	Human health benchmarks (µg/L) Derived from			Aquatic life benchmarks (µg/L)											
Pesticide compound (synonym)	Derive USEPA water star guidelines Wa	ed from drinking- ndards and s (Office of ater)	Derived fro ambient w criteria for (Office o	om USEPA ater-quality aquatic life of Water)	Derived fr	Derived from USEPA Reregistration Eligibility Decisions and ecological risk assessments (Office of Pesticide Programs)									
	Value ¹	Туре	Acute ²	Chronic ²	Acute fish ³	Chronic fish ⁴	Acute invertebrates ⁵	Chronic invertebrates ⁶	Acute nonvascular plants ⁷	Acute vascular plants ⁸	Chronic aquatic community ⁹	OPP references			
Environmental concentration:	Time- weighted annual mean		Each individual sample	4-day moving average	Each individual sample	60-day average	Each individual sample	21-day average	Each individual sample	Each individual sample	60-day average				
Amides											•				
Alachlor	2	MCL		_	900	187	1,600	110	1.64	—		USEPA (1998a)			
Metolachlor	100	HA-L	_	—	1,950	780	12,550	—		—	—	USEPA (1995a)			
Napropamide	-		_	_	3,200		7,150	—	3,400			USEPA (2005a)			
Pronamide (Propyzamide)	50	HA-L		—	36,000		10 2,800	—	760	_	—	USEPA (1994a)			
Propachlor	90	HA-L	_		85		395	—	13.5	—		USEPA (1998b)			
Propanil	_	—	—		1,150	9.1	600	86.0	16	110	—	USEPA (2003a)			
Carbamates															
Aldicarb ¹¹	3	MCL (stayed)	—	—	26	0.46	10	1.0	¹⁰ 50,000	_		USEPA (2005b)			
Aldicarb sulfone ¹¹	2	MCL (stayed)	—	_	21,000	_	140	_	—	—	—	USEPA (2005b)			
Aldicarb	4	MCL	—		3,570	_	21.5	_			_	USEPA (2005b)			
sulfoxide ¹¹		(stayed)			·							. ,			
Butylate	400	HA-L	—	_	105	¹² 210	5,950	—	—	—	—	USEPA (1993)			

	Human health benchmarks (μg/L) Derived from			Aquatic life benchmarks (μg/L)											
Pesticide compound (synonym)	Derive USEPA water star guidelines Wa	ed from drinking- ndards and (Office of ater)	Derived fro ambient w criteria for (Office o	om USEPA ater-quality aquatic life of Water)	Derived fr	om USEPA I	Reregistration E	ligibility Decisio Prog	ons and ecolog rams)	gical risk ass	sessments (Of	fice of Pesticide			
	Value ¹	Туре	Acute ²	Chronic ²	Acute fish ³	Chronic fish ⁴	Acute invertebrates ⁵	Chronic invertebrates ⁶	Acute nonvascular plants ⁷	Acute vascular plants ⁸	Chronic aquatic community ⁹	OPP references			
Environmental concentration:	Time- weighted annual mean		Each individual sample	4-day moving average	Each individual sample	60-day average	Each individual sample	21-day average	Each individual sample	Each individual sample	60-day average				
Carbaryl	700	HA-L	_	—	¹³ 125	¹³ 210	2.55	1.5	1,100	—		USEPA (2003b, 2004c)			
Carbofuran	40	MCL	-	_	44	5.7	1.115	0.75				USEPA (2005c)			
EPTC					7,000	—	3,250	—	1,360	5,600		USEPA (1999a)			
Methiocarb	—	_			218	50	3.5	0.10		—		USEPA (1994b)			
Methomyl	200	HA-L	—	_	265	57	4.4	10 0.4		—		USEPA (1998c)			
Molinate		_			105	¹² 210	170	¹² 340	220	3,300	_	USEPA (2001a)			
Oxamyl	200	MCL	_	-	2,100	770	90	¹² 180		—		USEPA (1999b)			
Pebulate		_			3,150	—	3,315	—	230	1,800		USEPA (1999c)			
Propham	100	HA-L	—		—		—	—	—		—	—			
Propoxur (Baygon)	3	HA-L	—	—	1,850	—	5.5			_		USEPA (1997a)			
Thiobencarb		_			280		50	1.0	17	770		USEPA (1997b)			
Triallate			_	_	600	38	45.5	13	120	—		USEPA (2000a)			
Chlorobenzoic a	acid esters														
Dacthal (DCPA) ¹⁴	70	HA-L			15,000		13,500	_	¹⁰ 11,000	10 11,000		USEPA (1998d)			

	Humar benchma	Human health benchmarks (µg/L) Derived from		Aquatic life benchmarks (µg/L)											
Pesticide compound (synonym)	Derive USEPA water star guidelines Wa	ed from drinking- ndards and (Office of atter)	Derived fro ambient w criteria for (Office o	om USEPA ater-quality aquatic life of Water)	Derived fr	Derived from USEPA Reregistration Eligibility Decisions and ecological risk assessments (Office of Pesticide Programs)									
	Value ¹	Туре	Acute ²	Chronic ²	Acute fish ³	Chronic fish ⁴	Acute invertebrates ⁵	Chronic invertebrates ⁶	Acute nonvascular plants ⁷	Acute vascular plants ⁸	Chronic aquatic community ⁹	OPP references			
Environmental concentration:	Time- weighted annual mean		Each individual sample	4-day moving average	Each individual sample	60-day average	Each individual sample	21-day average	Each individual sample	Each individual sample	60-day average				
Chlorophenoxy	acids						•								
2,4-D	70	MCL	_	_	¹⁵ 50,500	¹⁵ 14,200	¹⁵ 12,500	¹⁵ 16,400	¹⁵ 3,880	¹⁵ 299.2	_	USEPA (2004d)			
2,4-DB		—		_	¹⁵ 1,000		¹⁵ 7,500	—	¹⁵ 932	—	-	USEPA (2004e)			
MCPA	4	HA-L	_	—	¹⁵ 380	¹⁵ 12,000	¹⁵ 90	¹⁵ 11,000	¹⁵ 160	¹⁵ 20	_	USEPA (2004f)			
2,4,5-T	70	HA-L	_	_	_		—		-	_	-				
2,4,5-TP (Silvex)	50	MCL	_	_			—								
Dinitroanilines					1	1	1	ſ		1		1			
Benfluralin	_	_	_	_	15.85	1.9	1,090	¹⁶ 15.5	10 100	—	_	USEPA (2004g)			
Ethalfluralin	—	—	—	—	16	0.4	30	24	25		_	USEPA (1995b)			
Oryzalin	_	_	_		1,440	220	700		42	15.4		USEPA (1994c)			
Pendimethalin Trifluralin		<u> </u>			69	6.3	140	14.5	5.4	12.5		USEPA $(1997c)$			
IIIIuraiiii	5	$CRC(10^{-6})$			20.5	1.14	200	2.4	1.52	45.5		USLFA (1990a)			
Miscellaneous		cnc(10)					1	1		1		1			
Bentazon	200	HA-L			¹⁰ 50,000		¹⁰ 50,000		4,500	5,350	_	USEPA (1994d)			
Norflurazon	—	—	—	$\begin{array}{c c c c c c c c c c c c c c c c c c c $											

	Huma benchma	Human health benchmarks (µg/L) Derived from		Aquatic life benchmarks (µg/L)											
Pesticide compound (synonym)	Derive USEPA water sta guidelines Wa	ed from drinking- ndards and s (Office of ater)	Derived fro ambient w criteria for (Office o	om USEPA ater-quality aquatic life of Water)	Derived f	Derived from USEPA Reregistration Eligibility Decisions and ecological risk assessments (Office of Pesticide Programs)									
	Value ¹	Туре	Acute ²	Chronic ²	Acute fish ³	Chronic fish ⁴	Acute invertebrates ⁵	Chronic invertebrates ⁶	Acute nonvascular plants ⁷	Acute vascular plants ⁸	Chronic aquatic community ⁹	OPP references			
Environmental concentration:	Time- weighted annual mean		Each individual sample	4-day moving average	Each individual sample	60-day average	Each individual sample	21-day average	Each individual sample	Each individual sample	60-day average				
Miscellaneous a	cids														
Acifluorfen	1	CRC(10 ⁻⁶)			15,500	¹⁷ 1,500	14,050	_	¹⁰ 265,000	378,000	—	USEPA (2000b)			
Dicamba	200	HA-L								_					
Picloram	500	MCL	—	—	6,500	550	34,150	11,800	4,900	—		USEPA (1995c)			
Nitrophenols						7									
Dinoseb	7	MCL	—	—		—	—	—	—	—	—	—			
Organochlorine	es	1		1		1	I		1	1	1	1			
Chlorothalonil	1.5	$CRC(10^{-6})$	—		11.5	3	34	39	190	—		USEPA (1999d)			
p,p´-DDE	¹⁸ 0.1	CRC(10 ⁻⁶)	¹⁹ 1.1	^{19,20} 0.001						—	—	—			
Dichlobenil		—	—	—	2,465	¹⁷ 330	1,850	560	1,000	30	_	USEPA (1998e)			
Dieldrin	0.002	CRC(10 ⁻⁶)	0.24	0.056	—	—	—	-	—	—	—	—			
alpha -HCH	¹⁸ 0.006	CRC(10 ⁻⁶)	—	—	—	—	—		—	—	—	—			
<i>gamma</i> -HCH (Lindane)	0.2	MCL	0.95	_	0.85	¹² 1.7	0.5	¹² 1		_	_	USEPA (2001b)			
Triclopyr			—		²¹ 180	10,21 104,000	²¹ 850	²¹ 80,700	²¹ 100	²¹ 880	_	USEPA (1998f)			

	Human health benchmarks (µg/L) Derived from			Aquatic life benchmarks (µg/L)											
Pesticide compound (synonym)	Derive USEPA water star guidelines Wa	ed from drinking- ndards and s (Office of atter)	Derived from USEPA ambient water-quality criteria for aquatic life (Office of Water)		Derived fr	Derived from USEPA Reregistration Eligibility Decisions and ecological risk assessments (Office of Pesticide Programs)									
	Value ¹	Туре	Acute ²	Chronic ²	Acute fish ³	Chronic fish ⁴	Acute invertebrates ⁵	Chronic invertebrates ⁶	Acute nonvascular plants ⁷	Acute vascular plants ⁸	Chronic aquatic community ⁹	OPP references			
Environmental concentration:	Time- weighted annual mean		Each individual sample	4-day moving average	Each individual sample	60-day average	Each individual sample	21-day average	Each individual sample	Each individual sample	60-day average				
Organophospha	ates								-			-			
Azinphos-methyl (Guthion)	-	—	—	0.01	0.18	¹² 0.36	0.08	¹² 0.16	—	—	—	USEPA (2005e)			
Chlorpyrifos	20	HA-L	0.083	0.041	0.9	0.57	0.05	0.04	140		—	USEPA (2000c, 2002)			
Diazinon	0.6	HA-L		1	45	¹⁷ 0.55	13,22 0.1	¹³ 0.17	3,700			USEPA (2000d, 2004h)			
Disulfoton	0.3	HA-L	_	_	19.5	¹² 39	1.95	0.037	_		—	USEPA (2000e)			
Ethoprop (Ethoprophos)		—	_		150	24	22	0.8	8,400			USEPA (1999e)			
Fonofos	10	HA-L		_		—	—		—			—			
Malathion	100	HA-L	—	0.1	2	¹² 4	0.25	0.06	—		—	USEPA (2000f)			
Parathion (Ethyl parathion)	_	—	0.065	0.013	9	¹⁶ 0.19	0.02	0.002				USEPA (1999f)			
Parathion-methyl (Methyl parathion)	2	HA-L	—	_	500	¹⁷ 80	0.07	0.02	5,300	_	_	USEPA (2003c)			

	Human health benchmarks (µg/L) Derived from			Aquatic life benchmarks (µg/L)											
Pesticide compound (synonym)	Derive USEPA water star guidelines Wa	ed from drinking- ndards and s (Office of ater)	Derived fr ambient w criteria for (Office o	om USEPA ater-quality aquatic life of Water)	Derived fr	om USEPA	Reregistration E	ligibility Decisi Prog	ons and ecolog rams)	gical risk as	sessments (O	ffice of Pesticide			
	Value ¹	Туре	Acute ²	Chronic ²	Acute fish ³	Chronic fish ⁴	Acute invertebrates ⁵	Chronic invertebrates ⁶	Acute nonvascular plants ⁷	Acute vascular plants ⁸	Chronic aquatic community ⁹	OPP references			
Environmental concentration:	Time- weighted annual mean		Each individual sample	4-day moving average	Each individual sample	60-day average	Each individual sample	21-day average	Each individual sample	Each individual sample	60-day average				
Phorate	—			—	0.5	¹² 1	0.30	0.21	1,300	—	—	USEPA (1998g, 1999g)			
Terbufos	0.9	HA-L	—	—	0.385	¹² 0.77	0.1	0.030			—	USEPA (1999h)			
Phenols	1				1		1	I							
Bromoxynil		—		—	11.5	9	5.5	2.5	51	219	—	USEPA (1998h)			
Pyrethroids							1	T		1	1	1			
<i>cis</i> -Permethrin ¹⁴		—	—		²³ 0.395	²³ 0.30	^{13,23} 0.0195	^{13,23} 0.039	—	—	—	USEPA (2005f)			
Sulfite esters															
Propargite		—	—	—	¹³ 15.5	¹³ 16	37	9	19.4	75,000		USEPA (2000g)			
Triazines															
Atrazine	3	MCL			2,650	62	360	62	32	18	17.5	USEPA (2003d, 2003e)			
Cyanazine	1	HA-L			—	_				_	—	—			
Metribuzin	200	HA-L	_		21,000	3,000	2,100	1,290	8.7	130		USEPA (1998i)			
Prometon	100	HA-L			—		—		—						
Simazine	4	MCL	—		3,200	960	500	¹² 1,000	36	140	_	USEPA (2005g, 2005h)			

	Humar benchma	n health rks (μg/L)		Aquatic life benchmarks (µg/L)											
Pesticide compound (synonym)	Derive USEPA water star guidelines Wa	ed from drinking- ndards and (Office of ater)	Derived fro ambient w criteria for (Office o	om USEPA ater-quality aquatic life of Water)	Derived fr	Derived from USEPA Reregistration Eligibility Decisions and ecological risk assessments (Office of Pesticide Programs)									
	Value ¹	Туре	Acute ²	Chronic ²	Acute fish ³	Chronic fish ⁴	Acute invertebrates ⁵	Chronic invertebrates ⁶	Acute nonvascular plants ⁷	Acute vascular plants ⁸	Chronic aquatic community ⁹	OPP references			
Environmental concentration:	Time- weighted annual mean		Each individual sample	4-day moving average	Each individual sample	60-day average	Each individual sample	21-day average	Each individual sample	Each individual sample	60-day average				
Uracils							-								
Bromacil	90	HA-L			18,000	—	60,500		6.8		—	USEPA (1996c)			
Terbacil	90	HA-L			23,100	—	31,500	—	11	140	—	USEPA (1998j)			
Ureas							1	10	1						
Diuron	10	HA-L			355	26	80	¹² 160	2.4		—	USEPA (2003f)			
Fluometuron	90	HA-L			320	-	110		30	220		USEPA (2005i)			
Linuron	—				1,500	17 42	60	¹² 120	67			USEPA (1995d)			
Tebuthiuron	500	HA-L			53,000	9,300	148,500	21,800	50	135		USEPA (1994e)			
¹ From USEPA (20	004a), unles	ss noted oth	nerwise												
2 From USEPA (20	004b)														
³ Benchmark = To:	xicity value	e x LOC. Fo	or acute fish, toxicity value is generally the lowest 96-hour LC ₅₀ in a standardized test (usually with rainbow trout, fathead minnow, or												
bluegill), and the L	LOC is 0.5.														
⁴ Benchmark = To:	xicity value	e x LOC. Fo	or chronic fis	sh, toxicity v	alue is usual	ly the lowest	NOEAC from a	a life-cycle or ea	rly life stage t	est (usually	with rainbow	trout or fathead			
minnow), and the l	LOC is 1.														
Benchmark = To:	xicity value	e x LOC. Fo	or acute inve	rtebrate, toxi	icity value is	usually the l	lowest 48- or 96	-hour EC ₅₀ or L	C_{50} in a standa	rdized test (usually with i	nidge, scud, or			
daphnids), and the	LOC is 0.5	5.													

	Humar benchma	n health rks (µg/L)					Aquatic life	benchmarks (µ	g/L)					
Pesticide compound (synonym)	Derive USEPA water star guidelines Wa	ed from drinking- ndards and (Office of iter)	Derived fro ambient w criteria for (Office o	om USEPA ater-quality aquatic life of Water)	Derived fr	om USEPA I	Reregistration E	ligibility Decisio Progr	ons and ecolog ams)	gical risk ass	sessments (Of	ice of Pesticide		
	Value ¹	Туре	Acute ²	Chronic ²	Acute fish ³	Chronic fish ⁴	Acute invertebrates ⁵	Chronic invertebrates ⁶	Acute nonvascular plants ⁷	Acute vascular plants ⁸	Chronic aquatic community ⁹	OPP references		
Environmental concentration:	Time- weighted annual mean		Each individual sample	ch d-day moving average Each individual sample $\begin{array}{c} 60\mbox{-day}\\ average \end{array}$ $\begin{array}{c} Each\\ individual\\ sample \end{array}$ $\begin{array}{c} 21\mbox{-day}\\ average \end{array}$ $\begin{array}{c} Each\\ individual\\ sample \end{array}$ $\begin{array}{c} 60\mbox{-day}\\ average \end{array}$ $\begin{array}{c} 60\mbox{-day}\\ average \end{array}$ $\begin{array}{c} 60\mbox{-day}\\ average \end{array}$										
⁶ Benchmark = To:	xicity value	x LOC. Fo	or chronic in	chronic invertebrates, toxicity value is usually the lowest NOAEC from a life-cycle test with invertebrates (usually with midge, scud, or										
$\frac{1}{7}$ Benchmark – To	LOC 18 1. vicity value	x LOC Fo	r acute non	vascular nlan	ts toxicity y	alue is usual	lv a short-term (less than 10 day	s) FC (usual	ly with gree	n algae or dia	roms) and the		
LOC is 1.	anony vulue	A LOC. I C	i dedde non	useului plui	us, toxicity v	uide 15 doddi	ly a short term (less than 10 day	5) DC30 (usuul	iy with gree	in ungue or unu	ionis), und the		
⁸ Benchmark = To:	xicity value	x LOC. Fo	or acute vasc	ular plants, t	oxicity value	e is usually a	short-term (less	than 10 days) E	C50 (usually	with duckwo	eed) and the L	OC is 1.		
⁹ Exceedance of thi	is benchma	rk concentr	ation, as an	average for a	ny 60 day pe	eriod, could o	cause communit	y-level effects o	n aquatic plan	ts (based on	changes in pl	ant community		
diversity as predict	ted by the C	Comprehens	sive Aquatic	Systems Mo	del), and inc	lirect effects	on fish and aqua	atic invertebrate	s from disturba	ance of the a	aquatic plant c	ommunity.		
¹⁰ Because the und	erlying tox	icity value i	is a "greater-	than" value	(such as >26	5,000), this b	enchmark may	overestimate to	cicity.					
¹¹ This MCL is und	der adminis	trative stay	of the effective date. For any combination of 2 or more of these 3 chemicals (aldicarb, aldicarb sulfoxide, and aldicarb sulfone), the											
summed concentra	tion should	not exceed	ceed 7 µg/L because of similar mode of action.											
¹² The chronic ben	chmark is t	based on the	n the acute toxicity value (which was lower than the lowest available chronic toxicity value), and therefore may underestimate chronic toxicity.											
¹³ Although the un	derlying ac	ute toxicity	value is gre	lue is greater than or equal to the chronic toxicity value, the acute benchmark is lower than the chronic benchmark because acute and										
chronic toxicity va	lues were n	nultipled by	/ LOC value	s of 0.5 and	1, respective	ly.								
¹⁴ This pesticide al	so can be c	onsidered a	n organochl	orine pestici	de, because i	t is an organi	ic compound wit	th one or more c	hlorine substit	tuents.				

[For pesticide compounds in water, benchmarks are for protection of human health and aquatic life. Common synonyms are listed in parentheses in column 1. Cited references are listed in Appendix 3D. Environmental concentration, the measured or calculated concentration statistic that is appropriate for comparison with the benchmark; $CRC(10^{-6})$, 10^{-6} cancer risk concentration; EC_{50} , 50 percent effect concentration; EFED, Environmental Fate and Effects Division (within EPA's Office of Pesticide Programs); HA-L, lifetime health advisory; IRED, Interim Reregistration Eligibility Decision; IRIS, Integrated Risk Information System database; LC_{50} , 50 percent lethal concentration; LOC, level of concern; MCL, maximum contaminant level; NOAEC, no-observed-adverse-effects concentration; OPP, Office of Pesticide Programs; RED, Reregistration Eligibility Decision; USEPA, U.S. Environmental Protection Agency; $\mu g/L$, microgram per liter; >, greater than; <, less than;—, no benchmark available.]

	Humar benchma	n health rks (µg/L)					Aquatic life	benchmarks (µ	ig/L)						
Pesticide compound (synonym)	Derive USEPA water star guidelines Wa	ed from drinking- ndards and (Office of itter)	Derived fro ambient wa criteria for (Office o	om USEPA ater-quality aquatic life of Water)	Derived fr	om USEPA I	Reregistration E	ligibility Decisio Prog	ons and ecolog rams)	gical risk ass	sessments (Off	fice of Pesticide			
	Value ¹	Туре	Acute ²	Chronic ²	Acute fish ³	Chronic fish ⁴	Acute invertebrates ⁵	Chronic invertebrates ⁶	Acute nonvascular plants ⁷	Acute vascular plants ⁸	Chronic aquatic community ⁹	OPP references			
Environmental concentration:	Time- weighted annual mean		Each individual sample	ach vidual moving average Each individual sample ^{60-day} average ^{Each} individual sample ^{21-day} average ^{Each} individual sample ^{60-day} average ^{60-day} average ^{10-day}											
¹⁵ Original toxicity forms. For MCPA, consistent with risk	values are acute toxic	in microgra city values v in the cited	ams of acid e were the low USEPA refe	equivalents prest for the adverse of the second sec	er liter. For cid, salt or es	2,4-D and 2,4 ster forms, an	4-DB, the toxici d chronic toxici	ty values selecte ty values were t	ed were the low he lowest of th	west availab	le values for tl salt forms. (Se	ne acid or salt lection was			
¹⁶ This benchmark	has greater	uncertainty	y than usual	because of n	nethods used	or condition	s in the underly	ing toxicity stud	у.						
¹⁷ Because the und	erlying tox	icity value i	is a "less-tha	n" value (su	ch as <1,500), this bench	nark may under	estimate toxicity	/.						
¹⁸ From USEPA (2	.005d)														
²⁰ Sporadia contam	ies to total	$\frac{\text{DDT, so co}}{\text{p p } 2}$	mparison wi	ith measured	l p,p -DDE (concentration	may underestin	nate potential ef	fects.	Acompling	tooms. The m	adian datastad			
<i>n n</i> ² -DDE concent	ration in th	e OC samp	les for strear	ns was 0 001	4 II of quant	ch exceeds th	e chronic aquat	ic-life criterion ((0.001 µg/L)	Of the 26 O	C samples in y	which <i>n n</i> '-DDE			
was detected, conc	entrations v	were greater	r than 0.002	μg/L in only	$\sqrt{5}$ samples (less than 1 pe	ercent of all QC	samples). To ac	count for poss	sible inciden	tal contamina	tion of stream-			
water samples by p,p' -DDE, exceedance of the chronic aquatic-life criterion was determined after subtracting 0.002 µg/L from the measured p,p' -DDE concentration. Given that															
p,p '-DDE is detected more frequently in stream-water samples (5.5 percent) than in QC samples (2.9 percent), and that the magnitude of contamination in QC samples usually (81															
percent of contami	nated QC samples) is less than the $0.002 \mu g/L$ correction factor, the expected overall effect of this compensation is to underestimate the true frequency of														
exceedance of the 2^{1} The accel to 1^{21}	<u>0.001 μg/L</u>	chronic aqu	uatic-life crif	terion by <i>p</i> , <i>p</i>	<u>· ´-DDE. (Als</u>	so see footno	te 19).		af 41- a a 1 1 a 1	1	-f +				
The acute toxicit	ty values w	ere the low	est of the act	a, sait or est	er forms, and	u the chronic	toxicity values	were the lowest	of the acid and	a salt forms	of triclopyr. (Selection was			

consistent with risk quotients in the cited USEPA reference.)

	Humar benchma	n health rks (µg/L)	Aquatic life benchmarks (µg/L)											
Pesticide compound (synonym)	Derive USEPA water star guidelines Wa	ed from drinking- ndards and (Office of itter)	Derived fro ambient war criteria for (Office of	om USEPA ater-quality aquatic life of Water)	Derived fr	Derived from USEPA Reregistration Eligibility Decisions and ecological risk assessments (Office of Pesticide Programs)								
	Value ¹	Туре	AcuteAcute fish3Chronic fish4Acute invertebrates5Chronic invertebrates6Acute nonvascular plants7Acute vascula plants8								Chronic aquatic community ⁹	OPP references		
Environmental concentration:	Time- weighted annual mean		Each individual sample	4-day moving average	Each individual sample	60-day average	Each individual sample	21-day average	Each individual sample	Each individual sample	60-day average			
²² During public co for diazinon. If dat 0.1 to $0.4 \ \mu g/L$.	ublic comment on draft ambient water-quality criteria that are under development by USEPA, public comment noted an atypical distribution of the acute toxicity data a. If data from the second most sensitive study were used (USEPA, 2000 risk assessment), rather than the most sensitive study, then the benchmark would change from g/L.													
²³ Toxicity values a potential toxicity.	and benchn	narks apply	to permethr	permethrin. Because NAWQA measures only the cis isomer of permethrin in water, comparison with benchmarks may underestimate										