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The  concept  of  evaluating  multiple  alternative  models  to  determine  ecological  response  form  is over
a  century  old  and  is  ever  more  relevant  as  modern  computing  power  allows  ever more  complicated
models  to be  routinely  used  but  often  without  a reasonable  model  verification  process,  particularly  in
fields where  the  ecological  conceptual  model  is  still developing.  The  emphasis  for  developing  a statis-
tical  model  is  to test  the  validity  of  the  hypothesis  represented  by the  model.  We  present  a framework
of  model  identification  and  evaluation  that  includes  exploratory  data  analysis  and  model  diagnostics
and  evaluation.  This  framework  emphasizes  the  importance  of evaluating  multiple  alternative  models
hangepoint
anagement threshold

imulation
rbanization

when  evaluating  the  validity  of  the model.  This  process  is illustrated  by using  a  model-building  problem
for  quantifying  the  stream  ecological  response  to urbanization  using  a data  set  from  a large  ecological
study  designed  to understand  how  stream  ecosystems  respond  to urbanization.  The  paper  focuses  on the
question  of  whether  a threshold  model  is  appropriate,  and  demonstrates  the  importance  of  evaluating
multiple  alternative  models  in  the  detection  of  ecological  thresholds,  and  illustrates  how  choosing  an
inappropriate  model  can lead  to erroneous  conclusion  regarding  the  existence  of  thresholds.
. Introduction

Statistics is a tool for inductive reasoning, and the emphasis of
tatistical modeling is on the discovery of the underlying causal
elation that resulted in the observed data. A typical statistical mod-
ling problem, however, is solved using a hypothetical deductive
easoning process in three steps: (1) model formulation – defining
he probabilistic distribution of the response variable and char-
cterizing the distribution by modeling the mean variable as a
unction of one or more predictor variables, (2) parameter estima-
ion – estimating model parameters using available data, and (3)

odel interpretation – examining whether the fitted model can
e interpreted using subject matter knowledge and justified based
n the goodness-of-fit. These three steps correspond to the three
asks that Fisher defined for addressing statistical modeling prob-
ems (Fisher, 1922). The first step poses the hypothesis of the study
nd the subsequent steps test the hypothesis. Model formulation
equires the interaction between ecological and statistical knowl-

dge. Because the chosen model is assumed to be the true model,
he parameter estimation process always leads to the optimal fit of
he chosen model to the data. Consequently, assessing the validity
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of the model based solely on a model’s fit can be ambiguous. Ambi-
guity can be reduced by proposing multiple models as competing
alternatives. Comparison of these multiple alternative models can
expose the weakness of models that would otherwise be masked by
focusing only on the optimal model fit of a single model. This pro-
cess is consistent with the multiple alternative working hypotheses
approach recommended by Chamberlin (1890) when explaining
new phenomena. This paper illustrates the importance of the mul-
tiple alternatives in ecological data analysis and modeling through
the process of identifying the appropriate model form for describ-
ing the response of stream ecosystems to urbanization, with a focus
on identifying a threshold response.

Although the theoretical value of the ecological threshold
concept is still a topic of debate, its practical value in environmen-
tal management is attractive especially to managers of natural
resources. As defined by Groffman et al. (2006),  “an ecological
threshold is the point at which there is an abrupt change in
ecosystem quality, property or phenomenon, or where small
changes in an environmental driver produce large responses in the
ecosystem.” Because of the complicated nonlinear dynamics of a
threshold change and the multiple factors that can affect ecosys-
tems, the detection and quantification of ecological thresholds is
challenging. The question of detecting a threshold response is cen-

tered on determining whether or not a threshold exists. This can be
addressed either through ecological theories or through empirical
evidence in the form of statistical data analysis and modeling. This
paper focuses on the process of assembling empirical evidence

dx.doi.org/10.1016/j.ecolind.2011.08.019
http://www.sciencedirect.com/science/journal/1470160X
http://www.elsevier.com/locate/ecolind
mailto:mdqian@gmail.com
mailto:tcuffney@usgs.gov
dx.doi.org/10.1016/j.ecolind.2011.08.019
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or deciding the existence of a threshold. A statistical definition of
cological threshold is proposed (Section 2.1) and used to discuss
eneral principles of model identification as applied to a threshold
roblem. Data from the US Geological Survey’s (USGS) National
ater Quality Assessment (NAWQA) program is used to illustrate

he process of model selection and evaluation. These data were
ollected to study the effects of urbanization on stream ecosystems
n nine metropolitan areas across the conterminous United States.

. Methods

A model identification process is problem-specific. In this sec-
ion, we present a class of simple threshold models and discuss a
otential model diagnostic process.

.1. Statistical definition of a threshold problem

When presenting a statistical model (e.g., a linear regression
odel), we often use the familiar form of the mathematical equa-

ion:

 = ˇ0 + ˇ1x + ε, (1)

here y is the response variable, x is the predictor variable, and ˇ0,
nd ˇ1 are model coefficients. The error term ε is assumed to fol-
ow a normal distribution with mean 0 and a constant variance, or

 ∼ N(0, �2). This equation is equivalent to a normality assumption
f the response variable: y ∼ N(ˇ0 + ˇ1x, �2). In general, a statistical
odel can be expressed as a probabilistic distribution about the

esponse variable of interest (y) and the distribution is character-
zed by a parameter vector �. For example, in the linear regression

odel of Eq. (1),  the distribution of the response is assumed to be
ormal, with the mean modeled by a linear function of the pre-
ictor (or environmental stressor) x: � = ˇ0 + ˇ1x. For this problem,

 = {ˇ0, ˇ1, �2}. A general notation is y ∼ �(�, x) where � represent
 generic distribution function. A statistical threshold exists when
he distribution parameters change as the environmental stressor
rosses a specific value (�):

∼
{

�(�1, x) if x < �

�(�2, x) if x ≥ �
(2)

here � is a probability distribution function parameterized by �
nd environmental predictor variable x. Most (if not all) existing
hreshold models in the literature can be summarized in terms of
q. (2).  Quantitative options for estimating the threshold lie in the
election of the response variable distribution (�) and the deter-
ination of the dependency of the mean variable on one or more

redictor variables (x). Different distributions often require very
ifferent computational methods, leading to numerous models in
he literature. Consequently, when selecting a model, it is important
o know the assumptions and conditions of the problem at hand.
oth Bayesian and classical approaches can be used for parameter
stimation. Model parameter estimation and model diagnostics for
he class of linear threshold models, where the response variable

 is assumed to have a normal distribution and the normal distri-
ution mean is modeled by a linear function of the predictor, are
iscussed in the online supplementary materials.  The linear class of
hreshold models includes the simple linear regression model, the
iecewise linear (or the hockey stick) model, and the step function
odel as special cases.
.2. The generalized linear threshold models

A frequently used benthic macroinvertebrate community indi-
ator of stream ecosystem condition is EPT taxa richness (EPTr),
l Indicators 15 (2012) 1–9

which is the number of mayfly (Ephemeroptera), stonefly (Ple-
coptera), and caddisfly (Trichoptera) taxa in a sample. In the United
States, EPTr is used by states (NCDE, 2006) and Federal agencies
(Barbour et al., 1999) as a bio-indicator for evaluating water quality
conditions. Because EPTr is a count variable, the Poisson distribu-
tion is often used to approximate its distribution:

y ∼ Pois(�)

log(�) = ˇ0 + ˇ1x + 	
(3)

The error term 	 ∼ N(0, �2) is used to account for possible overdis-
persion. Based on the definition of Eq. (2),  a threshold exists if model
coefficients ˇ0, ˇ1 change along the gradient of predictor x. As in
the linear class of threshold model, the Poisson threshold model
can have three specific forms:

• The step function model

log(�) =
{

ˇ0 + 	1 if x < �

ˇ0 + ı + 	2 if x ≥ �
(4)

• The piecewise linear (or hockey stick) model:

log(�) = ˇ0 + (ˇ1 + ıI(x  − �))(x − �) + 	 (5)

where I(a) is a unit step function (I(a) = 0 when a < 0 and I(a) = 1
when a ≥ 0), also known as the indicator function.

• The general model

log(�) =
{

ˇ0 + ˇ1x + 	1 if x < �

(ˇ0 + ı0) + (ˇ1 + ı1)x + 	2 if x ≥ �
(6)

The first question to address in the analysis is whether a thresh-
old response is appropriate from an ecological perspective. If the
answer is affirmative, the follow-up question is how to specify the
model form. Selecting the correct model form is critical because a
wrong model is likely to result in a threshold that is meaningless. If
the underlying relationship is nonlinear, proper transformation of
the predictor variable is necessary for the linear model to be useful.

2.3. Considerations in model evaluation

In the course of the investigation, a threshold response was
initially hypothesized before data analysis. The study was, hence,
designed to uncover the proper model form for the threshold
response (Eqs. (4), (5),  or (6)). A generalized linear model (with-
out a change point) was also included as a contrast to the threshold
response models.

Threshold analyses were conducted by fitting all three alter-
native models (general, hockey stick, and step) to the same data,
and comparing the resulting threshold distributions (see online
supplementary materials).  The estimated threshold distributions
are often useful for determining whether the model provides evi-
dence for or against the existence of a threshold. Furthermore,
comparison of model predictions with the data can be used to val-
idate the model by determining if the predictions are consistent
with the data. Comparisons of the estimated threshold distribu-
tions and model prediction form the basis for model selection and
refinement. Some forms of the general model may be ecologically
unrealistic, but the inclusion of the general model provides a math-
ematical check for the other two  models. The step function and
hockey stick models are special cases of the general model, if one
of them fits the data well, the general model should also fit the data

well with a similar change point estimate. If one of the two spe-
cial case models fits the data well, while the general model does
not or yields a different change point estimate, we have reasons to
re-evaluate the model.
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Fig. 1. Scatter plots of EPT

An unsettling feature of the step function model is that the
odel will “detect” a change point whether one exists or not,

s long as the underlying function is monotonic. This problem
an be partially addressed by applying a transformation of the
redictor and/or the response variable. If the underlying relation
an be approximated by the step function, a transformation of the
redictor and/or the response variable will not affect the estimated
hange point. Otherwise, transforming the predictor may  result
n a different change point. As a result, transforming the predictor
nd/or the response variable should always be considered when
he step function model is used. In general, we transform the
redictor so that the transformed predictor values are distributed

ore less symmetric to avoid potential leverage data points.

n this study, the predictor is a fraction variable (% impervious
urface), which is often transformed using the logit function (the
og ratio of % impervious surface over % pervious surface). The

able 1
stimated change points (posterior modes) (% impervious surface).

Models ATL BIR BOS DEN 

Without logit transforming the predictor
Step 6.35 9.11 3.59 1.93 

Hockey 37.83 0.28 0.28 1.38 

General 0.83 41.69 35.62 1.93 

With  logit transforming the predictor
Step 6.35 9.11 3.58 1.92 

Hockey 0.82 0.82 1.37 1.92 

General 0.82 0.82 26.23 1.92 
us % impervious surface.

logit transformation is preferred over the other commonly used
transformation (i.e., square root of arcsine) because the logit
transformation can be easily interpreted. Although transforming
the predictor cannot be used as a definite test for the validity of the
step function, the use of transformation will likely provide useful
information for model selection.

2.4. Computation

Parameters of the three threshold models can be estimated
using classical statistics methods such as the maximum likelihood
estimator. The R package segmented (Muggeo, 2003) or the hockey

stick model described in Qian (2010) can be used for the piecewise
linear model. The step function model can be analyzed using the
two statistical methods described in Qian et al. (2003).  However, to
facilitate model comparisons, a consistent Bayesian computational

DFW MGB  POR RAL SLC

37.83 1.38 2.48 5.8 16.84
43.9 1.93 4.69 42.24 42.8
43.35 2.48 28.99 2.48 17.39

0.26 1.37 2.48 5.24 16.84
0.26 1.92 6.35 0.26 0.26
0.26 2.48 28.99 0.82 16.84
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Fig. 2. Estimated threshold distributions from 9 metropolitan areas using 3 cha

ethod was used. This method used Markov chain Monte Carlo
MCMC) simulation to estimate model parameters. Details of the
omputational method are presented in the online supplementary
aterials.

. Data

Data used in this paper were collected as part of the USGS
AWQA Program’s study on the effects of urbanization on stream
cosystem (Couch and Hamilton, 2002). This study included 9
etropolitan regions in the continental US (Atlanta, GA [ATL];

irmingham, AL [BIR]; Boston, MA  [BOS]; Dallas-Fortworth, TX
DFW]; Denver, CO [DEN]; Milwaukee-Green Bay, WI  [MGB]; Port-
and, OR [POR]; Raleigh, NC [RAL]; Salt Lake City, UT [SLC]) that
epresent a wide range of climate and geological conditions. Study
atersheds in each region were selected along an urbanization gra-
ient defined by a multimetric urban intensity index (Brown et al.,
009; Cuffney et al., 2010). However, for this study, the fraction of

mpervious surface is used as a measure of urban disturbance to
acilitate comparisons with other urban studies. EPT taxa richness
s used as a measure of ecological response.

. Results

.1. Exploratory data analysis

Scatter plots of EPTr against % impervious surface show a strong
onlinear decreasing pattern (Fig. 1). In addition, the variation of
PTr tends to decrease as % impervious surface increases. These

catter plots show a typical “wedge” shaped data cloud that is a
ommon feature in many ecological data sets (Paul et al., 2009;
arter and Fend, 2005). The wedge shape is characteristic of count
ata because the variance of a count variable is usually proportional
s surface

oint models: step function (step), hockey stick (hockey), and general (general).

to its mean. This feature can also be interpreted from an ecological
perspective, as a change in the influence of urban and non-urban
variables that affect EPTr across the urbanization gradient. The vari-
ation of EPTr is high at low end of the urbanization continuum
where a variety of other factors (e.g., background land cover con-
dition) are more important than urbanization. Near the high end
of the urbanization spectrum, the effect of urban development on
EPTr dominates all other factors. These scatter plots also show that
the predictor variable (% impervious surface) distribution is skewed
to the left—more watersheds are clustered around the lower end of
the urbanization continuum. This distribution reflects the difficulty
in finding streams in areas with high imperviousness that met  the
criteria for inclusion in these studies: flowing above ground and
connected to the riparian areas (e.g., no concrete lined channels). A
highly skewed predictor may  lead to a model that is unduly influ-
enced by data points with large predictor variable values. The logit
transformed % impervious surface is close to normality. As a result,
we will present models with both transformed and untransformed
predictors.

4.2. Threshold models and their fit to data

4.2.1. Untransformed predictor
The three threshold models (Eqs. 4 - 6) were fit to the data for

each of the nine metropolitan areas. For each metropolitan area, the
estimated posterior distributions of the threshold from the three
models are compared (Fig. 2). The threshold posterior distribu-
tion is an important part of the model diagnostics (as illustrated
in the online supplementary materials).  A widespread (DFW, step)

or a U- (BOS, hockey stick), L- (BOS, step), or J-shaped (BOS, gen-
eral) posterior distribution suggests that either a threshold does
not exist or a wrong model was  used. These distributions are not
indicative of a strong threshold because they allocate the posterior
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ata cloud (Fig. 3), interpretation of the resulting models can be
hallenging. For example, what would be the ecological explana-
ion for the sudden increase in EPTr at ca. 30% impervious surface
s indicated by the general model for POR? Visual assessment of
he fit of the three threshold models and the generalized linear

odel offers no consensus on the appropriate model forms. Nei-
her does the commonly used deviance information criterion (DIC)
Fig. 4) (Spiegelhalter et al., 2002; Qian et al., 2005). Consequently,
e must be open to alternative, perhaps nonlinear, models.

.2.2. Transformed predictor
The logit transformation implies a proportional relationship

etween the ratio of impervious over pervious surface and the
ean EPTr. The slope (ˇ1 in Eq. (3))  is the proportional constant,

hat is, for every 1% increase in the ratio, we expect ˇ1% change in
 (the mean value of EPTr) (see Qian, 2010, pp. 255–257).

The estimated threshold posterior distributions after logit
ransforming the predictor (Fig. 5) are quite different from the
istributions without the transformation (Fig. 2), although the
stimated modes did not change dramatically because the depar-
ure from the linear model without the transformation is not very
trong. The step function model indicates a potential threshold
n most (8) of the metropolitan areas while the hockey stick and
eneral models show a much lower number (1 or 2) of possible
hresholds. However, comparison of the fitted models with the
ata does not support the thresholds identified by the step func-
ion models and suggests that a generalized linear model (with a
ogit transformation of the % impervious surface) would be suf-
cient (Fig. 6) for describing the EPTr response to urbanization.
his generalized model implies a log–log linear relation between
he mean EPTr and the ratio of impervious surface over pervious
urface. That is, for every unit (1%) increase in the ratio, a fixed per-
entage decrease in EPTr mean is expected. This simple model fits
he data well (Fig. 6, right column), providing evidence against the
xistence of a threshold.

. Conclusions and discussion

This study revealed characteristics of the commonly used sta-
istical change point methods that have important implications not
nly for detecting ecological thresholds, but more generally for eco-
ogical data analysis and modeling. Statistical inference is a form of
ypothetical deduction. The quote that “all models are wrong” (Box,
976) implies that models are only “correct” when the underlying
ssumptions about the data are correct. In other words, statistical
nference is conditional on the proposed model. Verifying a model
s often difficult because the estimated model is an optimal fit to
he data. When alternative models are proposed, potential weak-
ess of each candidate model can be identified. Whether a model is
dequate or not must be carefully assessed before identifying and
nterpreting change points. Evaluating multiple alternative mod-
ls is critical to finding a model that is appropriate for the data.
e advocate evaluating multiple alternative models in the spirit of

.C. Chamberlin, who advocated the comparison of multiple work-
ng hypotheses as a means of developing rational explanations of
ew phenomena (Chamberlin, 1890).

In a threshold modeling problem, the multiple model approach
s especially important because the three alternative threshold

odels can often produce a change point even when a threshold
oes not exist. This problem can be attributed either to random
ampling error, unaccounted for confounding factors, and/or the

se of an inappropriate model. For example, the step function
odel will always detect a distinct threshold as long as the under-

ying function is monotonic. Consequently, when the step function
odel and its variations are used, users must carefully evaluate
Fig. 7. The fitted GLM (solid line) is compared to the observed data from BOS.

their results against alternative models to avoid misleading results.
Furthermore, Chiu et al. (2006) suggest that statistical evidence is
often unavailable for distinguishing a hockey stick model from its
gradual change counterpart without auxiliary information. The best
approach for justifying the use of a specific model is still Chamber-
lin’s method of multiple working hypotheses, where the intended
model is one of many alternative models. Only by comparing among
multiple alternative models with the original data can the appropri-
ate model and method of threshold detection be determined with
a reasonable certainty. In the urbanization example, data support
the generalized linear model more than the threshold models. This
result is also supported by many ecological studies summarized in
Groffman et al. (2006).  Our results would have been much differ-
ent if we  had considered only a single model (e.g., the step function
model). The generalized linear model with logit transformation of
the % impervious surface as the predictor captures the variation
in the data well. Based on this model, we  expect a fixed fractional
change in mean EPTr for every 1% change in the ratio of impervious
surface over pervious surface. A 1% change in the ratio can mean a
very small or large change in the impervious surface depending on
where on the gradient of imperviousness the change is occurring.
For example, near the low end of the urban gradient a 1% increase
in the ratio can be the result of a small increase in the impervious
surface area, but as we  move up the urbanization gradient, the same
1% change in the ratio represents an increasingly larger change in
impervious surface area. In other words, a small increase in imper-
vious surface in a watershed with no or very little development
will lead to the same fractional change in EPTr as a large increase in
a watershed that already has significant urban development. Near
the high end of the urban gradient, because the EPTr values tend
to be very low, even though a small percentage change in imper-
vious surface (e.g., from 98% to 99%) would lead to a large change
in the logit transformed predictor (from 3.89 to 4.59), the relative
amount of decreasing in EPTr is actually very small. (For example,
using the BOS model log (�) = 0.82 − 0.65logit(x), a change of 1% in
impervious surface from 1% to 2% leads to a change in � from 45 to
28.5, while the same 1% change from 98% to 99% leads to a change
in � from 0.18 to 0.11.) This model explains the pattern in the data
(rapid changes near the low end of the urban gradient and very slow
change near the high end of the urban gradient) very well (Fig. 7),
even extrapolating outside the data range.

Another important question in threshold analysis is how we
apply various statistical models to management problems. The
term “threshold” has different meanings when used in different
contexts and often conveys a sense of urgency and a need for

action when used in a management context. In fitting a statisti-
cal model, the term threshold is more accurately described as the
change point, that is, the point at which model coefficients change.
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Fig. 8. An hypothetical hockey stick model (thick solid line segments) illustrates
the  difference between a mathematical change point and management threshold.
A  management threshold should ensure, with a certain degree of confidence, that
the  value of the desired endpoint will be preserved. The two  dashed lines are two
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Qian, S.S., Reckhow, K.H., Zhai, J., McMahon, G., 2005. Nonlinear regression modeling
ypothetical desired endpoints (Ym1, Ym2) and their respective thresholds (Xm1, Xm2).
 mathematical change point (Xcp) is the predictor variable value at which model
oefficients changed.

n a management problem, however, the concept of a threshold
esponse should be discussed in the context of the management
ndpoint, i.e., the desired outcome. For example, suppose that we
ant to maintain an EPTr of at least 10, the question now becomes
hat is the maximum level of impervious surface that can occur

n the watershed while keeping EPTr ≥ 10. The statistical change
oint and the ecological threshold can be the same if the response
f EPTr to urbanization can be approximated by the step function
f the lower and higher values span the management endpoint
or the response. However, the change point can differ from the
cological threshold if the underlying model is something other
han the step function. For example, if the underlying model is a
ockey stick model (Fig. 8), the mathematical change point should
ot be confused with the management threshold. In this exam-
le, the statistical change point (Xcp) would not be protective if
he management threshold was Ym1 and would be overly protec-
ive if the management threshold was Ym2. In other words, users
f these models should have a clear understanding of the manage-
ent objective in order to correctly interpret the significance of the

hange point relative to management thresholds.
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