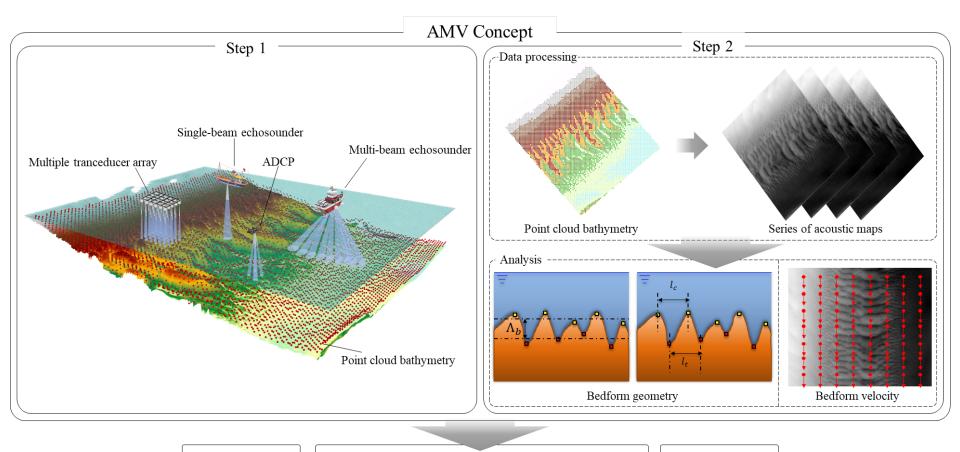
In-situ bedload measurements using MBES and ADCPs

Marian Muste¹, Hojun You¹, Dan M. Wagner², Amanda Whaling², David Abraham³, Keaton Jones³

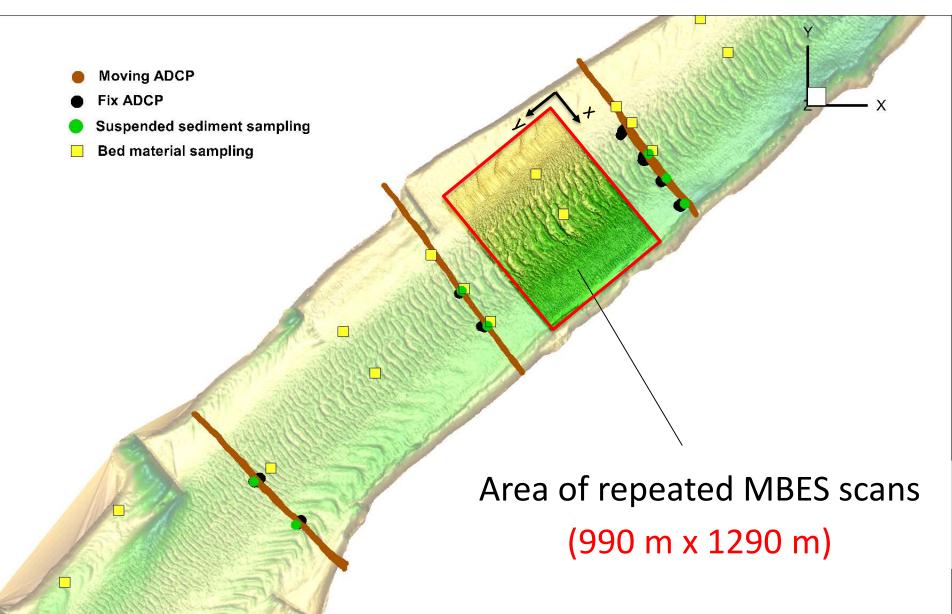

¹ IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, IA
² USGS-LMG, Water Science Center, Fayetteville, AK
³ USACE-ERDC-CHL, Vicksburg, MS

- Acoustic Mapping Velocimetry (AMV) Background
- AMV applied to Multi-Beam Echo Sounder (MBES) Survey
 - Particle Image Velocimetry applied to Acoustic Maps
 - Estimation of the Bedload Rates
- Planning for Year two of the project

- Acoustic Mapping Velocimetry (AMV) Background
- AMV applied to Multi-Beam Echo Sounder (MBES) Survey
 - Particle Image Velocimetry applied to Acoustic Maps
 - Estimation of the Bedload Rates
- Planning for Year two of the project

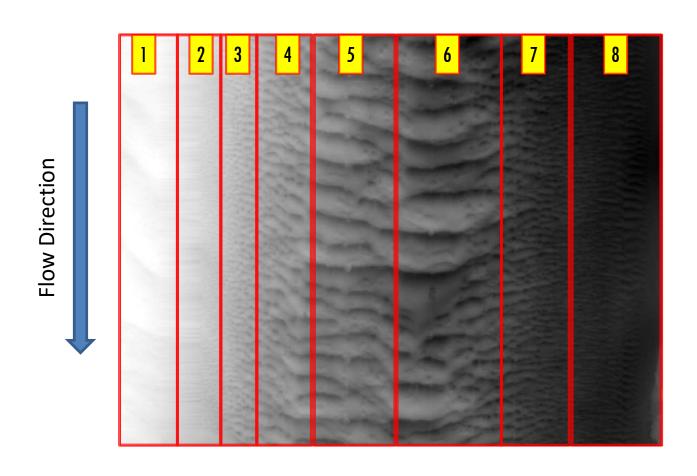
Acoustic Mapping Velocimetry

Implementation of Particle Image Velocimetry (PIV) protocols to river bathymetry acoustic maps to obtain bedload dynamics and rates

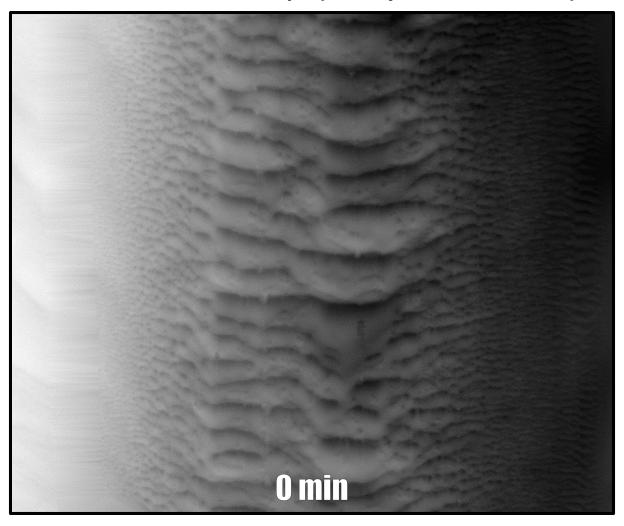

Geometric & dynamic bedform features

Bedload rate

- Acoustic Mapping Velocimetry (AMV) Background
- AMV applied to Multi-Beam Echo Sounder (MBES) Survey
 - Particle Image Velocimetry applied to Acoustic Maps
 - Estimation of the Bedload Rates
- Planning for Year two of the project

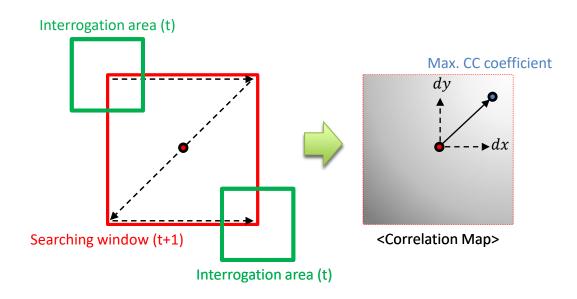

USACE acoustic measurements in Mississippi

High water conditions (April 29, 2013, $Q = 27800 \text{ m}^3/\text{s}$)


USACE MBES measurements in Mississippi

8 zones across the section featuring different bedform characteristics

USACE MBES measurements in Mississippi


Four acoustic maps (survey time ~ 5 hours)

Developed & Tested PIV Algorithms

Cross-Correlation (CC) Algorithm

Spatial 2D cross-correlation

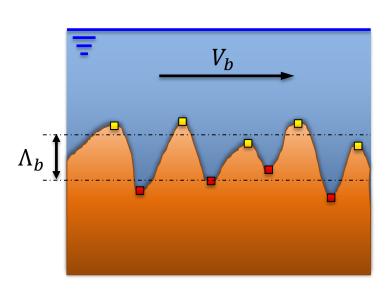
2 implementation approaches:

- Whole image one set of PIV parameters (Conventional CC)
- Segmented image & individual PIV parameters (Optimized CC)

Optical Flow (OF) Algorithm

Convolution of spatial gradients (x, y, t)

Interrogation area (t) Interrogation area (t+1) I_{x} I_{y} V_{y} V_{x}


- Acoustic Mapping Velocimetry (AMV) Background
- AMV applied to Multi-Beam Echo Sounder (MBES) Survey
 - Particle Image Velocimetry applied to Acoustic Maps
 - Estimation of the Bedload Rates
- Planning for Year two of the project

Bedload rate calculation

Exner Equation

Particle Image Velocimetry (PIV) $q_b = \frac{1}{2}(1-p)V_b\Lambda_b\beta$ Bedform Tracking Tool (BTT)

- \rightarrow q_b : Bedform transport rate per unit width [m³/s/m]
- \triangleright p: Bedform porosity (for sand = 0.4)
- \triangleright V_b : Average bedform velocity (streamwise) [m/s]
- \triangleright Λ_b : Average bedform height [m]
- \triangleright β : Shape factor (for triangular shape = 0.5)

- Acoustic Mapping Velocimetry (AMV) Background
- AMV applied to Multi-Beam Echo Sounder (MBES) Survey
 - Particle Image Velocimetry applied to Acoustic Maps
 - Estimation of the Bedload Rates
- Planning for Year two of the project

FISP Project Planning

First year

 validating AMV with in-situ with data available at USACE-ERDC from previous MBES surveys

Second year

- establishing protocols for AMV implementation using virtual ADCP surveys (development of the "Virtual ADCP" software package)
- Acquiring in-situ ADCP data (USGS station 07250550, Arkansas River) with the pre-established protocols to test the AMV performance in conjunction with ADCP data

FISP Project Planning

Task	Description	Charge	FISP\$				
T.1	Development of specifications for acquiring acoustic maps suitable for AMV using	Muste					
	MBES (includes setting of tradeoffs between data collection time and map resolution)	Postdoc	х				
T.2							
	bedform dynamics in natural streams	Postdoc	х				
T.3	Optimization of the analytical algorithms for bedload rate estimation (includes conversion	Muste					
	of acoustic maps to grey-level scale, automated algorithms for determination of bedform geometry, and testing of various bedload rates algorithms)	Postdoc	Х				
T.4	Production of the end-to-end software package for AMV field implementation	Postdoc	X				
T.5	Testing the AMV with datasets of time-sequenced bathymetric sets acquired with MBES	Abraham					
	(includes validation with ISSDOTv2 as reference)	Postdoc	X				
T.6	Development of specifications for acquiring acoustic maps suitable for AMV using	Wagner					
	ADCPs (includes establishment of tradeoffs between data collection time and required map resolution)	Postdoc	X				
T.7	Acquisition of time-sequenced bathymetric datasets with ADCPs	Wagner	X				
T.8	Testing the AMV with datasets of time-sequenced bathymetric sets acquired with ADCPs	Postdoc	X				
T.9	Validation of AMV with MBES and ADCP collected at the same site	Wagner					
		Postdoc	X				
T.10	Report writing and preparation of knowledge-transfer materials	Muste					
		Postdoc	X				

Task	Year 1										Г			Year 2													
Month	1	2	3	4	5	6	7	8	9	1)	11	12	13	14	15	16	17	18	19	20	21	22	23	24		
T.1																											
T.2																											
T.3																											
T.4																											
T.5																											
T.6											П																
T.7																											
T.8											П																
T.9																											
T.10																											