WATER RESOURCES RESEARCH, VOL. 41, W07012, doi:10.1029/2005WR003986, 2005

Nonlinear regression modeling of nutrient loads in
streams: A Bayesian approach

Song S. Qian and Kenneth H. Reckhow
Nicholas School of the Environment and Earth Science, Duke University, Durham, North Carolina, USA

Jun Zhai
Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, USA

Gerard McMahon
U.S. Geological Survey, Raleigh, North Carolina, USA

Received 24 January 2005; revised 30 March 2005; accepted 28 April 2005; published 13 July 2005.

[1] A Bayesian nonlinear regression modeling method is introduced and compared with
the least squares method for modeling nutrient loads in stream networks. The objective
of the study is to better model spatial correlation in river basin hydrology and land use
for improving the model as a forecasting tool. The Bayesian modeling approach is
introduced in three steps, each with a more complicated model and data error structure.
The approach is illustrated using a data set from three large river basins in eastern North

Carolina. Results indicate that the Bayesian model better accounts for model and data
uncertainties than does the conventional least squares approach. Applications of the
Bayesian models for ambient water quality standards compliance and TMDL assessment

are discussed.
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1. Introduction

[2] A nonlinear regression modeling approach for mod-
eling nutrient loading in streams using simple mechanistic
equations to describe watershed nutrient generation and
retention processes was proposed by Smith et al. [1997].
Because it is identifiable and fitted from observational data,
a regression model provides an estimate of prediction error
and can be used to assess the value from information of
additional monitoring. Information on model prediction
error also is necessary for identifying impaired water bodies
and evaluating the effectiveness of a total maximum daily
load (TMDL) program to eliminate the impairment.

[3] Nonlinear regression assumes a strict model error
structure. (Model residuals are independent random variate
from the same normal distribution.) Because nutrient or
other pollutant flux within a watershed is potentially highly
correlated and a simple nonlinear regression model cannot
be expected to explain all nutrient or pollutant generation
and attenuation processes, correlation among model resid-
uals is to be expected. Our work builds on recent advances
in computational statistics to explicitly model the spatial
correlation structure in river basin hydrology and in water-
shed characteristics, such as soil and land use.

[4] Using nonlinear regression approach for watershed
modeling has two potential weaknesses, which are similar to
those suggested by McMahon et al. [2003], who applied the
spatially referenced regressions on watershed (SPARROW)
model to three river basins in eastern North Carolina. First,
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a nonlinear regression model does not allow different
coefficient values (e.g., the nutrient delivery rates) for
different subwatersheds. Second, the least squares method
for estimating model coefficients does not incorporate
spatial autocorrelation in the data except for the implicit
component in the stream network. As a result of these
weaknesses and because a simple empirical model cannot
include all sources and sinks of nutrients in the watershed,
model residuals are correlated and often display a spatial
pattern. When residuals are correlated the least squares
method is not the most efficient model coefficient estimator;
that is, estimated coefficients likely are subject to large
estimation errors, and the resulting uncertainty analysis may
be misleading.

[5] We present a Bayesian analysis for nonlinear regres-
sion models of stream nutrient loads. The main focus of the
method is to explicitly model the correlations in the model
residuals, including a state space modeling strategy to
model nutrient transport between subwatersheds and a
conditional autoregressive model to account for additional
spatial correlation. The state space modeling component
separates model and observation errors. Using a least
squares method, the observed upstream loading likely will
be treated as input from a fixed point source; hence this
method fails to model the dynamic nature of nutrient
transport from upstream to downstream subwatersheds.

[6] With a Bayesian approach, the estimated model coef-
ficients are presented in terms of a posterior joint distribu-
tion. Although the Bayesian approach using noninformative
priors often produces model coefficient estimates similar to
those from the maximum likelihood method, the Bayesian
emphasis on the posterior distribution will provide a full
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description of the nature of uncertainty, leading to better
quantification of model prediction error. Consequently, the
Bayesian approach is better suited for predicting the fre-
quency of water quality standard violations, which is im-
portant for TMDL development and assessment. In addition,
the Bayesian approach allows objective model comparisons
through the Bayes Factor and the deviance information
criteria. We illustrate our methods using the SPARROW
attributes [Smith et al., 1997] and the data set developed for
the three river basins in eastern North Carolina by McMahon
et al. [2003] as an example.

2. Method

[7] The objective of our study is to better model the
spatial autocorrelation. As pointed out by McMahon et al.
[2003], the residuals of the initial application of the SPAR-
ROW model contain a systematic (spatial) pattern. Statisti-
cal theory indicates that the least squares based model
coefficient estimator is inefficient when model residuals
are not independent. This inefficiency indicates potentially
large coefficient estimation errors and misleading model
uncertainty assessment. The proposed Bayesian analysis
will address the spatial autocorrelation in three steps, with
Markov chain Monte Carlo (MCMC) simulations [Gilks et
al., 1996] employed as the computational tool in the
following procedures.

[8] 1. The MCMC simulation method is used for param-
eter estimation to replace the least squares method used
by most nonlinear regression models including the
SPARROW model. With MCMC, uncertainty about
model coefficients is summarized using the joint poste-
rior distribution of the model coefficients, and avoiding
the use of the bootstrap method currently used in
SPARROW applications.

[o] 2. A state space (STSP) modeling approach is used
to simulate the transportation of nutrient loads through the
watershed. A STSP model can better address the serial
correlation resulting from the stream network structure.
Using a Bayesian approach resulted in a straightforward
way to account for both the model and data uncertainty.

[10] 3. A conditional autoregressive (CAR) term is
added to the STSP model to account for arbitrary spatial
correlation.

2.1. SPARROW and Its Initial Application on North
Carolina Rivers

[11] In a recent application, a SPARROW total nitrogen
(TN) model was calibrated using data from three large river
basins in eastern North Carolina: Cape Fear, Neuse, and
Tar-Pamlico. The development and use of digital spatial and
tabular data sets needed to support the model and results of
the model calibration were presented and discussed by
McMahon et al. [2003].

[12] The SPARROW model expresses mean annual
nitrogen load at each monitoring station, located at the
downstream end of stream reach i, as a nonlinear function
of monitored and unmonitored nitrogen sources and the
attenuation associated with landscape and aquatic processes:

log(Load;) = log (Z Z B, S,,,e
J

H,S,fﬁ‘;)+e,-, (1)
jeJ (i) n=1
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where
Load; the nitrogen load or flux in reach i, measured in
metric tons for the year 1992;
source index, where N is the total number of
individual n sources;
the set of all reaches upstream and including reach i,
except reaches at or above monitoring stations
upstream from reach i;
B, the estimated source coefficient for source n;
o the estimated vector of land-to-water delivery
coefficients;
the nitrogen mass from source # in drainage to reach
J>
Z; land surface characteristics data associated with
drainage to reach j;
H;; fraction of nutrient mass present in water body
J transported to water body i as a function of first-
order loss processes associated with stream
channels (H;; = [, exp(—kguL;; Js m), where kg, is
a ﬁrst—order loss coefficient, m is the number of
discrete flow classes, and L;; ,, is the length of the
stream channel between water bodies j and i in
flow class m);
the fraction of nutrient mass present in water
body ; transported to water body i as a function
of first-order loss processes associated With
lakes and reservoirs (HX; ¥, [Lexp(—kq; b,
where k. is an estimated ﬁrst—order loss rate
or “settling velocity”, ¢;' is the ratio of water
surface area to outflow discharge, and [ is the
lakes and reservoirs located between water
bodies j and i)
¢, the error term assumed to be independent and
identically distributed across separate subbasins
defined by intervening draina§e areas between
monitoring stations (¢; ~ N(0, 0°)

[13] There are eight unknown parameters (seven model
coefficients plus the unknown variance o2; Table 1). The
TN loading is generated from three sources (agricultural
land, nonagricultural land, and point sources). Diffuse
source nitrogen is attenuated as it moves across the land-
scape to the stream’s edge (modeled using one land delivery
variable). Additional attenuation occurs as nitrogen moves
through the reservoir and stream network to a downstream
monitoring station using three aquatic loss rate coefficients.
Detailed information about this model form, its assump-
tions, and applications is available elsewhere [Smith et al.,
1997; Preston and Brakebill, 1999; Alexander et al., 2000,
2002].

[14] To illustrate the SPARROW model specification we
present an example watershed (Figure 1) with nutrient
loading monitored at three reaches (reaches 3, 6, and 9;
hence the 7 in equation (1) takes values 3, 6, and 9). This
example will be used again in section 2.3 to clarify the
separation of model and observational errors. The nutrient
load from reach 1 is

n, N

J(@)

i

(5151‘16(7@‘) + 82851707 4 535341>H§,1H§17

where S 1, Sz.1, S5.1 are the agricultural land area, nonag-
ricultural land area, and point source nutrient loads, respec-
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Table 1. Definitions of Model Coefficients

Parameters Definitions
« land delivery variable: soil hydrologic group
By TN sources: agricultural land areal delivery rate (MT/km?)
B TN sources: nonagricultural land areal delivery rate (MT/km?)
B3 TN sources: point sources coefficient
k, aquatic loss: reservoir settling rate (m/yr)
k1 aquatic loss: small-stream rate coefficient (1/km)
ko aquatic loss: large-stream rate coefficient (1/km)
o model error standard deviation

tively, in reach 1. The estimated nutrient loads for reaches 3,
6, and 9, respectively, are as follows:

log(Loads) = log { Z;=1 ([BISU + BZSZE/]e(i(XZ")

+ B3S3J)H§JH§J} + €3,

6 o7
log(Loads) = log { > ([Blsl 4828y, el~o%)
+ B3S3J)ngH§J} + €6,

and

log(Loady) = log { Z/; ([BISU + BZSZJ]e(*“Z/)

+ 6333,,)H9SJH§J.} + €.

For reaches 6 and 9, the point source terms S34 and S5 7
include input from upstream nutrient load, which are Loads
and Loadg, respectively, under the current SPARROW
setting.

[15] In this paper, the upstream loads are separated from
the within watershed point sources, and the regression
coefficient 35 applies only to the point source loads. That
is, upstream loads are not included in the point source term
S5 ; and the term (3555 ; is replaced by

B3S3j + Loadupstream of j- (2)

As pointed out by an anonymous reviewer, treating
upstream loads as point source input may result in a
systematic bias because the reported point source loads are
often biased upward. We separated the upstream loads from
the point source to implement the models presented in
sections 2.3 and 2.4.

[16] A nonlinear least squares algorithm to equation (1)
was used for parameter estimation for the SPARROW
model by McMahon et al. [2003], using a data set contain-
ing reach-specific values for all sources and landscape terms
(S,; and Z; in equation (1)), along with stream (L;;,,) and
reservoir (g;) data for each reach in the stream networks
of three North Carolina river basins. The uncertainty in
the model parameters was estimated using 200 bootstrap
samples of the set of mean annual nutrient fluxes at
44 monitoring stations in three North Carolina river
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basins. Each bootstrap sample is a random collection of
the same 44 monitoring stations with replacement. In other
words, some stations will be included more than once and
some will not be included in the same bootstrap sample. A
set of model coefficients was estimated for each of the 200
bootstrap samples. Ninety-percent confidence intervals
were determined from the empirical coefficient distribu-
tions for the 200 bootstrap samples by computing the
minimum range of coefficient values such that the fraction
of values inside the range equaled the confidence levels
[Smith et al., 1997].

2.2. MCMC Model

[17] Reexpressing the nonlinear regression model (equa-
tion (1)) in terms of the probability distribution, the log
nutrient loading follows a normal distribution with a mean
defined by the model and a constant variance:

Yi ~ N(uiao-z)

B, = log(z:f:l ZJEJO.) BnSnJe(_QZ’)Hfin]ff)’

where V; is the observed log nutrient load and p; is the
SPARROW model estimated expected log nutrient load for
subwatershed i. The normal distribution provides the basis
for the likelihood function. Using the Bayes’ theorem, the
likelihood function and prior distributions of all unknown
coefficients are combined to yield the joint posterior

3)

C

Figure 1. An example river basin shown having three
subwatersheds each with three reaches, with nutrient
loadings monitored at stations A, B, and C.
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Figure 2. Graphical representation of the dynamic links between subwatersheds being modeled.

distribution. Using MCMC as the parameter estimation
method, we obtain the posterior joint distribution of the
model coefficients and the model error variance. Prior
distributions for unknown model parameters are described
in section 2.6.

2.3. STSP Model

[18] Statistically, the difficulty of modeling nutrient
transport in streams using a regression model lies in the
treatment of nutrient loads entering a subwatershed from
upstream watersheds. In other words, the regression model
can be summarized as

log(Load;) = f (8, Load}),

where Load; represents observed nutrient loads (with error)
from upstream watershed(s). By using the observed Load,
as a fixed input, we use the upstream load as a predictor of
the downstream load, which leads to the error in variable
problem in a regression setting.

[19] Given the connection between upstream and down-
stream subwatersheds, the total error can be separated into
process (or model) error and observation (or data) error.
Process error occurs because a given parameterized model
does not describe accurately the actual nutrient transport
processes, whereas observation error represents all sources
of error related to data gathering. The state space model
framework provides a structure to include both observation
and process error by separating the model-estimated nutrient
loading and the observed nutrient loading. For example,
model and observation errors for the example watershed in
Figure 1 can be graphically expressed to illustrate the
underlying statistical processes (Figure 2). In Figure 2 the
actual mean nutrient loadings (j3, pe, [o) are estimated from
a model plus a term representing the model error. The
observed nutrient loadings (Loads, Loads, Loads) can be
seen as samples representing the actual loadings. Mathe-
matically, the state space model is presented in equation (4):

Yi ~ N(Hh 02)

b~ N (1 (). 7).

4)

Using this setup, o represents the observation error variance,
7 represents process error variance, and J{(upstream) 18 the
expected nutrient loading of subwatershed i estimated by
using, for example, the SPARROW model with estimated
upstream nutrient loading pypsiream @S @ point source input,
ie.,

sk |, (s)

[/

F () =102 3 > BuSuel”

n=1 jeJ(i)

and the model estimated upstream loading jLupsiream 18 treated
as the load from upstream (equation (2)). The STSP model
adds one more unknown parameter (7°) to the list in Table 1.

[20] By entering the observed nutrient loading as input
from upstream (as done in all previous SPARROW
applications and the MCMC model in this paper), we
equate the observed upstream log loading value Y psircam
and the underlying actual loading Hupstream (€quation (4))
(Flgure 3). Mathematically, using Ysiream as upstream
input is equivalent to setting the data error variance (0?)
to 0. Practically any data error will be propagated to
downstream watersheds, resulting in serial correlation in
the residuals.

2.4. CAR Model

[21] The STSP model describes spatial correlation through
stream networks, which explains only part of the nutrient
loading spatial correlation in the watershed. A mathemat-
ical model, mechanistic or empirical, is an approximation.
It cannot include all relevant processes. The model we
used includes only a subset of the parameters that are
included in the national SPARROW models of Smith et al.
[1997]. Many excluded parameters are spatially correlated.
In addition, parameters included in the model may vary
spatially. For example, a common nutrient delivery rate for
agricultural land may not be accurate for the study area
because of geographical differences in agriculture intensity.
It is therefore reasonable to assume that the process error
for the model will be spatially correlated.
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Figure 3. Graphical representation of the dynamic links between subwatersheds being modeled under

the current SPARROW structure.

[22] Because the nature of such spatial correlation is
impossible to characterize, we opt for the Bayesian condi-
tional autoregressive (CAR) modeling approach [Besag
and Kooperberg, 1995]. Using CAR, a regional random
effect term is introduced to each subwatershed. This
random effect term is modeled as a Gaussian intrinsic
autoregression, a treatment used in the conditional auto-
regressive model of Besag [1974]. Loosely speaking, the
random effect term for all subwatersheds is an error term
modeled by a multivariate normal distribution with mean 0
and an unknown covariance matrix:

Yi~ N(M[CAR>O-2)7
F"z(':AR =+ bi’ (6)
b ~ N(fl <”“S£§eam> ) Tz) )

where ﬁ(pgpiﬁeam) is the expected nutrient loading as
defined in equation (5) and the estimated upstream loading
uf@ﬁeam is used as the upstream loading (equation (2)).
The distribution of the random effects b; is proportional to

xp { S (b b,->2/<2s2>} ,

inj

where i ~ j denotes adjacent subwatersheds of i. This
results in the conditional mean of b; to be the mean of the
adjacent subwatersheds random effects and the conditional
variance of b; to be s* divided by the number of adjacent
subwatersheds (7;). The conditional distribution of each
term b; is determined by the neighboring regions in the
network:

b,‘ ad N(I_J,',Slz),
- 1
bi = n_l Zneighbor(i) bi’ (7)

5?7 =% /n;.

Intuitively, the model in equation (6) can be represented as
a sum of three terms:

Yi:H‘iJ’_bi_._eh

where e; is the traditional sense error term distributed as
normal with mean 0 and a constant variance (%), and the
term b; is a second error term modeled by a multivariate
normal distribution. Equation (7) is the computational
strategy for estimating the covariance matrix for b, The
CAR model adds considerably more unknown parameters
(12, b;, and s%) to the list in Table 1.

2.5. Model Comparison

[23] The three Bayesian nonlinear models were compared
using the Bayes factor (BF) [Kass and Raftery, 1995] and
the Deviance Information Criterion (DIC) [Spiegelhalter et
al., 2002]. BF was proposed initially by Jeffreys [1935,
1961] as a quantitative measure of the evidence in favor
of a scientific theory. When comparing two alternative
models, the BF is the posterior odds of one model over
the other (assuming the prior probability on either model
is 0.5). If the two alternative models are M; and M,, the
BF is

(Y|
B = Pr(Y|Ms) (8)

For model comparison purposes, the model likelihood
(Pr(Y|My), k = 1, 2) is obtained by integrating over the
parameter space:

Pr(Y|M;) =/@Pr(Y|9k,Mk)ﬂ(6k|Mk)a?6k7 9)

where 0, is the parameter vector under model A and
(0] M) is the prior density of 6. Using the MCMC
method, we can estimate Pr(Y]|M;) from posterior samples of
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Figure 4. Ninety-five percent credible intervals (vertical lines) from the posterior predictive
distributions of log TN loads estimated by the three models: (top) MCMC SPARROW, (middle) STSP

SPARROW, and (bottom) CAR SPARROW. The
respective observed log TN loads and compared to
horizontal lines).

0. Letting 0f” be samples from the posterior density
Pr(6;|Y), the estimated Pr(Y|My) is:

m

)>

i=1

—1
ﬁmezgz m@%&m)} . (10)

the harmonic mean of the likelihood values [Kass and
Raftery, 1995].

[24] While BF compares the level of support of each
model based on the fit to the data, DIC is a Bayesian
measure of model complexity and fit. DIC is a sum of
the posterior mean deviance D(0), a Bayesian measure
of fit or “adequacy,” and a complexity measure pp, which
corresponds to the trace of the product of Fisher’s informa-
tion and the posterior covariance [Spiegelhalter et al., 2002].
The Bayesian deviance D is based on —2log(likelihood),
a measure of residual information in data conditional on
parameter 0 or —2log[p(¥|0)]. In our case, the data (¥ =
log(Load)) are assumed from a normal distribution. The
Bayesian deviance is

p(Y]8)

D(0) = —2log )

where f(Y) is the mathematical upper limit of the likelihood
function (it is reached when the estimated ; or pi*”® equal

6 of

predictive distributions are centered around the
the residuals from McMahon et al. [2003] (short

to Y;). The smaller the D(6), the closer the actual likelihood
(p(Y10)) is to the maximum (hence a better model). The
complexity measure is the the mean deviance minus the
deviance evaluated at the posterior parameter means:

pp = D(0) — D(0).

The DIC is defined as

DIC = D(0) + pp.

a Bayesian measure of model fit penalized by an additional
complexity term. A smaller DIC indicates a “better”” model.

2.6. Computation

[25] The MCMC simulation [Gilks et al., 1996] is used
as the computation tool implemented with the software
Bayesian inference Using Gibbs Sampler for Windows
(WinBUGS) (D. Spiegelhalter et al., WinBUGS user
manual, version 1.4, 2003, available at http://www.mrc-bsu.
cam.ac.uk/bugs/welcome.shtml). Qian et al. [2003] described
MCMC in the context of environmental and ecological
modeling. MCMC uses the fact that a joint multivariate
distribution is fully defined by the full conditional distri-
bution. Let V be the collection of all unknown parameters
and v be a member of V. The full conditional distribution
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Figure 5. Log residuals from least squares SPARROW
model of McMahon et al. [2003] plotted over the three

watersheds in eastern North Carolina. Sizes of the circles are
proportional to the absolute value of the respective residuals.

is defined as the conditional distribution of v given V_,
(all except v):

POIV-,) xp(v.V_)
o terms in p(V) containing v.

Starting from a set of arbitrary initial values, the Gibbs
sampler draws v from the full conditional distributions
successively. These samples converge in distribution to the
joint distribution of V. An example of Gibbs sampler is
given by Qian and Richardson [1997]. Inference about v is
made based on samples from the joint distribution. These
samples often are referred to as MCMC samples. In our
case, the joint distribution of interest is the posterior joint
distribution of unknown parameters. It is proportional to
the product of the likelihood function defined by the
normal distributions in equations (3), (4), or (6) and the
densities of the prior distributions. Convergence is checked
by using the Raftery and Lewis procedure [Raffery and
Lewis, 1992, 1996].

[26] We used a normal distribution with mean 0 and
variance 10,000, N(0, 10,000), as the prior distribution for
model coefficients (0 = {a, B, kg k.}) and a gamma
distribution Ga(0.001,0.001) as prior for precision parame-
ters (e.g., 1/0%). Both N(0, 10, 000) and Ga(0.001, 0.001)
are considered “vague.” The distribution Ga(0.001, 0.001)
(a proper distribution) is very close to the commonly used
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Jeffrey’s prior for precision parameters, an improper distri-
bution that does not integrate to one. Using this “barely”
proper distribution avoids possible improper posteriors
under the Jeffrey’s prior (see WinBUGS user manual for
details). The distribution N(0, 10,000), with a mean 0 and
standard deviation of 100, is practically flat. Vague prior
distributions were used because we had no information
about these model parameters. When data from subsequent
years are available, posterior distributions from this study
can be used to develop specific priors.

3. Results

[27] Because of their Bayesian nature, our models pro-
duce posterior predictive distributions for TN loading at
monitoring stations rather than point estimates. We present
these posterior distributions using only their 95% (equal
tail) credible intervals (Figure 4). The predictive distribution
is presented in terms of the difference between the predicted
log loads (a distribution) and the observed log loads. The
CAR model consistently predicts narrower credible inter-
vals than these from the MCMC and STSP models. If we
use the distance between posterior predictive distribution
medians and the observed values as a measure of model fit
similar to the residuals of a regression model, the CAR
model produced much smaller residuals than the nonlinear
regression SPARROW of McMahon et al. [2003], as well as
the other two Bayesian models. Although the STSP model
resulted in 95% credible intervals similar to the MCMC
model, the residuals from the STSP model are almost
always smaller than residuals from the MCMC model.
The differences in residuals between the two models are
small when compared pairwise. However, the fact that the
STSP model residuals are consistently smaller than the the
MCMC model residuals indicates a systematic improve-
ment and makes the addition of the state space links among
subwatersheds worthwhile.

[28] McMahon et al. [2003] noted that the least squares
fitted SPARROW tends to overpredict nutrient loads in the
piedmont region and underpredict in the Coastal Plain
(Figure 5). This spatial pattern is less apparent in the
MCMC and STSP models, and no longer apparent in the

1.5

1.0

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

0.0 0.5

-1.0

Figure 6. Ninety-five percent credible intervals of the spatial random effect term b;, which are shown
by the vertical dashed lines. The open circles are the means of b;, and the short horizontal dashes are the
log residuals from the least squares SPARROW model of McMahon et al. [2003].
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Table 2. Comparisons of Estimated Model Coefficients®

Model 8] B1 82 B3 k, k1 kg

LS 4.1 5.9 1.8 0.85 16.4 0.08 0.002
MCMC 5.7(5.5) 2.8(3.7) 0.7(0.9) 0.77(0.83) 17.4(19.3) 0.04(0.05) 0.003(0.003)
STSP 5.3(5.5) 2.8(3.5) 0.7(0.9) 0.70(0.79) 18.4(18.2) 0.05(0.05) 0.003(0.003)
CAR 6.6(6.5) 5.5(6.9) 0.8(1.1) 0.73(0.82) 20.1(19.5) 0.03(0.04) 0.005(0.005)

“The estimated values for the three Bayesian models are the posterior mode and mean (in parenthesis).

CAR model. The random effect term b; in the CAR model by McMahon et al. [2003] (Table 2). The three Bayesian
serves as a correction for the mismatch between the model models coefficient estimates are the marginal posterior
predictions and the observations (Figure 6). distribution medians, while the SPARROW estimates are

[29] The estimated model coefficients are different coefficient values that minimize the residual sum of squares.
among the three Bayesian models and those estimated The least squares results are close to the maximum likeli-
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Figure 7. Empirical cumulative density functions of marginal posterior parameter distributions from
three Bayesian models.
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hood estimator (MLE) estimates in most situations. Theo-
retically, the MCMC model estimates would be close to the
MLE estimate because flat priors lead to posteriors that are
proportional to the likelihood function. The two sets of
estimates are somewhat different.

[30] In addition to the spatial correlation in the model
process error that may lead to a potentially erroneous result,
a strong correlation among model coefficients can be another
reason. The marginal posterior distribution of three coeffi-
cients (a, 81, 3,) are highly correlated and concentrated
along a narrow banana-shaped region. This type of joint
distribution is common in water quality models (see Qian et
al. [2003] for an example). The banana-shaped posterior
distribution makes the search of the maximum likelihood (or
the mode) very difficult using the conventional numerical
optimization algorithms, because the likelihood or density
value may vary only slightly along the center of this region.
Consequently, a numerical search algorithm with a preset
error tolerance level may stop at a different suboptimal
values when different initial values are used. Using the
MCMC approach, we are able to sample from the joint
posterior distribution over the entire banana-shaped region,
thus avoiding this difficulty in optimization.

[31] To compare the three Bayesian models, we first
present the cumulative distribution function (CDF) of the
marginal posteriors for each parameter (Figure 7). The
CDFs for o* were not shown in Figure 7 because the three
models have different error structures. The single model
error variance o in the MCMC model is divided into two
parts in the STSP model (0%, 7°), and three parts in the CAR
model (0%, 7%, and s°). The estimated error standard devia-
tions are listed in Table 3. We note that in the CAR model,
each subregion has its own spatial random effect error
variance s7 = s°/n; (equation (7)). There are usually two to
three neighboring regions for each region. The comparison
indicates that the three Bayesian models resulted in very
different posterior parameter distributions and different
error structures. Among the three Bayesian models, the
CAR model is overwhelmingly supported by the data based
on BF and DIC (Table 4).

4. Discussion

[32] Like others [e.g., National Research Council, 2001;
McMahon et al., 2003], we believe that empirical models,
such as SPARROW, are a valuable modeling tool for
assisting scientists and managers in TMDL pollutant allo-
cation and listing impaired waters under section 303(d) of
the Clean Water Act (303(d) listing). At the same time, we
recognize that decisions regarding standard violations and
TMDLs have significant consequences. Thus refinements in
a conventional nonlinear regression model can help reduce
costly errors associated with incorrect listings of violations
of standards.

Table 3. Model Error Standard Deviations

Model o T s
MCMC 0.434 NA NA
STSP 0.428 0.062 NA
CAR 0.063 0.061 0.647
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Table 4. Bayes Factors and Deviance Information Criterion

MCMC STSP CAR
MCMC 1 3.7 28,748
STSP - 1 7,751
CAR - - 1
DIC 67 64 —44

*The BF values are comparing models on the top over models to the left.

[33] In our study, the Bayesian approach illustrated the
improvements possible in a nonlinear regression model
when spatial variability is accounted for in the model. The
state space modeling approach characterizes predictive
applications (i.e., load cannot be observed, because predic-
tion represents a future, unrealized state) when upstream
loading must be estimated using a regression model. The
conditional autoregressive model further improves the nu-
trient model by capturing the spatial correlation among
nearby river basins.

[34] As empirical watershed models, such as SPARROW,
become more widely implemented, we envision yet another
Bayesian application. At present, 303(d) listing of impaired
waters is based on in situ monitoring. However, it is now
recommended that hypothesis testing serve as the basis for
the listing/delisting decision [National Research Council,
2001]; with monthly monitoring as the typical sampling
frequency, a number of years of sampling may be necessary
to achieve a high level of assurance on the listing decision.
One way to reduce the number of samples (and hence the
time required for sound listing/delisting decisions) is to use
a model to augment the in situ monitoring.

[35] For example, if a commonly used lognormal distri-
bution is assumed for the nutrient concentration, the limited
monitoring concentration data can be augmented with
Bayesian updating using the SPARROW model results to
provide prior distributions of the nutrient concentration
distribution parameters (log mean and log variance). Spe-
cifically, let the log concentration variable log(C) follow a
normal distribution with unknown mean p.. and variance o
log(C) ~ M., 02). The most commonly used conjugate
joint prior distribution for . and o? is the normal gamma
distribution (with four parameters) and the posterior pre-
dictive distribution of log(C) is a Student ¢ distribution
[Bernardo and Smith, 1994]. For example, using the CAR
model for a specific subwatershed i, we have a series of
MCMC samples of the mean log nutrient loading pt™R
and MCMC samples of variances o2, 7 and s7. The total
variance of the log loading is o7 = o° + T° + s7.
Considering a typical flow condition with log mean of ¢
and log variance of ofl, we can convert the MCMC
samples of log loading to samples of mean nutrient
concentrations (ps*® — ¢, with variance o7 + czq). These
samples can be used to estimate the four parameters in the
prior distribution (the normal gamma distribution). The
resulting posterior predictive distribution (Student 7) can be
used to estimate the probability of violation of standards.
In addition, the resulting posterior predictive distribution
can be used to assess whether there is a need for more
monitoring samples based on the estimated posterior
variance in the log concentration.

[36] In summary, we believe that a modeling approach
combining simple mechanistic descriptions with identifi-
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ability and parameter estimation represents an important
direction for applied water quality modeling. As we have
demonstrated, spatial correlation among watersheds can be
modeled to improve a nonlinear model’s predictions. Final-
ly, when implemented in a Bayesian framework, results
from a nonlinear regression model can be updated with
monitoring data to assess the effectiveness of implemented
TMDLs and to support the listing decision.
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