV PCG2AP Double-precision field containing fij terms of equation ll. 
HCHG Package DIMENSION (MXITER*ITERI), extreme head change (BIGH) for 

each iteration. 
HCHGN PCG2AP Double-precision field containing the head change at one cell at one 

iteration. 
HCLOSE Package Closure criteria for the head change for the iterative procedure. 
HCOF Global DIMENSION (NCOL,NROW,NLAY), coefficient of head at cell 

(J,I,K) in the finite-difference equation. 
HNEW Global DIMENSION (NCOL,NROW,NLAY), most recent estimate of 

head in each cell. HNEW changes at each iteration. 
IBOUND Global DIMENSION (NCOL,NROW,NLAY), status of each cell 

<0, constant-head cell  
=0, inactive cell  
>0, variable-head cell 

ICNVG  Global Flag set equal to zero until the iteration procedure has converged, 
when it is set to one.  

IICNVG PCG2AP Inner iteration convergence flag. 
IITER PCG2AP Inner iteration counter. Reset each time PCG2AP is called. 
IN Package Primary unit number from which input for this package will be read.
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Variable Range Definition 
IOUT Global Primary unit number for all printed output. IOUT=6. 
IPRPCG Package Frequency (in time steps) with which the extreme head changes and 

residuals for each iteration will be printed. 
ISIZ PCG2AL Number of cells (nodes) in the finite-difference grid. 
ISOLD Package Before this module allocates space, ISOLD is set equal to ISUM. 

After allocation, ISOLD is subtracted from ISUM to get ISP, the 
amount of space in the X array allocated by this module. 

ISP PCG2AL Number of words in the X array allocated by this module. 
ISUM Global Index number of the lowest element in the X array which has not 

yet been allocated.  When space is allocated for an array, the size of 
the array is added to ISUM. 

ITERl Package Maximum number of inner iterations. 
KITER Global Counts the number of times PCG2AP is called.  
KPER Global Stress period counter. 
KSTP Global Time step counter. Reset at the start of each stress period. 
LCname Package Location in the X array of the first element of array ‘name’.  
LENX Global Length of the X array in words. This should always be equal to the 

dimension of X specified in the MAIN program. 
LHCH Package DIMENSION (3,MXITER*ITERl), Layer, row, and column of the 

cell containing the extreme residual (BIGH) for each iteration. 
LRCH Package DIMENSION (3,MXITER*ITERl), Layer, row, and column of the 

cell containing the extreme residual (BIGR) for each iteration  
MXITER Package Maximum number of calls of PCG2AP. 
MUTPCG Package Flag to control printing from the solver '(see input instructions). 
N Package Cell index. 
NBPOL Package Used when NPCOND=2 to indicate how the value of the upper 

bound of the maximum   eigenvalue is calculated (see input 
instructions). 

   
NCD Package One-dimensional subscript of conductance to the adjacent cell, 

which is in the last column. 
NCF Package One-dimensional subscript of conductance to the adjacent cell, 

which is in the next column. 
NCL Package One-dimensional subscript of the cell index of the adjacent cell 

which is in the last column. 
 

NCN Package One-dimensional subscript of the cell index of the adjacent cell 
which is in the next column. 

NCOL Global Number of columns in the grid. 
NITER PCG2AL Counts the total number of inner iterations that are executed. 
NLAY Global Number of layers in the grid. 
NLL Package One-dimensional subscript of the cell index of the adjacent cell 

which is in the last layer. 
NLN Package One-dimensional subscript of the cell index of the adjacent cell 

which is in the next layer. 
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Variable Range Definition 
NLS Package  One-dimensional subscript of conductance to the adjacent cell 

which is in the next layer. 
NLZ Package One-dimensional subscript of conductance to the adjacent cell 

which is in the last layer. 
NODES Global Number of cells (nodes) in the finite-difference grid. 
NORM PCG2AP Flag for scaling the matrix set of equations. NORM=L and scaling 

is executed only when NPCOND=2. 
NPCOND Package Preconditioner used:  

1 Incomplete Cholesky with row-sums agreement  
2 Polynomial 

NRB Module One-dimensional  subscript of conductance to the adjacent cell 
which is in the last row. 

NRC Package Number of cells in a model layer. 
NRH Package One-dimensional subscript of conductance to the adjacent cell 

which is in the next row. 
NRL Package One-dimensional subscript of the cell index of the adjacent cell 

which is in the last row. 
NRN Package One-dimensional subscript of the cell index of the adjacent cell 

which is in the next row.  
NROW Global Number of rows in the grid.  
NSTP Global Number of time steps in the current stress period. 
P PCG2AP DIMENSION (NCOL,NROW,NLAY), pk and pk-l of equations 6d-

6g. 
PAP PCG2AP Double-precision field containing the denominator of equation 6e. 
RCHG PCG2AP DIMENSION (MXITER*ITERl), Extreme residual (BIGR) for 

each iteration. 
RCHGN PCG2AP Double-precision field containing the residual change at one cell at 

one iteration. 
RCLOSE Package Closure criteria for the residual for the iterative procedure. 
RELAX Package Relaxation parameter of equation lla. 
RHS Global DIMENSION (NCOL,NROW,NLAY), right-hand side of the finite-

difference equation. RHS is an accumulation of terms from several 
different packages. 

SROLD PCG2AP Double-precision field containing the denominator of equation 6c. 
SRNEW PCG2AP Double-precision field containing the numerator of equations 6c and 

6e. 
SS PCG2AP DIMENSION (NCOL,NROW,NLAY), sk of equation 6a-6e. 
V PCG2AP DIMENSION (NCOL,NROW,NLAY), intermediate solution when 

solving equation 6a, and when calculating PAP. 
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