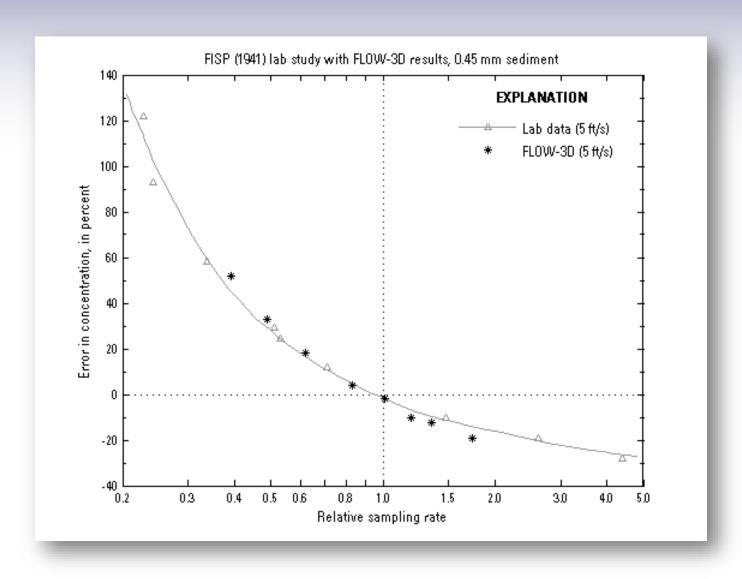
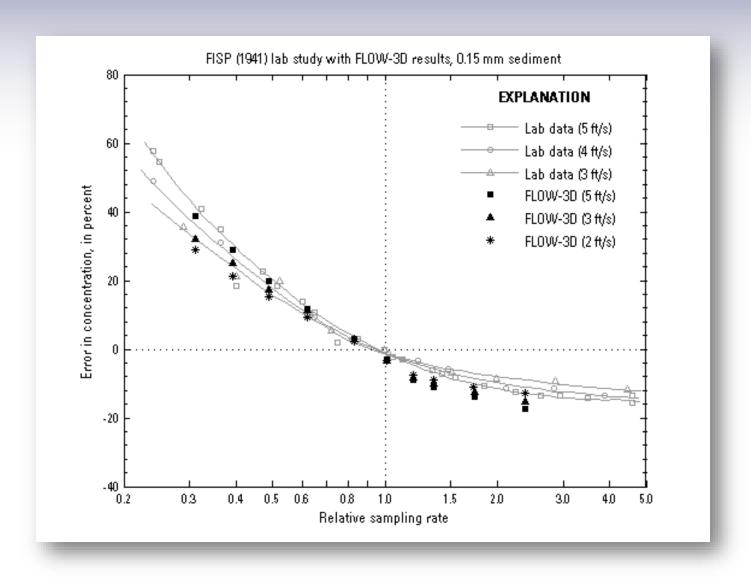
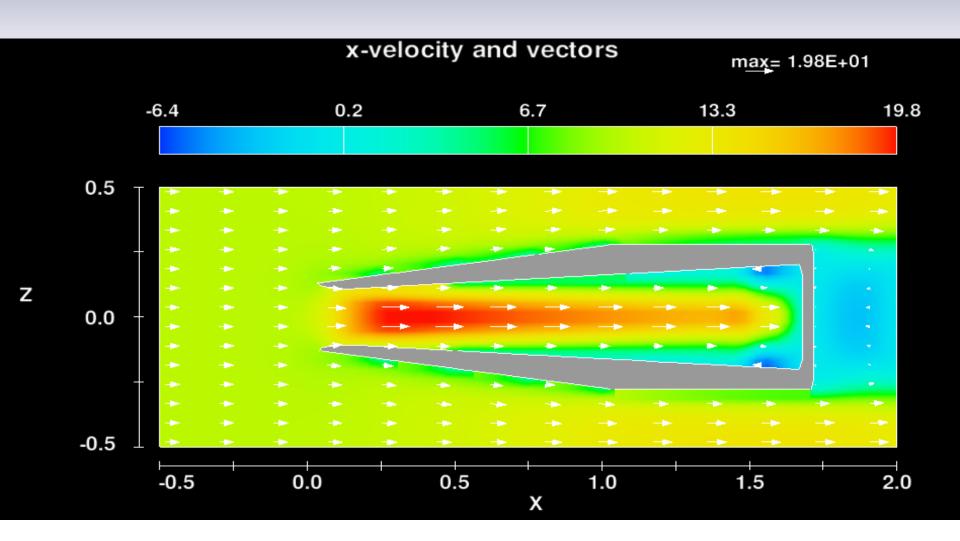
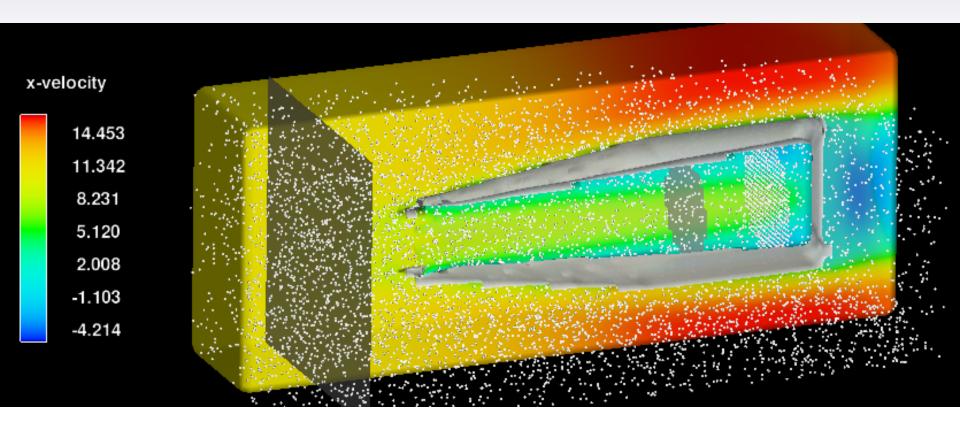


Computational Fluid Dynamics Analysis of Suspended-Sediment Sampler Efficiency – Phase II

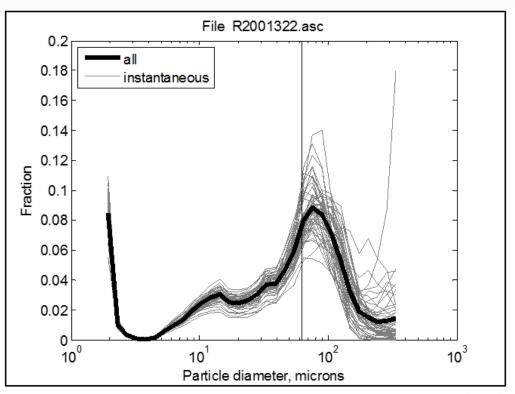

Justin A. Boldt


Errors in SSC for non-isokinetic sampling


Errors in SSC for non-isokinetic sampling


Errors in SSC for non-isokinetic sampling

FLOW-3D model



FLOW-3D model

A. Testing D-77 nozzle ¹				B. Testin	B. Testing D-77 nozzle ¹		
Sim. #	Intake Eff.	Velocity (ft/s)	Sediment size (mm)	Sim. #	Intake Eff.	Velocity (ft/s)	Sed. dist.*
	0.4-1.7				0.4-1.7		
1–8	(8 pts)	2	0.45	33–40	(8 pts)	3	Α
	0.4-1.7				0.4-1.7		
9–16	(8 pts)	5	0.45	41–48	(8 pts)	3	В
	0.4-1.7				0.4-1.7		
17–24	(8 pts)	2	0.15	49–56	(8 pts)	3	С
	0.4-1.7			*sediment distributions will be selected in			
25–32	(8 pts)	5	0.15	collaboration with the FISP			
¹ valve control (as in FY2014 simulations)				¹ valve control (as in FY2014 simulations)			

	*Sediment distributions A, B, C					
	Particle size (mm)	A: 25% fines	B: 50% fines	C: 75% fines		
fines	0.01	0.10	0.25	0.40		
fines	0.06	0.15	0.25	0.35		
sand	0.15	0.35	0.25	0.15		
sand	0.45	0.40	0.25	0.10		

Particle	
size	
(mm)	Frac.
0.01	0.10
0.03	0.10
0.06	0.30
0.09	0.35
0.15	0.10
0.45	0.05

Fig. 4. LISST particle-size distribution for Puyallup River, 7/19/2011.

C. Testing natural fill conditions²

Sim. #	Depth (<u>ft</u>)	Velocity (ft/s)	Sed. dist.*
	1-100		
57–64	(8 pts)	3	Α
		2–5	
65–68	10	(4 pts)	Α
	1-100		
69–76	(8 pts)	3	B or C
		2–5	
77–80	10	(4 pts)	B or C

²pressure boundary (replaces valve control)

81-90

D. Simulations to investigate macro-turbulence and/or vertical velocity effects.

The simulations in Table D will investigate macro-turbulence and/or vertical velocity effects. The idea here is to create highly chaotic flow to see how well the sampler measures in those conditions by comparing the variability between repeat samples and simulations. In order to create this flow condition in the model, we may specify a synthetic inflow velocity or place obstructions in the flow to cause large secondary flow vectors.