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PREFACE

The computer model described in this report is designed to simulate the transport and
dispersion of a single solute in ground water flowing through porous media.  The model is
developed as a module for the U.S. Geological Survey’s (USGS) MODFLOW ground-water
model, and it is intended to be the first of a family of alternative solution methods for the solute-
transport equation that will be compatible with MODFLOW.

This model, named MOC3D, was developed through modifications of an existing two-
dimensional code (MOC), which was documented originally by Konikow and Bredehoeft (1978).
Although extensive testing of MOC3D indicates that this model will yield reliable calculations for a
wide variety of field problems, the user is cautioned that the accuracy and efficiency of the model
can be affected significantly for certain combinations of values for parameters and boundary
conditions.  Development of alternative codes that will optimize the accuracy and efficiency of
solving the solute-transport equation for a broader range of conditions is planned.

The code for this model will be available for downloading over the Internet from a USGS
software repository.  The repository is accessible on the World Wide Web (WWW) from the
USGS Water Resources Information web page at URL http://h2o.usgs.gov/.  The URL for the
public repository is: http://h2o.usgs.gov/software/.  The public anonymous FTP site is on
the Water Resources Information server (h2o.usgs.gov or 130.11.50.175) in the /pub/software
directory.  When this code is revised or updated in the future, new versions or releases will be
made available for downloading from these same sites.

Acknowledgments.  The authors appreciate the helpful model evaluation and review
comments provided by USGS colleagues H. I. Essaid, W. B. Fleck, and S. P. Garabedian.
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ABSTRACT

This report presents a model, MOC3D, that simulates three-dimensional solute transport
in flowing ground water.  The model computes changes in concentration of a single dissolved
chemical constituent over time that are caused by advective transport, hydrodynamic dispersion
(including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources,
and mathematically simple chemical reactions (including linear sorption, which is represented
by a retardation factor, and decay).  The transport model is integrated with MODFLOW, a
three-dimensional ground-water flow model that uses implicit finite-difference methods to
solve the transient flow equation.  MOC3D uses the method of characteristics to solve the
transport equation on the basis of the hydraulic gradients computed with MODFLOW for a
given time step.  This implementation of the method of characteristics uses particle tracking to
represent advective transport and explicit finite-difference methods to calculate the effects of
other processes.  However, the explicit procedure has several stability criteria that may limit the
size of time increments for solving the transport equation; these are automatically determined by
the program.  For improved efficiency, the user can apply MOC3D to a subgrid of the primary
MODFLOW grid that is used to solve the flow equation.  However, the transport subgrid must
have uniform grid spacing along rows and columns.  The report includes a description of the
theoretical basis of the model, a detailed description of input requirements and output options,
and the results of model testing and evaluation.  The model was evaluated for several problems
for which exact analytical solutions are available and by benchmarking against other numerical
codes for selected complex problems for which no exact solutions are available.  These test
results indicate that the model is very accurate for a wide range of conditions and yields
minimal numerical dispersion for advection-dominated problems.  Mass-balance errors are
generally less than 10 percent, and tend to decrease and stabilize with time.

INTRODUCTION

This report describes and documents a
computer model (MOC3D) for calculating
transient changes in the concentration of a
single solute in a three-dimensional ground-
water flow field.  The calculations require the
numerical solution of two simultaneous partial
differential equations.  One equation is the
ground-water flow equation, which describes
the head distribution in the aquifer.  The second
is the solute-transport equation, which
describes the solute concentration within the
flow system.  By coupling the flow equation
with the solute-transport equation, the model
can be applied to both steady-state and transient
ground-water flow problems.

The purpose of the simulation model is
to compute the concentration of a dissolved
chemical species in an aquifer at any specified
place and time.  Changes in chemical
concentration occur within a dynamic ground-
water system primarily because of four distinct
processes: (1) advective transport, in which
dissolved chemicals are moving with (are being
carried by) the flowing ground water; (2)
hydrodynamic dispersion, in which molecular
and ionic diffusion and mechanical dispersion
(related mostly to variations in fluid velocity
through the porous media) cause the paths of
dissolved molecules and ions to diverge and
spread from the average direction of ground-
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water flow; (3) fluid sources, where water of
one composition is introduced into and mixes
with water of a different composition; and (4)
reactions, in which some amount of the solute
is added to or removed from the ground water
because of chemical, biological, and (or)
physical reactions in the water or between the
water and the solid aquifer materials.

The MOC3D model is integrated with
MODFLOW, the U.S. Geological Survey’s
(USGS) modular, three-dimensional, finite-
difference, ground-water flow model
(McDonald and Harbaugh, 1988; Harbaugh
and McDonald, 1996a and 1996b).
MODFLOW  solves the ground-water flow
equation, and the reader is referred to the
documentation for that model and its
subsequent modules for complete details.  In
this report it is assumed that the reader is
familiar with the MODFLOW family of codes.
The numerical solution to the solute-transport
equation is based on the method-of-character-
istics, which is advantageous (relative to other
standard numerical schemes) for transport
problems in which advection is a dominant
process.  The MOC3D code is based largely on
MOC, the USGS’s two-dimensional, method-
of-characteristics, solute-transport model
(Konikow and Bredehoeft, 1978; Goode and
Konikow, 1989).

This model can be applied to a wide
variety of field problems.  However, the user
should first become aware of the assumptions
and limitations inherent in the model, as
described in this report.  MOC3D is offered as
a basic tool that is applicable to a wide range of
field problems involving solute transport.
However, there are some situations in which
the model results could be inaccurate or model
operation inefficient.  The report includes
guidelines for recognizing and avoiding these
types of problems.

The computer program is written in
FORTRAN, and has been developed in a
modular style, similar to the MODFLOW

model.  At present, the model is not compatible
with all the modules for MODFLOW  that
describe secondary flow processes or features,
such as streamflow routing, subsidence, and
rewetting of dry cells.  As assumed by
MODFLOW, it is also assumed by MOC3D
that fluid properties are homogeneous and that
concentration changes do not significantly
affect the fluid density or viscosity, and hence
the fluid velocity.  Within the finite-difference
grid used to solve the flow equation in
MODFLOW , the user is able to specify a
window or subgrid over which MOC3D will
solve the solute-transport equation.  This
feature can significantly enhance the overall
efficiency of the model by avoiding calculation
effort where it is not needed.  However,
MOC3D also requires that the horizontal (row
and column) grid spacing be uniform within the
subgrid, although an expanding or nonuniform
spacing may be applied outside of the subgrid
boundaries.

The types of reactions incorporated into
MOC3D  are restricted to those that can be
represented by a first-order rate reaction, such
as radioactive decay, or by a retardation factor,
such as instantaneous, reversible, sorption-
desorption reactions governed by a linear
isotherm and constant distribution coefficient
(Kd).  This is somewhat more restrictive than
the two-dimensional model, MOC , which
allowed the representation of nonlinear
isotherms.

The report includes a detailed
description of the numerical methods used to
solve the solute-transport equation.  The data
requirements, input format specifications,
program options, and output formats are all
structured in a general manner that should be
compatible with the types of data available for
many field problems.  We have attempted to
maximize the use of existing MODFLOW
output modules and styles in developing the
MOC3D output options and features.
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THEORETICAL BACKGROUND
AND GOVERNING EQUATIONS

Mathematical equations that describe
ground-water flow and transport processes
may be developed from the fundamental
principle of conservation of mass of fluid or of
solute.  A statement of conservation of mass
(or continuity equation) may be combined with
a mathematical description of the relevant
process to obtain a differential equation
describing flow or transport (see, for example,
Bear, 1979; Freeze and Cherry, 1979; or
Domenico and Schwartz, 1990).

Ground-Water Flow Equation

A quantitative description of ground-
water flow is a prerequisite to accurately
simulating solute transport in aquifers.  A
general form of the equation describing the
transient flow of a compressible fluid in a
heterogeneous anisotropic aquifer may be
derived by combining Darcy's Law with the
continuity equation.  A general ground-water
flow equation may be written in Cartesian
tensor notation as:

∂
∂xi

Kij
∂h

∂xi







= Ss
∂h

∂t
+ W              (1)

where Kij is the hydraulic conductivity of the
porous media (a second-order tensor), LT-1; h is
the hydraulic (or potentiometric) head, L; Ss is
the specific storage, L-1; t is time, T; W is the
volumetric flux per unit volume (positive for
inflow and negative for outflow), T-1; and xi are
the Cartesian coordinates, L.  The summation
convention of Cartesian tensor analysis is
implied in eq. 1.  Equation 1 can generally be
applied if isothermal conditions prevail, the
porous medium deforms only vertically, the
volume of individual grains remains constant
during deformation, Darcy's Law applies (and
gradients of hydraulic head are the only driving

force), and fluid properties (density and
viscosity) are homogeneous and constant.

In general, the properties of porous
media vary in space.  Although fluid sources
and sinks may vary in space and time, they
have been lumped into one term (W) in the
previous development for convenience in
notation.  Also, at any given location, more
than one process may be adding or removing
fluid simultaneously from the system, such as
well withdrawals, diffuse recharge from
precipitation, and evapotranspiration.
However, the solution to the governing
equation depends only on the net flux from
sources and sinks as a function of time at each
location.

If the principal axes of the hydraulic
conductivity tensor are aligned with the x-y-z
coordinate axes, the cross-product terms of the
hydraulic conductivity tensor are eliminated;
that is, Kij = 0 when i ≠ j.  The ground-water
flow equation may then be written to include
explicitly all hydraulic conductivity terms as:

∂
∂x

Kxx
∂h

∂x




 + ∂

∂y
Kyy

∂h

∂y







    + ∂
∂z

Kzz
∂h

∂z




 − W = Ss

∂h

∂t

        

(2)

where K xx, Kyy, and K zz  are values of
hydraulic conductivity along the x, y, and z
coordinate axes, LT-1.  Equation 2 is identical
to eq. 1 of McDonald and Harbaugh (1988, p.
2-1).

Under these same assumptions,
Darcy's law may be written as:

  qx = −Kxx
∂h

∂x                  (3a)

  qy = −Kyy
∂h

∂y                  (3b)

  qz = −Kzz
∂h

∂z                   (3c)

where q is the specific discharge, LT-1.
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Average Interstitial Velocity

The migration and mixing of chemicals
dissolved in ground water will obviously be
affected by the velocity of the flowing ground
water.  The specific discharge, qi, calculated
from eq. 3 represents the volumetric flux per
unit cross-sectional area.  Thus, to calculate the
actual average interstitial velocity of ground
water, one must account for the actual cross-
sectional area through which flow is occurring.
This is usually calculated as follows:

        Vi = qi

ε
                           (4)

where Vi is the average interstitial velocity (or
seepage velocity), LT-1; and ε is the effective
porosity (dimensionless) of the porous
medium.  Assuming the same grid alignment as
stated for eq. 2, it can also be written in terms
of Darcy's law as:

  Vi = − Kii

ε
∂h

∂xi
.                     (5)

Governing Equation for Solute
Transport

The principle of conservation of mass
requires that the net mass of solute entering and
leaving a specified volume of aquifer during a
given time interval must equal the accumulation
or loss of mass stored in that volume during the
interval.  This relation may be expressed
mathematically in a general governing equation
for solute transport in three dimensions in an
incompressible fluid flowing through a porous
medium as (see Bear, 1979, p. 239-243; and
Goode and Konikow, 1989):

∂(εC)
∂t

+ ∂(ρbC )
∂t

+ ∂
∂xi

εCVi( )

− ∂
∂xi

εDij
∂C

∂x j







− ′C W∑

+λ εC + ρbC( ) = 0

        

(6)

where ε is porosity, C is volumetric concen-
tration (mass of solute per unit volume of fluid,
ML-3), ρb is the bulk density of the aquifer
material (mass of solids per unit volume of
aquifer, ML-3), C  is the mass concentration of
solute sorbed on or contained within the solid
aquifer material (mass of solute per unit mass
of aquifer material, MM-1), V is a vector of
interstitial fluid velocity components (LT-1), D
is a second-rank tensor of dispersion
coefficients (L2T-1), W is a volumetric fluid
sink (W<0) or fluid source (W>0) rate per unit
volume of aquifer (T-1), ′C  is the volumetric
concentration in the sink/source fluid (ML-3),
and λ is the decay rate (T-1).

The decay term in eq. 6 typically
represents radioactive decay of both the free
and sorbed solute.  A radioactive decay rate is
usually expressed as a half-life ( t1 2 ).  The
half-life is the time required for the
concentration to decrease to one-half of the
original value, and is related to the decay rate
as:

t1 2 = ln 2( )
λ

.                     (7)

In limited cases, the decay term can also
adequately represent chemical decomposition or
biodegradation.  However, if in these latter
cases there is also a sorbed phase present, it
must be assured that the decay process occurs
at the same rate for both the dissolved and
sorbed phases, an assumption that is true for
radioactive decay.

The concentration in the fluid leaving
the aquifer at fluid sinks is commonly assumed
to have the same concentration as the fluid in
the aquifer (that is, ′C  = C  for W <0).  The
summation for the sink/source term allows for
multiple fluid sinks and sources having
different associated source concentrations.  The
assumption of fluid incompressibility means
that all changes in fluid storage are represented
by changes in porosity in the three-dimensional
transport equation.
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Equation 6 contains velocity divergence
terms that can be eliminated (Konikow and
Grove, 1977).  This removes several
derivatives from the transport equation, which
may reduce errors during the numerical
solution, as well as removing the direct effect
of fluid sinks from the governing equation.
The accumulation and divergence terms in eq. 6
can be expanded:

       
∂(εC)

∂t
= ε ∂C

∂t
+ C

∂ε
∂t

              (8)

∂
∂xi

εCVi( ) = εVi
∂C

∂xi
+ C

∂
∂xi

εVi( ) .    (9)

Substituting these expressions into eq. 6,
adding (WC-WC) = 0, and rearranging terms
yields

ε ∂C

∂t
+

∂(ρbC )

∂t
+ εVi

∂C

∂xi
− ∂

∂xi
εDij

∂C

∂x j








    − W ′C − C( )[ ]∑ + λ εC + ρbC( )
    + C

∂ε
∂t

+ ∂
∂xi

εVi( ) − ΣW








 = 0. (10)

The last term on the left side of eq. 10 contains
a bracketed term, which is an expression of
fluid continuity.  If fluid continuity is satisfied,
then the bracketed term is zero, leaving:

∂C

∂t
+

∂(ρbC )

ε∂t
+ Vi

∂C

∂xi
−

∂
∂xi

εDij
∂C

∂x j








ε

    −
Σ W ′C − C( )[ ]

ε
+ λ C +

ρbC

ε






= 0.   (11)

This form of the governing equation can be
designated as “flow-equation-removed” and is
advantageous, though not required, for the
method-of-characteristics numerical solution
because the divergence of velocity does not
appear.  Under these assumptions, including

incompressible fluid, the porosity is not
constant unless the flow system is in a steady-
state equilibrium (Goode, 1990b).  Therefore,
we update the porosity to account for elastic
changes in aquifer volume caused by transient
changes in hydraulic head using the method
proposed by Goode (1990b).  Testing and
evaluation of this approach for incorporation
into MOC3D is documented by Goode and
Konikow (1991).

The governing equation can be further
simplified for the case of reversible,
instantaneous, equilibrium sorption of the
solute governed by a linear isotherm.  For this
case, the sorbed concentration, C , is given by:

        C = KdC                        (12)

where K d  is the sorption coefficient, or
distribution coefficient, which is assumed to be
constant in time.  The accumulation in the
sorbed phase can be expressed as:

∂(ρb C)

∂t
= Kd

∂(ρbC)

∂t
= ρbKd

∂C

∂t
   (13)

if it is assumed that the aquifer bulk density is
constant in time.  Substituting eqs. 12 and 13
into eq. 11 gives:

1 +
ρbKd

ε






∂C

∂t
+ Vi

∂C

∂xi
−

∂
∂xi

εDij
∂C

∂x j








ε

    −
Σ W ′C − C( )[ ]

ε
+ λC 1 +

ρbKd

ε






= 0.

 

(14)

The terms controlling sorption can be combined
into a single parameter—the retardation factor
(Rf), which is defined as:

   Rf = 1+
ρbKd

ε
.                 (15)

Rf  may be slightly variable in time if the
porosity changes due to transient flow effects.
We ignore this possible minor variability and
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assume that the retardation factor is constant in
time.  Substituting eq. 15 into eq. 14 yields:

  

∂C

∂t
+ Vi

Rf

∂C

∂xi
− 1

εRf

∂
∂xi

εDij
∂C

∂x j








    −
Σ W ′C − C( )[ ]

εRf

+ λC = 0.

    

(16)

This is the form of the governing equation
solved in MOC3D.

We convert eq. 16 from an Eulerian
framework to a Lagrangian one through the
material derivative, yielding a simpler form of
the governing equation (for example, see
Konikow and Bredehoeft, 1978, p. 6) for the
concentration of a reference point moving with
the retarded velocity (V/Rf):

dC

dt
− 1

εRf

∂
∂xi

εDij
∂C

∂x j








    −
Σ W ′C − C( )[ ]

εRf
+ λC = 0.

        

(17)

Although this concentration is now that of a
moving point in space, we retain the same
symbol, C, as a matter of convenience.

The mathematical solution of the
governing equations requires the specification
of certain initial and boundary conditions.
Because the transport equation is always solved
for transient conditions, the initial concentration
must be specified throughout the domain within
which solute transport occurs (which may be
equal to or smaller than the domain in which
the flow equation is applied and solved).

The specification of a constant-
concentration boundary condition at one or
more nodes for the transport equation would be
analogous to the use of a constant-head
boundary condition for the flow equation.
Although this is mathematically and
numerically feasible, it is rare that a field
environment would be consistent with such a

constant-concentration condition.  Therefore,
we have not implemented the use of this type of
boundary condition in this model.  Instead,
input concentrations must always be associated
with a fluid flux.

For the transport equation, two
specified mass-flux boundary conditions are
used in this model.  At no-flow boundaries for
the flow equation, the solute mass flux is also
required to be zero.  The second type of
specified mass boundary condition is applied
when the transport subdomain is within a flow
domain.  That is, the boundaries of the
transport subdomain do not coincide with the
flow domain boundary.  In this case, solute
mass movement into and out of the transport
subdomain is assumed to be by advection only;
no dispersive solute flux can occur across a
subdomain boundary, which is mathematically
equivalent to a zero gradient in concentration
across the boundary.

The effects of all other external fluid
sinks and sources on transport are incorporated
through the fluid source/sink terms (W) in eq.
17.  For a fluid source (W>0), denoted W+,

′C  in eq. 17 is the specified source
concentration of the incoming fluid.  For a fluid
sink (W<0), denoted W− , ′C  in eq. 17 is
assumed to equal the concentration in the
aquifer, C, at the location of the sink.  In this
case W ′C − C( ) = W−( ) C − C( ) = 0.  However,
if the fluid sink is associated with evaporation
or transpiration, it is assumed that the fluid
discharge mechanism will exclude dissolved
chemicals; for this special case ′C = 0  and
W ′C − C( ) = W−( ) 0 − C( ) , which results in an
increase in concentration at the location of the
fluid sink.

Dispersion Coefficient

The third term in eq. 16 represents the
change in concentration due to hydrodynamic
dispersion.  This expression is analogous to
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Fick's Law describing diffusive flux.  This
Fickian model assumes that the driving force is
the concentration gradient and that the
dispersive flux occurs in a direction from
higher concentrations towards lower
concentrations.  The dispersion coefficient may
be related to the velocity of ground-water flow
and to the nature of the aquifer using
Scheidegger’s (1961) equation:

Dij = αijmn
VmVn

V
i,j,m,n=1,2,3  (18)

where αijmn is a component of the dispersivity
tensor (L), a fourth rank tensor, Vm and Vn are
components of the velocity vector in the m and
n  directions, respectively, and |V | is the
magnitude of velocity:

V = Vx
2 + Vy

2 + Vz
2 .             (19)

Scheidegger (1961) further shows that
for an isotropic aquifer the dispersivity tensor
can be defined in terms of the longitudinal and
transverse dispersivities, α L and α T.  This
yields two dispersion coefficients oriented with
the direction of flow, the longitudinal
dispersion coefficient, DL, and the transverse
dispersion coefficient, DT :

    DL = αL V  ; DT = αT V .     (20)

The directional dispersion coefficients
in the x, y, and z coordinates are derived by a
transformation from the L-T coordinates.
Additionally, an isotropic diffusion coefficient,
Dm, can be included to account for molecular
diffusion.  The diffusion coefficient includes
the effects of tortuosity.  These manipulations
yield the components of the dispersion tensor,
D, which includes diffusion:

Dij = Dm + αT V( )δij + αL − αT( ) Vi V j

V
  (21)

where δij = 1 if i = j and δij = 0 if i ≠ j.  This
short-hand notation can be written explicitly as:

Dxx = αL
Vx

2

V
+ αT

Vy
2

V
+ αT

Vz
2

V
+ Dm   (22a)

Dyy = αL

Vy
2

V
+ αT

Vx
2

V
+ αT

Vz
2

V
+ Dm   (22b)

Dzz = αL
Vz

2

V
+ αT

Vy
2

V
+ αT

Vx
2

V
+ Dm   (22c)

Dxy = Dyx = αL − αT( ) VxVy

V
       (22d)

Dxz = Dzx = αL − αT( ) VxVz

V
       (22e)

Dyz = Dzy = αL − αT( ) VyVz

V
.      (22f)

A number of field studies have
indicated that transverse spreading in the
vertical direction is much smaller than
transverse spreading in the horizontal direction
(for example, see Robson, 1974; Robson,
1978; Garabedian and others, 1991; and Gelhar
and others, 1992).  To allow modeling of this
observed spreading pattern, Burnett and Frind
(1987) made an ad hoc modification to the
transverse terms in the preceding expressions,
which we incorporate into MOC3D:

Dxx = αL
Vx

2

V
+ αTH

Vy
2

V
+ αTV

Vz
2

V
+ Dm   (23a)

 Dyy = αL

Vy
2

V
+ αTH

Vx
2

V
+ αTV

Vz
2

V
+ Dm   (23b)

Dzz = αL
Vz

2

V
+ αTV

Vy
2

V
+ αTV

Vx
2

V
+ Dm   (23c)

Dxy = Dyx = αL − αTH( ) VxVy

V
        (23d)
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Dxz = Dzx = αL − αTV( ) VxVz

V
         (23e)

Dyz = Dzy = αL − αTV( ) VyVz

V
         (23f)

where αTH
 is the horizontal transverse

dispersivity and αTV
 is the vertical transverse

dispersivity.  If αTH  = αTV
, then eq. 23

reduces to eq. 22.

Review of Assumptions

A number of assumptions have been
made in the development of the previous forms
of the governing equations.  Following is a list
of the main assumptions that must be carefully
evaluated before applying the model to a field
problem.

1.  Darcy's law is valid and hydraulic-head
gradients are the only significant driving
mechanism for fluid flow.

2.  The hydraulic conductivity of the aquifer
system is constant with time.  Also, if the
system is anisotropic, it is assumed that the
principal axes of the hydraulic conductivity
tensor are aligned with orthogonal frame of
reference, so that the cross-product terms of the
hydraulic conductivity tensor are eliminated.

3.  Gradients of fluid density, viscosity, and
temperature do not affect the velocity
distribution.

4.  No chemical reactions occur that affect the
fluid or aquifer properties.

5.  The dispersivity coefficients are constant
with time, and the aquifer is isotropic with
respect to longitudinal dispersivity.

As noted by Konikow and Bredehoeft
(1978), the nature of a specific field problem
may be such that not all of these underlying
assumptions are valid.  The degree to which
field conditions deviate from these assumptions
will affect the applicability and reliability of the

model for that problem.  If the deviation from a
particular assumption is significant, the
governing equations and the numerical code
will have to be modified to account for the
appropriate processes or factors.

NUMERICAL METHODS

Because aquifers are heterogeneous and
have complex boundary conditions, exact
analytical solutions to the governing equations
can not be obtained directly.  Instead,
numerical methods are used, in which the
continuous variables of the governing
equations are replaced with discrete variables
that are defined at grid blocks (or cells or
nodes).  Thus, the continuous differential
equation, which defines hydraulic head or
solute concentration everywhere in the system,
is replaced by a finite number of algebraic
equations that defines the hydraulic head or
concentration at specific points.  This system of
algebraic equations generally is solved using
matrix techniques.

However, numerical methods yield
only approximate (rather than exact) solutions
to the governing equation (or equations); they
require discretization of space and time.  The
variable internal properties, boundaries, and
stresses of the system are approximated within
the discretized format.  In general, the finer the
discretization, the closer the numerical solution
will be to the true solution.

The notation and conventions used in
this report and in the MOC3D code to describe
the grid and to reference (or to number) nodes
are described in figs. 1-2.  The indexing
notation used here is consistent with that used
in the FORTRAN code for MODFLOW by
McDonald and Harbaugh (1988), although not
necessarily the notation used in the text of their
report.  Our indexing notation maintains
conformity between the text of this report and
the FORTRAN code in MOC3D, and the index
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EXPLANATION

j,i,kj-1,i,k j+1,i,k

j,i-1,k

j,i+1,k

xj

 i

y

 ∆xj

∆yi

COLUMNS

R
O

W
S

  Node of finite-difference cell

∆xj = ∆rj = cell dimension in row direction

∆yi = ∆ci = cell dimension in column direction

Figure 1.  Notation used to label rows, columns,
and nodes within one layer (k) of a three-dimen-
sional, block-centered, finite-difference grid for
MOC3D.

order corresponds to an x,y,z sequence, which
is standard in numerical models.  However,
our notation differs from that used in some
other ground-water models in that the x-
direction is indexed by “j” and increases from
left to right along a row to indicate the column
number.  Our use of ∆x and ∆y is synonymous
with the use of ∆r and ∆c, respectively, by
McDonald and Harbaugh (1988).  The y-
direction is indexed by “i” and increases from
the top of the grid to the bottom within a
column to indicate the row number.  Thus, in a
map view of any one horizontal layer, as
illustrated in fig. 1, the node representing a cell
in the first row and first column of the grid
would lie in the upper left corner of the grid.
The z-direction represents layers and is indexed
by “k.”  As indicated in fig. 2, the first layer
(k = 1) in a multilayer grid would be the top
(or highest elevation) layer.  The saturated
thickness of a cell (bj,i,k) is equivalent to ∆z.

k

z

∆zk = b

LA
Y

E
R

S

Figure 2.  Representative three-dimensional grid
for MOC3D illustrating notation for layers.

Ground-Water Flow Equation

A numerical solution of three-
dimensional ground-water flow equation is
obtained by the MODFLOW  code using
implicit (backward-in-time) finite-difference
methods.  The model was coded in FORTRAN
in a modular style to allow and encourage the
development of additional packages or modules
that can be added on or linked to the original
code.  Many such packages or modules, which
typically allow additional ground-water
processes, hydrogeological features, solution
algorithms, or input/output options to be
represented or used, have been documented
since MODFLOW was first released.  Most of
these are summarized by Appel and Reilly
(1994).

MODFLOW is based on use of a block-
centered finite-difference grid that allows
variable spacing of the grid in three
dimensions.  Flow can be steady or transient.
Layers can be simulated as confined,
unconfined, or a combination of both.  Aquifer
properties can vary spatially and hydraulic
conductivity (or transmissivity) can be
anisotropic.  Flow associated with external
stresses, such as wells, areally distributed
recharge, evapotranspiration, drains, and
streams, can also be simulated through the use
of specified head, specified flux, or head-
dependent flux boundary conditions.
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MODFLOW offers several options to solve the
implicit finite-difference equations, including
the Strongly Implicit Procedure (SIP), Slice-
Successive Overrelaxation (SSOR) methods, or
Preconditioned Conjugate-Gradient matrix
solvers (for example, Hill, 1990).  Successful
use of MOC3D, which is programmed as a
module to MODFLOW, requires a thorough
familiarity with the use of M O D F L O W .
Comprehensive documentation of MODFLOW
is presented by McDonald and Harbaugh
(1988), Harbaugh and McDonald (1996a and
1996b), and the various reports for additional
implemented modules.

Average Interstitial Velocity

Because advective transport and
hydrodynamic dispersion both depend on the
velocity of ground-water flow, the solution of
the transport equation requires knowledge of
the velocity (or specific discharge) field.
Therefore, after the head distribution has been
calculated for a given time step or steady-state
flow condition, the specific discharge across
every face of each finite-difference cell within
the transport subgrid is calculated next.

The specific discharge components are
calculated for each face using a finite-difference
form of eq. 3.  For example, the specific
discharge in the horizontal plane in the x-
direction at the block interface between cells
j,i,k and j+1 ,i,k is (after McDonald and
Harbaugh, 1988):

qx( j+1/2,i,k) = −Kxx( j+1/2,i,k) ∆h / ∆x( )( j+1/2,i,k)

= −Kxx( j+1/2,i,k)

hj+1,i,k − hj,i,k( )
∆x

      (24)

where Kxx( j+1/2,i,k )  is the interblock hydraulic
conductivity in the x-direction on the forward
face of the cell and the hydraulic gradient is
based on implicitly calculated heads at the
adjacent nodes.  (Note that the interblock

hydraulic conductivity is commonly defined by
the harmonic mean, but in MODFLOW the user
can specify alternative methods for calculating
the interblock hydraulic conductivity in the
Block-Centered Flow [BCF] package.)

The seepage velocity at any point within
a cell must be defined to represent advective
transport.  It is calculated at a point of interest
within a finite-difference cell based on the
interpolated estimate of specific discharge at
that point divided by the effective porosity of
the cell in which the point is located (see eqs.
4-5).  The interpolation methods are discussed
later in the section on “Particle Tracking.”

Because the velocity is one of the most
important factors controlling solute transport, it
is necessary to examine closely the calculated
velocity field to understand the patterns and
rates of solute spreading.  Therefore, the
MOC3D model offers the user several options
to output the velocity data.  These options are
described in Appendix B.  The x-, y-, and z-
components of the velocity vector at the nodes
of the finite-difference cells can be computed
with equivalent orders of accuracy for all three
components at a single location.  For example,
the velocity in the x-direction at node (j,i,k)
would be computed as

Vx( j,i,k) =
qx( j+1/2,i,k) + qx( j−1/2,i,k)( )

2ε( j,i,k)
.  (25)

Analogous expressions are used to compute the
velocity components in the y- and z-directions.

Note that the specific discharge
components themselves are computed on cell
faces with a higher order of accuracy than are
the velocity components at the nodes.  For
example, qx( j+1/2,i,k )  is based on the head
difference over ∆x; whereas Vx at the node is
based on the head difference over 2∆x .
However, an estimate of Vy or Vz  at the same
location ( j + 1 / 2, i, k)  would have to be at a
lower order of accuracy (for example, 2∆x∆y
for Vy).  Therefore, the more accurate estimates
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on cell faces are used in the model as the basis
for interpolation of particle velocities, but the
velocities at nodes are written in the output files
either to enable direct inspection by the user or
to facilitate postprocessing with visualization
software.

Solute-Transport Equation

The solute-transport equation is, in
general, more difficult to solve accurately using
numerical methods than is the ground-water
flow equation, largely because the mathematical
properties of the transport equation vary
depending upon which terms in the equation
are dominant in a particular system.  Where
solute transport is dominated by advective
transport, as is common in many field
problems, then the transport equation
approximates a hyperbolic type of equation
(similar to equations describing the propagation
of a wave or of a shock front).  In contrast,
where a system is dominated by dispersive
fluxes, such as might occur where fluid
velocities are relatively low and aquifer
dispersivities are relatively high, then the
transport equation becomes more parabolic in
nature (similar to the transient ground-water
flow equation).  To further complicate matters,
because system properties and fluid velocity
may vary significantly, the dominant process
(and the mathematical properties of the
governing equation) may vary from point to
point and over time within the same domain.

Dispersion-dominated solute-transport
problems (and parabolic equations in general)
are quite amenable to accurate and efficient
solution using standard finite-difference and
finite-element numerical methods.  However,
in solving advection-dominated transport
problems, in which a relatively sharp front (or
steep concentration gradient) is moving through
a system, it is numerically difficult to preserve
the sharpness of the front.  In such cases,
numerical solutions often will include either

erroneous oscillations (overshoot and
undershoot) or calculate a greater dispersive
flux than would occur by physical dispersion
alone or than would be indicated by an exact
solution of the governing equation (for
example, see Pinder and Gray, 1977).  That
part of the calculated dispersion introduced
solely by the numerical solution algorithm is
called numerical dispersion.

Method of Characteristics

The method of characteristics was
developed to solve hyperbolic differential
equations.  A major advantage is that the
method minimizes numerical dispersion (or
even eliminates it in limited cases) (Garder and
others, 1964; Pinder and Cooper, 1970;
Reddell and Sunada, 1970; Bredehoeft and
Pinder, 1973; Konikow and Bredehoeft, 1978;
Zheng, 1990).  The approach taken by the
method of characteristics is not to solve eq. 16
directly, but rather to solve an equivalent
system of ordinary differential equations.
Equation 16 can be rearranged to obtain:

∂C

∂t
= 1

εRf

∂
∂xi

εDij
∂C

∂x j







− Vi

Rf

∂C

∂xi

+
W ′C − C( )[ ]∑

εRf
− λC.

    

(26)

Equation 26 describes the change in
concentration over time at fixed reference
points within a stationary coordinate system,
which is referred to as an Eulerian framework.
An alternative perspective is to consider
changes in concentration over time in
representative fluid parcels as they move with
the flow of the fluid past fixed points in space.
This, in effect, is a moving coordinate system,
which is referred to as a Lagrangian
framework.  We convert eq. 16 from an
Eulerian framework to a Lagrangian one
(essentially, a framework of a moving grid)
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through the material derivative.  The material
derivative of concentration with respect to time,
dC/dt, describes the change in concentration in
a parcel of water moving at the average
interstitial velocity of water; it may be defined
for a three-dimensional system as:

dC

dt
= ∂C

∂t
+ ∂C

∂x

dx

dt
+ ∂C

∂y

dy

dt
+ ∂C

∂z

dz

dt
.   (27)

The last three terms on the right side include the
material derivatives of position, which are
defined by the velocity in the x-, y-, and z-
directions.  We then have:

dx

dt
= Vx

Rf
                       (28)

dy

dt
=

Vy

Rf
                       (29)

dz

dt
= Vz

Rf
,                      (30)

and a simpler form of the governing equation
(for example, see Konikow and Bredehoeft,
1978, p. 6) for the concentration of a reference
point moving with the retarded velocity (V/Rf)
is obtained by substituting the right sides of
eqs. 26 and 28-30 for the corresponding terms
in eq. 27:

dC

dt
= 1

εRf

∂
∂xi

εDij
∂C

∂x j








+
Σ W ′C − C( )[ ]

εRf
− λC.

        

(31)

Although this concentration is now that of a
moving point in space, we retain the same
symbol, C, as a matter of convenience.

The solutions of the system of
equations comprising eqs. 28-31 may be given
as x = x(t), y = y(t), z = z(t), and C = C(t),
and are called the characteristic curves of eq.
26.  Given solutions to eqs. 28-31, a solution
to the original partial differential equation may

x

o

EXPLANATION

x x

x x

o
o

o o

New location of particle

Flow line and direction of flow

Computed path of particle

Node of finite-difference cell

Initial location of particle

Figure 3.  Part of a hypothetical finite-differ-
ence grid showing relation of flow field to
movement of points (or particles) in method-
of-characteristics model for simulating solute
transport (modified from Konikow and Brede-
hoeft, 1978).

be obtained by following the characteristic
curves.  This may be accomplished by
introducing a set of moving points (or reference
particles) that can be traced within the
stationary coordinates of a finite-difference
grid.  Each particle corresponds to one
characteristic curve, and values of x, y, z, and
C  are obtained as functions of t for each
characteristic (Garder and others, 1964).  Each
point has a concentration and position
associated with it and is moved through the
flow field in proportion to the flow velocity at
its location (see fig. 3).  Equation 31 can be
solved using any one of several approaches,
including random-walk methods (for example,
see Prickett and others, 1981; and Engineering
Technologies Associates, Inc., 1989).  We
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choose to solve eq. 31 using explicit finite-
difference approaches because of its efficiency
and relative simplicity.  However, as noted by
Reddell and Sunada (1970) and Konikow and
Bredehoeft (1978), this approach also requires
the consideration of stability criteria, which will
be discussed in the section “Stability and
Accuracy Criteria.”  In some cases, the
efficiency may be adversely affected because of
restrictions imposed by the stability criteria.

As noted by Konikow and Bredehoeft
(1978), the processes of advection, dispersion,
mixing, and reactions are occurring
continuously and simultaneously.  Therefore,
eqs. 28-31 should be solved simultaneously,
but for practical reasons, they are solved
sequentially.  However, the results will be
sensitive to the order in which they are solved
because the change in concentration due to
dispersion depends on the concentration
gradient, and the concentration gradient at any

Figure 4.  Representative change in breakthrough curve from time level t  to t +1.  Note that
concentration changes are exaggerated to help illustrate the sequence of calculations.  Curve
for Ct +adv represents the concentration distribution at time t +1 due to advection only.
(Modified from Konikow and Bredehoeft, 1978.)

location may change significantly because of
advection during a time increment.  This is
illustrated in fig. 4.  As the position of a
concentration front or breakthrough curve
advances with time, say from time t at the
beginning of a time increment, to time t+1 at
the end of a time increment, the concentration
gradient at any particular location or reference
point is continuously changing.  For example,
in fig. 4 the concentration gradient at the
location where the relative distance equals 0.4
is relatively steep at time t, as indicated by the
slope of the curve labeled Ct.  However, if the
solute migrated in the direction of flow to a
new location due to advection only without
being subjected to any dispersive flux, as
indicated by the curve labeled Ct+adv, then the
concentration gradient at the same point in
space would be much smaller.  If the change in
concentration caused by dispersion were
computed by solving eq. 31 first in the
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sequence and using the spatial concentration
gradients at the beginning of a time step, the net
results would be different from those that
would be computed from solving eq. 31 last in
sequence and using concentration gradients
after advection.  Sensitivity to the sequence of
solving the characteristic equations is
eliminated by solving eq. 31 using
concentration gradients based on the average of
the concentrations at each node before and after
advection.  This effectively gives equal weight
to the concentration gradients before and after
advection while computing the solute flux due
to dispersion.  The averaged concentrations,
designated as Cj,i,k

* , are calculated as:

  Cj,i,k
* =

Cj,i,k
t + Cj,i,k

t+adv

2
           (32)

where Cj,i,k
t+adv  is the concentration at the new

time level after advection alone.

Particle Tracking

Advection in flowing ground water is
simulated by particle tracking.  The other terms
in the governing equation—dispersion,
sources, and decay—are accounted for by
adjusting the concentrations associated with
each particle.  The concentration changes
caused by dispersion and fluid sources are
computed in the fixed-in-space finite-difference
grid, whereas concentration changes caused by
decay are calculated directly on the particles, as
described below.  Initial particle locations are
defined through model input, and subsequent
particle positions are integrated in time using
the spatially and temporally variable velocity
field.

The fluid velocity is derived from a
block-centered finite-difference solution of the
three-dimensional flow equation (McDonald
and Harbaugh, 1988).  The components of the
velocity vector are approximated by difference
expressions at interfaces between adjacent

blocks occupying three-dimensional space (see
eq. 24).  In the quasi-three-dimensional
approach taken by McDonald and Harbaugh
(1988), horizontal fluxes are computed using
the transmissivity of each layer and the vertical
fluxes are computed using the vertical
conductance, which is the vertical hydraulic
conductivity divided by the vertical distance
between layer centers.  Thus, the components
of the specific discharge vector can be
represented by:

bqx( j+1/2,i,k) =

    − Txx( j+1/2,i,k)
hj+1,i,k − hj,i,k

∆x
     (33a)

bqy( j,i+1/2,k) =

    − Tyy( j,i+1/2,k)
hj,i+1,k − hj,i,k

∆y

     
(33b)

qz( j,i,k+1/2) =

    − Kz

∆z




 ( j,i,k+1/2)

hj,i,k+1 − hj,i,k( ).
  
(33c)

Note that in eqs. 33a-b, a value of b is
not explicitly calculated on the face of a cell.
Instead, we calculate a value for the product bq
on the face using a mean transmissivity.
Having computed specific discharge
components at block interfaces, spatial
interpolation is used to estimate the specific
discharge and velocity at the locations of all
particles (using values of b  and ε for the
particular cell in which the particle of interest is
located).

MOC3D uses either linear or bilinear
spatial interpolation, as specified by the user.
These two alternatives are described below in
the sections on interpolation.  Depending on the
velocity interpolation method chosen, changes
in particle position are computed either
explicitly for bilinear interpolation, or semi-
analytically for linear interpolation.  The
integration of particle position in time is also
described in the sections on interpolation.
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A moving point in a ground-water flow
system will change velocity as it moves due to
both spatial variation in velocity and temporal
variations during transient flow.  During a flow
time step, advection is determined from
velocities computed at the end of the flow time
step.  Temporal changes in velocity are
accounted for by a step change in velocity at the
start of each new flow time step.  After the
flow equation is solved for a new time step,
specific discharges are recomputed on the basis
of the new head distribution, and the movement
of particles during this flow time step is based
only on these specific discharges.

Linear interpolation and semi-analytic
integration

Linear interpolation of specific
discharge is formally consistent with the block-
centered finite-difference flow solution in that
the governing flow equation is satisfied locally
within each cell (Goode, 1990a).  In this case,
each velocity component is linearly interpolated
in the direction of the component of interest.
The solute velocity at any particular point or
location within a cell, which may be retarded
with respect to the average interstitial velocity
of water, is:

Vx = Rf( )
k

εb( ) j,i,k[ ]−1
bqx( j−1/2,i,k) + δx bqx( j+1/2,i,k) − bqx( j−1/2,i,k)[ ]{ }         

(34a)

Vy = Rf( )
k

εb( ) j,i,k[ ]−1
bqy( j,i−1/2,k) + δy bqy( j,i+1/2,k) − bqy( j,i−1/2,k)[ ]{ }         

(34b)

Vz = Rf( )
k

ε( ) j,i,k[ ]−1
qz( j,i,k−1/2) + δz qz( j,i,k+1/2) − qz( j,i,k−1/2)[ ]{ }

                (34c)

where δx, δy, and δz are the spatial weights for
interpolation.  The spatial weights are given by:

δx =
xp − x j−1/2,i,k

∆x
             (35a)

δy =
yp − yj,i−1/2,k

∆y
             (35b)

δz =
zp − z j,i,k −1/2

∆z
              (35c)

where the subscript p indicates the particle
number and δx, δy, and δz can range from 0.0
to 1.0.

Vx at p is calculated from eqs. 34a and
35a.  If a layer has a uniform porosity and
thickness, and the solute were nonreactive,
then Vx at p can be calculated directly from the
following simplification of eq. 34a as:

Vx( p) = δxVx( j+1/2,i,k)

+ 1 − δx( )Vx( j−1/2,i,k).
        

(36)

The linear interpolation scheme is
illustrated for Vx in fig. 5, which shows a
particle p located in cell j,i,k.  Vx at p depends
on the relative position within the cell in the x-
direction only, and does not vary with changes
in particle position in the y- or z-directions
within the cell.

For simplicity, a dimensionless local
coordinate is used to facilitate particle tracking.
Internally to the program, the particle
coordinates are represented, for example, in the
x-direction by:

xp = j + x̂p( )∆x                  (37)

where j is the column index of the block where
a particle is located and -0.5< x̂p<0.5 is the
particle position in the x-direction relative to the
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Figure 5.  Spatial weights used in linear interpolation method to estimate Vx at location of a
particle in cell j,i,k.

node (that is, x̂p = (xp / ∆x) − j ).  The value
j+ x̂p is stored in the model and, for example,
ranges from 4.5  to 5.5 for particles within
column 5.  Thus, the spatial weights can be

represented in terms of the particle positions
relative to the node, and the velocity at the
location of a particle is estimated using linear
interpolation as:

Vx( p) = Rf( )
k

εb( ) j,i,k[ ]−1
bqx( j−1/2,i,k) + x̂p + 0.5( ) bqx( j+1/2,i,k) − bqx( j−1/2,i,k)[ ]{ }        (38a)

Vy( p) = Rf( )
k

εb( ) j,i,k[ ]−1
bqy( j,i−1/2,k) + ŷp + 0.5( ) bqy( j,i+1/2,k) − bqy( j,i−1/2,k)[ ]{ }       (38b)

Vz( p) = Rf( )
k

ε( ) j,i,k[ ]−1
qz( j,i,k −1/2) + ẑp + 0.5( ) qz( j,i,k +1/2) − qz( j,i,k −1/2)[ ]{ }.          (38c)

Assuming that the velocity is constant
in time during a time increment for solving the
transport equation, the particle position can be
integrated analytically within each cell (Goode,
1990a).  The integration of particle position is
accomplished in a multi-step procedure.  First,
the velocity components in each direction at the
starting position of the particle are computed
using eqs. 38a-c.  Then the gradient of velocity
within the cell for each direction is computed
from the last term of eqs. 38a-c and

denominator terms appropriate for the particular
direction.  For example, the velocity gradient in
the x-direction, gx, is calculated by dividing the
last term of eq. 38a by the product of the
retardation factor, porosity, saturated
thickness, and grid spacing in the x-direction,
as:

gx = ∂Vx

∂x
=

bqx( j+1/2,i,k) − bqx( j−1/2,i,k)

Rf( )
k

εb( ) j,i,k ∆x
.    (39)
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It is implicit in the linear interpolation approach
that

∂Vx

∂y
= ∂Vx

∂z
= 0.                   (40)

Given the solutions to eqs. 38a-c and
39, the time of travel to each cell boundary, in
the x-, y-, and z-directions, can be computed
analytically.  For example, the time for a
particle to reach or cross the x-boundary, ∆tx ,
is given by:

∆tx = 1
gx

ln
Vx,0 + gx xe − x0( )

Vx,0












     (41)

where Vx,0 is the x-velocity at the starting
location of the particle, x0 is the initial position
of the particle, and xe is the x-coordinate of the
exit face of the cell.  By definition, if the
starting velocity is positive, then the only
possible x-boundary for the particle to exit is
that in the positive x-direction.  If gx is zero, or
practically zero (that is, less than 10-20), then
Vx is assumed to be uniform in space and
constant during the particle motion, and the
travel time to the exit boundary can be
computed directly from:

∆tx = xe − x0

Vx,0
.                   (42)

The travel time for a particle to exit the
cell, ∆te , is the minimum of ∆tx ,  ∆ty , and
∆tz .  If the cell exit travel time ( ∆te) is greater
than the remaining time for this time increment,
then the ending particle position is within the
same cell that it started during that time
increment, and the particle coordinates at the
end of the time increment are determined from
the velocity at the initial location, the rate of
change in velocity in the direction of
movement, and the length of that time
increment.  For example, the new x-coordinate
at the end of the move would be:

x1 = x0 +
Vx,0

gx
egx∆t − 1( )           (43)

where the subscript “1” denotes the end of the
particle movement for the time increment.  If
gx, the gradient in x-velocity, is zero or
practically zero (again, less than 10-20), then
the ending coordinate is simply:

                x1 = x0 + Vx,0∆t.                  (44)

On the other hand, if the time to reach any
cell boundary is less than the remaining time
for this time increment (∆t), then the particle
exits the cell during the time increment.  In this
case, the particle exits the cell on the boundary
for the direction having the minimum travel
time ( ∆tx , ∆ty , or ∆tz).  For example, if ∆tx
is less than ∆ty , ∆tz , and ∆t, then the particle
leaves the cell by crossing the x-cell boundary
after the “cell exit travel time” ( ∆te = ∆tx ) has
elapsed.

The particle position must be evaluated
when it leaves a cell during a time increment.
By definition, the position in the direction of
the exit face is known a priori.  The other two
coordinates are computed by inserting the cell
exit travel time, ∆te , into eq. 43 instead of the
entire time increment, ∆t.  For example, for a
particle that leaves a cell on the xj+1/2 face, the
y- and z-coordinates of that particle where it
crosses the cell face are given by:

            y1 = y0 +
Vy,0

gy
e

gy∆te − 1( )         (45a)

            z1 = z0 +
Vz,0

gz
egz∆te −1( ).         (45b)

If the gradient terms in eq. 45a or eq. 45b are
zero, or essentially zero, then the y and z
equivalents of eq. 44 are used with ∆t = ∆te .

Also, if ∆te < ∆t , the time remaining in
the time increment, ∆ ′t , is the original time
increment minus the cell exit travel time:

∆ ′t = ∆t − ∆te.                   (46)

Subsequent particle movement is computed as
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outlined above, but with a reduced time interval
( ∆ ′t ) for its path in the new cell, until the entire
original time increment (∆t) is exhausted.  Note
that in some cases, such as when a particle is
located near a corner of a cell at the start of a
move, it is possible that during that particular
time increment this sequence of calculations
may have to be repeated a third time before the
move is completed for that particle.

Note that linear interpolation yields a
discontinuous velocity field (Goode, 1990a).
Equations 39 and 40 show that velocity
components vary as a function of distance only
in the direction of that particular component of
the velocity vector.  Thus, when linear
interpolation is used, specific discharge and
velocity components change abruptly at block
or cell interfaces parallel to the direction
indicated by that component, even for
homogeneous aquifers.  For example, the
component of flux in the x-direction, qx, is
continuous at cell interfaces in the x-direction
(at  j-1/2,i,k and j+1/2,i,k), but it can change
abruptly at the other four cell faces that are
perpendicular to the y and z axes, even when K
is uniform.

Bilinear interpolation and explicit
integration

In a homogeneous aquifer the velocity field
would be continuous and smoothly varying,
except at the locations of strong sources and
sinks, unlike the discontinuous velocity field
calculated using linear interpolation.  Bilinear
interpolation generates such a continuous
specific discharge field, as shown by Goode
(1990a) for a case of two-dimensional flow.
MOC3D includes an option to use bilinear
interpolation in the x-y (horizontal) plane to
determine the x- and y-velocity components,
which then will be continuous and smoothly
varying in the x-y  plane.  Because of
stratigraphic layering, many aquifer systems
are more heterogeneous in the vertical direction
than within a horizontal plane.  Hence, specific
discharge and velocity might be more often
expected to change abruptly (rather than
smoothly) in the vertical direction.  Therefore,
MOC3D always uses linear interpolation for
calculating the z-component of particle velocity.

Following Konikow and Bredehoeft (1978)
and Goode (1990a), the x- and y-velocity
components are bilinearly interpolated in the
horizontal plane by:

Vx( p) = Rf( )
k

εb( ) j,i,k[ ]−1
1 − Fy( ) bqx( j−1/2,i,k)[ + x̂p + 0.5( ) bqx( j+1/2,i,k) − bqx( j−1/2,i,k)( )]{          

+Fy bqx( j−1/2,i*,k)[ + x̂p + 0.5( ) bqx( j+1/2,i*,k) − bqx( j−1/2,i*,k)( )]}                                 (47)

and

Vy( p) = Rf( )
k

εb( ) j,i,k[ ]−1
1 − Fx( ) bqy( j,i−1/2,k)[ + ŷp + 0.5( ) bqy( j,i+1/2,k) − bqy( j,i−1/2,k)( )]          {

+Fx bqy( j*,i−1/2,k)[ + ŷp + 0.5( ) bqy( j*,i+1/2,k) − bqy( j*,i−1/2,k)( )]}                                 (48)

where the local particle coordinates ( x̂p and
ŷp) are as defined previously in eq. 37, and the
interpolation factors (Fi) and adjacent node
locators (j* and i*) are defined as:

Fy = − ŷp i* = i-1 for ŷp < 0  (49a)

Fy = 0.0 for ŷp = 0  (49b)

Fy = ŷp i* = i+1 for ŷp > 0  (49c)
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Figure 6.  Interpolation factors used in bilinear interpolation method to estimate horizontal
components of velocity, Vx and Vy, at the position of a particle located in the southeast quadrant of
cell j,i,k.

and

Fx = − x̂p j* = j-1 for x̂p < 0  (49d)

Fx = 0.0 for x̂p = 0  (49e)

Fx = x̂p j* = j+1 for x̂p > 0 .(49f)

The bilinear interpolation scheme to
estimate Vx and Vy is illustrated in fig. 6,
which shows a particle p located in cell j,i,k.
Vx and Vy at p depend on the relative position
within the cell in both the x- and y-directions.
Vx and Vy at p are calculated from eqs. 47 and
48 using the weighting factors defined in eqs.
49a-f.  Note that ( x̂p + 0.5) of eq. 47 equals δx
in fig. 6, and ( ŷp + 0.5) of eq. 48 equals δy in
fig. 6.  Note that the interpolated values of Vx
and Vy at p are determined using specific
discharge values at differing adjacent cell faces.

Also, if the cell face adjacent to the

quadrant containing a particle of interest
represents a no-flow boundary, then the
component of the flow parallel to that boundary
should not change in the area of the half-cell
between the node and that face.  Therefore, in
such a case, linear interpolation is used within
that half-cell area for that component only.  For
example, in fig. 6, if cell (j,i+1,k) were a no-
flow cell, then  Vx at p would be estimated by
linear interpolation between (j-1/2,i,k) and
(j+1/2,i,k).  Vy at p would still be estimated
using bilinear interpolation, as shown in fig. 6,
properly recognizing that V y  = 0.0 at
(j,i+1/2,k).

Bilinear interpolation yields velocity
components that depend on both the x- and y-
positions, hence the semi-analytic integration of
position used above is not applicable.  For
bilinear interpolation, particle movement is
computed explicitly using the velocity of the
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particle at its starting position and the length of
the time increment:

x1 = x0 + Vx,0∆t                  (50a)

y1 = y0 + Vy,0∆t .               (50b)

The times required for a given particle to reach
the x- and y-faces of the cell in which it is
located are computed using:

∆tx = xe − x0

Vx,0
       (51)

and

∆ty = ye − y0

Vy,0
.        (52)

For the z-direction, all factors are computed as
described previously in eqs. 34-45.

Also, following the same procedure as
implemented in the previously described linear
interpolation scheme, a particle that would
cross a cell boundary during a move interval
(or transport time increment) is temporarily
stopped at whichever cell boundary (or face) it
reaches first.  At that location the particle
velocity is updated using the porosity and
thickness of the cell that the particle is entering,
and the particle is then moved an appropriate
distance in the new cell for the remainder of the
time increment ( ∆ ′t , as calculated from eq.
46), or until it reaches another cell face.
Computation of particle movement continues
until the entire movement time interval is
exhausted.

Discussion—Choosing an appropriate
interpolation scheme

As noted by Goode (1990a), selecting the
best interpolation scheme to determine particle
velocity in a ground-water flow model depends
in part on the conceptualization of aquifer
heterogeneity.  Linear interpolation is directly
consistent with the block-centered finite-

difference solution of the flow equation.
However, linear interpolation produces a
discontinuous velocity field, even for
homogeneous media (Goode, 1990a).  In the
presence of strong heterogeneities between
adjacent cells within a layer, it would usually
be preferable to select the linear interpolation
scheme.

If transmissivity within a layer is
homogeneous or smoothly varying, bilinear
interpolation of velocity yields more realistic
pathlines for a given discretization than does
linear interpolation.  In such cases, the bilinear
interpolation scheme may be preferable because
it will yield pathlines more consistent with the
conceptualization.  For example, Goode
(1990a) shows that bilinear interpolation yields
more accurate travel times and pathlines for a
case in which the interblock hydraulic
conductivity is computed using the logarithmic
mean (Goode and Appel, 1992) corresponding
to a linear variation of hydraulic conductivity
between nodes.  Because vertical heterogeneity
is significant in typical aquifer systems, the
MOC3D code always uses linear interpolation
for velocity in the vertical direction.

In general, the choice of interpolation
scheme will only make a small difference in the
final solution.  Using a finer grid will
invariably have a larger effect and yield a more
accurate definition of the flow field, particularly
in areas where the hydraulic properties are
changing in space.

Decay

Decay is simulated by reducing the
particle concentrations after advection.  At this
point the particle concentration has not yet been
adjusted for dispersion and sources.  However,
the change in particle position accounts for
advection up to time increment t+1.  The loss
of solute mass during a given transport time
increment (∆t) because of decay processes is
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accounted for by computing the decayed
particle concentration, Cp

d :

Cp
d = Cp

t
 e−λ∆t                     (53)

where Cp
t  is the particle concentration at the

start of the move interval (and before
advection).

A major advantage of calculating the effect
of decay directly on the particles, rather than on
the nodal concentrations, is that this procedure
eliminates any possible reduction in precision
(or numerical dispersion) caused by the
framework transfer between the moving grid
and the fixed grid (that is, from particle
concentrations to average nodal concentrations
and back again to particle concentrations), as is
done in computing changes in concentration
due to dispersion.  The dispersion calculation is
then based on average concentration gradients
during a time increment, an average that is
based on the advected and decayed
concentrations at the end of the time increment
and the particle concentrations at the start of the
time increment.

As noted by Goode and Konikow (1989),
this exponential formulation has no numerical
stability restrictions associated with it.
However, if the half-life is on the order of the
transport time increment or smaller, then some
accuracy will be lost because of the explicit
decoupling of decay and other transport
processes.

When a solute subject to decay enters the
aquifer through a fluid source, it is assumed
that the fluid source contains the solute in the
concentration specified by ′C .  The governing
equation and the MOC3D model assumes that
decay only occurs within the ground-water
system, and not within the source reservoir.  In
other words, for a given stress period, the
model assumes that ′C  remains constant in

time and does not decay.  If the problem being
simulated requires that the source fluid itself
undergo decay, then the code will have to be
modified to allow this.

Node Concentrations

After all particles have been moved, the
concentration at each node is temporarily
assigned the average concentration of all
particles then located within the volume of that
cell; this average concentration is denoted as
Cj,i,k

adv .

Cj,i,k
adv =

Cp
dδ jp

t+1 = j,ip
t+1 = i,kp

t+1 = k( )
p=1

N
∑

δ jp
t+1 = j,ip

t+1 = i,kp
t+1 = k( )

p=1

N
∑

 (54)

where the δ function is 1 if the particle is within
the cell j,i,k, and is zero otherwise.  The time
index is labeled “adv” because this temporarily
assigned average concentration represents the
new time level only with respect to advective
transport and decay.  With respect to the finite-
difference grid, the effect of advective transport
is to move particles with differing
concentrations into and out of each cell.

Finite-Difference Approximations

The divergence of dispersive flux is
normalized by the retardation factor and
porosity to yield the rate of change in
concentration.  In addition, in a quasi-3D
approach, changes in saturated thickness are
incorporated for horizontal flux terms.  The rate
of change in concentration due to dispersion
and mixing in cells having a fluid source can be
written:
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dC

dt




 j,i,k

= 1

Rf( )
k

εb( ) j,i,k
t+1

∆x−1 εbD1m
∂C

∂xm





 j+1/2,i,k

*

− εbD1m
∂C

∂xm





 j−1/2,i,k

*

















+∆y−1 εbD2m
∂C

∂xm





 j,i+1/2,k

*

− εbD2m
∂C

∂xm





 j,i−1/2,k

*











+ εD3m
∂C

∂xm





 j,i,k+1/2

*

− εD3m
∂C

∂xm





 j,i,k−1/2

*











+ W j,i,k ′Cj,i,k − Cj,i,k
*( )[ ]

W >0
∑





 

   

(55)

where subscript m is a summation index for the
dispersion term.  The j,i,k subscripts in eq. 55
denote the spatial finite-difference grid
indexing, as discussed previously in the section
“Numerical Methods.”  The superscript “*”
indicates that the terms depend on the average
of the concentration at the old time level, and
the concentration at the new time level after
advection (see eq. 32).  These averaged
concentrations are used to calculate the solute
flux terms indicated by the superscript “*”.

The components of the dispersive flux in
each direction across cell faces are calculated
using finite-difference approximations that are
centered-in-space and explicit (forward-in-
time).  A detailed description of these finite-
difference approximations is given in Appendix
A.

The explicit finite-difference approach is
conceptually straightforward, but only
applicable for certain conditions.  Reddell and
Sunada (1970, p. 62) show that for an explicit
finite-difference solution of eq. 31 to be stable,
the following constraint must be met:

Dxx∆t

∆x( )2 +
Dyy∆t

∆y( )2 + Dzz∆t

∆z( )2 ≤ 1
2

.      (56)

Inspection of eq. 56 shows that the constraint
will be most readily met for relatively small
values of the dispersion coefficient (that is, for
advection-dominated problems).  Note that
stability does not necessarily assure accuracy.
If the constraint is not met for a given set of
physical parameters, then either the grid

spacing must be increased (with a consequent
loss of accuracy) or the time increments must
be decreased until the condition is satisfied.

Note that the dispersive fluxes calculated by
solving the eqs. A1-A3 include contributions
related to the cross-product terms of the
dispersion tensor.  However, the constraint
expressed in eq. 56 only includes the principal
components of the dispersion tensor.  In
circumstances where the cross-product terms
are relatively large, this can lead to a calculation
of a negative concentration at a node if the
calculated solute flux out of a cell during a time
increment is greater than the solute mass in that
cell at the end of the previous time increment.
Considering eqs. 22a and 22d, for example,
we can see that the cross-product terms (such
as Dxy  and Dyx ) would be large relative to a
principal diagonal coefficient (such as Dxx )
when both Vx and Vy are significant and αL  is
significantly greater than αT .  For a given
velocity and fixed dispersivities, the cross-
product terms are maximized when Vx = Vy
and flow is at 45 degrees to the grid.  Negative
concentrations are more likely to occur using
this formulation in the presence of steep
concentration gradients.

Consider the solute mass flux due to
dispersion across one face of a cell, say in the
x-direction across the cell face at (j+1/2,i,k).
The change in solute mass, Mf(j+1/2,i,k), is
equal to the rate of dispersive flux, expressed
in eq. A1, multiplied by the length of the time
increment and by the width of the cell:
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M f ( j+1/2,i,k) =  − ∆t∆yεb Dxx( )
j+1/2,i,k

t+1 Cj+1,i,k
* − Cj,i,k

*( )
∆x







 + Dxy( )
j+1/2,i,k

t+1 Cj,i+1,k
* + Cj+1,i+1,k

* − Cj,i−1,k
* − Cj+1,i−1,k

*( )
4∆y

 + Dxz( )
j+1/2,i,k

t+1 1
2

Cj+1,i,k+1
* − Cj+1,i,k−1

*

2Bj+1,i,k
t+1 +
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2Bj,i,k
t+1







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




.                  (57)

This mass can be compared with the solute
mass in the cell at the start of the time
increment, Mj,i,k

t , which is given by:

Mj,i,k
t = ∆x∆yεbCj,i,k

t .           (58)

The criterion in eq. 56 is equivalent to
requiring that the sum of the solute mass fluxes
across all faces of a cell must be less than or
equal to Mj,i,k

t .  However, because the
criterion does not include the dispersive flux
related to the cross-product terms, it can lead to
oscillations in the solution that yield negative
concentrations, although it would rarely lead to
a strict stability problem.  Experience shows
that when oscillations do occur because of the
cross-product terms, they are usually small and
tend to damp out over time.

An ad hoc procedure was formulated and
implemented in MOC3D to help minimize and
limit the occurrence of negative concentrations
due to the cross-product dispersive flux.  The
approach is to limit the mass flux during one
time increment across each cell face, as
calculated by eq. 57, to the mass available in
the cell, as calculated by eq. 58.  The flux
across each cell face is checked independently,
so this constraint will not completely eliminate
negative concentrations, but our experience
indicates that it will often reduce their
occurrence significantly.  Because the same
check will be applied from both sides of a
given face, if the constraint is applied, it will be
applied equally from both adjacent nodes, so
the procedure will not affect the global mass

balance.  That is, the solute mass flux into one
cell always corresponds to the mass flux out of
the adjacent cell, whether or not this limiting
procedure is implemented for that particular cell
face.

Stability and Accuracy Criteria

As noted by Konikow and Bredehoeft
(1978), the explicit numerical solution of the
solute-transport equation has a number of
stability criteria associated with it.  These may
require that the time step used to solve the flow
equation be subdivided into a number of
smaller time increments to accurately solve the
solute-transport equation.

First, consider the explicit finite-difference
solution to calculate changes in concentration
due to dispersion.  Solving eq. 56 for ∆t, and
accounting for the effects of retardation, we see
that

∆t ≤ Min
(over 
 grid)

 

0.5
Dxx

Rf ∆x( )2
+

Dyy

Rf ∆y




2 + Dzz

Rf ∆z( )2



















.
  
(59)

Because the solution to eq. 31 is actually
written as a set of N equations for N nodes, the
maximum permissible time increment is the
smallest ∆t computed for any individual node
in the entire transport grid.  The smallest ∆t
will then occur at the node having the largest
value of
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Dxx

Rf ∆x( )2 +
Dyy

Rf ∆y( )2 + Dzz

Rf ∆z( )2 .

Next consider the effects of mixing ground
water of one concentration with injected or
recharged water of a different concentration, as
represented by the source terms in eq. 31.  The
change in concentration in a source node cannot
exceed the difference between the source
concentration ( ′Cj,i,k ) and the concentration in
the aquifer ( Cj,i,k ), and the maximum possible
change occurs when a source completely
flushes out the volume of water in an aquifer
cell at the start of a time increment.  Konikow
and Bredehoeft (1978) show that this condition
translates to

∆t W j,i,k

ε Rf
≤ 1.0.                    (60)

Solving eq. 60 for ∆t at all nodes yields the
following criterion:

∆t ≤ Min
over grid( )

 
 ε  Rf

W j,i,k












.            (61)

A third type of criterion involves the
movement of points to simulate advective
transport.  The distance a particle moves during
a time increment is equal to (or approximately
so in cases where particles cross a cell face and
the adjacent cells have different properties) the
velocity at the location of the particle times the
length of the time increment.  In effect, this
constitutes a linear spatial extrapolation of the
position of a particle from one time increment
to the next.  Konikow and Bredehoeft (1978)
note that where streamlines are curvilinear, the
extrapolated position of a particle will deviate
from the streamline on which it was previously
located.  This deviation introduces an error into
the numerical solution that is proportional to
∆t.  An accurate computation of concentration
changes caused by advective transport requires
the maintenance of a relatively uniformly
spaced field of marker particles that are moving
along relatively smooth and continuous

pathlines.  The degree of curvilinearity of
streamlines in the calculated head field is
constrained by the grid spacing, as the finite-
difference solution to the flow equation
inherently assumes linear variations in head
between adjacent nodes.  Also, if the distance a
particle moves in any direction during one time
increment is greater than the grid spacing in that
direction, it might be possible for a particle to
cross a no-flow boundary (or even leave the
model domain) during one time increment.
Thus, for a given velocity field and grid, some
restriction must be placed on the size of the
time increment to assure that the distance a
particle moves in the x-, y-, or z-directions
during one time increment does not exceed
some critical distances, which can be related to
the grid spacing in each direction.

These critical distances can be related to the
grid dimensions by

∆t  Vx( p) ≤ γ∆x        (62a)

∆t  Vy( p) ≤ γ∆y        (62b)

and

∆t  Vz( p) ≤ γ∆z        (62c)

where γ is the fraction of the grid dimensions
that particles will be allowed to move (nor-
mally, 0 < γ ≤ 1).  Note that these accuracy
criteria are equivalent to requiring that the
Courant number be less than or equal to 1.
However, the model is designed to allow the
user to specify the value of γ (named CELDIS
in the code and input instructions).

Because these criteria are governed by the
maximum velocities in the system, and since
the computed velocity of a tracer particle will
always be less than or equal to the maximum
velocity components computed at cell
boundaries, we have to check only the latter.
Substituting grid velocity components and
solving eq. 62 for ∆t results in
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∆t ≤ γ∆x

Vx( )max

    (63a)

∆t ≤ γ∆y

Vy( )
max

    (63b)

and

∆t ≤ γ∆z

Vz( )max

.     (63c)

If the time step used to solve the flow
equation exceeds the smallest of the time limits
determined by eqs. 59, 61, or 63, then the time
step will be subdivided into an appropriate
number of equal-sized smaller time increments
to solve the solute-transport equation so that
none of these limits are exceeded.  To help the
user analyze the results and the grid design, the
model output will include a statement clarifying
which of the several criteria were limiting and
at which node the limiting condition occurred.

Mass Balance

Mass balance calculations are performed to
help check the numerical accuracy and
precision of the solution.  The principle of
conservation of mass requires that the net mass
flux (cumulative sum of mass inflows and
outflows plus any mass lost or removed by
reactions) must equal the mass accumulation
(or change in mass stored).  The difference
between the net flux and the mass accumulation
is the mass residual (Rm) and is one measure of
the numerical accuracy of the solution.
Although a small residual does not prove that
the numerical solution is accurate, a large error
in the mass balance is undesirable and may
indicate the presence of a significant error in the
numerical solution (Konikow and Bredehoeft,
1978).

As part of the mass balance calculations,
the solute fluxes contributed by each distinct
hydrologic component of the flow and

transport model are accumulated and itemized
separately to produce a solute budget for the
system being modeled.  The budget is a
valuable assessment tool because it provides a
measure of the relative importance of each
component to the total solute budget.  The
budgets should always be reviewed for
consistency with the conceptual model and as a
“reality check” on the model calculations.

In the method of characteristics, the
accuracy of the solution is associated with the
concentrations being tracked on the particles.
However, it is computationally difficult to
compute a mass stored in the system directly
from the particle concentrations because their
relative positions are constantly changing and
they do not explicitly track a solute or fluid
mass.  Therefore, the mass in storage at any
time is calculated from the concentrations at the
nodes of the transport subgrid of the finite-
difference mesh.  In that sense, the calculated
and printed mass balance values are themselves
only an approximation.

The mass residual is computed as

Rm = ∆Ms − M f         (64)

where ∆Ms  is the change in mass stored in the
aquifer, and M f  is the net mass flux.

The above two mass balance terms are
evaluated using the following equations:

∆Ms = ∑
k

∑
i

∑
j

∆x∆y εbC( ) j ,i,k
n − εbC( ) j ,i,k

0( )  (65)

where Cj ,i,k
0  is the initial concentration at node

(j,i,k), M/L3, and Cj ,i,k
n  is the concentration at

that node at the end of the time increment; and

M f = ∑
k

∑
i

∑
j

∑
n

W j ,i,k
n b∆x∆y∆tn ′Cj ,i,k ,n .    (66)

For cases where W in eq. 66 represents a fluid
source, ′C  is the specified source concentration
for that node.  Where W  represents a fluid
sink, ′C  is assumed to equal the average
concentration in cell (j,i,k) at the beginning of
that time increment (or move interval) for
solving the transport equation.
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The percent error (E) in the mass balance is
calculated by relating the residual to an
appropriate measure of the solute flux or mass
accumulation in the system.  However, the
appropriate basis (or denominator) is problem
dependent.  Thus, the model compares the
residual with the cumulative mass inflow to the
system (Mi) or mass outflow from the system
(Mo), whichever is dominant in a particular
problem.  However, if the solute mass entering
or discharging the system with fluid sources
and sinks is zero or very small, as it would be,
for example, in a problem simulating the
movement of an initial slug within the system,
then comparing the residual to the mass flux in
or out of the system could indicate a very large
error when the numerical solution is actually
quite accurate.  Therefore, in these cases, the
error will be computed by comparing the
residual with the mass of solute stored in the
aquifer, as described by Konikow and
Bredehoeft (1978).  The model will calculate,
print, and label whichever of the following
three measures of error are appropriate for the
problem being simulated.

E1 = 100.0Rm

Mi
                  (67a)

E2 = 100.0Rm

Mo
                 (67b)

E3 = 100.0Rm

Ms
.                (67c)

E3 is calculated only if the mass flux in or out
of the system is less than 50 percent of the
initial mass stored.

Errors in the mass balance for the flow
model should generally be less than 0.1
percent.  However, because the solute-
transport equation is more difficult to solve
numerically than is the flow equation, the
mass-balance error for a solute is often greater
than for the fluid.  Also, because the particles
that represent advection in the method of

characteristics are discrete in nature and
because the concentrations tracked on particles
are translated to the finite-difference nodes for
the purpose of computing the mass balance, the
mass balance error will typically exhibit an
oscillatory behavior over time.  However, this
is not a cumulative type of error; it is usually
largest for the first few time increments and
then tends to balance out over time.  As long as
the oscillations remain within a steady range,
not exceeding about ±10 percent as a guide,
then the error probably does not represent a
bias and is not a serious problem.  Rather, the
oscillations only reflect the fact the mass
balance calculation is itself just an
approximation.  Thus, it is recommended that
users examine the solute budget and residuals
for their particular problem.  The significance
of the residual and rates of change in the
residual should be assessed qualitatively
relative to the nature of a particular problem,
and not merely on the basis of the magnitude of
the error at any one time increment.

Special Problems

As noted by Konikow and Bredehoeft
(1978), a number of special problems are
associated with the use of the method of
characteristics to solve the solute-transport
equation.  Some of these problems are
associated with the movement and tracking of
particles, whereas other problems are related to
the computational transition between the
concentrations of particles within a cell and the
average concentration at that node.  This
section describes the more significant problems
and the procedures used to minimize errors that
might result from them.

One possible problem is related to no-flow
boundaries.  Neither water nor solutes can be
allowed to cross a no-flow boundary.
However, under certain conditions it might be
possible for the interpolated velocity at the
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location of a particle near a no-flow boundary
to be such that the particle will be advected
across the boundary during one time increment.
Figure 7 illustrates such a situation, which
arises from the deviation between the curvi-
linear flow line and the linearly projected
particle path.  Figure 7 also shows the
correction scheme built into the M O C 3 D
model.  If a particle is advected across a no-
flow boundary, then it is relocated within the
aquifer by reflection across the boundary.  This
correction thus will tend to relocate the particle
closer to the true flow line.  However,
extensive testing indicates that it is unlikely that
a particle will ever cross a no-flow boundary
unless CELDIS > 1, which is not recom-
mended.

The maintenance of a reasonably uniform
and continuous spacing of particles requires
special treatment in areas where strong fluid
sources and sinks dominate the flow field.
Strong fluid sources and sinks cause significant
convergence and divergence in the flow field,
which will degrade the desired uniform spacing
of particles.  Without special provisions,
particles will continually move out of a cell that
represents a strong fluid source, but few or
none will move in to replace them and thereby
maintain a continuous stream of particles.
Thus, whenever a particle that originated in a
strong fluid-source cell moves out of that
source cell, a new particle is introduced into the
source cell to replace it.  Placement of new
particles in a source cell is compatible with and
analogous to the generation of fluid and solute
mass at the source.  On the other hand, if a
fluid source or sink is very weak, it will not
induce significant divergence or convergence in
the flow field and have any noticeable effect on
particle spacing.  For cells representing weak
fluid sources or sinks, particles need not be
added or removed.  The model user must
specify explicitly whether fluid sources and
sink are to be flagged as either weak or strong,
so that particle tracking is implemented
appropriately.  Source/sink cells are identified

x
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      EXPLANATION
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∆

∆

Flow line and direction of flow

Computed path of particle

Node of finite-difference cell

Previous location of particle

Computed new location of particle

Corrected new location of particle

Zero-transmissivity cell (or
no-flow boundary)

Figure 7.  Possible movement of a particle near
an impermeable (no-flow) boundary (modified
from Konikow and Bredehoeft, 1978).

as either strong or weak for purposes of
particle control by the user-specified value of
the IGENPT array (see Appendix B).

The procedure used to replace particles in
source cells is illustrated in figure 8.  A steady,
uniformly spaced stream of particles is
maintained by generating a new particle in the
source cell at the original location of the particle
that left the source cell.  When a relatively
strong fluid source is imposed on a relatively
weak regional flow field, as illustrated in figure
8a, then radially divergent flow will be
maintained in the area of the source, and all
initial and replacement points will move
symmetrically away from node j,i,k.  For
example, after particle 7 moves from cell (j,i,k)
at the start of a time increment to cell
(j+1,i-1,k) at the end of that time increment, the
replacement particle (particle 18 in fig. 8a) is
positioned at time n in cell (j,i,k) at the same
location as the initial position of particle 7.
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Figure 8.  Replacement of particles in fluid-source cells (a) for case of negligible regional flow
and (b) for case of relatively strong regional flow.

Although we normally expect particles to be
advected out of fluid-source cells, figure 8b
demonstrates the possibility that particles may
sometimes enter a source cell.  When a
relatively weak fluid source is imposed on a
relatively strong regional flow field, the
velocity distribution within the source cell does

not possess radial symmetry, and the velocity
within the upgradient part of the source cell is
lower than the velocity within the downgradient
part of the source cell.  It is possible then that
particles originating in upgradient cells (such as
particle 2) will migrate through the designated
source cell.  This can also occur when two or
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more source cells of different strengths are
adjacent to each other.  Particles that leave a
source cell, but did not originate in it, are not
replaced because that would ultimately lead to
mass balance errors in downgradient areas as
proportionally too many particles will exist in
downgradient areas relative to the volume of
water being added at the source cell.  Some
particles that originated in a strong source cell
may take more than one time increment to leave
that cell (for example, particles 6 and 7 in fig.
8b).  Although not illustrated in fig. 8, when
these lower-velocity particles do leave the
source cell at time n+1, the replacement
particles will be placed at the original positions
of the particles (which was at time n-1) rather
than at their positions immediately prior to
leaving (which was at time n).

Hydraulic sinks also require some special
treatment.  Particles will continually move into
a cell representing a strong sink, but few or
none will move out.  To avoid the resultant
accumulation and stagnation of tracer particles,
any particle moving into a strong-sink cell is
removed from the flow field after the
calculations for that time increment have been
completed.  The numerical removal of particles
that enter sink cells is analogous to the
withdrawal of fluid and solute mass through
the hydraulic sink.  If the relative magnitude of
discharge from a sink cell is not strong enough
to maintain radially convergent flow, and a
particle exits from the sink cell, then a
replacement particle will be placed at the center
of the cell.  The combination of creating new
particles at sources and destroying old particles
at sinks will tend to maintain the total number
of points in the flow field at a nearly constant
value.

Both the flow model and the transport
model assume that sources and sinks act
uniformly over the entire area or volume of the
cell surrounding a source or sink node.  Thus,
in effect, heads and concentrations computed at
source or sink nodes represent average values

over the area or volume of the cell.  Part of the
total concentration change computed at a source
node represents mixing between the source
water at one concentration and the ground
water at a different concentration (eq. 17).  It
can be shown from the relation between the
source concentration ( ′Cj,i,k ) and the aquifer
concentration at the start of a time increment
( Cj,i,k

n−1 ), that the following constraints generally
must be met in a source cell:

Cj,i,k
n ≤ ′Cj,i,k   for   ′Cj,i,k > Cj,i,k

n−1     (68a)

and

Cj,i,k
n ≥ ′Cj,i,k   for   ′Cj,i,k < Cj,i,k

n−1 .   (68b)

If it is assumed that there is complete
mixing between the source fluid and the
resident fluid within the volume of a strong
source cell, then these same constraints should
also apply to all points within the cell.  Because
of the possible deviation of the concentrations
of individual particles within a source cell from
the average concentration, the change in
concentration computed at a source node
should not be applied directly to each of the
particles in the cell.  Rather, at the end of each
time increment for solving the transport
equation the concentration of each particle in a
strong source cell is updated by setting it equal
to the final nodal concentration.  Although this
may introduce a small amount of numerical
dispersion by eliminating possible concentra-
tion variations among particles within the
volume of the cell, it prevents the adjustment of
the concentration for any individual particle in
the source cell to a value that would violate the
constraints indicated by equation 66.

In areas of divergent flow, a problem may
arise because some cells can become void of
particles where pathlines become spaced widely
apart.  This can occur, even in the absence of a
strong fluid source, because of heterogeneities
or boundary conditions.  This would result in a
calculation of no change in concentration at a
node due to advective transport, although the
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nodal concentration would still be adjusted for
changes caused by hydrodynamic dispersion.
Also, some numerical dispersion is generated at
nodes in and adjacent to the cells in which the
advective transport of solute was
underestimated because of the resulting error in
the concentration gradient.  This might not
cause a serious problem if only a few cells in a
large grid became void or if the voiding were
transitory (that is, if upgradient points were
advected into void cells during later or
subsequent time increments).  Figure 8a
illustrates radial flow, which represents the
most severe case of divergent flow.  Here it can
be seen that when four points per cell are used
to simulate advective transport, then in the
numerical procedure four of the eight
surrounding cells would erroneously not
receive any solute by advection from the
adjacent source.  If eight uniformly spaced
particles per cell were used initially, then at a
distance of two rows or columns from the
source only 8 of 16 cells would be on pathlines
originating in the source cell.  So while
increasing the initial number of points per cell
would help, it is obvious that for purely radial
flow, an impractically large initial number of
points per cell would be required to be certain
that at least one particle pathline passes from
the source through every cell in the grid.
Because the MOC3D  model is based on a
rectangular Cartesian coordinate system, it is
not recommended for applications to a purely
radial flow problem.  However, if radial flow
is localized within a predominantly nonradial
regional flow field, then satisfactory results
should be achievable.

The problem of cells becoming void of
particles can be minimized by limiting the
number of void cells to a small fraction of the
total number of active cells that represent the
aquifer.  The user specifies this fraction
(FZERO) in the MOC3D input data file (see
Appendix B).  If the limit is exceeded, the
numerical solution to the solute-transport
equation is halted temporarily at the end of that

time increment and the “final” concentrations at
that time are saved.  Next the problem is
reinitialized at the time of termination by
regenerating the initial particle distribution
throughout the grid and assigning the “final”
concentration at the time of termination as new
“initial” concentrations for nodes and particles.
The solution to the solute-transport equation is
then simply continued in time from this new set
of “initial” conditions until the total simulation
period has elapsed.  This procedure preserves
the mass balance within each cell but also
introduces a small amount of numerical
dispersion by eliminating variations in
concentration within individual cells.

Review of MOC3D Assumptions and
Integration with MODFLOW

Following is a brief summary of model
application assumptions that have been
incorporated into the MOC3D model.  These
are relevant to both grid design and model
implementation.  Efficient and accurate use of
MOC3D requires the user to be aware of all of
these assumptions and options.

• MOC3D is integrated with MODFLOW-
96 (Harbaugh and McDonald, 1996a) and will
not work with earlier versions.  The main
MODFLOW subroutine is replaced with the
MOC3D main subroutine.  In addition, several
MOC3D-specific source code files must be
compiled and linked to the MODFLOW code.

• Particle velocities are interpolated
spatially, but not over time.  That is, we
assume that the head distribution calculated for
the end of a given time step applies during that
entire time interval.

• The transport model is applied to a
“window” of the grid used to solve the flow
equation.  This subgrid can be equal in size or
smaller than the primary MODFLOW grid.

• Within the area of the transport subgrid,
row and column discretization must be
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Figure 9.  One layer of finite-difference grid
illustrating use of uniformly-spaced transport
subgrid for MOC3D within variably-spaced
primary grid for MODFLOW.

uniformly spaced (that is, ∆x and ∆y must be
constant, although they need not be equal to
each other).  The spatial discretization or rows
and columns beyond the boundaries of the
subgrid can be nonuniform, as allowed by
MODFLOW, to permit calculations of head
over a much larger area than the area of interest
for transport simulation (see fig. 9).  Vertical
discretization, defined by the cell thickness, can
be variable in all three dimensions.  However,
large variability may adversely affect numerical
accuracy (as discussed in second item below).

• Retardation factor values and all
dispersivity values are constant in each layer.
Values for porosity may vary within a layer and
are defined for each node (also see discussion
in next item).

• The particle-tracking algorithm inherently
assumes that all particles represent the
concentration in an equal volume of water in a
cell, where the volume equals (εb∆x∆y)j,i,k.
Thus, although ∆x and ∆y are uniform, it is
also very important that the variations in the
product of porosity and thickness within the
transport subgrid remain relatively small.

Otherwise, when a particle moves into a cell
having a very different volume from the cell in
which it originated, the estimate of the average
concentration in the new cell may become
biased, which will also have an adverse effect
on the overall mass balance for the solute.

• MODFLOW offers flexibility to the user
in the conceptualization of vertical discretization
(see McDonald and Harbaugh, 1988, Ch. 2).
As illustrated in fig. 10a, it is common in
applications of MODFLOW to represent the
resistance to flow in a low hydraulic
conductivity unit by lumping the vertical
hydraulic conductivity and thickness of the
confining unit into the vertical conductance
term between the adjacent layers (fig. 10c).
However, because transport simulation
requires that travel distances be known
explicitly in all directions, three-dimensional
transport simulation requires fully three-
dimensional flow simulation (rather than a
quasi-three-dimensional analysis) within the
area of the transport subgrid.  That is, even if
the solution to the flow equation is insensitive
to heads and storage releases in the clay layer,
it must still be represented by one or more
model layers for the solution to the transport
equation (fig. 10b).  If not, it can be seen in the
quasi-three-dimensional analysis (fig. 10c) that
any solute crossing the lower boundary of layer
1 would immediately be located in and
influenced by the properties of layer 2, and
would never have been subject to the relatively
long travel time through the clay.

• In MODFLOW, layers may be defined as
representing confined or unconfined
conditions, or allowed to switch between these
two types, depending on the specification of
the value of the parameter LAYCON.  If
LAYCON>0, then the user also must specify
information about the elevations of the top and
bottom of the layer.  For layers having
LAYCON=0 or LAYCON=2, MODFLOW
assumes that transmissivity and saturated
thickness remains constant; hence, the
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Layer 2Layer 3

The clay layer is represented by vertical
 conductance terms between layers 1 and 2

(c)(b)

SAND

SAND

CLAY

QUASI-THREE-DIMENSIONAL
MODEL

THREE-DIMENSIONAL
MODEL

SYSTEM

(a)

Figure 10.  Alternative MODFLOW approaches to vertical discretization of an aquifer system (a)
consisting of two high-permeability units separated by a confining layer consisting of a low-
permeability clay.  In the fully three-dimensional representation (b), the clay unit would be
represented by one or more model layers.  In the quasi-three-dimensional approach (c), heads are
not calculated in the clay unit, which is represented more simply by vertical conductance terms
between the layers above and below it; in this case, the bottom of layer 1 coincides with the top of
layer 2.  (Modified from figs. 10-12 of McDonald and Harbaugh, 1988.)

thickness values read from the MOC3D input
files are used.  However, for layers having
LAYCON=1 or LAYCON=3, MODFLOW
allows the transmissivity to change as a
function of changes in saturated thickness in
each cell on the basis of elevation data that are
input for the MODFLOW BCF package.  In
these cases, thickness for a cell is defined as
“TOP” minus “BOT” if the layer is confined
and “HEAD” minus “BOT” if it is unconfined;
the thickness values specified in the MOC3D
input file are ignored in the calculations.
However, note that thickness values must still
be specified in the MOC3D input file in all
cases.

• Concentrations associated with fluid
sources are read directly from MODFLOW

source/sink package files.  In each of the
package fi les used,  the options
“CBCALLOCATE” and “AUXILIARY
CONC” must be included on the first line of
input data.  See MODFLOW and MOC3D input
instructions.

• If the evapotranspiration package (EVT) is
implemented, MODFLOW will calculate a fluid
discharge (or sink) rate that is typically
associated with an evapotranspirative process
that removes water but excludes dissolved
solids, which are retained in the remaining fluid
at a consequently higher concentration.
MOC3D assumes that for any such calculated
flux, the associated source concentration ( ′C  in
eq. 17) will equal 0 rather than equaling the
concentration at the node, as is assumed
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normally for a fluid sink.  This will induce an
appropriate increase in concentration at a cell
representing a fluid sink due to
evapotranspiration.  Note that this MOC3D
assumption should be viewed as a first-order
approximation because in actuality (1) the
evapotranspirative process may not be 100
percent effective in excluding solutes,
depending on the particular chemical species,
and (2) calculated solute concentrations may
exceed the upper limits of solubility for a
particular chemical constituent (and MOC3D
does not simulate mineral precipitation).

• When the solute of interest is subject to
decay, it is assumed that the solute in liquid and
solid phases will decay at the same rate.  If a
fluid source contains the decaying solute, it is
subject to decay after it enters the ground-water
system, but is not decayed within its “source
reservoir.”

• All unit numbers specified in the name
files for a particular simulation must be unique.
Unit numbers 99, 98, and 97 are reserved for
the MODFLOW name file, the batch mode
input file, and the batch mode output file, so
cannot be specified for any other use.
However, unit numbers may be reused in
separate simulation runs in batch mode.

• The model includes output options to
create separate binary data files (Ftypes CNCB,
VELB, and PRTB); when implemented, the
model will write calculated values from the
simulation for the selected variables as
unformatted data.  The concentration and
velocity files (CNCB and VELB) use the
MODFLOW module ULASAV to write the data
(see MODFLOW documentation).  When the
velocity option VELB is implemented, the code
will first write the velocities in the column
direction at all nodes, then all velocities in the
row direction, and finally all of the velocities in
the layer direction.  The velocity and concen-
tration arrays are dimensioned to the size of the
transport subgrid only.  When particle data are
written to a separate binary file (PRTB), the file

begins with a header line that includes the move
number, number of particles, and length of the
transport time increment.  A record for each
particle in sequence follows the header line and
contains the location and concentration of each
particle in the following order: column
coordinate, row coordinate, layer coordinate,
and particle concentration.

COMPUTER PROGRAM

MOC3D is implemented as a package for
MODFLOW.  MOC3D uses the flow compo-
nents calculated by MODFLOW to compute
velocities across each cell face in the transport
domain.  The computed velocities are used in
an interpolation scheme to move each particle
an appropriate distance and direction to
represent advection.  The effects of fluid
sources, dispersion, and decay on concen-
tration are then applied to the particles.

A separate executable version of
MODFLOW, which is adapted to link with and
use the M O C 3 D  module, must first be
generated and then used to run M O C 3 D
simulations.  The MOC3D code is written in
standard FORTRAN, and it has been
successfully compiled and executed on multiple
platforms, including 486- and Pentium-based
personal computers, Macintosh personal
computers, and Data General and Silicon
Graphics Unix workstations.  FORTRAN
compilers for each of these platforms vary in
their characteristics and may require the use of
certain options to successfully compile
MOC3D.  For instance, the compiler should
initialize all variables to zero.  Depending on
the size of the X-array (defined by LENX in
the MODFLOW  source code), options to
enable the compiler to handle a large array may
be needed.

Implementing MOC3D requires the use of a
separate “name” file similar to the one used in
MODFLOW.  The principal MOC3D input data
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PERLEN1 PERLEN2 PERLEN3

time

ttotalt0

FLOW:

TRANSPORT:

(Elapsed time,
        flow)
    TOTIM

(Elapsed time,
    transport)
   SUMTCH

∆t1

∆tm=(∆tm-1*TSMULT)

TIME STEP
FOR FLOW (DELT)

TIME INCREMENT
FOR TRANSPORT (TIMV)IMOV=1

NMOV=3

1    3      5           8                12

↔

m=4

2    4    6   7   9  10  11 13  14 15  16

Figure 11.  Double time-line illustrating the sequence of progression in the MOC3D model for solving
the flow and transport equations.  This example is for transient flow and three stress periods (NPER =
3) of durations PERLEN1, PERLEN2, and PERLEN3.  Each time step for solving the flow equation (of
duration DELT) is divided into one or more time increments (of duration TIMV) for solving the transport
equation; all particles are moved once during each transport time increment.  For illustration purposes,
the sequence of solving the two equations is labeled for the first five time steps of the first stress
period, and the indices for counting time steps for flow and time increments for transport are labeled
for the fourth time step.

(such as subgrid dimensions, hydraulic
properties, and particle information) are read
from the main MOC3D data file.  Other files are
used for observation wells, concentrations in
recharge, and several input and output options.
Detailed input data requirements and
instructions are presented in Appendix B.
Also, a sample input data set for a test problem
is included in Appendix C.

MOC3D output is routed to a main listing
file, separate from the MODFLOW listing file.
There are also several options for writing
specific data to separate output files, which will
facilitate graphical postprocessing.  Appendix
D contains output from the sample data set
described in Appendix C.

General Program Features

Because the model assumes that changes in
concentration do not affect the fluid properties
(such as density and viscosity), the head

distribution and flow field are independent of
the solution to the solute-transport equation.
Therefore, the flow and transport equations can
be solved sequentially, rather than simultane-
ously.  But because transport depends on fluid
velocity, which is calculated from the solution
to the flow equation, the sequence order must
be to solve the flow equation first.  This
sequence is illustrated in figure 11 for a
hypothetical problem involving transient flow
and three stress periods.  The numbered
sequence from 1 through 16, which starts at the
left edge of the double time line, illustrates the
order of solving equations as the simulation
progresses through the first five time steps of
the first stress period in this hypothetical
example.  This figure also helps to illustrate the
nomenclature used for time parameters in
MODFLOW  and MOC3D , as well as the
relation between them.

The implicit solution to the flow equation in
MODFLOW generally allows the use of time
steps of increasing length during a given stress
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period.  The length of the first time step for
solving the flow equation is calculated by
MODFLOW  on the basis of user-defined
values for the number of time steps (NSTP), a
time-step multiplier (TSMULT), and the length
of the stress period (PERLEN).  After the flow
equation is solved for the first time step (∆t1),
the model compares the length of the time step
for the flow equation with the limitations
imposed by the stability and accuracy criteria
for solving the transport equation.  If any
criteria are exceeded, MOC3D will subdivide
the time step into the fewest number of equal-
sized time increments that meet all of the
criteria.  In the example shown in figure 11, the
first two time steps are small enough so that the
transport equation can be solved for a single
time increment of the same duration as the flow
time step (that is, TIMV = DELT).  As this
equation-solving sequence progresses and is
repeated for increasingly long time steps, the
stability criteria are eventually exceeded.
Figure 11 shows that for the third and
subsequent time steps, the transport equation
had to be solved over shorter time increments.
Note that because time increments for transport
are the same length (TIMV) during any given
time step for flow, the length of the transport
time increments will generally be slightly
different between any two different flow time
steps.  For example, the length of the three
transport time increments during the fourth
flow time step (m = 4) are slightly different
than the lengths of the four time increments
during flow time step 5.  At any point during
the progress of the simulation, the elapsed time
for transport is always less than or equal to the
elapsed time for flow.

Transport may be simulated within a
subgrid, which is a “window” within the
primary MODFLOW grid used to simulate flow
(see fig. 9).  The grid dimensions are limited
only by the size of the “X” array (see “Space
Allocation” in the MODFLOW documentation).
Within the subgrid, the row and column

spacing must be uniform, but thickness can
vary within a small range from cell to cell and
layer to layer.

Many MOC3D  subroutines are linked
closely with MODFLOW counterparts.  When
possible, M O C 3 D  follows M O D F L O W
subroutine structure.  In general, data are
defined, space is allocated in the “X” array, and
simulation parameters are read just as in
MODFLOW .  The overall structure of the
M O C 3 D  code and its integration with
MODFLOW are illustrated in figure 12, which
shows a flow chart for the main program
(excluding details of the transport calculations).

A more detailed flow chart of the program
segments controlling transport calculations is
shown in figure 13.  The fluxes that
MODFLOW calculates within the transport
subgrid are processed by MOC3D subroutines
to generate a transient solution to the solute-
transport equation.

Program Segments

MOC3D  input and output utilizes the
standard MODFLOW array reading and writing
utilities as much as possible.  MOC3D also
takes advantage of new features in
MODFLOW, such as the option for auxiliary
parameters in the source and sink packages and
storing budget flows from each of those
packages, as documented by Harbaugh and
McDonald (1996a and 1996b).  However,
many subroutines in MOC3D do not fit into a
MODFLOW module class.  For those model
users who are interested in more details about
the internal structure and organization of the
code, Tables 1-10 list and describe briefly each
of the subroutines in MOC3D  that are used for
ten different categories of functions.

Tables 1 and 2 include subroutines that
initialize and set up the transport simulation.
M O C 3 D  data are read and checked for
consistency with each other and with several
MODFLOW parameters.  Seepage velocities
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Figure 12.  Generalized flow chart for MOC3D.

are calculated on the basis of hydraulic
gradients determined by the MODFLOW
solution to the flow equation.  The VELO
subroutine (Table 3) is called up to three times
after each solution to the flow equation is

obtained—once for each dimension of the
simulation.

Table 4 includes subroutines controlling
particle tracking, concentration calculations,
and related output.  The SMOC5GP subroutine
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Figure 13.  Simplified flow chart for the transport
loop, which is shown as a single element in fig.
12.

generates the initial coordinates for each tracer
particle in the transport subgrid.  Default
particle placement patterns include several
configurations for simulations in one, two, or
three dimensions.  Each of the configurations
distributes the particles uniformly in space with
respect to dimension.  Figures 14 through 16
illustrate the distribution of particles with each
of the default number of particles per node.
Note that in some cases, it may be necessary to
customize the initial positions of the particles

(see the Two Dimensional Radial Flow and
Dispersion test case in the Model Testing and
Evaluation chapter).  For a given transport time
increment, particles are moved a distance and
direction on the basis of the estimated velocity
at the location of each particle and the length of
the time increment.  The particle velocity is
estimated by interpolation from the velocities
on adjacent cell faces to the location of a
particular particle.  Either linear or bilinear
interpolation is used (in subroutines MOVE or
MOVEBI, respectively) based on the user-
selected value for the INTRPL flag (see
MOC3D Input Instructions).  However, when
the bilinear interpolation option is used, particle
velocity in the vertical (or “layer”) direction will
still be interpolated linearly.  A flow chart
describing details of the MOVE and MOVEBI
subroutines is presented in figure 17.

Table 1.  MOC3D subroutines controlling simula-
tion preparation

Subroutine Description

SMOC5O Open MOC data files
MOC5DF Define subgrid and other key

parameters
MOC5AL Allocate space in “X” array to

store MOC  data
MOC5RP Read MOC parameters
MOC5CK Check MOC data for

consistency
SMOC5Z Set an array to a specified

constant value

Table 2.  MOC3D subroutines controlling transport
time factors

Subroutine Description

MOC5ST Check limiting stability
criteria; compute time
increment and number of
moves for solute transport

MOC5AD Update elapsed transport time
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(b) (c)(a)

Figure 16.  Default initial particle configurations for a three-dimensional simulation using (a) one,
(b) eight, and (c) 27 particles per cell.  For clarity, only the volume of a single cell is illustrated.

Table 3.  MOC3D subroutines controlling velocity
calculations and output

Subroutine Description

VELO Calculate velocities from
flows across cell faces

SMOC5V Output velocity data

Table 4.  MOC3D subroutines controlling particle
tracking, concentration calculations, and output for
particle and concentration data

Subroutine Description

SMOC5GP Generate initial particle
distribution

SMOC5P Output particle locations and
concentrations

MOVE and
MOVEBI

Advect particles; compute
concentrations at the end of
each move; decay particle
concentrations (MOVE uses
linear interpolation of
velocity and MOVEBI uses
bilinear interpolation)

MOVTIM Compute time for particle to
reach boundary of cell

MOC5AP Compute new node and
particle concentrations at
end of move

SMOC5C Output node concentrations

 

(a) (b)

(c) (d)

Figure 14.  Default initial particle configurations
for a one-dimensional simulation using (a) one,
(b) two, (c) three, and (d) four particles per cell.

(a) (b)

(c) (d)

Figure 15.  Default initial particle configurations
for a two-dimensional simulation using (a) one,
(b) four, (c) nine, and (d) sixteen particles per
cell.
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Figure 17.  Flow chart for MOVE and MOVEBI subroutines of MOC3D, which is shown as a single
element in fig. 13.

Subroutines related to dispersion
calculations are included in Table 5.
Dispersion coefficients are determined on cell
faces.  However, to facilitate improved
efficiency in the code the dispersion

coefficients are lumped with the porosity,
thickness, and an appropriate grid dimension
factor of the cell into combined parameters
called “dispersion equation coefficients.”  For
example, the dispersion equation coefficient for



40

the j+1/2,i,k  face in the column direction is

εbDxx( )
j+1/2,i,k

∆x
.

These combined coefficients are the ones that
are written to the output files by SMOC5D.
Appendix A includes a more detailed
description of the dispersion equation
coefficients.

Table 5.  MOC3D subroutines controlling disper-
sion calculations and output

Subroutine Description

DSP5FM Calculate dispersion
coefficients

SMOC5D Output dispersion equation
coefficients

DSP5AP Use explicit finite-difference
formulation to compute
changes in concentration
due to dispersion

Subroutines that link the MODFLOW
source/sink package calculations of fluid flux to
the MOC3D calculations of solute concentration
and solute flux are listed in Table 6.
MODFLOW source and sink packages contain
an option called CBCALLOCATE.  When
used, the package will save the cell-by-cell
flow terms across all faces of every source or
sink cell.  MOC3D uses these fluid fluxes to
calculate solute flux to or from the source/sink
nodes.  Because these individual solute fluxes
are required to compute the solute mass
balance, the CBCALLOCATE option must
always be selected when using MOC3D.
Calculations of concentration changes at nodes
caused by mixing with fluid sources are
controlled by the “SRC” subroutines listed in
Table 7.

Subroutines controlling observation well
features are listed in Table 8.  Table 9 lists
subroutines related to the solute mass balance

calculations.  Table 10 lists subroutines related
to calculating fluid storage terms in the solute-
transport equation.

Table 6.  MOC3D subroutines controlling
MODFLOW source/sink package calculations

Subroutine Description

CDRN5FM Calculate solute flux to drains
CEVT5FM Calculate solute flux to

evapotranspiration
CGHB5FM Calculate solute flux to/from

general head boundary cells
CRCH5AL Allocate space in “X” array

for concentrations
associated with recharge

CRCH5FM Calculate solute flux from
recharge

CRIV5FM Calculate solute flux to/from
river cells

CWEL5FM Calculate solute flux to/from
well cells

Table 7.  MOC3D subroutines controlling cumula-
tive calculations relating to sources and sinks

Subroutine Description

SRC5FM Initialize source/sink array;
compute terms at fixed
heads

SRC5AP Calculate changes in
concentration due to flux at
sources and sinks

Table 8.  MOC3D subroutines controlling observa-
tion wells

Subroutine Description

OBS5DF Read number of observation
wells

OBS5AL Allocate space in “X” array
for observation well data

OBS5RP Read observation well
locations

SOBS5O Output observation well data
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Table 9.  MOC3D subroutines controlling mass
balance calculations and output

Subroutine Description

SMOC5IM Calculate initial solute mass
stored

SMOC5BY Calculate flows across
boundaries of subgrid (for
mass balance)

SMOC5BD Compute cumulative solute
mass balance

SMOC5M Output mass balance
information

Table 10.  Miscellaneous MOC3D subroutines

Subroutine Description

SMOC5TK Set initial saturated thickness
for water-table cells

SMOC5UP Update fluid storage terms for
transport equation

MODEL TESTING AND
EVALUATION

In developing and documenting a new
numerical model, it must be demonstrated that
the generic model can accurately solve the
governing equations for various boundary
value problems.  This is accomplished by
demonstrating that the numerical code gives
good results for problems having known
solutions, such as those for which an analytical
solution is available.

The accuracy of numerical solutions is
sometimes sensitive to spatial and temporal
discretization.  Therefore, even a perfect
agreement for selected test cases proves only
that the numerical code can accurately solve the
governing equations, not that it will under any
and all circumstances.

Analytical solutions generally require that
an aquifer can be assumed to have simple

geometry, uniform properties, and idealized
boundary and initial conditions.  A major
advantage of numerical methods is that they
relax the simplifications required by analytical
methods and allow the representation of more
realistic field conditions, such as heterogeneous
and anisotropic properties, irregular geometry,
mixed boundary conditions, and multiple
stresses that vary in time and space.  However,
analytical solutions approximating these
complexities are unavailable for comparison.
Therefore, it is difficult to prove that the
numerical models can accurately solve the
governing equations for the very situations for
which they are most needed.  For such cases,
we are limited to relatively simple tests, such as
benchmarking and evaluating the global mass-
balance error.  In the benchmarking approach,
we compare the results of the MOC3D model
for selected complex problems to results of
other well accepted models.  Although
benchmarking is useful to improve confidence
in the model, it is largely a measure of
consistency and does not guarantee or measure
accuracy.  Overall, we have attempted to test
and evaluate the MOC3D model for a range of
conditions and problem types so that the user
will gain an appreciation for both the strengths
and weaknesses of this particular code.  Ad-
ditional testing and benchmarking of MOC3D
is documented in Goode and Konikow (1991).

One-Dimensional Steady Flow

Wexler (1992) presents an analytical
solution for one-dimensional solute transport in
a finite-length aquifer system having a third-
type source boundary condition.  The
governing equation is subject to the following
boundary conditions:

V ′C = VC − D
∂C

∂x
, x = 0     (69)
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Table 11.  Parameters used in MOC3D simulation
of transport in a one-dimensional, steady-state
flow system

Parameter    Value

Txx = Tyy 0.01 cm2/s
ε 0.1
αL 0.1 cm
αTH = αTV 0.1 cm
PERLEN (length of stress

period)
120 s

Vx 0.1 cm/s
Vy = Vz 0.0 cm/s
Initial concentration (C0) 0.0
Source concentration ( ′C ) 1.0
Number of rows 122
Number of columns 1
Number of layers 1
DELR (∆x) 0.1 cm
DELC (∆y) 0.1 cm
Thickness (b) 1.0 cm
NPTPND (Initial number of

particles per cell)
3

CELDIS 0.5
INTRPL (Interpolation

scheme)
2

        
∂C

∂x
= 0 , x = L (70)

and the following initial condition:

C = 0 , 0<x<L.  (71)

For this test problem we assumed that the
length of the system, L, is equal to 12 cm,

′C =1.0, and V = 0.10 cm/s.  The analytical
solution is given by equations 52 and 53 of
Wexler (1992, p. 17).  In generating an
equivalent solution using MOC3D, we set up a
one-dimensional grid having 122 cells (nodes)
in the x-direction within which the flow
equation was solved.  The solute-transport
equation was solved in a 120-cell subgrid to
assure a constant velocity within the transport
domain and to allow an accurate match to the
boundary conditions of the analytical solution.
The grid spacing was ∆x  = 0.1 cm.  The
numerical solution was implemented using
three initial particles per cell (NPTPND = 3)
and a CELDIS factor of 0.5.  The input
parameters for the model simulation are
summarized in Table 11.

Two different values of dispersion
coefficients were evaluated in the first set of
tests.  The values were Dxx = 0.1 and 0.01
cm2/s, which are equivalent to αL = 1.0 and
0.1 cm, respectively.  Breakthrough curves
showing concentration changes over time at
three different locations as calculated with both
the analytical and numerical solutions for the
lower dispersion case are compared in figure
18.  To improve clarity, this plot only shows
every fourth data point for the numerical model
results, except for the curve for x = 0.05 cm,
where every data point is shown for times less
than 10 seconds.  Note that this distance (x =
0.05) is the first node downgradient from the
source location.  With the possible exception of
very early time at locations very close to the
source, there is essentially an exact fit between
the numerical and analytical solutions.  At early
times and short distances the numerical solution
exhibits some nonsmoothness and oscillation

about the mean, which is related to the discrete
nature of the particles used to represent the
advection process.  However, this small loss of
precision is not a cumulative error, as it
vanishes after moderate travel times or
distances.

The results for the higher dispersion case
are presented in figure 19.  Because dispersion
is a limiting stability criterion and the
dispersion coefficient is ten times higher in the
same grid, the transport simulation takes many
more time increments (or particle moves).
Thus, in figure 19 only every 100th point is
shown (as small circles) for the numerical
solution at the two larger distances.  For these
two curves, the match between the analytical
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Figure 18.  Numerical (MOC3D) and analytical solutions at three different locations for
solute transport in a one-dimensional, steady flow field.  Parameter values for this base
case are listed in Table 11.

solution and the numerical solution is almost
perfect.  For the location that is close to the
source, every point is plotted as a small dot to
illustrate again the small loss of precision for
short travel distances and times.

To help assess the significance of the
oscillations and loss of precision at nodes very
close to the source, the early (times less than 10
seconds) part of that breakthrough curve is
replotted at a larger scale in figure 20.  The
oscillation is caused by the fact that the stability
requirements related to the explicit solution for
the dispersive flux causes the time increment
for solving the transport equation to be so small
that particles used to track the advective flux
can only move a small fraction of the width of a
cell during a given time increment.  Because the
distance that the particles move during one time

increment (about 0.005 cm in this case) is
smaller than the spacing between particles (one-
third of ∆x for this case in which three particles
per cell are used, or 0.033 cm), particles only
cross cell boundaries after every seven moves
in this case.  Therefore, the change in
concentration caused by advection is
underestimated during six moves when no
particles cross a cell boundary and
overestimated during the seventh move when
one particle does cross the cell boundary.
However, there is essentially no cumulative
error and the numerical solution oscillates
regularly in a small and decreasing range about
the true solution.  Also, the magnitude of the
oscillations diminishes over time as dispersion
reduces the local concentration gradients.  To
check this explanation and to demonstrate that
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Figure 19.  Numerical (MOC3D) and analytical
solutions at three different locations for solute
transport in a one-dimensional, steady flow field
for case of increased dispersivity (αL = 1.0 cm,
Dxx = 0.1 cm2/s, and other parameters as defined
in Table 11). 0.0
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Figure 20.  Detailed view of numerical and
analytical solutions for early times (t < 10 s) at the
first node downgradient from the inflow source
boundary for same problem as shown in fig. 19.
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Figure 21.  Detailed view of numerical and
analytical solutions for early times (t < 10 s) at the
first node downgradient from the inflow source
boundary for same conditions as shown in fig.
20, except that the initial number of particles per
node, NPTPND, equals 50.

the error shown in figure 20 is primarily an
artifact of having too few initial particles per
cell for this particular combination of
parameters, and that it is not a generic
deficiency in the algorithm, MOC3D was run
for the same problem using an initial particle
density of 50 particles per cell.  The results for
the same location for the first 10 seconds are
shown in figure 21 for comparison.  When 50
particles are used, the distance that each particle
moves during one time increment (again about
0.005 cm) is greater than the spacing between
adjacent particles (0.002 cm).  For this case,
the agreement between the analytical solution
and the MOC3D results are much closer than in
figure 20 and the oscillations are almost entirely
eliminated.

The results of these tests can also be
presented in the form of breakthrough curves
that plot concentration against distance for
various times.  Figure 22 shows the results for
the same set of parameters as shown in figure
18 (that is, the low dispersion case).  For

clarity in figure 22, only every fourth data
point is plotted for the numerical results,
except every data point is shown for distances
less than 1.5 cm on the curve for t = 6
seconds.  The results show an almost perfect
agreement between the analytical and numerical
solutions.
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Figure 22.  Numerical (MOC3D) and analytical
solutions at three different times for same one-
dimensional, steady flow, solute-transport
problem shown in fig. 18.
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Figure 23.  Numerical (MOC3D) and analytical
solutions after 240 seconds for three different
retardation factors for same problem
represented in fig. 22.

λ = 0.01 s-1

Analytical
MOC3D

t = 30 s
t = 60 s

t = 90 s

t = 120 s

DISTANCE (cm)

C
O

N
C

E
N

T
R

A
T

IO
N

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Figure 24.  Numerical (MOC3D) and analytical
solutions for four different times for solute
transport in a one-dimensional, steady flow field
for case with decay at rate of λ  = 0.01 s-1.  All
other parameters as defined in Table 11.

The effect of incorporating a retardation
factor to represent a linear, equilibrium,
reversible, sorption process is illustrated in
figure 23.  This shows a comparison between
the analytical solution and the MOC3D results
for the same low-dispersion problem
represented in figures 18 and 22, except that
the elapsed time is 240 seconds and the three
different curves are for cases in which Rf = 2,
4, and 40.  Only every fourth data point is
plotted in figure 23 for the numerical results,
except for the case for Rf = 40, where every
data point is shown for distances less than 1.5
cm.  The agreement is excellent.  Note that

because the net effect of the retardation factor is
to transform the time scale, the three sets of
curves and data points shown in figure 23 for t
= 240 s are identical to the three sets of curves
and data points shown in figure 22 for shorter
times and Rf  = 1.0.

The effect of decay is evaluated by
specifying the decay rate as λ = 0.01 s-1 for the
same low-dispersion, no sorption, problem as
defined for figures 18 and 22.  These results
are presented in figure 24, which shows
excellent agreement between the analytical and
numerical solutions.  Only every fourth data
point is plotted in figure 24 for the numerical
results.

Three-Dimensional Steady Flow

To further evaluate and test MOC3D for
three dimensional cases, we compare the
numerical results with those of the analytical
solution developed by Wexler (1992) for the
case of three-dimensional solute transport from
a continuous point source in a steady, uniform
flow field in a homogeneous aquifer of infinite
extent.  Relative to the previous tests, and
because the flow field is aligned with the grid
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in this test case also, this evaluation primarily is
a test of the accuracy of the calculated
dispersive flux in three directions.  The
analytical solution of Wexler (1992, p. 42-43)
is subject to the following boundary conditions:

    C = 0,         x = ±∞ (72a)

    C = 0,         y = ±∞ (72b)

    C = 0,         z = ±∞ (72c)

and the following initial condition (at t = 0):

C = 0,  

−∞ < x < ∞,  − ∞ < y < ∞,  − ∞ < z < ∞.
  
(73)

For the analytical solution to this test problem,
we assumed that Vx = 0.1 m/d, Vy = Vz = 0.0
m/d, Dx = 0.06 m2/d, Dy = 0.003 m2/d, Dz =
0.0006 m2/d, ε = 0.25, and that the source
strength (or solute mass flux) is Q ′C = 10.0
g/d.  The analytical solution is given by
equation 105 of Wexler (1992, p. 47), and
assumes that the fluid source does not affect the
flow field.

Whereas the analytical solution assumes an
infinite aquifer, the numerical solution can only
be applied to a finite system.  In generating an
equivalent solution using MOC3D, we aimed to
use a grid that was sufficiently large so as to
minimize any effects of the boundaries on the
solution.  Because of the symmetry of the
problem, we only simulated one quadrant of
the cross-sectional area of the aquifer
downgradient from the point source.  The
three-dimensional transport subgrid had 30
rows of cells (nodes) at a grid spacing of 3 m
that are parallel to the x-direction of the
analytical solution, 12 columns at a grid
spacing of 0.5 m in the y-direction, and 40
layers at a grid spacing of 0.05 m in the z-
direction, within which the transport equation
was solved.  Boundary conditions, values of
heads on boundaries, hydraulic conductivity,
and porosity were specified to assure that the
velocity would equal 0.1 m/d in the x-direction.
Identical values for the dispersion coefficients

were generated by specifying αL = 0.6 m, αTH

= 0.03 m, and α TV  = 0.006 m.  The point
source was represented in the numerical model
by a combination of Q = 1.0 ×10−6  m3/d and

′C = 2.5 ×106  g/m3  (note that g/m3 i s
equivalent to mg/L), which together yield one-
fourth of the source flux assumed in the
analytical solution.  The very small fluid
injection rate at the point source assures that the
fluid has only a negligible effect on the flow
field, as required for consistency with the
analytical solution.  However, another small
but unavoidable difference between the
analytical and numerical solutions is that the
former has the solute source at a true point but
the numerical model inherently assumes the
solute source is within the volume of one cell.
Both models were run for a total elapsed time
of 400 days.  The numerical solution was
implemented using three initial particles per cell
(NPTPND = 3) and a CELDIS factor of 0.1.
The input parameters for the model simulation
are summarized in Table 12.

The results of the analytical solution are
compared graphically with those of MOC3D
for three different planes in figs. 25-27.  Figure
25a shows the concentrations in the x-y plane
of the point source as calculated using the
analytical solution and figure 25b shows the
same for the MOC3D results.  In this view, the
left edge of each map is a line of symmetry, so
that the map represents only half of the true
problem domain.  Both sets of contours were
generated for an identical number of points and
locations to eliminate any differences
attributable solely to the contouring procedure.
The results agree very closely, although a
slightly greater distance of migration or
spreading is evident in the MOC3D results,
both upstream as well as downstream of the
source.  However, a large part of this small
difference can be explained simply by the fact
that the source is applied over a larger area in
the horizontal plane of the MOC3D model, in
which the length of the source cell is 3 m in the
direction parallel to flow.
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Table 12.  Parameters used in MOC3D simulation
of transport from a continuous point source in a
three-dimensional steady-state flow system

       Parameter    Value

Txx = Tyy 0.0125 m2/day
ε 0.25
αL 0.6 m
αTH 0.03 m
αTV 0.006 m
PERLEN (length of stress

period)
400 days

Vx 0.1 m/day
Vy 0.0 m/day
Vz 0.0 m/day
Source concentration ( ′C ) 2.5 ×  106 g/m3

Q (at well) 1.0 ×  10-6 m3/d
Source location row 8, column

1, layer 1
Number of rows 30
Number of columns 12
Number of layers 40
DELR (∆x) 3 m
DELC (∆y) 0.5 m
Thickness (b) 0.05 m
NPTPND (Initial number

of particles per cell)
3

CELDIS 0.1
INTRPL (Interpolation

scheme)
1
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Figure 25.  Concentration contours for (a) analyt-
ical and (b) numerical solutions in the horizontal
plane containing the solute source (layer 1) for
three-dimensional solute transport in a uniform
steady flow field.  Parameters are defined in
Table 12.

Figure 26 shows a comparison of the
results in a vertical plane parallel to the flow
direction and aligned with column 2 of the
numerical grid (and y = 0.75 m in the analytical
solution).  In this view, the top edge is a line of
symmetry, so that the cross section represents
only the lower half of the true problem domain.
Overall the agreement is very close, although
the numerical results show slightly more
upstream dispersion, particularly for the lower
concentrations (less than 10).  Figure 27 shows
a comparison of the results in a vertical plane
transverse to the flow direction and aligned

with row 12 of the numerical grid (and x =
34.5 m in the analytical solution).  In this view,
both the left and top edges are lines of
symmetry, so that this cross section represents
only one quarter of the true problem domain.
Once again the overall agreement is excellent.
The only noticeable difference is a minor one.
In the numerical results there is slightly more
lateral spreading, as indicated by a
displacement of the contours for the lower
values of concentration by less than half a cell
distance away from the axis of symmetry, but
only in the upper half of the grid.
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Figure 26.  Concentration contours for (a) analytical and (b) numerical solutions in the vertical
plane parallel to the flow direction and aligned with column 2 for three-dimensional solute
transport in a uniform steady flow field.  Parameters are defined in Table 12.
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Figure 27.  Concentration contours for (a) analytical and (b) numerical solutions in the vertical
plane transverse to the flow direction and aligned with row 12 for three-dimensional solute
transport in a uniform steady flow field.  Parameters are defined in Table 12.  Flow is towards the
reader.



49

Two-Dimensional Radial Flow and
Dispersion

A radial dispersion problem was used to
compare the MOC3D solution to the analytical
solution given by Hsieh (1986) for a finite-
radius injection well in an infinite aquifer of
two dimensions.  The problem is equivalent to
flow from a single injection well; the velocities
vary in space and are inversely related to the
distance from the injection well.  The
governing equation for the analytical solution is

∂C

∂t
+ A

r

∂C

∂r
= α A

r

∂ 2C

∂r2      r > rw    t > 0     (74)

where A = Q 2πbε , r is the radial distance
from the center of the well, rw is the radius of
the injection well, α  is the longitudinal
dispersivity in radial flow, Q is the volumetric
rate of the well injection, b is the thickness of
the aquifer, and ε is porosity.  The initial and
boundary conditions are

C(r,0) = 0      r > rw (75a)

C(rw,t) = ′C      t > 0 (75b)

C(r → ∞,t) → 0      t > 0.     (75c)

The radius of the well (rw) was set to 1.0
(dimensionless) and the concentration of the
injected tracer ( ′C ) was 1.0 (dimensionless) at
the well.

The problem was modeled using a grid
having 30 cells in the x-direction and 30 cells in
the y-direction, representing one quadrant of
the radial flow field (90 of 360 degrees).  The
initial concentration was set to 1.0 at the well
node (1,1), defined by a specified flux of
56.25 m3/h.  The input parameters for the
model simulation are summarized in Table 13.
Initial particle positions were defined using the
custom particle placement option in the input
data set and were aligned in a quarter circle in
two-degree increments, equidistant from the
center point of radial symmetry in the upper left
corner of the grid (see fig. 28).  Using a large

Table 13.  Parameters used in MOC3D simulation
of two-dimensional, steady-state, radial flow case

Parameter    Value

Txx = Tyy 3.6 m2/hour
ε 0.2
αL 10.0 m
αTH 10.0 m
αTV 10.0 m
PERLEN (length of stress

period)
1000 hours

Q (at well) 56.25
m3/hour

Source concentration ( ′C ) 1.0
Number of rows 30
Number of columns 30
Number of layers 1
DELR (∆x) 10.0 m
DELC (∆y) 10.0 m
Thickness (b) 10.0 m
NPTPND (Initial number of

particles per cell)
46

CELDIS 0.5
INTRPL (Interpolation

scheme)
2

number of particles per cell in this
configuration ensures that all cells in the grid
will include at least one particle pathline
emanating from the source cell.  If one of the
MOC3D default options was selected to place
fewer particles in a regular geometric pattern
where strong flow divergence exists, then
some cells located just a few rows or columns
away from the source cell would never receive
particles originating in the source cell.  This
would make it impossible to calculate
accurately concentration changes caused by
advection.  This custom configuration also
parallels the expected solute distribution pattern
in a radially divergent flow field; standard
particle positioning (linear, quadratic, or cubic
configurations) results in extreme spreading of
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Figure 28.  Initial particle positions within the
source cell for radial flow case (based on
custom particle placement and NPTPND = 46).
The relative coordinates on the x- and y-axes
shown for the cell (1,1) are the same for any
cell of the grid; this relative coordinate system
is used for the custom definition of particle
locations in the input file.
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Figure 29.  Contours of relative concentrations calculated using (a) analytical and (b) numerical
models for solute transport in a steady radial flow field.  Source concentration is 1.0 and source is
located in cell (1,1).  Grid spacing is 10.0 m.

particles at small distances from the source,
distorting contours of concentration in that
area.  The same pattern of particles shown for
the source cell in figure 28 is repeated in all
cells of the grid at the start of the simulation.

Figure 29 shows a comparison of the
concentrations calculated in one quadrant after
1000 hours using both the analytical (a) and
numerical (b) solutions.  The two solutions are
almost identical.

Point Initial Condition in Uniform
Flow

A test problem for three-dimensional solute
transport from an instantaneous point source,
or Dirac initial condition, in a uniform flow
field was used to test the MOC3D model.  An
analytical solution for an instantaneous point
source in a homogeneous infinite aquifer is
given by Wexler (1992), and he presents a
code (named POINT3) for a related case for a
continuous point source.  The POINT3 code
was modified to solve for the desired case of an
instantaneous point source.  Test problems
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were designed to evaluate the numerical
solution for two cases—one in which flow is
parallel to the grid (in the x-direction) and one
in which flow occurs at 45 degrees to the x-
and y-axes.  This allows us to evaluate the
accuracy of the numerical model for this basic
type of problem, and also to evaluate the

sensitivity of the numerical solution to the
orientation of the flow relative to that of the
grid.

The governing equation and boundary
conditions for an instantaneous point source are
(see Wexler, 1992, p. 42):

  

∂C

∂t
= Dx

∂ 2C

∂x2 + Dy
∂ 2C

∂y2 + Dz
∂ 2C

∂z2 − V
∂C

∂x
− λC

 + Qdt

ε
′C • δ (x − Xc )δ (y − Yc )δ (z − Zc )δ (t − ′t )  (76)

C = 0,         x = ±∞  (77a)

C = 0,         y = ±∞ (77b)

C = 0,         z = ±∞ (77c)

where V is the velocity in the direction of flow
(assumed to be the x-direction in eq. 76), λ is
the decay rate (λ = 0 for this problem), Q is the
injection rate for the well, δ is a dirac delta
function, Xc, Yc, and Zc are coordinates of the
point source, and t' is the time at which the
instantaneous point source activates.

The initial condition (at t' = 0) is:

C = 0,  

−∞ < x < ∞,  − ∞ < y < +∞,  − ∞ < z < +∞.  (78)

For the test case of flow in the x-direction, we
assumed Vx = 1.0 m/d, and Vy = Vz = 0.0
m/d.  For flow at 45 degrees to x and y, we
assumed Vx = Vy = 1.0 m/d, and Vz = 0.0
m/d.  For both cases, the distance the plume
travels in the x-direction is the same for equal
simulation times.  Note, however, that the
magnitude of velocity is higher in the latter
case; therefore, there will be more dispersion in
that problem during an equivalent time interval.

Several different grid spacings were used
for the model simulations to help show the
relation between discretization and the accuracy
of the numerical results.  The coarsest transport

subgrid used 24 rows, 24 columns, and 24
layers with a grid spacing of 10.0 m in each
direction.  Subsequent runs doubled and tripled
the number of rows and columns; the grid
spacing was reduced accordingly so that the
model domain (the aquifer volume being
simulated) remained the same for all grids, and
changes in accuracy would be attributable only
to changes in the spatial discretization.
Because advective transport occurs only in the
x-y plane, the number of layers was held
constant at 24.  The input parameters for the
simulations are presented in Table 14, which
includes the several different values used for
grid dimensions and spacing.

The results for both the analytical and
numerical solutions for the case in which flow
occurs only in the x-direction are shown in
figure 30.  The MOC3D results for the coarsest
grid (fig. 30b) clearly show too much
spreading transverse to flow (that is, in the y-
direction) relative to the analytical solution (fig.
30a).  Note that the analytical solution was
contoured for values only at the same exact
locations as the nodes in the grid used for the
numerical solution to which it is being
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compared (fig. 30b); this eliminates differences
for a visual comparison due only to artifacts of
the contouring procedure, and is the reason that
the analytical solution appears less smooth than
it should.  To improve numerical and
contouring accuracy, a finer grid was used for
both the analytical and MOC3D solutions (figs.
30c and 30d).  Using three times as many
nodes in each direction in the horizontal plane,
the numerical dispersion is reduced
significantly and the numerical solution very
closely matches the analytical solution.  (Note
that the analytical solution mapped in fig. 30c is
based on values calculated at nine times as
many points as that in fig. 30a.)

The results of the test problem for flow at
45 degrees to the grid are shown in figure 31.
The analytical solution (fig. 31a), which
provides the basis for the evaluation, was
solved on a 72 × 72 grid, and the MOC3D
solutions are shown for a 24 × 24 × 24 grid (fig.
31b), a 48 × 48 × 24 grid (fig. 31c), and a
72 × 72 × 24 grid (fig. 31d).  Unlike the
previous case (where flow is aligned with the
grid), the numerical results in figure 31 show a
noticeable difference in the shape of the plume
relative to the analytical solution.  The
numerically calculated “hourglass” shape is
characteristic of a grid-orientation effect and is
related to the cross-product terms of the
dispersion tensor.  When flow is oriented
parallel to the grid, or when longitudinal and
transverse dispersivities are equal, the cross-
product terms of the dispersion equation are
zero.  Because flow is at 45 degrees to the grid,
the cross-product terms of the dispersion
equation are nonzero.  The model estimates the
concentration gradients associated with the
cross-product terms less accurately than those
associated with the diagonal terms, and
therefore the overall solution is less accurate.

The magnitude of this effect is minimized
by using a finer grid.  Overall, the coarsest grid
exhibits too much spreading, but the next finer
grid results in minimal numerical dispersion

Table 14.  Parameters used in MOC3D simulation
of three-dimensional transport from a point source
with flow in the x-direction and flow at 45 degrees
to x and y

Parameter    Value

Txx = Tyy 10.0 m2/day
ε 0.1
αL 1.0 m
αTH 0.1 m
αTV 0.1 m
PERLEN (length of

stress period)
90 days

Vx 1.0 m/day
Vy 0.0 m/day*

Vz 0.0 m/day
Source concentration

( ′C )
1 ×  106

Source location x = 30 m,
y = 120 m,
z = 40 m**

Number of rows 24, 48, and 72
Number of columns 24, 48, and 72
Number of layers 24
DELR (∆x) 10.0 m, 5.0 m,

and 3.33 m
DELC (∆y) 10.0 m, 5.0 m,

and 3.33 m
Thickness (b) 10.0 m
NPTPND (Initial number

of particles per cell)
8

CELDIS 0.5
INTRPL (Interpolation

scheme)
2

* For flow at 45 degrees to x and y, Vy = 1.0 m/day
** For flow at 45 degrees to x and y, the source
location is x = 30 m, y = 30 m, z = 120 m.

(although the grid-orientation effect is not
eliminated).  Further reducing the grid spacing
(fig. 31d) does not significantly further reduce
numerical dispersion, thereby indicating the
desired characteristic of grid convergence.
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Figure 30.  Concentration contours for (a, c) analytical and (b, d) numerical solutions for transport of
a point initial condition in uniform flow in the x-direction.  The z-component of flow is zero, but there
is dispersion in all three directions.  Contour values are the log of the concentrations.

Each of the MOC3D results also shows a
slight asymmetry in the shape of the plume in
the direction of flow (that is, there is slightly
less forward spreading compared to backward
spreading), which is inconsistent with
symmetrical spreading indicated by the

analytical solution.  This is caused by the
sequence in which the dispersive and advective
terms of the transport equation are solved.

The numerical errors are exaggerated in
figures 30 and 31 because the concentrations
are contoured on a logarithmic scale.  Some of
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Figure 31.  Concentration contours for (a) analytical and (b, c, d) numerical solutions for transport of
a point initial condition in uniform flow at 45 degrees to x and y.  Contour values are the log of the
concentrations.

the discrepancies may also be due to the
contouring program used to visually represent
the solutions.

When the flow is at an angle to the grid, as
for the case illustrated in fig. 31, then negative
concentrations are most likely to occur.  In this
case, some small areas of slightly negative
concentrations were calculated, but are not

evident in fig. 31 because they were filtered out
during the contouring process to allow a clear
depiction of the position of the plume.
However, to indicate the extent of the area of
negative concentrations, we have replotted the
central part of the domain illustrated in fig. 31b
(for the 24x24 grid) in fig. 32, in which all
areas where the relative concentration is less
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Figure 32.  Concentration contours showing effects on areas of negative concentrations related
to decreasing CELDIS factor in MOC3D in simulation of flow at 45 degrees to grid having 24 rows
and 24 columns of nodes: (a) CELDIS = 0.50; (b) CELDIS = 0.25; and (c) CELDIS = 0.10.

than -0.05 are shaded.  Figure 32a represents
the same solution as shown in fig. 31b.  We
tested the sensitivity of the solution and of the
extent of negative concentrations to the size of
the transport time increment by adjusting the
value of CELDIS.  The area in which negative
concentrations occurred at the same elapsed
simulation time was slightly smaller for the
smallest value of CELDIS.  In all three cases
the mass balance errors were about the same
and always less than 0.2 percent relative to the
initial solute mass stored.

Constant Source in Nonuniform
Flow

Burnett and Frind (1987) used a numerical
model to analyze a hypothetical problem having
a constant source of solute in a finite area at the
surface of an aquifer having homogeneous
properties, but nonuniform boundary
conditions, which result in nonuniform flow.
Because an analytical solution is not available
for such a complex system, we use their results
for this test case as a benchmark for com-
parison with the results of applying MOC3D  to
the same problem.  Burnett and Frind (1987)

used an alternating-direction Galerkin finite-
element technique to solve the solute-transport
equation in both two and three dimensions.
Their model also includes the capability to vary
αT as a function of direction, thereby allowing
that feature of MOC3D to be evaluated in the
same problem set.

A simplified diagram of the problem is
illustrated in figure 33.  The left (x = 0) and
bottom surfaces are no-flow boundaries,
representing a ground-water divide and an
impermeable base, respectively.  The top and
right surfaces are constant-head boundaries,
representing the water table and a discharge
boundary, respectively.  The front and back
vertical faces are no-flow boundaries,
representing streamlines or flow paths parallel
to those surfaces.  The length of the domain is
200 m and the saturated thickness varies from
21 m on the left no-flow boundary to 20 m on
the right constant-head boundary.  The heads
on the upper surface are specified as a one-
quarter cosine from 1 m on the left to 0 m on
the right.  Heads are fixed at a slightly negative
value (-0.00736 m) at all nodes in the right
column of cells, so that the head on the right
side of the transport domain (at x = 200 m) will
almost exactly equal 0 m, and the heads and
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Figure 33.  Transport domain and boundary conditions for nonuniform-flow test problem of
Burnett and Frind (1987); front surface represents a plane of symmetry (modified from Burnett
and Frind, 1987, fig. 4).

hydraulic gradients throughout the domain
calculated using MOC3D would be consistent
with those in the analysis of Burnett and Frind
(1987).  The aquifer properties are assumed to
be homogeneous and isotropic.  These
boundary conditions yield a two-dimensional
flow field, which has components of flow in
the x- and z-directions only.  Therefore, the
specified width of the domain is varied for each
particular simulation to accommodate the
plume, and depends on the dimensionality of
the simulation (whether two- or three-
dimensions) and on the values of the
dispersivity coefficients.  The solute source is
located between 18.25 and 32.50 m from the
left side of the aquifer and has a width of 10 m,
extending 5 m on either side of the plane of
symmetry at y = 0.

Cases of both two- and three-dimensional
transport were examined for this basic
problem.  The grids used in the M O C 3 D
simulations were designed to maximize
compatibility with the results of the finite-
element models used by Burnett and Frind
(1987), so that comparisons of results would
represent a reasonable benchmarking exercise.
However, some differences in discretization
could not be avoided because the finite-element
methods allow specifications of values at
nodes, which can be placed directly on

boundaries.  Nodes in MOC3D are located at
the centers of cells, and values specified at
nodes are always one-half of the grid spacing
away from the edge of the model domain.
Among the small differences arising from the
alternative discretization schemes is that (1) the
modeled location of the 14.25 m long source
area is offset by 0.225 m towards the right in
the MOC3D grid, and (2) the total length of the
domain is 199.5 m in the MOC3D grid.

The first analysis of this test case focused
on the simplest one—a two-dimensional
analysis.  The input data values for this
analysis are listed in Table 15.  The MOC3D
grid consisted of 141 columns and 91 layers.
However, the top layer and right column of
cells are devoted to assuring consistent
boundary conditions between the two models,
and they were considered to lie outside of the
domain of the transport problem for
benchmarking purposes.  That is, 140 columns
at a spacing of 1.425 m yields a transport
domain length of 199.5 m, which is
approximately equal to the desired total
horizontal distance of 200 m.  Similarly, the
appropriate height of the domain is assured by
setting the thickness of each cell within a given
column equal to 1/90th of the height of the
column, where the height (or total saturated
thickness) varies from 21 m on the left to 20 m
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Table 15.  Parameters used in MOC3D simu-
lation of transport in a vertical plane from a
continuous point source in a nonuniform,
steady-state, two-dimensional flow system
described by Burnett and Frind (1987)

Parameter    Value

K 1.0 m/day
ε 0.35
αL 3 m
αTV 0.01 m
Dm 10-4 m2/day
PERLEN (length of

stress period)
12,000 days

Source concentration
( ′C )

1.0

Number of rows1 141
Number of columns 1
Number of layers1 91
DELR (∆x) 1.425 m
DELC (∆y) 1.0 m
Thickness (b) 0.2222-0.2333 m
NPTPND (Initial number

of particles per cell)
3

CELDIS 1.0
INTRPL (Interpolation

scheme)
1

1 One row and layer were allocated to defining
boundary conditions, so concentrations calculated in
only 140 rows and 90 layers were used for
benchmarking.
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Figure 34.  Initial particle positions within a cell
for the Burnett-Frind (1987) test case (based
on custom particle placement and NPTPND =
3).  The relative coordinates on the x- and z-
axes shown for the cell (1,1) are the same for
any cell of the grid; this relative coordinate
system is used for the custom definition of
particle locations in the input file.

on the right.  (In comparison, Burnett and
Frind used a variable spacing in which ∆x
ranged from 2.5 to 6.0 m and ∆z ranged from
0.75 to 1.25 m.)  The top flow layer consisted
of constant-head nodes and the solute source.
Because of the symmetry in the flow field, we
were able to increase the efficiency of the
simulation by using a custom initial particle
placement of only three particles in each cell, as
shown in figure 34, and still achieve reason-
ably accurate results.  Burnett and Frind (1987)
report that their solution yielded an average

areal recharge rate of about 8 ×10−4  m/day; the
MOC3D  solution yielded an average areal
recharge rate of about 7.8 ×10−4  m/day.  This
agreement is evidence that the parameters and
boundary conditions for the two model
analyses are similar enough to permit a
benchmarking comparison.

Results for the two-dimensional case from
the MOC3D  model closely match those of
Burnett and Frind (see fig. 35).  Both models
represent the solution on the plane of symmetry
(that is, on the front face of the block shown in
fig. 33).  The concentration contours are
located in almost exactly the same positions for
both models.  However, in the M O C 3 D
results, the contours lag slightly behind those
of Burnett and Frind (1987).  This may be
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Figure 35.  Two-dimensional simulation results for nonuniform-flow test case
showing plume positions as contours of relative concentration: (a) finite-
element model (modified from Burnett and Frind, 1987, fig. 8a), and (b)
MOC3D.  Contour interval is 0.2 relative concentration.
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Figure 36.  Three-dimensional simulation results for nonuniform-flow test case
in which αTH  = 0.1 m and αTV  = 0.01 m: (a) finite-element model (modified
from Burnett and Frind, 1987, fig. 8c), and (b) MOC3D.  Plume positions are
represented by contours of relative concentration; contour interval is 0.2
relative concentration.

attributable to small differences in the numerical
treatment of the source between the two models
and (or) to the slightly lower flux (and velocity)
in the MOC3D  solution.  Note that the solution
to the two-dimensional case in the x-z plane
does not depend on the value of αTH.

For the three-dimensional analyses, the
MOC3D grid is expanded to 15 rows having
∆y of 1.0 m.  The source is applied over the
first 5 rows, taking advantage of the symmetry
along the y-axis to account for the 10 m width

of the source.  Note that because of symmetry,
the flow fields are identical in the two- and
three-dimensional cases.  Figure 36 shows the
transport results for both models for the case in
which αTV  = 0.01 m and αTH = 0.1 m.  In the
MOC3D results (fig. 36b) the vertical plane in
the first row is contoured.  Note that there will
be a slight discrepancy in the basis of
comparison because concentrations from
MOC3D are evaluated at the center of the block
(1/2 of a cell width from the plane of
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Figure 37.  Perspective view of MOC3D results for three-dimensional problem of constant source
in nonuniform flow and unequal transverse dispersivity coefficients.  This visualization of the
plume was generated from particle concentrations using a three-dimensional visualization
software package and is derived from the same simulation that is the basis of fig. 36b.  Note that a
piece of the plume near the source is cut away (a “chair” cut) to expose a clearer view of the
degree of transverse spreading in the selected vertical and horizontal planes.  Shading
increments are in relative-concentration intervals of 0.20, and interval bounds range between 0.9
and 0.1.  Concentrations less than 0.10 are transparent.

symmetry), whereas those from Burnett and
Frind (1987) are evaluated on the cell faces
(directly on the plane of symmetry).  A three-
dimensional visualization of the MOC3D
results are presented in fig. 37, which was
generated from the concentrations on particles
(as opposed to nodal concentrations in fig.
36b) using a three-dimensional visualization
software package.  (The plume definition from
particle concentrations and locations is
inherently more precise than can be defined
from averaged nodal concentrations.)  This
perspective shows more clearly the entire
plume and the magnitude of lateral spreading of
the plume.  It also illustrates the impact of
specifying unequal transverse dispersivity
coefficients, in that the transverse spreading in
the horizontal direction increases more rapidly
than does the transverse spreading in the

vertical direction, as evident in the “chair” cut
near the source location and on the face of the
plume at the downgradient boundary.  Figure
38 shows the results for the case in which the
vertical transverse dispersivity is increased by a
factor of ten, so that α TH = α TV  = 0.1 m.
Overall, the MOC3D results (figs. 35b, 36b
and 38b) agree closely with those of Burnett
and Frind (1987) (figs. 35a, 36a and 38a).

Comparison of the three-dimensional
results with the two-dimensional analysis
shows that all contours are closer to the source
of solute in the three-dimensional cases.  This
is expected because the contaminant source has
a finite length and consideration of the
additional dimension for the dispersion process
allows spreading of solute in the y-direction,
which means that less solute mass will remain
in the vertical plane being contoured.  This
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Figure 38.  Three-dimensional simulation results for nonuniform-flow test case in
which αTH  = αTV  = 0.1 m: (a) finite-element model (modified from Burnett and
Frind, 1987, fig. 9b), and (b) MOC3D.  Plume positions are represented by
contours of relative concentration; contour interval is 0.2 relative concentration.

makes it appear that the plume has not spread
as far in the x-direction during the same elapsed
time.  In the three-dimensional simulations, the
lower-value and higher-value contours are
slightly closer to the 0.5 contour in the MOC3D
results, and the contours defining the lateral
edges of the plume are spaced closer together.
These characteristics indicate that the MOC3D
results may include less numerical dispersion
than the finite-element results.  However, this
minor difference may simply be an outcome of
having used a finer grid spacing in MOC3D.

Relative Computational Efficiency

The computational effort required by the
MOC3D code is strongly dependent on the size
of the problem being solved, as reflected
primarily by the total number of nodes, total
number of particles, and total number of time
increments.  Analyses indicate that the greatest
computational effort, as measured by CPU
time, is typically expended in the particle
tracking

routines.  For a given problem, the efficiency
of the code may vary significantly as a function
of the characteristics of the particular computer
on which the simulation is performed, and to
some extent on which FORTRAN compiler
(and which compiler options) were used to
generate the executable code.

To provide a qualitative indication of these
relations, we have run all of the sample
problems described in this report on a variety
of computers.  The relative running times for
each problem on a variety of different
computers are presented in table 16.  The run
times are measured as CPU time in seconds.
As indicated in table 16, the efficiency for a
given problem may vary by more than a factor
of ten, depending on which of the tested
computers were used.  However, for the given
test problems, the efficiency was much more
sensitive to the overall size of the problem, and
the CPU time on a given computer varied by
about four orders of magnitude between the
simple one-dimensional problem and the more
complex three-dimensional problem.  The
model user should be aware that in some cases,
model efficiency may be a serious constraint.
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NT = Not Tested
1 Silicon Graphics server with an R8000 chip running Irix 6.0.1 with 576MB RAM and a 90 MHz processor.  MIPSpro F77 was used to compile MOC3D.
2 Data General server with a Motorola 88110 chip running DG Unix 5.4R3.10 with 256MB RAM and a 45 MHz processor.  Green Hills Software

FORTRAN-88000 was used to compile MOC3D.
3 Data General AVIION 530 running DG Unix 5.4R3.10 with 32MB RAM and a 33MHz processor.  Green Hills Software FORTRAN-88000 was used to

compile MOC3D.
4 IBM-compatible Pentium PC running MS-DOS 6.2 with 8MB RAM and a 90 MHz processor.  Powerstation 1.0 FORTRAN was used to compile MOC3D.
5 IBM-compatible Pentium PC running Windows95 with 32MB RAM and a 133 MHz processor.  Powerstation 1.0 FORTRAN was used to compile MOC3D.
6 Macintosh 9500 PC with 120 MHz PowerPC 604 processor and 32MB of RAM.  MOC3D was compiled using Fortner Research LS FORTRAN Version 1.1

for Power Mac.

One-Dimensional
Steady Flow

Three-Dimensional
Steady Flow

Two-Dimensional
Radial Flow and
Dispersion

Point Initial Condition
in Uniform Flow (flow
at 45 degrees to grid)

Constant Source in
Nonuniform Flow
(Two-Dimensional)

Constant Source in
Nonuniform Flow
(Three-Dimensional)

120

14,400

900

13,824

12,831

192,465

201

207

596

19

4,218

4,218

360

43,200

52,666

110,729

68,027

881,260

0.71

82

240

35

2,290

51,720

2.6

350

750

240

13,450

139,300

5.2

650

1,450

450

18,310

NT

3.5

320

620

140

9,060

NT

1.5

172

440

65

7,470

NT

NT

217

596

84

6,294

NT

Run Time in CPU-seconds

Problem
Description

Number of
Nodes

Number of
Moves

Maximum
Number of
Particles

Silicon 
Graphics1

Data
General

Workstation3

PC
(90 MHz,
Pentium)4

PC
(133 MHz,
Pentium)5

Macintosh
PowerPC

(9500/120)6

Table 16.  Comparison of MOC3D simulation times for selected test cases on various computer platforms

Data
General
Server2
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CONCLUSIONS

The MOC3D model described in this report
can simulate the transient, three-dimensional,
transport and dispersion of a solute subject to
decay and retardation.  The solute-transport
model is integrated with the MODFLOW
model, which is used to solve the ground-water
flow equation for either steady-state or transient
flow.  The numerical methods used to solve the
governing equations allow their application to
systems having heterogeneous properties and
complex boundary conditions.  The package
thus has broad general application and
flexibility for application to a wide range of
hydrogeological problems.

The accuracy and precision of the numerical
results were tested and evaluated by
comparison  of the MOC3D   results with
analytical solutions for several relatively simple
and idealized problems and by benchmarking
comparisons against the results of other
numerical codes for more complex problems
for which no analytical solutions are available.
These tests indicate that the model can
successfully and accurately simulate the three-
dimensional transport and dispersion of a
solute in flowing ground water.  This
implementation of the method of characteristics
is not strictly mass conservative and the method
of calculating a solute mass balance is
inherently an approximation.  Therefore,
calculated mass-balance errors may be nonzero,
but are generally less than 10 percent and often
decrease and stabilize with time.  For some
problems, the accuracy and precision of the
numerical results may be sensitive to the initial
number of particles placed in each cell.  The
efficiency of the solution is sensitive to the total
number of particles used and to the size of the
transport time increment, as determined by the
stability criteria for the solute-transport
equation.  An advantage of this method is that,
in general, its accuracy and efficiency are
greatest for advection-dominated problems,

which is a characteristic of many ground-water
contamination problems that pose serious
environmental risks.
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APPENDIX A:  FINITE-DIFFERENCE APPROXIMATIONS

Applying finite-difference approximations that are centered-in-space and explicit (forward-
in-time), the component of the dispersive flux in the x-direction across the cell face at (j+1/2,i,k)
(equivalent to M f ( j+1/2,i,k) ∆t ∆y  from eq. 57) may be written:

   − εbD1m
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∂xm
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*
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


 (A1)

where 2Bj,i,k ≡ bj,i,k + 1/2 (bj,i,k-1 + bj,i,k+1) is the vertical distance between nodes (j,i,k+1) and
(j,i,k-1).  The superscript “*” indicates the use of an average concentration, as defined in eq. 55.

Similarly, the y-component of the dispersive flux vector at j,i+1/2,k is approximated by:
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 .     (A2)

The z-component does not include the saturated thickness and is approximated by:
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.  (A3)

Applying centered finite-difference approximations, the change in concentration due to dispersion,
neglecting the sink/source term, can be written:
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where the dispersion coefficient terms εbD and εD are given by:
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εbDyx( )
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εDzx( )
j,i,k+1/2

= αL(k+1/2) − αTV (k+1/2)( ) qx( j,i,k+1/2)qz( j,i,k+1/2)

q j,i,k+1/2

(A19)

εDzx( )
j,i,k−1/2

= αL(k−1/2) − αTV (k−1/2)( ) qx( j,i,k−1/2)qz( j,i,k−1/2)

q j,i,k−1/2

(A20)

εDzy( )
j,i,k+1/2

= αL(k+1/2) − αTV (k+1/2)( ) qy( j,i,k+1/2)qz( j,i,k+1/2)

q j,i,k+1/2

(A21)
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where all terms are at time level t+1.  The flux terms normal to the finite-difference block (or cell
faces) are known directly from the solution to the flow equation.  For the horizontal terms, bq, the
volumetric flux per unit width is known, whereas the vertical flux is specific discharge, or
volumetric flux per unit area.

To compute the dispersion coefficients at a block interface, the flux must be computed at
this location.  The flux normal to the block face is known from the finite-difference solution of the
flow equation.  However, the other two components must be interpolated from nearby values.
Horizontal fluxes are averaged for x fluxes at y block interfaces, and vice versa, by:
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bqx( j,i+1/2,k ) =
bqx( j−1/2,i,k ) + bqx( j+1/2,i,k ) + bqx( j−1/2,i+1,k ) + bqx( j+1/2,i+1,k )

4
      (A23)
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4
.       (A26)

Horizontal fluxes per unit width are averaged and normalized by corresponding layer thicknesses
to convert to fluxes per unit area at layer interfaces:
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.      (A30)

Vertical fluxes per unit area are averaged and multiplied by corresponding layer thicknesses to
convert to fluxes per unit width at row and column interfaces:

bqz( j,i+1/2,k ) =
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4
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The magnitudes of fluid flux at block interfaces are:

bq j+1/2,i,k = bq( )x( j+1/2,i,k )
2 + bq( )y( j+1/2,i,k )

2 + bq( )z( j+1/2,i,k )
2[ ]1/2

 (A35)

bq j−1/2,i,k = bq( )x( j−1/2,i,k )
2 + bq( )y( j−1/2,i,k )

2 + bq( )z( j−1/2,i,k )
2[ ]1/2

(A36)

bq j,i+1/2,k = bq( )x( j,i+1/2,k )
2 + bq( )y( j,i+1/2,k )

2 + bq( )z( j,i+1/2,k )
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(A37)

bq j,i−1/2,k = bq( )x( j,i−1/2,k )
2 + bq( )y( j,i−1/2,k )

2 + bq( )z( j,i−1/2,k )
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(A38)

        q j,i,k+1/2 = qx( j,i,k+1/2)
2 + qy( j,i,k+1/2)

2 + qz( j,i,k+1/2)
2[ ]1/2

(A39)

        q j,i,k−1/2 = qx( j,i,k−1/2)
2 + qy( j,i,k−1/2)

2 + qz( j,i,k−1/2)
2[ ]1/2

. (A40)

As before, all terms that are determined from the flow solution are at time level t+1.
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APPENDIX B:  DATA INPUT INSTRUCTIONS FOR MOC3D

MODFLOW Name File

Transport simulation is activated by including a record in the MODFLOW name file using
the file type (Ftype) “CONC” to link to the transport name file.  The transport name file specifies
the files to be used when simulating solute transport in conjunction with a simulation of ground-
water flow using MODFLOW.  The transport name file works in the same way as the MODFLOW
name file.

MODFLOW Source and Sink Packages

Except for recharge, concentrations associated with fluid sources ( ′C ) are read as auxiliary
parameters in the MODFLOW source package.  The source concentration is read from a new
column appended to the end of each line of the data file describing a fluid sink/source (see
documentation for revised MODFLOW model; Harbaugh and McDonald, 1996a and 1996b).  For
example, concentrations associated with well nodes should be appended to the line in the WEL
Package where the well’s location and pumping rate are defined.  These concentrations will be read
if the auxiliary parameter “CONCENTRATION” (or “CONC”) appears on the first line of the well
input data file.  The concentration in recharge is defined separately, as described in following
section “Source Concentration in Recharge File.”

To simulate solute transport the MODFLOW option enabling storage of cell-by-cell flow
rates for each fluid source or sink is required in all fluid packages except recharge.  The key word
“CBCALLOCATE” (or “CBC”) must appear on the first line of each input data file for a fluid
package (see Harbaugh and McDonald, 1996a and 1996b).

MOC3D Input Data Files

All input variables are read using free formats, except as specifically indicated.  In free
format, variables are separated by one or more spaces or by a comma and optionally one or more
spaces.  Blank spaces are not read as zeros.
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MOC3D Transport Name File (CONC)

FOR EACH SIMULATION:

 1.  Data:   FTYPE    NUNIT    FNAME

The name file consists of records defining the names and units numbers of the files.  Each
“record” consists of a separate line of data.  There must be a record for the listing file and for the
main MOC3D input file.

The listing (or output) file (“CLST”) must be the first record.  The other files may be in any
order.  Each record can be no more than 79 characters.

FTYPE The file type, which may be one of the following character strings:

CLST MOC3D listing file (separate from the MODFLOW listing file) [required].

MOC Main MOC3D input data file [required].

CRCH Concentrations in recharge [optional].

CNCA Separate output file containing concentration data in ASCII (text-only) format.
Frequency and format of printing controlled by NPNTCL and ICONFM
[optional].

CNCB Separate output file containing concentration data in binary format [optional].

VELA Separate output file with velocity data in ASCII format.  Frequency and format
of printing controlled by NPNTVL and IVELFM [optional].

VELB Separate output file with velocity data in binary format [optional].

PRTA Separate output file with particle locations printed in ASCII format.  Frequency
and format of printing controlled by NPNTPL [optional].

PRTB Separate output file with particle locations printed in binary format [optional].

OBS Observation wells input file [optional].

DATA For formatted files such as those required by the OBS package and for array
data separate from the main MOC3D input data file [optional].

DATA(BINARY) For formatted input/output files [optional].

NUNIT The FORTRAN unit number used to read from and write to files.  Any legal unit
number other than 97, 98, and 99 (which are reserved by MODFLOW) can be
used provided that it is not previously specified in the MODFLOW name file.

FNAME The name of the file.
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Main MOC3D Package Input (MOC)

Input for the method-of-characteristics (MOC3D) solute-transport package is read from the
unit specified in the transport name file.  The input consists of 18 separate records or data sets, as
described in detail below.  These data are used to specify information about the transport subgrid,
physical and chemical transport parameters, numerical solution variables, and output formats.
Output file controls for the MOC3D package are specified in the transport name file, described
previously.

FOR EACH SIMULATION:

 1.  Data:   HEDMOC A two-line character-string title describing the
simulation (80 text characters per line).

 2.  Data:   HEDMOC (continued)

 3.  Data:   ISLAY1   ISLAY2   ISROW1   ISROW2   ISCOL1   ISCOL2

ISLAY1 Number of first (uppermost) layer for transport.

ISLAY2 Last layer for transport.

ISROW1 First row for transport.

ISROW2 Last row for transport.

ISCOL1 First column for transport.

ISCOL2 Last column for transport.

Notes:

Transport may be simulated within a subgrid, which is a “window” within the primary
MODFLOW grid used to simulate flow.  Within the subgrid, the row and column spacing must be
uniform, but thickness can vary from cell to cell and layer to layer.  However, as discussed in the
section reviewing MOC3D assumptions, the range in thickness values (or product of thickness and
porosity) should be as small as possible.

 4.  Data:   NODISP    DECAY    DIFFUS

NODISP Flag for no dispersion (set NODISP=1 if no dispersion in problem; this will reduce
storage allocation).

DECAY First-order decay rate [1/T] (DECAY=0.0 indicates no decay occurs).

DIFFUS Effective molecular diffusion coefficient [L2/T].

Notes:
The decay rate (λ) is related to the half life (t1/2) of a constituent by λ = (ln 2)/t1/2.

The effective molecular diffusion coefficient (Dm) includes the effect of tortuosity.
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 5.  Data:   NPMAX    NPTPND

NPMAX Maximum number of particles available for particle tracking of advective transport
in MOC3D.  If set to zero, the model will calculate NPMAX according to the
following equation:

NPMAX = 2 × NPTPND × NSROW × NSCOL × NSLAY.

NPTPND Initial number of particles per cell in transport simulation (that is, at t = 0.0).  Valid
options for default geometry of particle placement include 1, 2, 3, or 4 for one-
dimensional transport simulation; 1, 4, 9, or 16 for two-dimensional transport
simulation; and 1, 8, or 27 for three-dimensional transport simulation.  The user
can also customize initial placement of particles by specifying NPTPND as a
negative number, in which case the minus sign is recognized as a flag to
indicate custom placement is desired.  In this case, the user must input local
particle coordinates as described below.

IF NPTPND IS NEGATIVE IN SIGN:

 6.  Data:   PNEWL    PNEWR    PNEWC

PNEWL Relative position in the layer (z) direction for initial placement of particle within any
finite-difference cell.

PNEWR Relative position in the row (y) direction for initial placement of particle.

PNEWC Relative position in the column (x) direction for initial placement of particle.

Notes:

The three new (or initial) particle coordinates are entered sequentially for each of the
NPTPND particles.  Each line contains the three relative local coordinates for the new particles, in
order of layer, row, and column.  There must be NPTPND lines of data, one for each particle.  The
local coordinate system range is from -0.5 to 0.5, and represents the relative distance within the cell
about the node location at the center of the cell, so that the node is located at 0.0 in each direction.

FOR EACH SIMULATION:

 7.  Data:   CELDIS    FZERO    INTRPL

CELDIS  Maximum fraction of cell dimension that particle may move in one step (typically,
0.5 ≤ CELDIS ≤ 1.0 ).

FZERO  If the fraction of active cells having no particles exceeds FZERO, the program will
automatically regenerate an initial particle distribution before continuing the simulation
(typically, 0.01 ≤ FZERO ≤ 0.05).

INTRPL Flag for interpolation scheme used to estimate velocity of particles.  The default
(INTRPL=1) will use a linear interpolation routine; if INTRPL=2, a scheme will be
implemented that uses bilinear interpolation in the row and column (j and i)
directions only (linear interpolation will still be applied in the k, or layer, direction).
(See section “Discussion—Choosing appropriate interpolation scheme.”)
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FOR EACH SIMULATION:

 8.  Data:   NPNTCL  ICONFM  NPNTVL  IVELFM  NPNTDL  IDSPFM  NPNTPL

NPNTCL  Flag for printing concentration data.  If NPNTCL=-2, concentration data will be
printed at the end of every stress period; if NPNTCL=-1, data will be printed at the
end of every flow time step; if NPNTCL=0, data will be printed at the end of the
simulation; if NPNTCL=N>0, data will be printed every Nth particle moves, and at
the end of the simulation.  Initial concentrations are always printed.

ICONFM  Specification for format of concentration data in main output file (see Table 17 and
MODFLOW documentation on array-reading utility modules).

NPNTVL  Flag for printing velocity data.  If NPNTVL=-1, velocity data will be printed at the end
of every stress period; if NPNTVL=0, data will be printed at the end of the
simulation; if NPNTVL=N>0, data will be printed every Nth flow time steps, and
at the end of the simulation.

IVELFM  Specification for format of velocity data, if being printed in main output file (see Table
17).

NPNTDL  Flag for printing dispersion equation coefficients that include cell dimension factors
(see section “Program Segments”).  If NPNTDL=-2, coefficients will be printed at
the end of every stress period; if NPNTDL=-1, coefficients will be printed at the
end of the simulation; if NPNTDL=0, coefficients will not be printed; if
NPNTDL=N>0, coefficients will be printed every Nth flow time step.

IDSPFM  Specification for format of dispersion equation coefficients (see Table 17).

NPNTPL Flag for printing particle locations in a separate output file (only used if file types
“PRTA” or “PRTB” appear in the MOC3D name file).  If neither “PRTA” or
“PRTB” is entered in the name file, NPNTPL will be read but ignored (so you must
always have some value specified here).  If either “PRTA” or “PRTB” is entered in
the name file, initial particle locations will be printed to the separate file first,
followed by particle data at intervals determined by the value of NPNTPL.  If
NPNTPL=-2, particle data will be printed at the end of every stress period; if
NPNTPL=-1, data will be printed at the end of every flow time step; if
NPNTPL=0, data will be printed at the end of the simulation; if NPNTPL=N>0,
data will be printed every Nth particle moves, and at the end of the simulation.

Table 17.  Formats associated with MOC3D print flags

Print flag Format Print flag Format Print flag Format

0 10G11.4 7 20F5.0 14 10F6.1

1 11G10.3 8 20F5.1 15 10F6.2

2 9G13.6 9 20F5.2 16 10F6.3

3 15F7.1 10 20F5.3 17 10F6.4

4 15F7.2 11 20F5.4 18 10F6.5

5 15F7.3 12 10G11.4

6 15F7.4 13 10F6.0
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FOR EACH SIMULATION:

 9.  Data:   CNOFLO  Concentration associated with inactive cells of subgrid (used for
output purposes only).

FOR EACH LAYER OF THE TRANSPORT SUBGRID:

10.  Data:   CINT(NSCOL,NSROW) Initial concentration.

   Module:   U2DREL*

FOR EACH SIMULATION, ONLY IF TRANSPORT SUBGRID DIMENSIONS ARE
SMALLER THAN FLOW GRID DIMENSIONS:

11.  Data:   CINFL(ICINFL) ′C  to be associated with fluid inflow across the
boundary of the subgrid.

   Module:   U1DREL*

Notes:
The model assumes that the concentration outside of the subgrid is the same within each

layer, so only one value of CINFL is specified for each layer within and adjacent to the subgrid.  That
is, the size of the array (ICINFL) is determined by the position of the subgrid with respect to the
entire (primary) MODFLOW grid.  If the transport subgrid has the same dimensions as the flow grid,
this parameter should not be included in the input data set.  If the subgrid and flow grid have the
same number of layers, but the subgrid has fewer rows or fewer columns, ICINFL=NSLAY.  Values
are also required if there is a flow layer above the subgrid and/or below the subgrid.  The order of
input is:  ′C  for first (uppermost) transport layer (if required); ′C  for each successive (deeper)
transport layer (if required); ′C  for layer above subgrid (if required); and ′C  for layer below
subgrid (if required).

FOR EACH SIMULATION

12.  Data:   NZONES Number of zone codes among fixed-head nodes in transport subgrid.

       IF NZONES > 0:

     Data:   IZONE    ZONCON

IZONE Value identifying a particular zone.
ZONCON Source concentration associated with nodes in the zone defined by IZONE above.

Notes:
Zones are defined within the IBOUND array in the BAS Package of MODFLOW by

specifying unique negative values for fixed-head nodes to be associated with separate fluid source
concentrations.  Each zone is defined by a unique value of IZONE and a concentration associated
with it (ZONCON).  There must be NZONES lines of data, one for each zone.  Note that values of
IZONE in this list must be negative for consistency with the definitions of fixed-head nodes in the
IBOUND array in the BAS Package.  If a negative value of IBOUND is defined in the BAS package
but is not assigned a concentration value here, MOC3D will assume that the source concentrations
associated with those nodes equal 0.0.

* Module is a standard MODFLOW input/output module.
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FOR EACH LAYER OF THE TRANSPORT SUBGRID:

13.  Data:   IGENPT(NSCOL,NSROW) Flag to treat fluid sources and sinks as
either “strong” or “weak.”

   Module:   U2DINT*

Notes:
Where fluid source is “strong,” new particles are added to replace old particles as they are

advected out of that cell.  Where a fluid sink is “strong,” particles are removed after they enter that
cell and their effect accounted for.  Where sources or sinks are weak, particles are neither added nor
removed, and the source/sink effects are incorporated directly into appropriate changes in particle
positions and concentrations.  If IGENPT=0, the node will be considered a weak source or sink; if
IGENPT=1, it will be a strong source or sink.  See section on “Special Problems” and discussion by
Konikow and Bredehoeft (1978).

IF NODISP ≠ 1 (If dispersion is included in simulation):

14.    Data:    ALONG(NSLAY)    Longitudinal dispersivity.
     Module:    U1DREL*

15.    Data:    ATRANH(NSLAY)   Horizontal transverse dispersivity.
     Module:    U1DREL*

16.    Data:    ATRANV(NSLAY)   Vertical transverse dispersivity.
     Module:    U1DREL*

FOR EACH SIMULATION:

17.    Data:    RF(NSLAY) Retardation factor (RF=1 indicates no retardation).
     Module:    U1DREL*

Notes:
If RF=0.0 in input, the code automatically resets it as RF=1.0 to indicate no retardation.

FOR EACH LAYER OF TRANSPORT SUBGRID:

18a.   Data:    THCK(NSCOL,NSROW)   Cell thickness.
     Module:    U2DREL*

18b.   Data:    POR(NSCOL,NSROW)    Cell porosity.
     Module:    U2DREL*

Notes:
The thickness and porosity are input as separate arrays for each layer of the transport

subgrid.  The sequence used in data set 18 is to first define the thickness of the first layer of the
transport subgrid, and then define the porosity of that same layer.  Next, that sequence is repeated for
all succeeding layers.  The product of thickness and porosity should not be allowed to vary greatly
among cells in the transport subgrid.

* Module is a standard MODFLOW input/output module.
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Source Concentration in Recharge File (CRCH)

Concentrations in recharge, if the recharge package is used, are read from a separate unit
specified in the MOC3D name file.  This is defined using the file type (Ftype) “CRCH.”

FOR EACH STRESS PERIOD, IF RECHARGE PACKAGE USED:

 1.  Data:   INCRCH    Flag to reuse or read new recharge concentrations.

Notes:
Read new recharge concentrations if INCRCH ≥ 0.  Reuse recharge concentrations from the

last stress period if INCRCH < 0.

 2.  Data:   CRECH(NSCOL,NSROW)  Source concentration associated with fluid
entering the aquifer in recharge.

   Module:   U2DREL*

Observation Well File (OBS)

Nodes of the transport subgrid can be designated as “observation wells.”  At each such
node, the time, head, and concentration after each move increment will be written to a separate
output file to facilitate graphical postprocessing of the calculated data.  The input file for specifying
observation wells is read if the file type (Ftype) “OBS” is included in the MOC3D name file.

FOR EACH SIMULATION, IF OBS PACKAGE USED:

 1.  Data:   NUMOBS    IOBSFL

NUMOBS  Number of observation wells.

IOBSFL  If IOBSFL = 0, well data are saved in NUMOBS separate files.  If IOBSFL>0, all
observation well data will be written to one file, and the file name and unit
number used for this file will be that of the first observation well in the list.

FOR EACH OBSERVATION WELL:

 2.  Data:   LAYER     ROW    COLUMN    UNIT

LAYER  Layer of observation well node.
ROW  Row of observation well node.
COLUMN  Column of observation well node.
UNIT   Unit number for output file.

Notes:
If NUMOBS>1 and IOBSFL = 0, you must specify a unique unit number for each observa-

tion well and match those unit numbers to DATA file types and file names in the MOC3D name file.
If IOBSFL>0, you must specify a unique unit number for the first observation well and match that
unit number to a DATA file type and file name in the MOC3D name file.

* Module is a standard MODFLOW input/output module.
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APPENDIX C:  ANNOTATED EXAMPLE INPUT DATA SET FOR
SAMPLE PROBLEM

This example input data set is the one used to generate the solution for the base case in the
one-dimensional steady-state flow problem.  Parameter values are indicated in Table 11 and
selected results are shown in fig. 18.  Several of the following data files (modflow.nam,
bas95.dat, bcf11.dat, and sip19.dat) are those required for MODFLOW-96, and their formats are
described by Harbaugh and McDonald (1996a).

In several of the data files shown below, the right side of some data lines includes a semi-
colon followed by text that describes the parameters for which values are given.  These comments
(including the semi-colon) are not read by the program because in free format the code will only
read the proper number of variables and ignore any subsequent information on that line.  This style
of commenting data files is optional, but users may find it helpful when viewing the content of data
files.

Following (enclosed in a border) are the contents of the MODFLOW name file for the
sample problem; explanations are noted outside of border:

File name:  modflow.nam

list    16     flow.out ← Designates main output file for MODFLOW

bas     95     bas95.dat ← Basic input data for MODFLOW

bcf     11     bcf11.dat ← Block-centered flow package

sip     19     sip19.dat ← Input for numerical solution of flow equation

conc    33     moc.nam ← Transport name file (turns transport “on”)

   ↑              ↑                     ↑
   1               2                     3

1  Ftype (that is, the type of file)
2  Unit number
3  File name (name chosen to reflect contents of file)
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Following (enclosed in a border) are the contents of the basic package input data file for the
MODFLOW simulation of the sample problem; explanations are noted outside of border:

File name:  bas95.dat
Finite:  Compare to Wexler program and MOC3D                  BAS Input ← 1
      NLAY      NROW      NCOL      NPER    ITMUNI ← 1
         1         1       122         1         1 ← 2
FREE ← 3
         0         1      ; IAPART,ISTRT ← 4
        95         1(25I3)                                 3   ; IBOUND ← 5
 -1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 -2 ← 5
      0.00                                            ; HNOFLO ← 6
        95       1.0(122F5.0)                     1   ; HEAD ← 7
  12.1 ← 7
 120.0           1        1.    ; PERLEN,NSTP,TSMULT ← 8
end ← 9

1  Two header lines of comments.  For convenience and clarity, the second line is used to label names of
parameters on subsequent line of file.

2  Flow grid dimensions, number of periods, and time units.
3  Options line (new in MODFLOW-96)
4  Flags for buffer array and drawdown calculations.
5  IBOUND identifiers (first line) and array
6  Head value assigned to inactive cells
7  Initial head information
8  MODFLOW time-step information
9  Final comment line

Following (enclosed in a border) are the contents of the block-centered flow package input data
file; explanations are noted outside of border:

File name:  bcf11.dat

  1  0   0.0 0 0.0 0 0    ; ISS, flags     BCF Input ← 1

         0               ; LAYCON ← 2

         0       1.0     ; TRPY ← 3

         0       0.1     ; DELR ← 4

         0       0.1     ; DELC ← 4

         0      0.01     ; TRAN ← 5

1  Flag for steady-state flow, flag for cell-by-cell flow terms, five flags related to wetting
2  Layer type
3  Anisotropy factor
4  Grid spacing information
5  Transmissivity data
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Following (enclosed in a border) are the contents of the strongly implicit procedure package input
data file; explanations are noted outside of border:

File name:  sip19.dat

       500         5     ; MXITER,NPARM            SIP Input ← 1

         1. 0.0000001      0      0.001 ; ACCL,ERR,IPCALC,WSEED ← 2

1  Maximum iterations, number of iteration parameters
2  Acceleration parameter, head change criterion, flag for seed, seed

Following (enclosed in a border) are the contents of the MOC3D name file for the sample problem;
explanations are noted outside of border:

File name:  moc.nam

clst    97     moc.out ← Designates main output file for MOC3D

moc     96     moc96.dat ← Main input data file for MOC3D

obs     44     obs44.dat ← Input data file for observation wells

data    45     obs.out ← Output file for observation well data

cnca    22     conc.txt ← Separate output file for conc. data (ASCII)

cncb    23     conc.bin ← Separate output file for conc. data (binary)

   ↑               ↑                     ↑
   1                2                     3

1  Ftype
2  Unit number
3  File name
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Following (enclosed in a border) are the contents of the main input data file for the MOC3D
simulation for the sample problem; selected explanations are noted outside of border:

File name:  moc96.dat
One-dimensional, Steady Flow, No Decay, Low Dispersion: BASE CASE  MOC3D Input ← 1
    ISLAY1    ISLAY2    ISROW1    ISROW2    ISCOL1    ISCOL2 ← 1
         1         1         1         1         2       121 ← 2
         0       0.0       0.0 ; NODISP, DECAY, DIFFUS ← 3
      2000         3           ; NPMAX, NPTPND ← 4
       0.5      0.05         2 ; CELDIS, FZERO, INTRPL ← 4
  0 0 0 -1 0 0 0 ; NPNTCL, ICONFM, NPNTVL, IVELFM, NPNTDL, IDSPFM, NPRTPL ← 5
       0.0       ; CNOFLO ← 6
         0       0.0 (122F3.0)                     ; initial concentration
         0       1.                                ; C' inflow
         2                                         ; NZONES to follow ← 7
        -1       1.0                               ; IZONE, ZONCON ← 7
        -2       0.0                               ; IZONE, ZONCON ← 7
         0         0                               ; IGENPT ← 8
         0       0.1                               ; longitudinal disp.
         0       0.1                               ; transverse disp. horiz.
         0       0.1                               ; transverse disp. vert.
         0       1.0                               ; retardation factor
         0       1.0                               ; thickness
         0       0.1                               ; porosity

1  Two header lines of comments.  For convenience and clarity, the second line is used to label names of
parameters on subsequent line of file.

2  Indices for transport subgrid
3  Flag for no dispersion, decay rate, diffusion coefficient
4  Particle information for advective transport
5  Print flags
6  Value of concentration associated with inactive cells
7  Concentrations associated with fixed-head nodes (fixed head nodes are defined in the IBOUND array in the

MODFLOW BAS package)
8  Flag for “strong” sources or sinks

Following (enclosed in a border) are the contents of the observation well input data file for the
sample problem; explanations are noted outside of border:

File name:  obs44.dat

  3  1                ;NUMOBS  IOBSFL   Observation well data ← 1

  1  1   2  45        ;layer, row, column, unit number ← 2

  1  1  42            ;layer, row, column ← 2

  1  1 112            ;layer, row, column ← 2

1  Number of observation wells, flag to print to one file or separate files
2  Node location and unit number for output file (linked to the Ftype DATA in MOC3D name file)
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FILE INFORMATION

APPENDIX D:  SELECTED OUTPUT FOR SAMPLE PROBLEM

This example output was generated from the input data sets listed in Appendix C for the
base case of the one-dimensional steady-state flow problem.  The line spacing and font sizes of the
output files have been modified in places to enhance the clarity of reproduction in this report.
Some repetitive lines of output have been deleted where indicated by an ellipsis (...).

Some brief annotations were added in a few places in this sample output listing to help the
reader understand the purpose of various sections of output.  These annotations are written in bold
italics to clarify that they are not part of the output file.

Following are the contents of the MOC3D main output file for the sample problem.

              U.S. GEOLOGICAL SURVEY
 METHOD-OF-CHARACTERISTICS SOLUTE TRANSPORT MODEL
           MOC3D (Version 1.0) 11/08/96

 MOC BASIC INPUT READ FROM UNIT
 LISTING FILE: moc.out   UNIT  97

 OPENING moc96.dat
 FILE TYPE: MOC   UNIT  96

 OPENING obs44.dat
 FILE TYPE: OBS   UNIT  44

 OPENING obs.out
 FILE TYPE: DATA   UNIT  45

 OPENING conc.txt
 FILE TYPE: CNCA   UNIT  22

 OPENING conc.bin
 FILE TYPE: CNCB   UNIT  23

 MOC BASIC INPUT READ FROM UNIT  96

2 TITLE LINES:
 One-dimensional, Steady Flow, No Decay, Low Dispersion: BASE CASE  MOC3D Input
     ISLAY1    ISLAY2    ISROW1    ISROW2    ISCOL1    ISCOL2

PROBLEM DESCRIPTORS, INCLUDING GRID CHARACTERISTICS AND PARTICLE INFORMATION:
      MAPPING OF SOLUTE TRANSPORT SUBGRID IN FLOW GRID:
 FIRST LAYER FOR SOLUTE TRANSPORT =   1      LAST LAYER FOR SOLUTE TRANSPORT  =   1
 FIRST ROW FOR SOLUTE TRANSPORT   =   1      LAST ROW FOR SOLUTE TRANSPORT    =   1
 FIRST COLUMN FOR SOLUTE TRANSPORT=   2      LAST COLUMN FOR SOLUTE TRANSPORT = 121

 UNIFORM DELCOL AND DELROW IN SUBGRID FOR SOLUTE TRANSPORT

 NO. OF LAYERS =    1   NO. OF ROWS =    1   NO. OF COLUMNS =  120
 NO SOLUTE DECAY
 NO MOLECULAR DIFFUSION
 MAXIMUM NUMBER OF PARTICLES (NPMAX) =     2000
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 INITIAL AND

 BOUNDARY

 CONDIT IONS

 FOR SOLUTE

 O U T P U T

 CONTROL

    14006 ELEMENTS IN X ARRAY ARE USED BY MOC
       12 ELEMENTS IN X ARRAY ARE USED BY OBS

 NUMBER OF PARTICLES INITIALLY IN EACH ACTIVE CELL (NPTPND) =   3
 PARTICLE MAP ("o" indicates particle location; shown as
              fractions of cell distances relative to node location):

       o------o------o

     -1/3     0     1/3

 INITIAL RELATIVE PARTICLE COORDINATES
   1    0.00000   0.00000  -0.33333
   2    0.00000   0.00000   0.00000
   3    0.00000   0.00000   0.33333

 CELDIS=     0.500
 FZERO =     0.050

INTRPL= 2;  BILINEAR INTERPOLATION SCHEME

NPNTCL=  0:     CONCENTRATIONS WILL BE WRITTEN AT THE END OF THE SIMULATION
MODFLOW FORMAT SPECIFIER FOR CONCENTRATION DATA: ICONFM=  0

NPNTVL=  0:         VELOCITIES WILL BE WRITTEN AT THE END OF THE SIMULATION
MODFLOW FORMAT SPECIFIER FOR      VELOCITY DATA: IVELFM= -1

NPNTDL=  0: DISP. COEFFICIENTS WILL NOT BE WRITTEN

NPNTPL=  0: PARTICLE LOCATIONS WILL NOT BE WRITTEN

CONCENTRATION WILL BE SET TO 0.00000E+00 AT ALL NO-FLOW NODES (IBOUND=0).

    INITIAL CONCENTRATION =  0.0000000E+00 FOR LAYER   1

VALUES OF C' REQUIRED FOR SUBGRID BOUNDARY ARRAY =    1
ONE FOR EACH LAYER IN TRANSPORT SUBGRID

ORDER OF C' VALUES: FIRST LAYER IN SUBGRID, EACH SUBSEQUENT LAYER,
LAYER ABOVE SUBGRID, LAYER BELOW SUBGRID:

  SUBGRID BOUNDARY ARRAY  =   1.000000

 NUMBER OF ZONES FOR CONCENTRATIONS AT FIXED HEAD CELLS =    2

 ZONE FLAG =   -1     INFLOW CONCENTRATION =   1.0000E+00
 ZONE FLAG =   -2     INFLOW CONCENTRATION =   0.0000E+00

         SINK-SOURCE FLAG =              0 FOR LAYER   1

 LONGITUDNL. DISPERSIVITY =  0.1000000

  HORIZ. TRANSVERSE DISP. =  0.1000000

   VERT. TRANSVERSE DISP. =  0.1000000

       RETARDATION FACTOR =   1.000000

        INITIAL THICKNESS =   1.000000     FOR LAYER   1

         INITIAL POROSITY =  0.1000000     FOR LAYER   1
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COORDINATES FOR   3 OBSERVATION WELLS:

  WELL #   LAYER     ROW  COLUMN    UNIT
       1       1       1       2      45
       2       1       1      42      45
       3       1       1     112      45
ALL OBSERVATION WELL DATA WILL BE WRITTEN ON UNIT  45

CONCENTRATION DATA WILL BE SAVED ON UNIT  22 IN ASCII FORMAT
CONCENTRATION DATA WILL BE SAVED ON UNIT  23 IN BINARY FORMAT

 TOTAL NUMBER OF PARTICLES GENERATED (GENPT) =       360
 TOTAL NUMBER OF ACTIVE NODES (NACTIV) =       120
 MAX. NUMBER OF CELLS THAT CAN BE VOID OF PARTICLES (NZCRIT) =      6
     (IF NZCRIT EXCEEDED, PARTICLES ARE REGENERATED)

CALCULATED VELOCITIES (INCLUDING EFFECTS OF RETARDATION, IF PRESENT):

EFFECTIVE MEAN SOLUTE VELOCITIES IN COLUMN DIRECTION
                          AT NODES

1
  VELOCITY (COL)   IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

           1          2          3          4          5          6          7          8          9      ...
 ............................................................................................................
   1   9.917E-02  9.917E-02  9.917E-02  9.917E-02  9.917E-02  9.917E-02  9.917E-02  9.917E-02  9.917E-02  ...

...

         111        112        113        114        115        116        117        118        119        120
 ..............................................................................................................
   1   9.917E-02  9.917E-02  9.917E-02  9.917E-02  9.917E-02  9.917E-02  9.917E-02  9.917E-02  9.917E-02  9.917E-02

EFFECTIVE MEAN SOLUTE VELOCITIES IN ROW DIRECTION
                          AT NODES

1
  VELOCITY (ROW)   IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

           1          2          3          4          5          6          7          8          9      ...
 ............................................................................................................
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  ...

...

         111        112        113        114        115        116        117        118        119        120
 ..............................................................................................................
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00

EFFECTIVE MEAN SOLUTE VELOCITIES IN LAYER DIRECTION
                          AT NODES

1
  VELOCITY (LAYER) IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

           1          2          3          4          5          6          7          8          9      ...
 ............................................................................................................
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  ...

...

         111        112        113        114        115        116        117        118        119        120
 ..............................................................................................................
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00
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ONE LINE PRINTED

FOR EACH MOVE TO

TRACK PROGRESS

AND NUMBER OF

ACTIVE PARTICLES

          STABILITY CRITERIA --- M.O.C.

     MAXIMUM FLUID VELOCITIES:  C-VEL =  9.92E-02     R-VEL =  1.00E-20     L-VEL =  1.00E-18
 MINIMUM TIME TO TRAVEL THCK =  1.00E+18

 TIMV =  5.04E-01     NTIMV  =    239

     MAX. C-VEL. IS CONSTRAINT AND OCCURS BETWEEN NODES (   2,   1,   1) AND (   1,   1,   1)

 TIMD =  5.04E-01     NTIMD  =    239

   THERE ARE NO FLUID SOURCES IN THE TRANSPORT SUBGRID

 NUMBER OF MOVES FOR ALL STABILITY CRITERIA:
    CELDIS  DISPERSION   INJECTION
       239         239           1

 CELDIS IS LIMITING
 DISPERSION IS LIMITING

          NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP  =  239
            MOVE TIME STEP (TIMV)=  5.020920634270E-01

(NUMERICAL SOLUTION TO TRANSPORT EQUATION STARTS AT THIS POINT)

  NP      =     360 AT START OF MOVE        IMOV     =          1
  NP      =     360 AT START OF MOVE        IMOV     =          2
  NP      =     360 AT START OF MOVE        IMOV     =          3
  NP      =     360 AT START OF MOVE        IMOV     =          4
  NP      =     360 AT START OF MOVE        IMOV     =          5
  NP      =     360 AT START OF MOVE        IMOV     =          6

...

  NP      =     360 AT START OF MOVE        IMOV     =        234
  NP      =     360 AT START OF MOVE        IMOV     =        235
  NP      =     360 AT START OF MOVE        IMOV     =        236
  NP      =     360 AT START OF MOVE        IMOV     =        237
  NP      =     360 AT START OF MOVE        IMOV     =        238
  NP      =     360 AT START OF MOVE        IMOV     =        239
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ITEMIZED

BUDGETS FOR

SOLUTE FLUXES

           SOLUTE BUDGET AND MASS BALANCE FOR TRANSPORT SUBGRID

      VALUES CALCULATED AT END OF:
               STRESS PERIOD    1  OUT OF    1
              FLOW TIME STEP    1  OUT OF    1
    TRANSPORT TIME INCREMENT  239  OUT OF  239

      ELAPSED TIME =  1.2000E+02

      CHEMICAL MASS IN STORAGE:
          INITIAL:   MASS DISSOLVED =  0.0000E+00     MASS SORBED =  0.0000E+00
          PRESENT:   MASS DISSOLVED =  1.1341E-01     MASS SORBED =  0.0000E+00

               CHANGE IN MASS STORED = -1.1341E-01

     CUMULATIVE SOLUTE MASS  (L**3)(M/VOL)
     ----------------------

          IN:
          ---
                     DECAY =  0.0000E+00
             CONSTANT HEAD =  0.0000E+00
          SUBGRID BOUNDARY =  1.1901E-01
                  RECHARGE =  0.0000E+00
                     WELLS =  0.0000E+00
                    RIVERS =  0.0000E+00
                    DRAINS =  0.0000E+00
     GENL. HEAD-DEP. BDYS. =  0.0000E+00
        EVAPOTRANSPIRATION =  0.0000E+00

                  TOTAL IN =  1.1901E-01

         OUT:
         ----
                     DECAY =  0.0000E+00
             CONSTANT HEAD =  0.0000E+00
          SUBGRID BOUNDARY = -5.6659E-03
                  RECHARGE =  0.0000E+00
                     WELLS =  0.0000E+00
                    RIVERS =  0.0000E+00
                    DRAINS =  0.0000E+00
     GENL. HEAD-DEP. BDYS. =  0.0000E+00
        EVAPOTRANSPIRATION =  0.0000E+00

                 TOTAL OUT = -5.6659E-03

         SOURCE-TERM DECAY =  0.0000E+00

                  RESIDUAL = -6.7927E-05

       PERCENT DISCREPANCY = -0.5708E-01 RELATIVE TO MASS FLUX IN
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Following (enclosed in a border) are the abridged contents of the observation well output file for
the sample problem.  This output file was generated using the option to write all observation well
data to a single file (IOBSFL = 1).

File name:  obs.out

 "OBSERVATION WELL DATA"
 "TIME, THEN HEAD AND CONC. FOR EACH OBS. WELL AT NODE (K,I,J)"
 "  TIME:      H & C AT   1,  1,  2    H & C AT   1,  1, 42    H & C AT   1,  1,112 "
 5.0209E-01   1.190E+01   2.503E-01   7.934E+00   0.000E+00   9.917E-01   0.000E+00
 1.0042E+00   1.190E+01   6.539E-01   7.934E+00   0.000E+00   9.917E-01   0.000E+00
 1.5063E+00   1.190E+01   5.994E-01   7.934E+00   0.000E+00   9.917E-01   0.000E+00
 2.0084E+00   1.190E+01   7.914E-01   7.934E+00   0.000E+00   9.917E-01   0.000E+00
 2.5105E+00   1.190E+01   7.747E-01   7.934E+00   0.000E+00   9.917E-01   0.000E+00
 3.0126E+00   1.190E+01   8.578E-01   7.934E+00   0.000E+00   9.917E-01   0.000E+00
...
...
 1.1849E+02   1.190E+01   1.000E+00   7.934E+00   1.000E+00   9.917E-01   6.835E-01
 1.1900E+02   1.190E+01   1.000E+00   7.934E+00   1.000E+00   9.917E-01   6.900E-01
 1.1950E+02   1.190E+01   1.000E+00   7.934E+00   1.000E+00   9.917E-01   7.045E-01
 1.2000E+02   1.190E+01   1.000E+00   7.934E+00   1.000E+00   9.917E-01   7.125E-01

Following (enclosed in a border) are the partial contents of the separate output file for concentration
in ASCII format.  Initial concentrations are abridged; complete set of final concentrations are
shown.

File name:  conc.txt

CONCENTRATIONS AT NODES IN SUBGRID.  IMOV=    0, NSTP=    0, NPER=    1, SUMTCH=0.0000E+00
 SUBGRID LAYER            1
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

...

 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

CONCENTRATIONS AT NODES IN SUBGRID.  IMOV=  239, NSTP=    1, NPER=    1, SUMTCH=1.2000E+02
 SUBGRID LAYER            1
 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 9.9999E-01
 9.9999E-01 9.9999E-01 9.9999E-01 9.9998E-01 9.9998E-01 9.9997E-01 9.9997E-01 9.9996E-01 9.9994E-01 9.9993E-01
 9.9990E-01 9.9988E-01 9.9984E-01 9.9980E-01 9.9975E-01 9.9968E-01 9.9960E-01 9.9950E-01 9.9938E-01 9.9922E-01
 9.9904E-01 9.9882E-01 9.9854E-01 9.9821E-01 9.9782E-01 9.9735E-01 9.9679E-01 9.9611E-01 9.9532E-01 9.9439E-01
 9.9330E-01 9.9201E-01 9.9050E-01 9.8877E-01 9.8678E-01 9.8449E-01 9.8182E-01 9.7876E-01 9.7534E-01 9.7149E-01
 9.6710E-01 9.6207E-01 9.5647E-01 9.5035E-01 9.4358E-01 9.3594E-01 9.2738E-01 9.1810E-01 9.0818E-01 8.9737E-01
 8.8536E-01 8.7219E-01 8.5826E-01 8.4369E-01 8.2811E-01 8.1104E-01 7.9266E-01 7.7364E-01 7.5433E-01 7.3423E-01
 7.1254E-01 6.8920E-01 6.6520E-01 6.4163E-01 6.1868E-01 5.9552E-01 5.7147E-01 5.4711E-01 5.2527E-01 5.1194E-01


