Appendix 3B. Water-quality benchmarks for pesticide compounds analyzed in NAWQA bed-sediment and (or) whole-fish samples

[For pesticide compounds in bed sediment and whole-fish tissue, benchmarks are for protection of aquatic life and fish-eating wildlife, respectively. Common synonyms are listed in parentheses in column 1. Cited references are listed in Appendix 3D. Benchmark_{High}, highest value in the range of wildlife benchmarks available for a given pesticide compound or group; Benchmark_{Low}, lowest value in the range of wildlife benchmarks available for a given pesticide compound or group; C_f, concentration in food; Eisler-PC, proposed criterion from Contaminant Hazard Review series by R. Eisler and colleagues; ESB, equilibrium partitioning sediment benchmark; FFC, fish flesh criterion (noncancer value); NOAEL-ECF, no-observed-adverse-effects level equivalent concentration in food; TEC, threshold effect concentration; TRG, tissue residue guideline; USEPA, U.S. Environmental Protection Agency; μg/g, microgram per gram; μg/kg dw, microgram per kilogram dry weight; μg/kg ww, microgram per kilogram wet weight;—, no benchmark available.]

	Bed sediment benchmarks for protection of benthic aquatic organisms		Whole-fish benchmarks for protection of fish-eating wildlife				
Pesticide compound (synonym)	Consensus-based threshold effect concentration (TEC) (µg/kg dw) ¹	USEPA equilibrium partitioning sediment benchmark (ESB) (µg/g of sediment organic carbon) 1	Benchmark _{Low} value (µg/kg ww) ²	Type of $Benchmark_{Low}$	Benchmark _{High} value (µg/kg ww) ²	Type of Benchmark _{High}	
Organochlorines	•				•		
Aldrin	_	_	813	NOAEL-equivalent concentration in food	813	NOAEL-equivalent concentration in food	
Total chlordane ³	3.24	_	300	Eisler proposed criterion	4,200	NOAEL-equivalent concentration in food	
o,p ´ + p,p ´-DDD ⁴	4.88	_	see (⁵)	_	see (⁵)	_	
o,p ´ + p,p ´-DDE ⁴	3.16	_	see (5)	_	see (⁵)	_	
o,p ´ + p,p ´-DDT ⁴	4.16	_	see (⁵)	_	see (⁵)	_	
Total DDT ⁵	5.28	_	6	NOAEL-equivalent concentration in food	200	New York FFC	
Dieldrin	1.90	12	81	NOAEL-equivalent concentration in food	⁶ 120	New York FFC	
Endosulfan I	_	0.29	_	_	_	_	
Endrin	2.22	5.4	20	NOAEL-equivalent concentration in food	25	New York FFC	
beta-HCH	_	_	1,630	NOAEL-equivalent concentration in food	1,630	NOAEL-equivalent concentration in food	
gamma-HCH	2.37	0.37	3,950	NOAEL-equivalent concentration in food	3,950	NOAEL-equivalent concentration in food	
Total HCH ⁷	_	_	70	NOAEL-equivalent concentration in food	100	New York FFC	
Heptachlor	_	_	529	NOAEL-equivalent concentration in food	529	NOAEL-equivalent concentration in food	

[For pesticide compounds in bed sediment and whole-fish tissue, benchmarks are for protection of aquatic life and fish-eating wildlife, respectively. Common synonyms are listed in parentheses in column 1. Cited references are listed in Appendix 3D. Benchmark_{High}, highest value in the range of wildlife benchmarks available for a given pesticide compound or group; Benchmark_{Low}, lowest value in the range of wildlife benchmarks available for a given pesticide compound or group; C_f, concentration in food; Eisler-PC, proposed criterion from Contaminant Hazard Review series by R. Eisler and colleagues; ESB, equilibrium partitioning sediment benchmark; FFC, fish flesh criterion (noncancer value); NOAEL-ECF, no-observed-adverse-effects level equivalent concentration in food; TEC, threshold effect concentration; TRG, tissue residue guideline; USEPA, U.S. Environmental Protection Agency; $\mu g/g$, microgram per gram; $\mu g/kg$ dw, microgram per kilogram dry weight; $\mu g/kg$ ww, microgram per kilogram wet weight;—, no benchmark available.]

	Bed sediment benchmarks for protection of benthic aquatic organisms		Whole-fish benchmarks for protection of fish-eating wildlife				
Pesticide compound (synonym)	Consensus-based threshold effect concentration (TEC) (µg/kg dw) ¹	USEPA equilibrium partitioning sediment benchmark (ESB) (µg/g of sediment organic carbon) 1	Benchmark _{Low} value (µg/kg ww) ²	Type of $Benchmark_{Low}$	Benchmark _{High} value (µg/kg ww) ²	Type of Benchmark _{High}	
Heptachlor epoxide	2.47	_	see (8)	_	see (8)	_	
Total heptachlor ⁸	_	_	200	New York FFC	529	NOAEL-equivalent	
_						concentration in food	
Hexachlorobenzene	_	_	330	New York FFC	330	New York FFC	
Total methoxychlor 9	_	1.9	16,300	NOAEL-equivalent	16,300	NOAEL-equivalent	
, and the second				concentration in food		concentration in food	
Mirex	_	_	330	New York FFC	330	New York FFC	
Toxaphene	_	10	6.3	Canadian TRG	32,500	NOAEL-equivalent	
						concentration in food	

¹ TECs are from MacDonald and others (2000). ESBs are from USEPA (2003g, 2003h, 2003i).

² Benchmark_{Low} and Benchmark_{High} refer to the range of benchmark values from the following four sources: Oak Ridge NOAEL-equivalent concentrations in food (the lowest C_f value for piscivorous wildlife species from Sample and others, 1996); New York fish flesh criteria—noncancer values (Newell and others, 1987); Canadian tissue residue guidelines (Canadian Council of Ministers of the Environment, 1999a, 1999b); proposed criteria from the U.S. Fish and Wildlife Service's report series, Contaminant Hazard Reviews (Eisler and Jacknow, 1985; Eisler 1990).

³ Sum of *cis* - and *trans* -chlordane, *cis* - and *trans* -nonachlor, and oxychlordane.

⁴ Benchmark applies to the sum of these two compounds

⁵ Sum of the concentrations of o,p' and p,p' isomers of DDD, DDE, and DDT.

⁶ The benchmark is for total dieldrin (sum of aldrin plus dieldrin). However, this benchmark is considered applicable to dieldrin concentration data because only one fish sample contained any aldrin ($10 \mu g/kg$), and in that sample both aldrin and dieldrin ($43 \mu g/kg$) were well below all benchmarks.

Sum of the concentrations of alpha, beta, gamma, and delta-HCH.

⁸ Sum of the concentrations of heptachlor and heptachlor epoxide.

Sum of the concentrations of o,p and p,p isomers of methoxychlor.