Estimating measurement area for passive acoustic monitoring of Sediment-Generated Noise (SGN)

Daniel G. Wren, J.R. Rigby, Roger A. Kuhnle, James Chambers, Bradley Goodwiller, and Brian Carpenter

Timeline:
Received authority to use funds
Collection of field data
Data analysis and report preparation
Project ends

Goal: define the measurement area of a typical hydrophone for measuring SGN in a stream

Justification:

- Step towards development of a general approach to converting SGN data into bedload flux
- To determine how much of stream is being monitored
- For planning number of instruments to place in channel
- For quantification of uncertainty and data quality

Factors affecting size of sampling volume

SGN properties

- Amplitude
- Frequency

Physical location

- Bed material size distribution
- Water depth
- Bed roughness
- Position of hydrophone in stream channel (i.e., side vs. middle)
- Hydrophone parameters
 - Frequency response (also affected by recording system)
 - Directivity
 - Noise floor
- Recording system
 - Noise floor (also affected by hydrophone)
- **Multi-source**(constructive and destructive interference)

Factors affecting size of sampling volume

SGN properties ٠

- Amplitude
- Frequency <
- **Physical location**
 - Bed material size distribution
 - Water depth
 - Bed roughness ٠
 - Position of hydrophone in stream channel (i.e., side vs. middle)
- Hydrophone parameters
 - Frequency response (also affected by recording system)
 - Directivity •

•

- Noise floor
- **Recording system**
 - Noise floor (also affected by hydrophone)
- **Multi-source**(constructive and destructive interference)

Research efforts will be focused on these factors:

- low frequency cutoff
- waveguide propagation • effects on cutoff frequency and prop.

Factors affecting size of sampling volume

- SGN properties
 - Amplitude
 - Frequency
- Physical location
 - Bed material size distribution
 - Water depth

effects on signal propagation

- Bed roughness <</p>
 - Position of hydrophone in stream channel (i.e., side vs. middle)
- Hydrophone parameters
 - Frequency response (also affected by recording system)
 - Directivity
 - Noise floor
- Recording system
 - Noise floor (also affected by hydrophone)
- **Multi-source**(constructive and destructive interference)

Boundary Acoustic Properties

Mechanical sound source

Sound from impactor

Cobble bed measurements

Mixed cobbles and gravel

Particle size distributions

Results from propagation experiments

Results from propagation experiments

Rayleigh parameter

Quantifying roughness

Laser scanning gravel sample

Gravel ≈ 13 mm Cobbles ≈ 31 mm Cobbles+gravel ≈ 18 mm Redwood lattice ≈ 8 mm Laser scan of cobble+gravel sample Position (cm) Elevation (mm) 4(Position (cm)

RMS roughness:

Summary of transmission loss results

Transmission Loss (TL) can be expressed as: TL=X*log(R) where: X=loss multiplier and R=Range For example: for cobbles, loss is: TL=24*log(R)

Conclusions

- Sound propagation experiments at the National Sedimentation Laboratory have been completed for several types of bed roughness
- Geometric spreading was found to be less important to propagation than bed roughness and the nature of the sound field (i.e. coherent, reverberant, type of waveguide, etc.)
- A basic predictive relationship for amplitude attenuation over rough beds was established

Next steps:

- Consulted with Physical Acoustician, Dr. Richard Raspet
- Measurements in stream channels will be collected in order to characterize the nature of the sound field: reverberant vs. coherent
 - The shape of the channel, especially a wedge or lack of one at the banks, will be an important parameter
 - Bottom composition and depth will also affect the measurements, but we are beginning to gain a better understanding of these from our laboratory work
- Based on results, laboratory experiments may also be carried out
- Continue to work on propagation model and best way to summarize and present it