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Mission and 
Organizational Needs
The U.S. Geological Survey (USGS) is 
a multidisciplinary agency that pro-
vides assessments of natural resources 
(geological, hydrological, biological), 
the disturbances that affect those 
resources, and the disturbances that 
affect the built environment, natural 
landscapes, and human society. Until 
now, USGS map products have been 
generated and distributed primarily as 
2-D maps, occasionally providing cross 
sections or overlays, but rarely allowing 
the ability to characterize and under-
stand 3-D systems, how they change 
over time (4-D), and how they inter-
act. And yet, technological advances 
in monitoring natural resources and 
the environment, the ever-increasing 
diversity of information needed for 
holistic assessments, and the intrinsic 
3-D/4-D nature of the information 
obtained increases our need to gener-
ate, verify, analyze, interpret, confirm, 
store, and distribute its scientific infor-
mation and products using 3-D/4-D 
visualization, analysis, modeling tools, 
and information frameworks. 

Today, USGS scientists use 3-D/4-D 
tools to (1) visualize and interpret geo-
logical information, (2) verify the data, 
and (3) verify their interpretations and 
models. 3-D/4-D visualization can be 
a powerful quality control tool in the 
analysis of large, multidimensional 
data sets. USGS scientists use 3-D/4-D 
technology for 3-D surface (i.e., 2.5-D) 
visualization as well as for 3-D volu-
metric analyses. Examples of geological 
mapping in 3-D include characteriza-
tion of the subsurface for resource 
assessments, such as aquifer character-
ization in the central United States, and 
for input into process models, such as 
seismic hazards in the western United 
States.

The USGS seeks to expand its 3-D/4-D 
capabilities in monitoring, interpret-
ing, and distributing natural resource 
information, both by adopting and/
or developing new 3-D/4-D tools and 
frameworks and by promoting and 
enabling greater use of available tech-
nology. 

Everything that shapes the Earth or 
affects its functions does so in 3-D 
space: water flowing over rocks, 
through aquifers, or as ice in glaciers; 
plants growing up into the atmosphere 
and down into the soil; the move-
ment of animal life and pathogens 
within ecosystems; the movement of 
tectonic plates driven by deep con-
vection beneath the crust; volcanic 
eruptions, floods, debris flows, and 
fires; the extraction, sequestration or 
migration of carbon, nutrients, con-
taminants, biota, minerals, energy, 
and other resources. Until recently, 
the computational and visualization 
power necessary to understand these 
complex systems was limited to a 
handful of supercomputing centers or 
industrious scientists. This situation 
has now changed: personal computers 
equipped with fast video cards and vast 
storage allow wide access to 3-D/4-D 
tools and visualization.

Business Model
The annual USGS budget is approxi-
mately US$1 billion from federal 
appropriations. The bureau also 
receives about US$500 million from 
outside entities such as other federal 
agencies, foreign governments, inter-
national agencies, U.S. states, and local 
government sources. More than half of 
the outside funding supports collab-
orative work in water resources across 
the country, and the balance of the 
funding supports work in the geologi-
cal, biological, and geographic sciences 
and information delivery.

The USGS has a workforce of approxi-
mately 9,000 distributed in three large 
centers (Reston, Virginia; Denver, 
Colorado; Menlo Park, California) and 
in numerous smaller science centers 
across the 50 states. Scientific work 
is organized into “projects” run by 
principal investigators (PIs) who have 
significant latitude in planning and 
conducting research, including acqui-
sition of the resources (e.g., equipment, 
computers, software) needed to carry 
out their studies. Due to the distributed 
nature of management and personnel 
and due to the independence of the 
PIs, finding common organizational 
solutions is often a challenge. For 
example, concerns regarding optimal 
use of 3-D/4-D technology within the 
USGS include these:

-
sive.

coordinated and sometimes does 
not buy or share software licenses 
as a group. Buying power is not cur-
rently maximized.

but there are few forums for sharing 
ideas and expertise.

technologies is difficult.

Geological Setting
The United States has a large variety of 
geological terranes that record more 
than 2 billion years of geological his-
tory (Figure 13-1). The complexity of 
U.S. geology ranges from horizontal 
stacking of sediments in the Great 
Plains, Colorado Plateau, and Coastal 
Plain Physiographic Provinces to over-
printing of compressional, extensional, 
and transform tectonics of the Pacific 
Border Province of the western United 
States (Figure 13-1). These varied geo-
logical terranes present a challenge to 



70 Circular 578 Illinois State Geological Survey

3-D modeling of divergent and con-
vergent plate boundaries, strike-slip 
fault zones, and the stable craton. Also, 
surficial geological processes of the last 
several million years have left variable 
unconsolidated deposits, including the 
voluminous deposition of glacial mate-

rials in New England and the northern 
conterminous United States.

The oldest rocks of the United States 
are igneous and metamorphic rocks 
that occur in the Adirondacks of New 
York and the Superior Uplands of Min-

nesota. These rocks contain complex 
fracture systems that can be modeled 
for water and mineral resources, but 
also have metamorphic fabrics inher-
ent from high heat and pressures that 
occurred over many millions of years.

The United States contains fold and 
thrust belts that record several con-
tinental plate collisions. Examples of 
these are the Valley and Ridge, Blue 
Ridge, and Piedmont Provinces in the 
eastern United States where rocks 
were folded and faulted during four 
plate collision events between 1 billion 
years ago and 300 million years ago. 
The Rocky Mountains Province in the 
western United States records a colli-
sion event from about 40 million years 
ago. Along with overprinting of several 
tectonic events, these terranes include 
complex fold relationships and zones 
of intense faulting that must be taken 
into account in models. Linear trends 
of folds and faults are characteristics of 
these provinces.

Strike-slip fault systems, such as the 
San Andreas fault system of the Pacific 
Border Province in California, are 
regions of particularly complicated 
geology. As continental plates or struc-
tural blocks move past one another 
in a horizontal direction, complex 
compression and extensional struc-
tures occur. In this setting, rocks are 
translated great distances horizon-
tally. These offsets are superimposed 
on a Mesozoic to Paleogene history 
of subduction, accretion, batholith 
formation, and extensive extensional 
attenuation. Understanding structural 
control and associated seismic hazards 
along strike-slip fault zones such as the 
San Andreas fault system requires the 
fusion of traditional geological map-
ping, geophysical measurements, seis-
mology, structural geology, and state-
of-the-art visualization and modeling 
techniques to produce detailed 3-D 
and 4-D geologic maps. 

Extensional tectonic events are 
recorded in Triassic and Jurassic basin 
sediments within the Piedmont Prov-
ince of the eastern United States and 
the Basin and Range Province of the 
western United States. In both regions, 
compressional tectonics resulted in 
folded and faulted rocks that were later 

1. Superior Upland 10. Adirondack 19. Northern Rocky Mtns 
2. Continental Shelf 11. Interior Low Plateaus 20. Columbia Plateau 
3. Coastal Plain 12. Central Lowland 21. Colorado Plateau 
4. Piedmont 13. Great Plains 22. Basin And Range 
5. Blue Ridge 14. Ozark Plateaus 23. Cascade – Sierra Mtns 
6. Valley and Ridge 15. Ouachita 24. Pacific Border 
7. St. Lawrence Valley 16. Southern Rocky Mtns 25. Lower California
8. Appalachian Plateau 17. Wyoming Basin 
9. New England 18. Middle Rocky Mtns

Figure 13-1 Simplified version of the King and Beikman (1974) geologic map of 
the conterminous United States. Colors indicate age of rock formations. Detailed 
explanation and digital versions are available at http://tapestry.usgs.gov and http://
mrdata.usgs.gov/geology/kb.html.
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torn apart and that developed basins 
that were filled with sediments shed 
off highlands. In the Piedmont of the 
eastern United States, this extension 
was associated with the opening of 
the Atlantic Ocean. For the Basin and 
Range Province, extension is related to 
back-arc spreading behind the Coast 
Range and Cascades Provinces.

Volcanic terranes occur in the western 
U.S. Cascades and Sierra Nevada Prov-
inces. Large masses of intrusive igne-
ous rock represent the deeply eroded 
roots of a Mesozoic volcanic arc and 
its Mesozoic and Paleozoic country 
rock in the Sierra Nevada and an active 
volcanic arc in the Cascades where the 
Juan de Fuca plate in the Pacific Ocean 
is being subducted beneath North 
America.

The sedimentary rocks of the Interior 
Plains and Atlantic and Gulf Coastal 
Plains reflect numerous periods of 
transgressing and regressing seas. 
These provinces are generally flat lying 
to gently dipping marine sediments 
that show complex facies changes over 
time. The Atlantic and Gulf Coastal 
Plain contains marine and terrestrial 
sediments that span more than 100 
million years. In some areas, terrestrial 
river systems have also deposited sedi-
ments within these provinces, such 
as the Mississippi River in the Gulf 
Coastal Plain.

Several major glacial advances covered 
New England and the northern United 
States from 2.6 million years ago to 
about 11,000 years ago. The deposits 
that the melting glaciers left behind 
are quite variable and include silt, clay, 
sand, and till. These sediments have 
complex intertonguing relations that 
make 3-D modeling a challenge.

Major Clients and  
the Need for Models
Based on the needs of its clients and 
of the U.S. public, the USGS has iden-
tified  seven major science strategy 
directions: ecosystems, wildlife and 
human health, climate change, energy 
and minerals, natural hazards, water 
availability, and data integration (U.S. 
Geological Survey 2007). Major users 
of USGS data and information include 
federal and state agencies, foreign gov-

ernments, multinational agencies (e.g., 
International Atomic Energy Agency, 
World Meteorological Organization, 
Food and Agriculture Organization), 
and national and international non-
governmental organizations. 

Because of its long-term monitoring 
data and resource assessments and 
the national and international scope 
of its science, resource and land man-
agement agencies use USGS science 
in developing policies that help them 
meet their stewardship responsibili-
ties. For example, agencies in the U.S. 
Department of the Interior and the 
U.S. Department of Agriculture rely on 
USGS science to manage federal lands 
and resources. Other agencies, such 
as the U.S. Environmental Protection 
Agency, rely on USGS assessments of 
anthropogenic contaminants across 
the landscape to develop and enforce 
regulations. The USGS provides infor-
mation that helps other agencies 
develop policy and provide warnings 
or mitigation strategies relating to haz-
ards such as volcanoes, fire, floods, and 
earthquakes. The USGS is developing 
an ecosystem and global change (cli-
mate variability and land-use change) 
framework that will provide a context 
for its science and for its clients, such 
as regulatory and resource manage-
ment agencies and public safety agen-
cies. 

Within the USGS, the greatest needs 
and applications of 3-D modeling and 
visualization have been emerging in 
geological, hydrogeologic, and biologic 
modeling and visualization. Specific 
needs include

data collected in multi-dimensional 
frameworks, and performing math-
ematical and statistical operation on 
the data, often all in real time;

primary scientific information in 
an “animated” 4-D framework (e.g., 
energy or material fluxes, disrup-
tions in 3-D structures or boundar-
ies, or changes in the intensities 
of given distributed characteristic 
properties);

line, areal, volumetric) of primary 
spatial-temporal information for 

any given property (e.g., porosity, 
permeability, or any physiochemical 
property) in a 3-D/4-D visual envi-
ronment that can display not only 
the information but also the associ-
ated uncertainties;

stochastic, or other types of model-
ing to create 3-D/4-D realizations of 
natural phenomena;

-
tial and temporal values from data 
using a variety of methods and using 
interpreted and modeled informa-
tion to build 3-D/4-D information 
frameworks, such as geological 
mapping frameworks, that maxi-
mize the use of the knowledge avail-
able for a given issue or given spatial 
system;

information for given interpretive or 
predictive studies, simulations, and 
assessments; and 

and data-discovery tools that help 
researchers individually or collab-
oratively conduct science and com-
municate results and their implica-
tions to each other, decision makers, 
and the public. 

Currently, the USGS employs a myriad 
of 3-D modeling and visualization pro-
grams (Table 13-1).

3-D/4-D Visualization 
for Geological 
Assessments
The USGS 3-D geological mapping 
efforts occur on a project-by-project 
basis. In addition to geological knowl-
edge, at least one member of the staff 
has expertise in GIS and 3-D software. 
Others may have expertise in software 
specific to their discipline. The primary 
software packages used for, or in sup-
port of, 3-D geological mapping in the 
USGS are EarthVision, 3-D GeoMod-
eller, Move, RockWorks, ArcMap, Oasis 
montaj, SGeMS, Encom PA, and in-
house software for geophysical model-
ing. Recently published 3-D geologic 
maps (Faith et al. 2010, Pantea et al. 
2008, Phelps et al. 2008) at the USGS 
incorporate new methods and proper-
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ties that go beyond the traditional 2-D 
geologic map:

-
teristics of all significant geological 
features in a map (e.g., units, faults 
unconformities, structures, physi-
cal, and chemical properties), and 
the methods and techniques used to 
map them  (Descriptions are neces-
sary because 3-D geological map-
ping relies on a variety of unique 

mapping methods, whereas 2-D 
geological mapping uses a standard 
set of mapping techniques defined 
from more than a century of prior 
work.);

on the basis of geophysical expres-
sion;

model used to construct the map;

source format in addition to an 
encrypted proprietary format; and 

such that they can be individually 
extracted from the map for general 
use as stand-alone features. 

3-D geological framework applications 
in the USGS include these examples:

assessments and assessments of 

Table 13-1 The 3-D modeling and visualization software programs used by the USGS.1

Software Developer URL

3D GeoModeller Intrepid-BRGM http://www.geomodeller.com/geo/index.php

3DMove TM Midland Valley http://www.mve.com/Move/advanced-structural-modelling-software-
move.html

ArcGIS© ESRI http://www.esri.com/software/arcgis/index.html

ArcHydro© AquaVeo TM http://www.aquaveo.com/archydro-groundwater

ArcView, ArcMap Rockware http://www.rockware.com/product/overviewSection.
php?id=189&section=54

Argus ONE Argus Holdings, Ltd. http://www.argusint.com/

COMSOL TM COMSOL http://www.comsol.com/

EarthVision® Dynamic Graphics, http://www.dgi.com/earthvision/evmain.html
Inc.

Encom PA Encom http://www.encom.com.au/template2.asp?pageid=16

Erdas Imagine Erdas http://www.erdas.com/

Fledermaus IVS 3D http://www.ivs3d.com/products/fledermaus/

IDL/ENVI ITT Visual http://www.ittvis.com/
Information
Solutions

LiDAR Viewer University of http://www.keckcaves.org/software/lidar/index.html
California Davis

Model Viewer USGS http://water.usgs.gov/nrp/gwsoftware/modelviewer/ModelViewer.html

MODFLOW, GWT, USGS http://water.usgs.gov/software/lists/groundwater/
SUTRA, PHAST,  http://en.wikipedia.org/wiki/MODFLOW
MODELMUSE,USGS
groundwater codes 
and visual interfaces

Oasis montaj GeoSoft http://www.geosoft.com/pinfo/oasismontaj/keyfeatures.asp

PolyWorks® InnovMetric http://www.innovmetric.com/
Software, Inc

Quick Terrain Applied Imagery http://www.appliedimagery.com/
Modeler

Rockworks TM RockWare http://www.rockware.com/product/overview.php?id=165

SGeMS Stanford University http://sgems.sourceforge.net/?q=node/20

Voxler®, Surfer® Golden Software http://www.goldensoftware.com/products/products.shtml

1Use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
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past tectonic displacements and 
predictive modeling of the potential 
impacts of given fault-slip scenarios;

assessments (oil and gas, minerals, 
geological sequestration of carbon);

-
physical properties;

bulging in volcanic areas and pre-
dictive modeling of eruption types 
and timing; and 

surface structures and landscape 
changes, such as faults, landslides 
and debris flows, paleofloods, gla-
ciers, and impact craters.

3-D/4-D Analyses and 
Use of LiDAR Imagery 
in Geological Modeling
Geomorphic and surface structure 
analyses are commonly conducted 
during mapping and modeling exer-
cises. Indeed, 3-D/4-D analyses of 
earthquakes can provide valuable 
insights into the types of events that 
occurred, their impacts in modifying 
the land surface, and the likely stabil-
ity or potential for post-event slip in 
the near future. For example, 3-D/4-D 
imagery analysis of precisely relocated 
earthquakes following the San Simeon 
earthquake in central California helped 
characterize the post-seismic slip and 
fault kinematics of the complex double 
blind thrust fault system (McLaren et 
al. 2008). Through 3-D surface con-
touring of time-varied earthquakes, 
common earthquake features were 
identified, mapped, and visualized, 
revealing the migration and rotation of 
the transient post-seismic strain migra-
tion as a function of time and depth. In 
another example, repeat ultra-high res-
olution (sub-centimeter) 3-D ground-
based LiDAR  imagery was collected 
in the days and months following the 
magnitude 6.0 Parkfield earthquake in 
central California. Immersive virtual 
reality 4-D analysis (Kreylos et al. 2006, 
Kellogg et al. 2008) of the land surface 
and engineered structural features 
illuminated small active tectonic geo-
morphic features that would have been 
overlooked in 2-D analysis. Further-

more, mathematical surface models 
of a bridge crossing the San Andreas 
fault near the epicenter showed over 7 
cm of post-seismic slip in the 10 weeks 
after the main shock and bending of 
the steel support beams holding up the 
deck of the bridge.

Airborne and ground-based LiDAR 
have also contributed significantly to 
3-D (and sometimes 4-D) geological 
mapping, particularly of potentially 
hazardous faults. Airborne LiDAR bare-
earth models are especially helpful in 
heavily vegetated areas with little bed-
rock exposure. For example, large-scale 
LiDAR imaging and vegetation removal 
in the Puget Sound region of Washing-
ton state illuminated previously hidden 
faults and geomorphic expressions 
of past glacial epochs (Haugerud et 
al. 2003, Haugerud 2008). Similarly, a 
37-km-long active fault was identified 
north of Lake Tahoe (California) within 
500 m of a reservoir dam. The 4-D 
analysis of high-resolution T-LiDAR 
imagery determined that the fault was 
active and slipping at a rate of 0.5 mm/
yr, which necessitated a reevaluation 
and reengineering of the reservoir con-
struction (Hunter et al. 2010, Howle et 
al. 2009). Similarly, the 3-D/4-D fusion 
of ground-based and airborne LiDAR 
was used to measure offset in faulted 
glacier moraines in the eastern Sierra 
Nevada. Immersive virtual reality tools 
were then used to assess the quality 
of the merged products of the two dif-
ferent data types, allowing for detailed 
analysis and understanding of the 
seismic hazards of the newly identified 
fault system. 3-D/4-D hazard response 
analysis has also been used to assess 
structure and surface stability after 
landslides (e.g., the 2005 Laguna Beach 
landslide in southern California), rock 
slides, and debris flows (e.g., following 
major fires in steep terrain). Detailed 
3-D/4-D analyses are used to charac-
terize these events, understand their 
driving mechanisms, and provide rapid 
situation awareness to local authorities 
regarding the post-event stability of 
the land surface. Immersive 3-D/4-D 
virtual reality analyses often allow sci-
entists to evaluate hazards in areas that 
are inaccessible because of ongoing 
safety concerns.

Case Study: The 
Hayward Fault—An 
Example of a 3-D 
Geological Information 
Framework
The 3-D geologic map of the Hayward 
fault in California was constructed to 
support modeling of earthquake haz-
ards. Models that attempted to predict 
potential damage from various earth-
quake scenarios have until recently 
treated faults as vertical planes in semi-
infinite half-spaces, primarily because 
of technological limitations. The 3-D 
geologic map of the Hayward fault was 
one of the first attempts to move away 
from simplified models and toward 
incorporating geology into the hazard 
scenarios. This change allows research-
ers to study the effect of fault curvature 
and rheology on fault movement and 
the resulting energy waves that travel 
across the landscape. Current research, 
based on this mapping effort, indicates 
that both fault curvature and changes 
in rheology across the fault can signifi-
cantly affect its behavior (Barall et al. 
2008).

The Hayward fault is considered to be 
the most dangerous fault in the San 
Francisco Bay region, located in central 
California (Figure 13-2). There is a 27% 
chance of  a magnitude 6.7 or greater 
earthquake on this fault over the next 
30 years (Working Group on California 
Earthquake Probabilities 2003). The 
Hayward fault cuts through several 
cities that form a densely populated 
urban area, making it even more dan-
gerous than the nearby, better known 
San Andreas fault. Earthquakes gener-
ated along the fault threaten structures 
and critical lifelines that include con-
duits for transportation, power, and 
water.

A team of geologists and geophysicists 
explored various approaches of com-
bining geologic map data with subsur-
face data to develop a 3-D earthquake 
hazard model of the Hayward fault. The 
team addressed geological questions 
regarding tectonics, structure, stratig-
raphy, and history of the region. The 
team also addressed broader issues 
related to mapping in 3-D in general, 
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such as new mapping methods, reso-
lution, uncertainty, database design, 
and publication options. The resulting 
3-D map can be downloaded at http://
pubs.usgs.gov/sim/3045. Correlations 
with fault behavior are discussed by 
Graymer et al. (2005).

The 3-D geologic map of the Hayward 
fault includes a volume of 100 × 20 × 
14 km3, with the fault approximately 
bisecting the long dimension (Figure 
13-3). The Hayward fault is an oblique 
right-lateral strike-slip fault with a 
compressive component of about 10%. 
The mapped volume is geologically 
complex, formed of two contrasting 
amalgamated suites of Mesozoic ter-
ranes and overlying Cenozoic strata 
that have been juxtaposed by late 
Miocene and younger right-lateral 
offset of as much as 175 km. Consistent 
stratigraphy can usually be determined 
within the fault-bounded blocks but 
cannot be traced between them. The 
terranes themselves are fault-bounded 
packages of rocks emplaced, folded, 
faulted, and partially exhumed during 
subduction and subsequent exten-

Figure 13-2 Map showing the location 
of the San Francisco Bay region (inset). 
The red line demarcates the surface 
trace of the Hayward fault, and the blue 
rectangle shows the planimetric bound-
ary of the 3-D map of the Hayward fault 
zone.

sional unroofing and faulted and trans-
lated during strike-slip faulting.

The structural style imposed by the 
complex tectonics of the San Fran-
cisco Bay region disallows the regular 
use of standard geological mapping 
tools, such as stratigraphic position 
and down-dip projection. In order to 
map geological units in 3-D, research-
ers had to define simplified mappable 
units, for the most part corresponding 
to entire terranes. The region lacked 
relevant well data, so ample use was 
made of geophysical data to define the 
subsurface shape of the critical geo-
logical features.

Model Construction  
Methodology
Several somewhat independent model-
ing efforts mapped individual geologi-
cal features. The Hayward fault itself 
was mapped as a single surface using a 
combination of seismic data and cross 
sections. Several of the other faults in 
the model were mapped at the surface 
and projected downward based on the 
grain of local and regional geology. Two 
basins within the model were defined 
on the basis of their gravitational sig-
nature. A subsurface unit, thought to 
be volcanic, was defined on the basis of 
its magnetic signature. Geological ter-
ranes were mapped at the surface and 

constrained at depth by faults, their 
magnetic signature, and other modeled 
geological features.

These individually modeled features 
were combined into a unified 3-D geo-
logic map in the proprietary software 
EarthVision. In the EarthVision data 
model, faults are surfaces that have 
precedence over (truncate) all other 
surfaces. Faults are specified in a hier-
archy to determine which faults cut 
which other surfaces. Unconformities 
are surfaces that truncate other non-
fault surfaces, and depositional sur-
faces onlap onto other surfaces. Mod-
eled geological features were defined in 
EarthVision by their bounding surfaces 
according to the data model. Property 
information for geological unit vol-
umes, such as formation name, are 
stored internally but can be queried 
interactively by modifying the unit 
volume color based on a property or 
by interactively clicking on a volume to 
retrieve the properties.

Once the model was constructed, it 
was evaluated by project members 
and received two scientific reviews 
external to the project. The reviewers 
interactively explored the map itself 
and examined the accompanying 
map pamphlet to look for geological 
inconsistencies in a manner similar to 
the review process for printed USGS 
geologic maps. Review comments were 

Figure 13-3 (a) Three-dimensional geologic map of the Hayward fault zone and 
(b) the Hayward fault surface extracted from the map, shown with accompanying 
earthquake hypocenters.

a b
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resolved through further collaborative 
modeling and mapping.

Output
The final publication contains a digital 
3-D geologic map, an accompanying 
informational pamphlet, and a map 
plate that displays various views of 
the 3-D map. The map is published in 
two formats. The first is available in 
a free version of the 3-D viewer from 
the proprietary software EarthVision. 
The map can be viewed in a variety 
of ways but cannot be modified. The 
second format makes the fault surfaces 
and boundaries of the geological units 
available as a series of files stored in 
the open-source t-surf format. A user 
can reconstruct part or all of the fea-
tures in the Hayward map from the 
surfaces, and this format has a lifespan 
longer than the free 3-D EarthVision 
viewer, which will become increas-
ingly out of sync with newer operating 
systems. It is also expected that these 
geological features will be integrated 
with other data sets including lifeline 
and infrastructure data.

The pamphlet includes a discussion 
of the geological setting and history, 
a description of map features, includ-
ing map units, map structures, and 
the data and modeling methods used 
to generate each feature in the model 
(feature-level metadata).

Observations, Suggestions,  
and Best Practices

The diminishing amount of data with 
depth has several implications: 

with depth, geological units in 3-D 
may be simplified compared with 
units mapped at the Earth’s surface, 
geophysics is important for model-
ing and constraining geology at 
depth, and a range of expertise is 
needed to process and model vari-
ous data types.

expanded to include mapping based 
on geophysical models of geological 
features in the subsurface. Rather 
than a description of the rock’s 
appearance in outcrop, a descrip-

Case Study: Santa Fe, New 
Mexico, 3-D Modeling as a 
Data Integrator
Many geological mapping projects at 
the USGS involve the development 
of regional geological frameworks to 
serve as the basis for understanding 
groundwater, geological hazards, and 
natural resources. Project goals focus 
on extrapolating geological mapping 
from the surface to depths greater than 
1 km over large areas where little bore-
hole information exists. To extrapolate 
below ground, we acquire airborne 
geophysics, fill in existing gravity cov-
erage, and collect ground-based geo-
physics in critical areas. Each of these 
geophysical data sets provides infor-
mation on diverse aspects of different 
physical properties of the Earth, which 
then must be interpreted in the context 
of the geology of the area. 

In a study near Santa Fe, New Mexico, 
USA, Grauch et al. (2009) found that 3D 
GeoModeller was well suited to inte-
grating such diverse types of input in a 
3-D world (Figure 13-4). An important 
objective of the study was to model 
the position of the surface represent-
ing the bottom of the sedimentary 
section. This surface was needed to  
assess the aquifer and for groundwater 
modeling. Using a mixed data-driven 
and expert-controlled 3-D modeling 
approach, 3D GeoModeller allowed 
simultaneous data integration, syn-
thesis, and geological interpretation 
of geophysical data in conjunction 
with 3-D geological mapping. Advan-
tages to 3D GeoModeller are that it (1) 
directly incorporates geological field 
and borehole data, such as mapped 
contacts, borehole lithologic contacts, 
and strike and dip measurements, (2) 
ensures that the model follows known 
geological relationships in the area in 
3-D, (3) allows indirect input of deriva-
tive geophysical products and geologi-
cal concepts as guides to the geological 
modeling, (4) provides geophysical 
forward and inverse modeling to check 
for geophysical validity, and (5) allows 
an individual to work in either a 2-D 
(cross section) or 3-D (points-in-space) 
environment.

tion of the geophysical characteris-
tics and geological and geophysical 
context is provided.

often themselves the result of an 
individual modeling effort; the 3-D 
geological map is an amalgamation 
of models brought together to form 
a coherent geological map.

features (faults and unconformities) 
that will form the framework of the 
map need to be identified and built 
in first to allow the structural and 
topological relationships to be more 
easily seen, corrected, and verified 
early in the mapping process.

geological and database integrity; 
that is, geological rules should not 
be violated, topological rules should 
not be violated, and any associated 
tables should maintain database 
integrity.

a 3-D map is not always practical. 
Although in theory digital geologic 
maps can accommodate scales from 
the microscopic to continental, in 
practice current software limitations 
prevent a wide range of resolutions 
within a map. For example, LiDAR 
could not have been used as the 
model of the Earth’s surface in the 
3-D geologic map of the Hayward 
fault zone because the data volume 
could not be supported. 

only on a computer; as such, a 3-D 
viewing tool that can spin, slice, take 
apart, and query features in the map 
is a necessity.

Several steps can be taken to alleviate 
dependence on a particular software 
package:

the 3-D map.

can be extracted so that they can be 
studied independent of the map.

-
modate complex structures that 
have multiple z-values, including 
oblique-slip faults, overturned folds, 
and diapirs.
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3-D/4-D Visualization and 
Geological Modeling for 
Hydrologic and Biologic 
Assessments
The need to display and integrate 
increasingly large data sets and the 
need to analyze, often collaboratively, 

a wide variety of multidisciplinary 
information necessitates using the 
most advanced visualization tools 
available, such as 4-D immersive vir-
tual reality systems. Traditional 2-D 
analyses and rudimentary 3-D analyses 
(e.g., stereoimages on ordinary 2-D 
computer screens) are inefficient and 

do not measure up to the complexity 
of the interdisciplinary analyses and 
interpretations that are required. Col-
laboration among scientists, who often 
do not have the same scientific disci-
plinary backgrounds and therefore lack 
a common scientific language, can be 
made significantly easier through the 
use of advanced 4-D immersive visual-
ization systems. These systems utilize 
the spatial-temporal skills innately 
developed in people as they interact 
with their environment and help sci-
entists communicate with each other. 
This section provides a “walkthrough” 
of example applications of 3-D/4-D 
technology in the hydrologic and bio-
logic sciences, from the atmosphere to 
the subsurface.

Visualizing and representing atmo-
spheric hydrologic processes are 
essential to the USGS mission. The 
USGS must be able to understand 
how orographic processes can affect 
precipitation, specifically types of pre-
cipitation (rain, hail, snow) as well as 
duration and intensity, over a spectrum 
of spatial and temporal scales. Visual-
izing, understanding, and predict-
ing the focusing of precipitation and 
consequent impacts can help mitigate 
the damages caused by flooding, 
landslides, or debris flows. Visualiza-
tion tools, coupled with “before and 
after” landscape surveys (e.g., through 
remote sensing or LiDAR), are being 
used to benchmark current landscape 
conditions and to help characterize 
and model the magnitude and extent 
of atmospheric events in terms of natu-
ral hazards, water availability, ecosys-
tem response, and long-term climatic 
variability. 

The interrelationship of temperature 
and topography affects our landscapes, 
their associated ecosystems, and their 
evolution in time. For example, visual-
izing and predicting temperature dis-
tributions across a mountainous land-
scape or watershed helps understand-
ing of biologic habitats and how they 
may change. Understanding and visu-
alizing topographic and climatic driv-
ers can help predict the movement and 
intensity of fires, the spread of pests or 
invasive species, and/or the migration 
or extinction of species. USGS scien-
tists also routinely collect high-resolu-
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tion 4-D snow depth change data and 
combine the data with climate models 
to estimate daily snow melt runoff as a 
function of solar radiation and incident 
angle at various elevations. Climate 
forecast models using 4-D climate data 
and different global warming scenarios 
help us understand how ecosystems 
and water availability might change in 
the future.

Visualization in 4-D is needed to plan 
and manage water resources, their 
availability, and their quality and to 
plan the investments needed for their 
sustainable and balanced use and 
protection. Visualization is needed to 
understand the effects of (1) climate 
change on the storage and release of 
water at higher elevations, (2) land-
use change on groundwater recharge, 
particularly at lower elevations, and (3) 
climate, land-use, and anthropogenic 
changes and natural system dynam-
ics on the timing and intensity of the 
water cycle and its spatial distribution. 
Groundwater withdrawals not only 
impact water sustainability in arid or 
semi-arid environments but can also 
produce substantial land subsidence, 
damage infrastructure, and irreversibly 
decrease an aquifer’s ability to store 
water (Figure 13-5). Repeat satellite 
InSAR (Synthetic Aperture Radar Inter-
ferometery) imagery of active hydro-
carbon fields can show how the land 
surface responds over time to hydro-
carbon pumping and CO

2
 and water 

injection. The 3-D/4-D visualization 
can help show what areas are at the 
greatest risk and can be used in opti-
mization modeling to more efficiently 
manage and distribute pumping and 
recharge in a given area.

The USGS also conducts work visual-
izing and predicting the impacts of 
sea level rise and salinity intrusion on 
coastal habitats (human and natural). 
Although fixed-level 3-D flooding maps 
are useful as a first cut interpreta-
tion of the consequences of floods or 
sea level rise, the USGS also uses 4-D 
dynamic visualization of flood waves, 
storm surges, tsunamis, tidal surges, 
and outflows. Deterministic, predic-
tive models, based on mathematical 
descriptions of both the operative 
physical processes and mass and 
energy conservation relations, are 

often displayed using advanced visu-
alization systems to enhance dynamic 
patterns that would not otherwise be 
apparent. 

The USGS extensively uses 3-D/4-D 
visualization tools (non-stereo) in the 
representation and modeling of sub-
surface flow and contaminant trans-
port. In these studies, 3-D/4-D visual-
ization is essential in

-
able data and information in a geo-
logical context;

-
tures, as well as the spatial distribu-
tion and temporal evolution of the 
hydrogeological (Figure 13-6) and 
chemical properties of those struc-
tures, i.e., the porosity, permeability, 
mineralogy, and chemistry associ-
ated with various geological units, 
their matrix, and structural features 
(open, closed, or partially filled), 
such as active faults, fractures, 
joints, channels, and macropores; 

-
cal, or geophysical response infor-
mation to help determine, through 
“inverse modeling” numerical simu-
lations, the spatial distribution of 
hydrogeological or geological prop-
erties in various subsurface zones; 
and

modeling to numerically simulate 
the potential movement of water, 
solutes, contaminants, colloids, 
viruses, or bacteria in the subsurface 
and the coupled evolution of the 
hydrogeological environment.

Hydrogeological studies have focused 
primarily on the shallow subsurface, 
which is usually the primary pro-
vider of groundwater resources for 
irrigation or drinking water. Most 
groundwater contamination stud-
ies have also focused on the shallow 
subsurface because of the importance 
of its human use and because of its 
high vulnerability to contamination. 
Hydrogeological studies and visual-
ization of deeper environments have 
until recently been mainly confined 
to studies of sites that might be suit-
able for the disposal of nuclear wastes 
(Figure 13-7) or the injection of other 
industrial wastes. The potential for 
using geological formations, specifi-
cally former oil and gas reservoirs, coal 
seams, and saline aquifers for the geo-
logical sequestration of supercritical 
CO

2
, will likely result in a much greater 

number of hydrogeological studies 
investigating the deeper regions of the 
subsurface. If geological sequestration 
of CO

2
 becomes widely implemented, 

we expect an exponential increase in 

Figure 13-5 Perspective view of the greater Los Angeles region with InSAR imag-
ery showing greater than 6 cm of groundwater pumping-induced subsidence over 
a region 40 km x 20 km in extent (Bawden et al. 2001).



78 Circular 578 Illinois State Geological Survey

studies and geological and hydrologic 
information obtained for subsurface 
environments. Once again, having 
ready access to 3-D/4-D visualization 
and information frameworks and inter-
pretive tools will be key in making well-
informed assessments and decisions 
based on clearly represented, under-
stood, and quality-controlled data and 
information.

Lessons Learned
In 2010, a small group of USGS man-
agers and scientists recognized that 
individual researchers and teams were 
acquiring 3-D technologies across the 
USGS with little to no knowledge of 
other similar efforts. The group also 
observed that thousands of dollars 
were being spent on individual licenses 
across the bureau with no coordina-
tion, and, although many scientists 
were adding 3-D applications as analy-
sis tools, there were few forums for 
sharing ideas and knowledge of emerg-
ing technologies. These findings led to 
efforts to endeavor to increase commu-
nication and coordination across the 
bureau via workshops; a user-survey; 
development of a database of 3-D sys-
tems, requirements, and users; and use 
of community-of-practice tools, such 
as a wiki. 

Workshops
A workshop called “3D Visualizations 
of Geological and Hydrogeological 
Systems,” held during an annual USGS 
Modeling Conference, drew almost 
50 participants primarily from federal 
agencies and academia. The purpose of 
the workshop was to preview state-of-
the-art 3-D characterization software 
and hardware to expand the reach of 
geological and hydrogeological assess-
ments. Vendors were invited to demon-
strate 3-D visualization products, and 
participants contributed their require-
ments and knowledge of 3-D visualiza-
tion tools. Also, a diverse cross section 
of USGS researchers who are experi-
enced users of 3-D systems was con-
vened to discuss USGS requirements 
and share knowledge. The result of the 
meeting was an action plan to better 
coordinate future purchases, stay in 
step with technological advances, 

Figure 13-6 Three-dimensional images from seismic surveys of the speed of 
shock waves through sediment (Hyndman et al. 2000). The speed of waves is con-
trolled partly by the compressibility of the sediment, which is related to the hydrau-
lic conductivity. Therefore, it may be possible to use seismic images to better map 
heterogeneity in unconsolidated aquifers (from Sanford et al. 2006).

Figure 13-7 Fracture model of the Äspö Hard Rock Laboratory (SKI SITE-94 
1997, Glynn and Voss 1999). 
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define and increase opportunities for 
data integration, and champion com-
munities of practice.

User Survey
The USGS will conduct a Web-based 
survey of staff identified as using or 
having an interest in using 3-D appli-
cations. The goal of the survey is (1) 
to identify the areas of scientific study 
that employ 3-D/4-D technologies, 
how the technologies are applied in 
research, what barriers might exist pre-
venting scientists from applying these 
technologies, and (2) to raise aware-

ness of a new community designed to 
broaden the availability of 3-D/4-D 
technology and the knowledge sur-
rounding it. The survey results will also 
be used to construct the 3-D systems 
database.

3-D Systems Database
The USGS is developing a Web-based 
database to serve as a shared resource 
for exploring the various 3-D visual-
ization systems used throughout the 
bureau. This storehouse will contain 
detailed information regarding hard-
ware configurations, visualization sys-

tems, software packages, costs, avail-
able licenses and/or available hard-
ware, and requirements for use. Points 
of contact are provided along with 
any relevant videos that help convey 
the types of applications that have 
been developed using 3-D technology. 
Additional information is provided 
in the form of documents, Web sites, 
and slide presentations. Users will be 
encouraged to add comments, opin-
ions, and observations to help make 
the 3-D resources useful to both new 
and experienced users to enhance their 
knowledge and help them research 
new software and hardware platforms.
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