The USGS Water Science School
|
The Water Cycle: Water Storage in the AtmosphereThe atmosphere is full of water![]() A lenticular cloud over New Zealand. The water cycle is all about storing water and moving water on, in, and above the Earth. Although the atmosphere may not be a great storehouse of water, it is the superhighway used to move water around the globe. Evaporation and transpiration change liquid water into vapor, which ascends into the atmosphere due to rising air currents. Cooler temperatures aloft allow the vapor to condense into clouds and strong winds move the clouds around the world until the water falls as precipitation to replenish the earthbound parts of the water cycle. About 90 percent of water in the atmosphere is produced by evaporation from water bodies, while the other 10 percent comes from transpiration from plants. There is always water in the atmosphere. Clouds are, of course, the most visible manifestation of atmospheric water, but even clear air contains water—water in particles that are too small to be seen. One estimate of the volume of water in the atmosphere at any one time is about 3,100 cubic miles (mi3) or 12,900 cubic kilometers (km3). That may sound like a lot, but it is only about 0.001 percent of the total Earth's water volume of about 332,500,000 mi3 (1,385,000,000 km3), as shown in the table below. If all of the water in the atmosphere rained down at once, it would only cover the globe to a depth of 2.5 centimeters, about 1 inch.
How much does a cloud weigh?
Since air has weight it must also have density, which is the weight for a chosen volume, such as a cubic inch or cubic meter. If clouds are made up of particles, then they must have weight and density. The key to why clouds float is that the density of the same volume of cloud material is less than the density of the same amount of dry air. Just as oil floats on water because it is less dense, clouds float on air because the moist air in clouds is less dense than dry air. We still need to answer the question of how much a cloud weighs. To confuse things more, the weight depends on how you define it:
We're only going to look at the weight of the actual cloud particles. One estimate of cumulus cloud density is given at https://www.sciencealert.com/this-is-how-much-a-cloud-weighs, as a density of about 0.5 gram per cubic meter. A 1 km3 cloud contains 1 billion cubic meters. Doing the math: 1,000,000,000 x 0.5 = 500,000,000 grams of water droplets in our cloud. That is about 500,000 kilograms or 1.1 million pounds (about 551 tons). But, that "heavy" cloud is floating over your head because the air below it is even heavier— the lesser density of the cloud allows it to float on the dryer and more-dense air. Global distribution of atmospheric water
|
![]() |
A - Storage in ice and snow B - Precipitation C - Snowmelt runoff to streams D - Infiltration E - Groundwater discharge F - Groundwater storage G - Water storage in oceans H - Evaporation |
I - Condensation J - Water storage in the atmosphere K - Evapotranspiration L - Surface runoff M - Streamflow N - Springs O - Freshwater storage P - Sublimation |
To view PDF files, the latest version of Adobe Reader (free of charge) or similar software is needed.