References Cited

  • Scroll to top of this topic Scroll to Top of Page

  • Print the current topic Print Topic

  • No expanding elements on this page Show/Hide Expanders

Andersen, P.F., 1993. A manual of instructional problems for the USGS MODFLOW model. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, P.O. Box 1198, Ada, Oklahoma, 74820 EPA/600/R-93/010. 280 p. http://nepis.epa.gov/Exe/ZyNET.exe/2000BHNI.txt?ZyActionD=ZyDocument&Client=EPA&Index=2011%20Thru%202015|1995%20Thru%201999|1981%20Thru%201985|2006%20Thru%202010|1991%20Thru%201994|1976%20Thru%201980|2000%20Thru%202005|1986%20Thru%201990|Prior%20to%201976|Hardcopy%20Publications&Docs=&Query=manual%20instructional%20problems%20USGS%20MODFLOW%20model&Time=&EndTime=&SearchMethod=2&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A\ZYFILES\INDEX%20DATA\91THRU94\TXT\00000008\2000BHNI.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h|-&MaximumDocuments=15&FuzzyDegree=0&ImageQuality=r85g16/r85g16/x150y150g16/i500&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x

Anderson, M.P., and Woessner, W.W., 1991, Applied Groundwater Modeling—Simulation of Flow and Advective Transport: San Diego, Academic Press, Inc., 381 p.

Anderson, M.P., Woessner, W.W. and Hunt, R.J., 2015. Applied groundwater modeling: simulation of flow and advective transport. Academic press. 564 p.

Autodesk, Inc., AutoCAD 2000 DXF Reference: Autodesk, Inc. accessed July 21, 2005, at http://www.autodesk.com/techpubs/autocad/acad2000/dxf/.

Bakker, M., Schaars, F., Hughes, J.D., Langevin, C.D., Dausman, A.M., 2013, Documentation of the seawater intrusion (SWI2) package for MODFLOW: U.S. Geological Survey Techniques and Methods, book 6, chap. A46, 47 p., http://pubs.usgs.gov/tm/6a46/.

Banta, E.R., 2011, ModelMate—A graphical user interface for model analysis: U.S. Geological Survey Techniques and Methods 6–E4, 31 p., https://doi.org/10.3133/tm6E4

Banta, E.R., and Provost, A.M., 2008, User guide for HUFPrint, a tabulation and visualization utility for the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW: U.S. Geological Survey Techniques and Methods 6-A27, 13 p. https://pubs.usgs.gov/tm/06A27/

Bedekar, Vivek, Morway, E.D., Langevin, C.D., and Tonkin, Matt, 2016, MT3D-USGS version 1: A U.S. Geological Survey release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW: U.S. Geological Survey Techniques and Methods 6-A53, 69 p., http://dx.doi.org/10.3133/tm6A53.

Carle, S.F., 1999, T-PROGS: Transition Probability Geostatistical Software, Version 2.1, University of California, Davis, 84 p.

Charlton, S.R. and Parkhurst, D.L., 2002, PHREEQCI—A graphical user interface to the geochemical model PHREEQC: U.S. Geological Survey Fact Sheet FS-031-02, 2 p.

Cuthill, E. and McKee, J. 1969 Reducing the bandwidth of sparse symmetric matrices In Proc. 24th Nat. Conf. ACM, pages 157–172.

Doherty, J., 2003. Ground water model calibration using pilot points and regularization. Groundwater 41 (2), 170-177. https://dx.doi.org/10.1111/j.1745-6584.2003.tb02580.x.

Doherty, J., 2015. Calibration and uncertainty analysis for complex environmental models. Watermark Numerical Computing, Brisbane, Australia. 227pp. ISBN: 978-0-9943786-0-6 Downloadable from www.pesthomepage.org.

Doherty, J., Fienen, M.N., and Hunt, R.J., 2010, Approaches to highly parameterized inversion:  Pilot-point theory, guidelines, and research directions: USGS Scientific Investigations Report 2010–5168, 36 p. https://doi.org/10.3133/sir20105168.

Doherty, J., and Hunt, R.J., 2010, Approaches to highly parameterized inversion: A guide to using PEST for groundwater-model calibration: USGS Scientific Investigations Report 2010–5169, 59 p. https://doi.org/10.3133/sir20105169.

Environmental Systems Research Institute, Inc., 1998, ESRI Shapefile technical description: Environmental Systems Research Institute, Inc., Redlands, Calif., 28 p., accessed July 21, 2005, at http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

Fienen, M.N., Muffels, C.T., Hunt, R.J., 2009. On constraining pilot point calibration with regularization in PEST. Groundwater 47 (6), 835-844. https://dx.doi.org/10.1111/j.1745-6584.2009.00579.x.

Goode, D.J., 2016, Map visualization of groundwater withdrawals at the sub-basin scale: Hydrogeology Journal, v. 24, no. 4, p. 1057-1065.

Geuzaine C., Remacle, J.-F. 2009. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79(11), pp. 1309-1331.

Haitjema, H.M., 2006. The role of hand calculations in ground water flow modeling. Groundwater 44 (6): 786-791. http://dx.doi.org/10.1111/j.1745-6584.2006.00189.x.

Hanson, R.T., Boyce, S.E., Schmid, Wolfgang, Hughes, J.D., Mehl, S.M., Leake, S.A., Maddock, Thomas, III, and Niswonger, R.G., 2014, One-Water Hydrologic Flow Model (MODFLOW-OWHM): U.S. Geological Survey Techniques and Methods 6–A51, 120 p., https://dx.doi.org/10.3133/tm6A51.

Harbaugh, A.W., 1990, A computer program for calculating subregional water budgets using results from the U.S. Geological Survey modular three-dimensional ground-water flow model: U.S. Geological Survey Open-File Report 90-392, 46 p. http://water.usgs.gov/nrp/gwsoftware/zonebud3/zonebudget3.html

Harbaugh, A.W., 2005, MODFLOW-2005, the U.S. Geological Survey modular ground-water model—The ground-water flow process: U.S. Geological Survey Techniques and Methods 6–A16, variously paged. http://pubs.er.usgs.gov/publication/tm6A16

Henry, H.R., 1964, Effects of dispersion on salt encroachment in coastal aquifers: in Sea Water in Coastal Aquifers: U.S. Geological Survey Water-Supply Paper 1613-C, p. C71-C84. http://pubs.er.usgs.gov/publication/wsp1613C

Hill, M.C., Banta, E.R., Harbaugh, A.W. and Anderman, E.R., 2000. Geological Survey Modular Ground‐Water Model—User Guide to the Observation, Sensitivity, and Parameter‐Estimation Processes and Three Post‐Processing Programs. US Geological Survey Open‐File Report 00–184. https://doi.org/10.3133/ofr00184

Hill, M.C., and Tiedeman, C.R. 2007, Effective Groundwater Model Calibration with Analysis of Data, Sensitivities, Predictions, and Uncertainty: Hoboken, New Jersey, Wiley Interscience, 455 p.

Hornberger, G.Z., and Konikow, L.F., 1998, Addition of MOC3D solute- transport capability to the U.S. Geological Survey MODFLOW-96 graphical-user interface using Argus Open Numerical Environments: U.S. Geological Survey Open-File Report 98–188, 30 p. http://pubs.er.usgs.gov/publication/ofr98188

Hsieh, P.A., and Winston, R.B., 2002, User’s guide to Model Viewer, a program for three-dimensional visualization of ground-water model results: U.S. Geological Survey Open-File Report 02–106, 18 p.

Hughes, J.D., Langevin, C.D., and Banta, E.R., 2017, Documentation for the MODFLOW 6 framework: U.S. Geological Survey Techniques and Methods, book 6, chap. A57, 40 p., https://doi.org/10.3133/tm6A57.

Hunt, R.J., Feinstein, D.T., Pint, C.D., and Anderson, M.P., 2006, The importance of diverse data types to calibrate a watershed model of the Trout Lake Basin, northern Wisconsin. Journal of Hydrology 321(1-4): 286-296, http://dx.doi.org/10.1016/j.jhydrol.2005.08.005.

Hunt, R.J., Fienen, M.N., and White, J.T., 2019, Revisiting “An exercise in groundwater model calibration and prediction”:  Insights and new directions. Groundwater 58(2): 168-182.  https://doi.org/10.1111/gwat.12907

Hunt, R.J., White, J.T., Duncan, L., Haugh, C., and Doherty, J., 2021, Evaluating lower computational burden approaches for calibration of large environmental models. Groundwater https://doi.org/10.1111/gwat.13106.

Kipp, K.L., 1987, HST3-D—A computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems: U.S. Geological Survey Water-Resources Investigations Report 86–4095, 517 p.

_____, 1997, Guide to the revised heat and solute transport simulator HST3-D—Version 2: U.S. Geological Survey Water-Resources Investigations Report 97–4157, 149 p.

Konikow, L.F., 1977, Modeling chloride movement in the alluvial aquifer at the Rocky Mountain Arsenal, Colorado: U.S. Geological Survey Water-Supply Paper 2044, 43 p.http://pubs.er.usgs.gov/publication/wsp2044

Langevin, C.D., Hughes, J.D., Banta, E.R., Niswonger, R.G., Panday, Sorab, and Provost, A.M., 2017, Documentation for the MODFLOW 6 Groundwater Flow Model: U.S. Geological Survey Techniques and Methods, book 6, chap. A55, 197 p., https://doi.org/10.3133/tm6A55.

Leake, S.A., and Galloway, D.L., 2007, MODFLOW ground-water model—User guide to the Subsidence and Aquifer-System Compaction Package (SUB-WT) for water-table aquifers: U.S. Geological Survey, Techniques and Methods 6–A23, 42 p.

Light, A., and P.J. Bartlein, 2004, The end of the rainbow? Color schemes for improved data graphics: Eos, v. 85, no. 40, 385-391.

Light, A., and P.J. Bartlein, 2005, Reply: Eos, v.86, no. 20, p 196.

Mehl, S.W. and Hill, M.C., 2005, MODFLOW-2005, the U.S. Geological Survey modular ground-water model -- documentation of shared node local grid refinement (LGR) and the Boundary Flow and Head (BFH) Package: U.S. Geological Survey Techniques and Methods 6-A12, 68 p.

Mehl, S.W. and Hill, M.C., 2007, MODFLOW-2005, the U.S. Geological Survey modular ground-water model -- documentation of the multiple-refined-areas capability of local grid refinement (LGR) and the Boundary Flow and Head (BFH) Package: U.S. Geological Survey Techniques and Methods 6-A21. 13 p.

Mehl, S., and Hill, M.C., 2010a, Grid-size dependence of Cauchy boundary conditions used to simulate stream-aquifer interactions: Advances in Water Resources, v. 33, p 430-442.

Mehl, S.W. and Hill, M.C., 2010b, MODFLOW-LGR -- Modifications to the Streamflow-Routing Package (SFR2) to Route Streamflow through Locally Refined Grids: U.S. Geological Survey Techniques and Methods 6-A34, 15 p.

Mehl, S.W., and Hill, M.C., 2013, MODFLOW–LGR --Documentation of ghost node local grid refinement (LGR2) for multiple areas and the boundary flow and head (BFH2) package: U.S. Geological Survey Techniques and Methods book 6, chap. A44, 43 p.

Merritt, M.L., and Konikow, L.F., 2000, Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground-water flow model and the MOC3D solute-transport model: U.S. Geological Survey Water-Resources Investigations Report 00–4167, 146 p.

Niswonger, R.G., Panday, Sorab, and Ibaraki, Motomu, 2011, MODFLOW-NWT, A Newton formulation for MODFLOW-2005: U.S. Geological Survey Techniques and Methods 6-A37, 44 p.

Parkhurst, D.L., 1995, User’s guide to PHREEQC—A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 95–4227, 143 p.

Parkhurst, D.L., and Appelo, C.A.J., 1999, User’s guide to PHREEQC (Version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99–4259, 312 p.

Parkhurst, D.L., Kipp, K.L., Engesgaard, Peter, and Charlton, S.R., 2004, PHAST—A program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions: U.S. Geological Survey Techniques and Methods 6–A8, 154 p.

Pinder, G.F. and J.D. Bredehoeft, 1968. Application of the digital computer for aquifer evaluation. Water Resources Research, Vol. 4, pp. 1069–1093. http://onlinelibrary.wiley.com/doi/10.1029/WR004i005p01069/abstract

Poeter, E.P. and Hill, M.C., 1998, Documentation of UCODE, a computer code for universal inverse modeling: U.S. Geological Survey Water-Resources Investigations Report 98–4080, 116 p.

Poeter, E.P., Hill, M.C., Banta, E.R., Mehl, Steffen, and Christensen, Steen, 2005, UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation: U.S. Geological Survey Techniques and Methods 6–A11, 283 p.

Poeter, Eileen P., Mary C. Hill, Dan Lu, Claire R. Tiedeman, and Steffen Mehl, 2014, UCODE_2014, with new capabilities to define parameters unique to predictions, calculate weights using simulated values, estimate parameters with SVD, evaluate uncertainty with MCMC, and More: Integrated Groundwater Modeling Center Report Number: GWMI 2014-02.

Pollock, D.W., 1994, User's Guide for MODPATH/MODPATH-PLOT, Version 3: A particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 94–464, 6 ch.

Pollock, D.W., 2012, User guide for MODPATH version 6—A particle-tracking model for MODFLOW: U.S. Geological Survey Techniques and Methods, book 6, chap. A41, 58 p.

Pollock, D.W., 2016, User guide for MODPATH Version 7 -- A particle-tracking model for MODFLOW: U.S. Geological Survey Open-File Report 2016-1086, 35 p., http://dx.doi.org/10.3133/ofr20161086.

Provost, A.M., and Voss, C.I., 2019, SUTRA, a model for saturated-unsaturated, variable-density groundwater flow with solute or energy transport—Documentation of generalized boundary conditions, a modified implementation of specified pressures and concentrations or temperatures, and the lake capability: U.S. Geological Survey Techniques and Methods, book 6, chap. A52, 62 p., https://doi.org/10.3133/tm6A52.

Provost, A.M., Langevin, C.D., and Hughes, J.D., 2017, Documentation for the "XT3D" option in the Node Property Flow (NPF) Package of MODFLOW 6: U.S. Geological Survey Techniques and Methods, book 6, chap. A56, 40 p., https://doi.org/10.3133/tm6A56.

Prudic, D.E., Konikow, L.F., and Banta, E.R., 2004, A new Streamflow-Routing (SFR1) Package to simulate stream-aquifer interaction with MODFLOW-2000: U.S. Geological Survey Open-File Report 2004–1042, 96 p.

Renka, R.J.,1996a, ALGORITHM 751. TRIPACK—Constrained two-dimensional Delaunay triangulation package: ACM Transactions on Mathematical Software, v. 22, no. 1, p. 1–8.

Renka, R.J.,1996b, ALGORITHM 752. SRFPACK—Software for scattered data fitting with a constrained surface under tension: ACM Transactions on Mathematical Software, v. 22, no. 1, p. 9–17.

Sarrate, J., and Huerta, A., 2000, Efficient unstructured quadrilateral mesh generation. Int. J. Numer. Meth. Engng., 49: 1327–1350. doi: 10.1002/1097-0207(20001210)49:10<1327::AID-NME996>3.0.CO;2-L http://upcommons.upc.edu/e-prints/bitstream/2117/8269/1/sarrate_efficient_2000.pdf

Schmid, Wolfgang, Hanson, R.T., Maddock, Thomas, III, Leake, S.A., 2006, User guide for the farm process (FMP1) for the U.S. Geological Survey’s modular three-dimensional finite-difference ground-water flow model, MODFLOW-2000: U.S. Geological Survey Techniques and Methods 6-A17, 127 p. (http://pubs.er.usgs.gov/publication/tm6A17)

Schmid, Wolfgang, and Hanson R.T., 2009, The Farm Process Version 2 (FMP2) for MODFLOW-2005 - Modifications and Upgrades to FMP1: U.S. Geological Survey Techniques in Water Resources Investigations, Book 6, Chapter A32, 102p. (http://pubs.er.usgs.gov/publication/tm6A32)

Shoemaker, W.B., Kuniansky, E.L., Birk, S., Bauer, S., and Swain, E.D., 2007, Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005: U.S. Geological Survey Techniques and Methods, Book 6, Chapter A24, 50 p.

Sloan, S.W., and Randolph, M.F., 1983, Automatic element reordering for finite element analysis with frontal solution schemes. International Journal for Numerical Methods in Engineering, v. 19, p. 1153-1181.

Snyder, J.P., 1987, Map projections—A working manual: U.S. Geological Survey Professional Paper 1395, 383 p.

Stephenson, D.B., 2005, Comment on "Color schemes for improved data graphics" by A. Light and P.J. Bartlein: Eos, v. 86, no. 20, p 196.

Voss, C. I., and Provost, A.M., 2002 (Version of September 22, 2010), SUTRA, A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport, U.S. Geological Survey Water-Resources Investigations Report 02-4231, 291 p. http://pubs.er.usgs.gov/publication/wri024231

Wang, H.F., and Anderson, M.P., 1982.Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods. Academic Press, Sandiago, CA, 237 p.

White, J.T., Hunt, R.J., Fienen, M.N., and Doherty, J.E., 2020, Approaches to Highly Parameterized Inversion: PEST++ Version 5, a Software Suite for Parameter Estimation, Uncertainty Analysis, Management Optimization and Sensitivity Analysis: U.S. Geological Survey Techniques and Methods 7C26, 51 p., https://doi.org/10.3133/tm7C26.

Winston, R.B., 2000, Graphical user interface for MODFLOW, Version 4: U.S. Geological Survey Open-File Report 00–315, 27 p.

Winston, R.B., 2006, GoPhast—A graphical user interface for PHAST: U.S. Geological Survey Techniques and Methods 6–A20, 98 p.

Winston, R.B., 2009, ModelMuse-A graphical user interface for MODFLOW-2005 and PHAST: U.S. Geological Survey Techniques and Methods 6-A29, 52 p.

Winston, R.B., 2014, Modifications made to ModelMuse to add support for the Saturated-Unsaturated Transport model (SUTRA): U.S. Geological Survey Techniques and Methods, book 6, chap. A49, 6 p., http://dx.doi.org/10.3133/tm6a49.

Winston, R.B., 2019, ModelMuse version 4—A graphical user interface for MODFLOW 6: U.S. Geological Survey Scientific Investigations Report 2019–5036, 10 p., https://doi.org/10.3133/sir20195036.

Winston, R.B., and Goode, D.J., 2017, Visualization of groundwater withdrawals: U.S. Geological Survey Open-File Report 2017–1137, 8 p., https://doi.org/10.3133/ofr20171137.

Zheng, Chunmiao, and P. Patrick Wang, 1999, MT3DMS, A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user¡¯s guide, U.S. Army Engineer Research and Development Center Contract Report SERDP-99-1, Vicksburg, MS, 202 p.