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Introduction

The Utah Center for Water Resources Research (UCWRR) is located at Utah State University (USU), the
Land Grant University in Utah, as part of the Utah Water Research Laboratory (UWRL). It is one of 54 state
water institutes that were authorized by the Water Resources Research Act of 1964. Its mission is related to
stewardship of water quantity and quality through collaboration with government and the private sector.

The UCWRR facilitates water research, outreach, design, and testing elements within a university
environment that supports student education and citizen training. The UCWRR actively assists the Utah
Department of Environmental Quality (UDEQ), the Utah Department of Natural Resources (UDNR), the State
Engineers Office, all 12 local health departments, and several large water management agencies and
purveyors in the state with specific water resources problems. In FY 15, the UWRL expended a total of nearly
$10 million in water research support. USGS Section 104 funds administered through the UCWRR accounted
for approximately one percent of this total. These funds were used for research addressing water management
problems, outreach, information dissemination, strategic planning, water resources, and environmental quality
issues in the State of Utah. Five research projects were funded in FY15 with USGS 104 funds. These projects
are respectively entitled, (1) "Estimating Crop Water Use with Remote Sensing: Development of Guidelines
and Specifications,” (2) “Capturing Aerial Imagery on the San Rafael River, Utah, using an Unmanned Aerial
Vehicle (UAV) to Monitor and Assist in Evaluating Restoration Efforts,” (3) “Managing Western Irrigation
systems in the Face of Urbanization,” (4) “Information Systems for Landscape Water Conservation,” and (5)
“Biofiltration of Utah Municipal Drinking Water.”

These projects dealt with the following water management issues: (1) Developing a framework for estimating
crop water use using remote sensing through a standardized approach, thus providing guidelines and
specifications for applying certain evapotranspiration (ET) models and producing ET products that are
acceptable to the USGS WaterSmart program and the scientific and user community; (2) Using an
inexpensive unmanned aerial vehicle (UAV) to provide high resolution, up to date aerial imagery in support
of restoration schemes ongoing in the San Rafael River in South Central Utah and determining the accuracy
and limitation of this platform for providing digital elevation and terrain models in place of more
conventional, and more expensive, approaches; (3) Identifying key opportunities and challenges faced by
irrigation companies as they adapt to changes in land use and urban pressure and helping them understand and
adapt to changes associated with the urbanization of an irrigated agricultural landscape; (4) Developing
methods for analyzing historical water billing data to assist cities, counties, and state agencies in reducing
municipal water demand throughout the State of Utah, and (5) Evaluating biofiltration as an effective way to
reduce organic matter and potential disinfection by-product production in Utah drinking water. These projects
all involved collaboration of local, state, and federal water resources agency personnel.
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Research Program Introduction

Irrigated agriculture is the largest consumptive water user in the western United States. Estimates of crop
water use can be improved through more accurate evapotranspiration (ET) estimates. A USGS-supported
research project developed a framework for estimating crop water use using remote sensing through a
standardized approach that provided guidelines and specifications that, if followed in order, could be applied
to certain models and produce ET products that are acceptable to the USGS WaterSmart program and the
scientific and user community. This research reviewed and tested candidate remote sensing–based ET models
to establish model performance and determine the uncertainty associated with the application of these models.
A set of study sites was selected from within the 17 western United States representing different climatic
regions, and a variety of spatial and point datasets were utilized. A meeting was held with USGS personnel to
discuss the findings. This work could benefit many hydrological modeling and water resources management
applications.

Another USGS-funded project is using AggieAir high-resolution multi-spectral imagery (RGB, NIR, and
thermal imagery) of the lower San Rafael River to provide valuable information to the San Rafael Restoration
Committee and the Utah Division of Wildlife Resources in support of ongoing river restoration projects. The
imagery provides spatial information regarding thermal refugia and detailed channel information for
restoration projects in this region including efforts to restore the river to a more ecologically acceptable state,
provide more comprehensive complex native fish habitat, encourage change in channel morphology through
Tamarisk removal, and remove man-made barriers to enhance and encourage fish movement/passage
throughout the entire drainage. Temperature probes were installed to assist in calibrating the thermal imagery.
This project was delayed due to severe low flow conditions in the San Rafael River for several months in the
summer 2013 and then higher than expected flows during the summer of 2014. In 2015, a total of nine UAS
flights were successfully completed along 55 river miles of the San Rafael River, South-Central Utah to
capture a combination of imagery, including RGB, NIR, and thermal.

One USGS-supported project was designed to help local canal and irrigation companies in Northern Utah
better understand and adapt to changes associated with the urbanization of an irrigated agricultural landscape.
The project objectives included documenting the diverse characteristics of representative shareholders of
irrigation companies along a gradient of urbanizing environments, investigating the ways farmer and
non-farming shareholders manage secondary water allocations, and identifying the key opportunities and
challenges faced by irrigation companies as they adapt to changes in land use and urban pressure. In 2015, a
multi-wave mail survey of a random sample of irrigation company shareholders was implemented throughout
the summer and fall. Results of the surveys were presented to collaborating irrigation companies and made
available on USU’s Digital Commons.

In collaboration with Salt Lake County, Salt Lake City, Sandy City, and the Division of Water Resources in
the Utah Department of Natural Resources, A USGS funded project is developing methods for analyzing
historical water billing data, acquired from water providers, for identifying water customers with a high
capacity to conserve landscape irrigation water. Coupling historical water billing data with the size of specific
properties will allow a reasonable estimate of appropriate water use to be made. This information can then be
used by cities, counties, and the Division of Water Resources to support efforts to reduce municipal water
demand throughout the state. This project completed the first phase of the overall objectives by developing the
appropriate database and information systems that will allow for enhanced analysis of relevant data and of
water use to help guide water conservancy districts and utilities in their conservation efforts.

Biofiltration of drinking water supplies is a promising method to reduce the potential for production of
disinfection by-products and to minimize the regrowth of microorganisms in water distribution systems. A
final USGS-funded project investigated biofiltration as an effective way to reduce organic matter from Utah
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source waters and reduce potential disinfection by-product production. ATP measurements were also
correlated with CBXA as a potential surrogate measure of biological activity and organic compound treatment
efficiency. Because of the site‐specific nature of the implementation of this technology, the proposed project
studied, at pilot scale, the potential for using biofiltration for reducing and modifying the organic matter
content of drinking water at two Utah water utilities and developed preliminary information pertaining to the
design and operation of such utilities.

These projects all involved collaborative partnerships throughout the state with various local, state, and
federal agencies.
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1. INTRODUCTION 

 
1.1. Definitions 

 
The definitions provided herein are meant to differentiate between the different processes 

with respect to the transformation of water to vapor state that can generally be defined differently 
in the literature. 

   
Evaporation (E) is the process by which liquid water transforms into vapor and into the 
atmosphere expressed in terms of mm day-1 unless stated otherwise. It includes evaporation from 
bare soil, wet or dry and all types of water bodies e.g. lakes, ponds, rivers, and intercepted water 
by plant leaves. 
 
Transpiration (T) is the process by which liquid water in the soil strata that is extracted by plant 
roots moves into the atmosphere through plants stomata as it changes state into water vapor, 
expressed in terms of mm day-1, unless stated otherwise. 
 
Evapotranspiration (ET) as it is practically difficult to separate evaporation and transpiration 
over surfaces covered with mixed bare soil and vegetation, ET can be defined as the combined 
process of evaporation and transpiration expressed in terms of mm day-1, unless stated otherwise. 
ET is the equivalent to the term latent heat flux (LE or E) defined in terms of energy units as W 
m-2 with  represents latent heat of vaporization of water in MJ kg-1. 
 
Potential Evaporation is the rate of evaporation from an idealized extensive open water body 
under existing atmospheric conditions. 
   
The reference evapotranspiration can be defined as the rate of ET from a reference surface 
specifically an extensive short green cover with a uniform height actively growing and 
completely shading the ground and not limited of water availability. These conditions defined in 
literature for a reference grass crop with fixed crop height of 0.12 m, an albedo of 0.23, and 
surface resistance of 69 s m-1 with reference ET denoted as ETO. However, other studies 
indicated the use of alfalfa as a reference cover with reference ET denoted as ETr and generally is 
15-20% larger than grass ET. 
  
Consumptive water use (Agriculture) is referred to the amount of water consumed by agricultural 
activities that cannot be returned or reused. It includes the evaporated water (in terms of or ET) 
used for crop production. The consumptive water use in irrigation can be identified by 
subtracting the water returned to the system through runoff and drainage from the total 
withdrawal. 
  
1.2. Rationale  

 
Consumptive water-use from agricultural activities such as irrigation can be accounted for 

mainly through estimates of ET. In the United States the consumptive water-use in terms of 



6 
 

irrigation represents about 31% of the all water uses. Hence the knowledge of the total amount of 
ET with a reasonable accuracy plays a great role for better managing valuable water resource. 
Based on a recent report by the USGS (Kenny et al. 2009), the trend in the water-use in the US 
for the period 1950-2005 indicated an127% increase in the total amount of water withdrawals 
with irrigation water diversions representing the second largest increase of about 43%, related to 
the 100% growth in population. Note that these water-use reports are based on data collected as 
part of the National Water Use Information Program (NWUIP), compiled by the US Geological 
Survey (USGS), and provided as a five-year water-use summary at the national level since 1950. 
Apparently most of this increase in water withdrawals can be attributed to irrigation activities 
weighted in the 17 western States. About 80% of total water withdrawal in 2005 were from 
surface water and the remaining 20% were from groundwater sources. Water used for irrigation 
accounted for 31% of the total withdrawals and about 58% of the total irrigation withdrawals 
was from surface water sources. The irrigation water withdrawals from the 17 western States 
accounted for 85% of that total water withdrawal and corresponds to about 74% of the total 
irrigated area in the US.  

 
 

 
Figure 1:  The total water-use for irrigation in the US (reprint from Dickens et al. (2011)) 

 
An important observation about the reported water-use as indicated by Dickens et al. (2011)is 

the inherent inconsistency among the methods used to estimate irrigated withdrawals and their 
associated uncertainties. Usually water-use information for irrigated agriculture is collected from 
different sources. The USGS receives information from their representative Water Science 
Centers (WSCs) which in turn collect information from the individual States at the county level 
through their respective Division of Water Resources, government agencies as the US Bureau of 



7 
 

Reclamation, river compacts, universities, and others. Reports indicated that different 
methodologies have been followed to estimate consumptive water-use which are generally based 
on ET combined with estimates of irrigated acreage. Reported methods included mainly 
traditional approaches such as a modified Blaney-Criddle method, crop coefficient combined 
with reference ET approach and meteorological measurements of ET and generally a 
combination of these methods. Recent activities by some individual States have explored the use 
of remote sensing approaches, as shown later, which also include a variety of methods that can 
be used. Most of these method require information about the irrigated acreage which mainly is 
obtained from the National Agricultural Statistics Service, Census of Agriculture, and Farm and 
Ranch Irrigation Survey. Uncertainty and inconsistency are evident either at the level of the 
reported irrigated acreage or the overall method of estimating irrigation withdrawals (Dickens et 
al. 2011).  

  
However, the usefulness of this water-use information and understanding the challenges to 

meet the increasing demand due to a growing population and irrigation withdrawals is 
acknowledged by USGS. By moving forward research and evaluation for managing and 
predicting future water resources in the US, a major activity is underway by the USGS for 
improving the quantification of consumptive water-use for irrigated agriculture based on 
estimates of ET. This activity is carried out by the USGS to comply with the Sustain and Manage 
America’s Resources for Tomorrow program WaterSMART, initiated by the US Department of 
Interior in 2010 and can also be considered part of the National Water Census. With the 
availability of numerous sources of remote sensing data that are housed and managed by the 
USGS and, considering the advances in the use of remote sensing tools for estimating ET, this 
represents the main theme of this research activity. 

 
The emerging knowledge base of remote sensing and its application in vegetation monitoring 

potentially provides a promising method for non-traditional monitoring of ET at different spatial 
and temporal scales. Over the past two decades, remote sensing has made a significant impact in 
leveraging our understanding of the ET process and in how to provide a more accurate estimates. 
Note that traditional methods for estimating ET aided with ground-based weather data are still 
used at field scales and in some cases at regional scales. However, the spatial nature of the ET 
process imposes some challenges for its estimation at regional scales that could lead to a reduced 
level of accuracy. Alternatively, remote sensing data are able to capture spatial and temporal 
variability allowing for better total estimates of ET. 

   
Remote sensing data are provided from a suite of sensors managed by the USGS since 

1970’s. These sensors, which have been used for estimating ET over agricultural areas, include 
the Landsat family with its high spatial resolution imagery with a 16-days recurrence. The 
Landsat sensors include the Multispectral Scanner (MSS) and Thematic Mapper (TM) on 
Landsat 4 and 5, the Enhanced Thematic Mapper Plus (ETM+) or Landsat 7, and the Operational 
Land Imager (OLI) or Landsat 8. A relatively coarser resolution sensor includes the Moderate 
Resolution Imaging Spectroradiometer (MODIS) with a recurrence of 1-2 days. A high 
recurrence sensor of 15-minute and a coarser spatial resolution of 5-10 km is the Geostationary 
Operational Environmental Satellite (GOES). All these sensors provide different types of 
information including surface multispectral reflectance and surface temperature that are sensitive 
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to plant growth and other relevant changes. All of the above sensors have been explored for the 
remote sensing of ET either separately or combined from local to field scales. 

  
There are different remote sensing based models available that can be used with these wide 

range of data to provide estimates of ET. These models range from physically based relatively 
complex nonlinear models to empirical simple linear models and mixed physical- empirical- 
based approaches. Some of the methods used include: energy balance at the surface to calculate 
the latent heat flux, E, at instantaneous time steps at the time of image acquisition. Such 
models usually use radiometric surface temperature (TR) measured by satellites as a lower 
boundary condition to estimate sensible heat flux, H, with E estimated as a residual of the 
surface energy balance. Another group of models uses aerodynamic resistance approach to 
directly estimate ET. This basically include those models which use Penman-Montieth (P-M) and 
Priestly-Taylor (P-T) equations. These two groups can be considered as physically based models. 
A third group of models uses empirical or semi-empirical approaches including the crop 
coefficient method. A suggested classification of existing models is provided in Section 2. 

 
The availability of these remote sensing data and models allowed different entities to explore 

their potential for estimating consumptive water-use. Local businesses and government agencies 
are already implementing remote sensing of ET methods such as the U.S. Bureau of Reclamation 
with its application at Sacramento, CA (Eckhardt 2010). While some States are still using 
traditional methods for estimating ET such as the Blaney-Criddle method, others are already 
implementing remote sensing based methods of ET and consumptive use. Examples of such 
applications include the Idaho Department of Water Resources, Idaho (Allen and Robison 2007), 
Nevada Division of Water Resources, Nevada (Huntington and Allen 2010). However, major 
concerns in the application of these non-traditional estimates of ET with respect to differences 
among methods arises from a) difficulties in applying an integrated river basin water resources 
management, b) duplication of effort, and certainly c) the related different levels of accuracy for 
which there is no general agreement yet. The Colorado River basin can be considered an 
example to further highlight all these issues. As the Colorado River basin encompasses 7 States 
including Wyoming, Utah, Colorado, New Mexico, Arizona, Nevada and California, an 
agreement among the States is in place for the allocation of water resources (e.g. Colorado River 
Compact and the Upper Colorado River Basin Compact). The agreement mainly covers 
management and allocation of available water resources based on historic water use to meet 
obligations of all States. River Compact Commission would be providing estimates of ET for the 
different States while individual States are also required to provide such estimates. Due to the 
different methods for estimating ET by these different entities the issues above are evident and 
inevitable unless agreement on approaches and methods for estimating ET via remote sensing is 
reached. 

  
In this sense, the USGS as part of the WaterSMART is conducting a review of remote 

sensing methods for estimating ET and consumptive water-use. As there are several models 
available in literature that can be used for such application, this review considered only a few of 
them. These models include the two-source energy balance (TSEB) (Kustas and Norman 1999a, 
b; Norman et al. 1995), the Atmosphere-Land Exchange Invers (ALEXI) (Anderson et al. 1997; 
Mecikalski et al. 1999), the Disaggregated Atmosphere-Land Exchange Invers (DisALEXI) 
(Norman et al. 2003), the Mapping Evapotranspiration with Internalized Calibration (METRIC) 
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(Allen et al. 2007a; Allen et al. 2007b), the Hybrid evapotranspiration (Hybrid ET) (Neale et al. 
2012), the MODIS evapotranspiration (MODIS ET) (Mu et al. 2007; Mu et al. 2011), the 
Simplified Energy Balance System (SEBS) (Su 2002), the Simplified Surface Energy balance 
(SSEB) (Senay et al. 2011; Senay et al. 2008), and the Priestly-Taylor evapotranspiration (PT-
JPL) (Fisher et al. 2008). 

 
The intent of this review is to provide a detailed description of selected candidate models for 

remote sensing of ET. The review includes description of the model structure and their 
parameterization, the required input data, the intended use, a general comparison of the models 
with regards to the objectives of the USGS for crop water use estimates. 

 
2. A CLASSIFICATION OF MODELS  

 
There are several attempts that have aimed to provide a reasonable classification of models 

that particularly use remote sensing to estimate ET. Different classification criteria can be used 
e.g. some are process-based, method of solution approaches, spatial data analysis and other types 
of classifications exist in literature. The review by Courault et al. (2005) considered all remote 
sensing models and suggested four classes that included empirical, residual energy balance, 
deterministic, and vegetation index. From their definition for each group one can provide a broad 
classification as empirical, physically-based, and mixed physical and empirical-based classes. 
Kalma et al. (2008) reviewed models that particularly use thermal remote sensing and they also 
suggested four major groups including surface energy balance, time rate of change in surface 
temperature, spatial variability, and direct estimate of ET from surface temperature and weather 
data methods. Similarly, these groups can be collapsed into the three broad methods indicated 
above. Based on the process criteria the remote sensing of ET models can generally be classified 
into three broad categories as physically-based models, empirical or black box models, and semi-
physical semi-empirical, or simply mixed, models. Note that even with this classification a 
distinct separation between these groups might not be evident. Since with the use of remote 
sensing there are some empirical relationships need to be included especially with estimation of 
some biophysical variables such as leaf area index and canopy height that are used to calculate 
aerodynamic and surface resistances. 

  
2.1. Physically-Based Models 

 
This type of models basically attempts to provide a physical representation of the process 

under consideration as it occurs in nature--in this case it would be ET through modeling the 
mass/energy exchange at the soil-vegetation atmosphere continuum. Such models usually use the 
analog of electrical resistance networks for modeling the turbulent H and E or ET. There are 
two main groups that can be identified under this category; the first group suggested, or assumes, 
the use the concept of big leaf (or one-source) to model the mass/energy exchange at the surface. 
This one-layer approach mainly indicates that the surface needs to be a fairly homogeneous 
extended horizontal cover. This one-source modeling group can further be classified into: surface 
energy balance, aerodynamic and surface resistances, and water-energy balance approaches. 
Example of one-layer models include METRIC, SEBS, and the Hybrid ET. The other group 
include those recommending and supporting the use of two-source, or in general a multi-source 
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approach, for modeling the mass/energy exchange at the surface. This group suggests treating 
surface features separately- bare soil and canopy. Some models allow for interaction between 
each surface component at some level above the surface while others do not. The rationale 
behind the multi-source approach is that some surfaces exhibit a level of heterogeneity to the 
degree that a distinct surface component can be identified. Hence modeling of mass/energy 
exchange at near-surface atmosphere with the individual features is achievable. However, this 
approach has also been successfully applied over homogenous surfaces. Example of such models 
include the TSEB and its descendant ALEXI/DisALEXI approach, MODIS ET, and PT-JPL. As 
there are many other models that can be included (Courault et al. 2005; Kalma et al. 2008) we 
limited our examples to those candidate models to this review. 

  
Surface Energy Balance 

 
This type of model is based on the surface energy balance described as  
 
ܴ݊ ൌ ܧߣ ൅ ܪ ൅  2.1.1                   ܩ
 
where ܴ݊ is the net radiation (W m-2), G the soil heat flux (W m-2), ܧߣ the latent heat flux (W m-

2), H the sensible heat flux (W m-2).  Canopy heat storage and photosynthesis terms are typically 
ignored as they are small in comparison to the other terms for most agricultural canopies. 
Variation between models appear in the way they estimate each of these components. Despite 
these differences the general notion is that most models tend to provide estimates of ܴ݊ and G 
fairly well with relatively similar level of accuracy. Challenges arises in modeling turbulence 
heat fluxes H and ܧߣ and here lies the differences between the two major groups of one- and 
two-source modeling approaches. Agreement among these models in providing estimates of ܴ݊ 
using physically based approach which include the use of the incoming shortwave and longwave 
radiation balance with a simple form used in METRIC and SEBS and a more complex form in 
TSEB. There is, however, have some level of empiricism in most of these modes as for example 
in estimating solar transmittance, surface emissivity and other surface properties such as albedo.  
 

One-layer models include METRIC and SEBS with the main difference in the approach for 
estimating H but applying the general concept of defining upper and lower limits for turbulent 
heat fluxes. These limits are (1) dry condition where ܧߣ approaches 0 and (2) well-watered 
vegetation conditions were H approaches 0. While METRIC estimates ܧߣ as a residual of the 
surface energy balance equation (see Section 3.4), SEBS uses the concept of evaporative fraction 
(Section 3.5). An example of a two-layer modeling approach is the TSEB and its descendant 
ALEXI/DisALEXI. In these models a Priestly-Taylor (PT) equation is used to calculate ܧߣ over 
the canopy at the potential rate and adjusted as needed and the soil component of ܧߣ is calculates 
as a residual of the energy balance.  

  
Aerodynamic and Surface Resistance Approach  

 
This type of model uses mainly a network of resistances to estimate ET. An example of such 

models is the Penman-Monteith (P-M) equation which can be described 
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ܧߣ ൌ
௦∙஺ାఘ∙஼೛∙ሺ௘ೞೌ೟ି௘ሻ ௥ೌ⁄

௦ାఊ∙ሺଵା௥ೞ ௥ೌ⁄ ሻ
        2.1.2 

 
where ݁௦௔௧ the saturated vapor pressure, ݏ the rate of change in ݁௦௔௧ to air temperature, A the 
available energy partitioned between H, ܧߣ, and G, ߩ the air density, ܥ௣ specific heat capacity of 
air, ݎ௔ the aerodynamic resistance, ߛ  the psychrometric constant, ݎ௦ the surface resistance. 
 

One of the remote sensing based models that uses P-M equation as the main modeling 
structure is MODIS ET. While the P-M equations treats the surface as a one-source layer, the 
MODIS ET approach assumes that the surface consists of multiple sources and applies the P-M 
model for each to calculate the total ET. The main challenge with such approach lies in the 
estimation of the different resistances. Deriving estimates of these resistances using remote 
sensing would still require large amount of information about the specific features on the surface 
(Section 3.7). 

 
Energy and Water Balance 

 
This group of models tends to couple energy and water balance approaches to estimate ET. 

Usually, the energy balance approach is used in a diagnostic manner to provide estimates of 
surface energy balance fluxes (SEBF) at discrete instances in time when remotely sensed inputs 
are available. Such approach would leave some gaps in estimated ET if Landsat imagery were 
used. While MODIS provides almost daily maps of earth’s surface, it has coarser spatial 
resolution (250 -1000 m) that are not suitable for field scale estimates of ET. The common 
variables estimated by both approaches are generally daily ET and soil water content, used for 
the coupling process. On the other hand, water balance models tend to provide estimates of ET, 
and some other state variables depending on the model, in a prognostic way. Hence coupling 
these two approaches synergistically provides continuous estimates of daily ET and bridges the 
gap between satellite image acquisitions in the case of Landsat. The coupling process is 
generally carried out using data assimilation techniques. An example of such coupled energy-
water balance approach is the Hybrid ET model described by Geli (2012) and Neale et al. (2012). 

  
2.2. Empirical Models 

 
This group of models tends to provide a direct, and in some cases indirect, relationship 

between ET and some land surface features such as vegetation indices (VI) and land surface 
temperature. The former, as an indirect method, uses VI to estimate crop coefficients (Kc) from 
remote sensing which in turn can be used to describe the fraction of actual ET with respect to a 
reference ET. This is similar to the approach followed in the water balance model of the Hybrid 
ET.  Courault et al. (2005) identified this approach as inference method. Direct methods include 
those use radiometric surface temperature or TR obtained from remote sensing to directly 
estimate ET. Such as the SSEB. Example of other models that follow such approach can be 
found in Kalma et al. (2008). 
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2.3. Mixed Models 

 
Mixed models describes a group of models that use physically-based processes mixed with 

some level of empirical representations to directly estimate ET. Examples include those that use 
the Priestly-Taylor approach and the S-SEBI model to estimate actual ET. Note that the P-T (Eq. 
2.3.1) is actually a simplification of P-M method in which only the available energy term is kept. 

  

ܧܮ ൌ ௚݂ߙ௉்
∆

∆ାఊ
ሺܴ݊ െ  ሻ        2.3.1ܩ

 
where ௚݂ is the fraction of the green cover, ߙ௉்	the P-T constant taken as 1.26, ∆ the slope of the 
saturation-vapor pressure curve, and ߛ the psychrometric constant~0.066	݇ܲܽ	°ିܥଵ. 

 
As it is developed to estimate potential ET, The P-T equation uses the empirical coefficient 

 ௉் fromߙ ௉் as 1.26. To provide estimates of actual ET there are some attempt to estimateߙ
remote sensing as summarized by Kalma et al. (2008). Other approaches such as PT-JPL aimed 
to maintain the original value of ߙ௉் and introduced some constraints based on plants 
physiological limits (Fisher et al. 2008). 

 
3. DESCRIPTION OF CANDIDATE MODELS 

 
A detailed description of the selected candidate models is provided which includes 

parameterization, required input data, information about the output, example of reported 
applications and related accuracies particularly over agricultural areas. 

 
3.1. TSEB Model 

 
General 

 
The development of the TSEB by Norman et al. (1995) was motivated by the resistance 

network formulation of Shuttleworth and Wallace (1985). The model is mainly designed to 
account for sparse vegetation conditions that most one-layer models have challenges with 
modeling, especially in water limited conditions. Over such surface conditions, the resistance to 
sensible heat flow are different over bare soil and canopy components which in turn defies the 
assumption of a big leaf of one-layer models. The model also accounts for the differences 
between the radiometric surface temperature and the aerodynamic temperature (Kustas and 
Anderson 2009; Norman and Becker 1995) that is used in the bulk heat transfer equation. As the 
former is used instead of the latter, an empirical adjustment is generally used to account for the 
excess resistance to heat flow as compared to using aerodynamic resistance based on momentum 
roughness. The TSEB accounts for such differences by calculating sensible heat flux for each 
component, bare soil and canopy, based on their respective thermodynamic temperature Ts and 
Tc. 
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There are two forms of TSEB; parallel and series resistance network formulations. This 
review describes the latter as the findings from several comparisons between the two 
formulations indicated insignificant differences in their respective models estimates of SEBF. 
Also the TSEB model is a major component of the ALEXI, DisALEXI, and the Hybrid ET 
models described later. 

 

 
 

 
Figure 2: Description of the TSEB model 
 

Model Description 

The model treats the bare soil and canopy components of surface energy balance separately. 
It defines an air-canopy interface at a level above the surface to allow for interaction between 
each component. By assuming a single emissivity of ()0.99 (Kustas and Norman 1997; 
Norman et al. 1995) the TSEB makes use of the composite directional radiometric surface 
temperature ோܶ to estimate the thermodynamic temperature of soil and canopy Ts and Tc as 

 

ோܶሺሻ ൎ ሾ ௖݂ሺሻ ௖ܶ
ସሺ1 െ ௖݂ሺሻሻ ௦ܶ

ସሿଵ/ସ              3.1.1 
 
where ௖݂ሺሻ is the fraction of the field of view of the infrared radiometer occupied by vegetation, 
the subscript s and c refer to soil and canopy components, respectively. The ோܶ can be estimated 
from the brightness temperature ஻ܶ	that is directly measured by a radiometer as 
 

 ஻ܶሺሻ ൌ ሾሺሻ ∙ ൫ ோܶሺሻ൯
௡
൅ ሺ1 െ ሺሻ ∙ ሺ ௌܶ௄௒

௡ ሻሿଵ/௡          3.1.2 
 
with  ௌܶ௄௒ being the hemispherical temperature of the sky and ݊ ൎ 4. The angular variation in 
() is ignored because of the insignificant variations of < 0.005 for view angles between nadir to 
60 (Kustas and Norman 1997). Also the use of a single emissivity for soil and canopy has a 

R
s
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minimal effect on the estimated temperatures Ts and Tc as multiple scatter appear to equalize the 
component emissivity (Anderson et al. 1997; Kustas and Norman 1997). 

 
The directional fraction of vegetation cover, ௖݂ሺሻ	, can be estimated as a function of the 

radiometer view zenith angle (ሻ as 
 

௖݂ሺሻ ൌ 1 െ exp ቀ	ି଴.ହ∙ஐሺሻ∙௅஺ூ
ୡ୭ୱሺሻ

ቁ               3.1.3 

 
were LAI is the leaf area index and Ω the clumping factor which can be estimated as described 
by Campbell and Norman (1998) (Appendix A). 

The energy balance equations for canopy, soil, and combined surface components are 
described as  

 
ܴ݊ ൌ ܧܮ ൅ ܪ ൅ ܩ
ܴ݊ ൌ ܴ݊௦ ൅ ܴ݊௖
ܧܮ ൌ ௦ܧܮ ൅ ௖ܧܮ
ܪ ൌ ௦ܪ ൅ ௖ܪ

ܴ݊௦ ൌ ௦ܧܮ ൅ ௦ܪ ൅ ܩ
ܴ݊௖ ൌ ௖ܧܮ ൅ ௖ܪ ۙ

ۖ
ۘ

ۖ
ۗ

                 3.1.4 

 
where subscripts s and c represents soil and canopy components, respectively. The net radiation 
ܴ݊௖ and ܴ݊௦ of canopy and soil components, respectively, are estimated using the physically 
based approach of Campbell and Norman (1998) as 
 
ܴ݊௖ ൌ ௖݊ܮ ൅ ሺ1 െ ߬௦ሻ ∙ ሺ1 െ ௖ሻߙ ∙ ܵ

ܴ݊௦ ൌ ௦݊ܮ ൅ ߬௦ሺ1 െ ௦ሻܵߙ
ൠ              3.1.5  

         
 
where ߬௦, ߙ௖ and ߙ௦ are the solar transmittance in canopy, the canopy albedo, and soil albedo, 
respectively which can be estimated using the formulations described in Campbell and Norman 
  ௦ are the longwave radiation, respectively, and  can be estimated as݊ܮ ௖ and݊ܮ ,(1998)
 

௖݊ܮ ൌ ሾ1 െ ሺെ݇௅݌ݔ݁ ∙ Ωሺሻ ∙ LAIሻሿ ∙ ሾܮௌ௄௒ ൅ ௦ܮ െ ௖ሿܮ2
௦݊ܮ ൌ ሺെ݇௅݌ݔ݁ ∙ Ωሺሻ ∙ LAIሻܮௌ௄௒ ൅ ሾ1 െ ሺെ݇௅݌ݔ݁ ∙ Ωሺሻ ∙ ௖ܮሻሿܫܣܮ െ ௦ܮ

ൠ    3.1.6 

    
where ݇௅is an extinction coefficient estimated as described by Campbell and Norman (1998),  ܮ௖ 
 ௌ௄௒ are the longwave radiation from the canopy, soil, and sky which can beܮ  ௦ , andܮ ,
calculated using Stefan-Boltzmann equation ܮ ൌ ߝ ∙ ߪ ∙ ܶସ with L represents Lc, Ls, or LSKY, ߝ the 
emissivity of canopy, soil, or air, and T represents Tc, Ts, or Ta, respectively, and ߪ  the Stefan-
Boltzmann  constant (5.67 ∙ 10ି଼ܹ݉ିଶିܭସ). Typical values for leaf absorptivity in the visible, 
near infrared and thermal infrared, which are required to calculated ߙ௦,  ߙ௖ and are ߬௦ provided 
by Mecikalski et al. (1999) and Anderson et al. (2007).       

 
The soil heat flux, G, is estimated as a function of the soil net radiation ܴ݊௦ as 
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ܩ ൌ ܿீ ∙ ܴ݊௦                     3.1.7 
 
The value of that ܿீ varies with soil type, moisture content, and time because of the phase shift 
between G and Rns over a diurnal cycle as indicated by Santanello and Friedl (2003). Kustas and 
Norman (1999a) suggested a time varying value of ܿீ as 
 

ேݐݏ ൌ
|௧೔ି௧ೄಿ|

௧ೄಿ
                     3.1.8 

 
where ݐ௜ is the time representing 5 hours of ݐௌே, the solar noon local time. However, it is shown 
that a constant value of ܿீ can be assumed for midmorning to midday period- typical acquisition 
time of satellite thermal infrared imagery Santanello and Friedl (2003). For most of the TSEB 
applications, a constant value is assumed for ܿீ as ~ 0.3.  
 

The sensible heat fluxes over soil and canopy components are calculated as 
           

௖ܪ ൌ ߩ ∙ ܿ௉
೎்ି்ಲ಴
ோೣ

௦ܪ ൌ ߩ ∙ ܿ௉
ೞ்ି்ಲ಴
ோೞ

ܪ ൌ ߩ ∙ ܿ௉
்ೌ ೎ି்ೌ

ோೌ ۙ
ۖ
ۘ

ۖ
ۗ

                   3.1.9 

           
where ߩ is the air density, ܿ௉ the specific heat of air, Tac air temperature at an air-canopy 
interface, ܴ௫ is the total boundary layer resistance of complete canopy leaves, ܴ௦The resistance 
to heat flow in the boundary layer immediately above the soil surface, ܴ௔the aerodynamic 
resistance. 
  

The latent heat flux from canopy LEc is calculated using the Priestly-Taylor (PT) (Priestley 
and Taylor 1972) formula for the green part of the canopy as 

 

௖ܧܮ ൌ ௉்ߙ ∙ ݂ீ ∙ ቀ ∆

∆ାఊ
ቁ ∙ ܴ݊௖                3.1.10 

 
where fG is the fraction of LAI that is green and usually taken as (fG =1),  the slope of the 
saturation vapor pressure versus temperature curve, and  the psychrometric constant 0.066 kPa 
C-1. The PT equation is used to provide an initial, specifically a potential rate of transpiration 
with the value of ߙ௉் ൌ 1.26. Two conditions ought to be considered: for well water vegetation 
under advective conditions a value of ߙ௉் ൌ 2.0 is used; while for stressed vegetation, as it 
transpires at a lower rate than the potential rate, using a value of 1.26 will tend to overestimate 
LEc resulting in unrealistic values of ܧܮ௖ ൏ 0. In this case ߙ௉் is iteratively reduced until	ܧܮ௖ ൌ
0. 

 
A solution is obtained iteratively until convergence is reached with an acceptable level of 

error, usually measured by the estimated value of the Monin-Obukov length L (Appendix A). For 
simplification, a linearized form of Eq. 3.1.1 as ோܶሺሻ ൎ ௖݂ሺሻ ௖ܶሺ1 െ ௖݂ሺሻሻ ௦ܶ to solve for Tc,Lin 
and Tac,Lin and then providing correction terms Tc and Tac to account for nonlinearity. Detailed 
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descriptions of the methodology to achieve a solution of the series resistance formulation of the 
TSEB is provided by Norman et al. (1995). 

 
The application of the TSEB requires considerable input information including forcing 

weather data, surface biophysical features, and remote sensing data represented in terms of 
radiometric surface temperature and surface reflectance in the shortwave part of the spectrum 
(Table 1). Some additional required parameters such as soil and vegetation emissivity which 
usually are assigned typical values of for example. 0.978 and 0.985 from literature and field 
measurements (Li et al. 2004). Similarly mean leaf size and absorptivity are generally obtained 
from typical values reported in literature. A major need for a successful application of the TSEB 
model is the land use map. The required biophysical parameters such as hc, LAI, and fc are 
remote sensing based estimates derived as a function of vegetation indices such as the NDVI. 
These parameters are needed to calculate the different surface roughness characteristics and the 
resistances to heat and momentum transfer.  

 
The estimated SEBF are instantaneous sub-hourly values made during satellite overpass time 

and date. Evaluation of such fluxes is made using sub-hourly measurements. Daily values of 
actual ET are obtained by extrapolation of instantaneous estimates of LE.  Example of the TSEB 
application particularly over agricultural areas are provided in Table 2. 

  
Table 1: Typical Input data required for the application of the TSEB model 

Data Source Spatial Resolution 

Weather forcing  

Incoming shortwave solar radiation (Rs) 
Air temperature (Ta) 
Wind Speed (u) 
Vapor Pressure (ea) 
Atmospheric Pressure (P) 
Height of measurement of Ta (zt) 
Height of measurement of u (zu) 

 

Ground based 
observations 
 
 

 

Local scale (quasi-
point) assumed to 
be representative 
of the region under 
study 

Biophysical parameters 

Leaf Area Index (LAI) 
Canopy Height (hc) 
Land use classification 
Mean Leaf size (s) 
Absorptivity of air, canopy, soil 
Height and width of clumps  

 

Ground based 
observations or remote 
sensing estimates  
 
 

 

Local scale (quasi-
point) or 
30 m 

Remote Sensing  

Radiometric surface temperature (TR) 
Surface Reflectance in the visible and near 
infrared bands  
(atmospherically corrected data is required) 
 

 
Airborne, Landsat  
Airborne , Landsat 

 
1-30 m 
1-30 m 
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Table 2: Examples of applications of the TSEB model and reported performance 
Study area, 

dataset 
Climatic 
Region 

Land Use Domain 
Performance 
RMSE W m-2 

Citation 

    Rn G H LE N  
Ames, Iowa 
SMACEX, 
2002 
 

Humid Corn 
soybean 

Walnut Creek 
Watershed  

20 31 35 45 38 {Kustas, 2005 
#367;Li, 2005 
#302} 

Maricopa, 
Arizona, 1987 

Semi-arid Cotton Research site 21 13 25 37 19 {Kustas, 2000 
#297} 
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3.2. ALEXI/DisALEXI 

 
General 

 
As the ALEXI and DisALEXI models were separately developed based on different 

motivations, they are in some cases being applied jointly to provide estimates of SEBF at the 
field scale. The ALEXI model was originally developed by Anderson et al. (1997)  and named as 
the Two-Source Time-Integrated model (TSTIM) for regional scale applications. The motivation 
behind ALEXI model was to provide an operational scheme with reasonable level of complexity 
and data need yet acceptable performance to monitor SEBF. As ALEXI uses the TSEB is a 
major component it alleviates the need for near-surface air temperature (Ta) measurements that 
would hinder its application at regional scales. The model substituted the need for Ta by using 
early morning atmospheric soundings to couple the TSEB with atmospheric boundary layer 
development model. With such an approach, ALEXI provide estimates of SEBF at regional 
scales using coarse resolution data from GOES. Such estimates are useful for regional 
applications such as drought monitoring and weather forecasting. On the other hand, for field 
scale applications such as monitoring vegetation growth and water use, higher resolution 
estimates of SEBF are needed. The DisALEXI was developed to bridge the gap between regional 
to field scale estimates of SEBF, avoiding the use of additional weather forcing data. Description 
of the two models is provided below with examples of some recent applications. 

 
3.2.1 ALEXI 

 
As a progression to the TSEB model that provides fluxes at local scale, the ALEXI model is 

aimed towards providing fluxes at regional scales with minimal ancillary data needs. The TSEB 
model is applied at two times during the morning growth phase of the atmospheric boundary 
layer usually at 1.5 h and 5.5 h after sunrise. At these two times, the radiometric surface 
temperature from the 5-10 km GOES thermal data is used. In order to provide energy balance 
closure during this period, a simple slab model is used to relate the rise in air temperature to the 
time-integrated sensible heat fluxes from the land surface. The modeling approach of ALEXI 
mitigates problems related to the use of TR as by differences in surface temperature it eliminates 
errors caused by atmospheric correction, sensor calibration, and specification of surface 
emissivity. 

 
The TSEB model serves as the surface component of ALEXI using a simplified linear form 

of Eq. 3.1.1 as 
  

ோܶሺሻ ൎ ௖݂ሺሻ ௖ܶሺ1 െ ௖݂ሺሻሻ ௖ܶ                3.2.1 
 
This simplification reduces the accuracy by about less than 0.5 C (Anderson et al. 1997). 

Also the net radiation components for soil and canopy, ܴ݊௦ andܴ݊௖, respectively, are calculated 
as  
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ܴ݊ ൌ ܴ݊௖ ൅ ܴ݊௦
ܴ݊ ൌ ሺܮௗ െ ௨ሻܮ ൅ ሺܵௗ െ ܵ௨ሻ ൌ ௗܮ െ ሺ1 െ ߬௖ሻܮ௖ െ ߬௖ܮ௦ ൅ ሺ1 െ ሻܵௗܣ

ܴ݊௦ ൌ ൫ܮௗ,௦ െ ௨,௦൯ܮ ൅ ൫ܵௗ,௦ െ ܵ௨,௦൯ ൌ ߬௖ܮௗ െ ሺ1 െ ߬௖ሻܮ௖ െ ௦ܮ ൅ ሺ1 െ ௦ሻܵௗ,௦ߩ
ቑ   3.2.2 

   
where ܴ݊ is the net radiation above the canopy, ܴ݊௖ and ܴ݊௦ are the components absorbed by 
canopy and penetrating to the soil surface, respectively, the shortwave component depends on 
insolation values above canopy, ܵௗ, and above soil surface ܵௗ,௦, the reflectivity of the soil-
canopy system, A, and the soil surface, ߩ௦, and the coefficient of diffuse radiation transmission 
through the canopy with approximate values provided by Campbell and Norman (1998). ܵ௨ and 
ܵ௨,௦ represents the upwelling shortwave radiation above soil-canopy system and the soil surface, 
respectively, ܮ௨and ܮ௨,௦ are analogous the longwave emissions, ܮௗ, ܮ௖, and ܮ௦ are the thermal 
radiation from the sky, the canopy, and the soil, respectively. 
 

Estimates of surface fluxes components including G, H and LE are provided using a similar 
parameterization described in the TSEB model (Appendix A and Section 3.1). 

 
The atmospheric boundary layer development component is based on a simple slab model of 

the mixed layer and the relationship between air ௔ܶand potential ߠ௠ temperatures, respectively. 
The model assumes that the air within the layer, at height ݖ௧ at which air temperature is 
measured, to be at uniform potential temperature as 

 

௠ߠ ൌ ௔ܶ ∙ ቀ
ଵ଴଴

௉
ቁ
ோ ௖ು⁄

                   3.2.3 

 
where p is atmospheric pressure (kPa) at height ݖ௧, R and ܿ௉ are the gas constant and specific 
heat capacity with ܴ ܿ௉⁄ ൌ 0.286. Using this slab model, the height of the boundary layer z1 at 
time t1 can be estimated as the height at which an  adiabatic laps rate at a potential temperature, 
  .௠, intersects an early morning temperature sounding (Figure 3)ߠ
 

 
  Figure 3: Schematic showing the approach used to diagnose boundary layer growth during a 
time interval t1 to t2 {Anderson, 1997 #114}. 
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A conservation equation that describes the relationship between the time-integrated sensible 
heat flux and the growth of the convective ABL is used based on the simplified approach by 
Mcnaughton and Spriggs (1986) as 

 

௠,ଶߠଶݖ௉൫ܿ݌ െ ௠,ଵ൯ߠଵݖ ൌ ׬ ݐሻ݀ݐሺܪ ൅ ௉ܿ݌ ׬ ݖሻ݀ݖ௦ሺߠ
௧ଶ
௧ଵ

௧ଶ
௧ଵ          3.2.4 

 
where ߠ௠,௜ is the potential temperature within the mixed layer at time ݐ௜, ߠ௦ሺݖሻ the potential 
temperature profile above the mixed layer at time ݐଵ, and ݌ is the air density. Using a simple 
linear equation, the time-integrated H(t) can be estimated as 
  

׬ ݐሻ݀ݐሺܪ ൌ ଵ

ଶ
ሺܪଶݐଶ െ ଵሻݐଵܪ

௧మ
௧భ

               3.2.5 

 
where ܪଵand ܪଶare the estimated sensible heat fluxes at time ݐଵand ݐଶ, respectively, using the 
surface component, TSEB, of ALEXI. 
 

A solution is achieved iteratively by first assuming an initial air temperature to calculate 
SEBF including sensible heat fluxes from the two components. The air temperature estimates are 
adjusted during the iterative process until convergence in the sensible heat fluxes from the two 
components is achieved. 

  
List of input data needed for the application of ALEXI is shown in Table 3. Most of the 

biophysical parameters were obtained at relatively higher resolution at the MODIS scale of 1 km 
(Table 3). Weather forcing and GOES remote sensing data are provided at a coarse resolution of 
5-40 km scale. Weather forcing data including near surface wind speed, actual vapor pressure 
and atmospheric pressure were from Automated Service Observation System (ASOS) and 
Automated Weather Observation System (AWOS). The lapse rate profiles were obtained from 
the U.S. synoptic network that are at a resolution of ~100 km, and were processed to higher 
resolution of 40 km within the analysis components of the Cooperative Institute for 
Meteorological Satellite Studies (CIMSS) mesoscale model (Diak et al. 2004). In some cases 
(Anderson et al. 2011), the wind speed fields and the lapse rate profile were obtained from North 
America Regional Reanalysis (NARR). The canopy heights are linearly interpolated between 
minimum and maximum defined values based on land cover data and fraction of vegetation 
cover fc. 

 
Table 3: Summary of input data required for the application of ALEXI model.  

Data  Source 
Spatial 
Resolution 

Weather forcing  

Incoming shortwave solar radiation (Sd) 
Downwelling longwave radiation (Ld) 
Wind Speed (u)  
Vapor Pressure (ea)  
Atmospheric Pressure (P)  
Lapse rate profile  

 

GOES 
GOES 
ASOS/AWOS/NARR 
ASOS/AWOS 
ASOS/AWOS 
Radiosonde/NARR 

 

20 km 
20 km 
40 km 
40 km 
40 km 
40 km 



21 
 

Biophysical parameters 

Leaf Area Index (LAI) 
Canopy Height (hc) 
Land use classification 
Characteristic Leaf size (s) 
Absorptivity of air, canopy, soil 

 

MODIS 
Lookup table 
UMD Global 
Lookup table 
Lookup table 

 

1 km 
1 km 
1 km 
1 km 
1 km 

Remote Sensing  

Radiometric surface temperature (TRad1, TRad1) 
 

 

GOES   
 

 

5-10 km 

 

 

 

 

 

 
Figure 4: Schematic of ALEXI and DisALEXI models 
 
3.2.2 DisALEXI 

 
The disaggregation scheme (DisALEXI) described by Norman et al. (2003) is developed to 

bridge the gap between regional and local scale estimates of SEBF. ALEXI provides coarse 
spatial resolution, regional scale estimates of SEBF, using the 5-km data from GOES. While 
such scales may be appropriate for weather forecasting and drought monitoring, it limits the 
application for operational ET at-field scale agricultural monitoring. One of the advantages of 
DisALEXI is that it requires no additional weather data than those used in ALEXI.  
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Generally, DisALEXI, mainly applies, again, the TSEB using the same input weather forcing 
data used in ALEXI including wind speed, downward short- and long-wave radiation as well the 
estimated Ta at the 50-m. In this sense the blending height concept is employed to allow the use 
Ta at 50-m as an upper boundary condition for DisALEXI. The high resolution radiometric 
surface temperature TR data from either aircraft or Landsat sensors is used as lower boundary 
condition. 
 

The disaggregation scheme applies the TSEB at the high resolution for all the ith (i=1 to N) 
contained within each of the 5-km GOES pixels. The 50-m Ta is considered constant for all the 
ith pixels while the radiometric surface temperature from the high resolution data. Similarly all 
other surface related parameters are treated at the high-resolution pixel scale including fraction 
of cover fc,i and vegetation height hc,i which are generally based on NDVI. Note that canopy 
height data are needed to estimate the related surface roughness and aerodynamic resistance. For 
the net radiation calculation the surface albedo Ai and emissivity are estimated based on fc,  
following Campbell and Norman (1998) and Anton and Ross 1987, respectively. With this 
application DisALEXI provide estimates of SEBF at the high-resolution scenes.  

 
Prior to using the high resolution radiometric surface temperature a procedure suggested by 

Norman et al. (2003) to correct for potential biases between those and the ones from GOES 
sensor. These biases which needs to be accounted for, could arise from differences in sensor 
calibration, atmospheric correction, and view angle. For such, correcting all thermal images at 
low and high resolution should accommodate atmospheric and emissivity effects (Berk et al. 
1998; Kustas and Norman 1999a). The bias-corrected high resolution radiometric temperature 

ோܶ஺஽,௜
஼ ሺ߶௜ሻ for all N pixels contained in the GOES pixels can be described as  

 

ோܶ஺஽,௜
஼ ሺ߶௜ሻ ൌ ோܶ஺஽,௜ሺ߶௜ሻ ൅ ோܶ஺஽,௜ሺ߶పഥ ሻ െ ∑ ்ೃಲವ,೔ሺథ೔ሻ

ே
ே
௜ୀଵ           3.2.6 

 
where ோܶ஺஽,௜ሺ߶௜ሻ the high-resolution radiometric surface temperature contained within the 
GOES pixel, ோܶ஺஽,௜ሺ߶పഥ ሻ the 5-km radiometric temperature from GOES adjusted to the average 
angle ߶పഥ  at which the high-resolution sensor views the scene. This adjusted  ோܶ஺஽,௜ሺ߶పഥ ሻ is 
calculated from the estimated soil and canopy temperature from ALEXI at the average angle ߶పഥ . 

 
Estimated instantaneous SEBF including ܧߣ can be extrapolated to daily values using the 

evaporative fraction (EF) defined as  ܧߣ ሺܴ௡ െ ⁄ሻܩ . Several studies indicated that the EF can be 
considered constant during the daytime hours and can be used to extrapolate instantaneous fluxes 
to equivalent daily values (Brutsaert and Sugita 1992). Anderson et al. (2012b); Anderson et al. 
(2007) multiplied the EF fraction defined above by 1.1 i.e. ܨܧ ൌ ܧߣ	1.1 ሺܴ௡ െ ⁄ሻܩ   to account 
for underestimation of the EF of 5-10 % observed during midday hours as indicated by 
(Brutsaert and Sugita 1992).  

 
Daily ETa maps throughout a growing season at the Landsat spatial resolution of the surface 

reflectance can be created following the framework described by Anderson et al. (2011). The 
optima spatial resolution for agricultural application is that of the Landsat surface reflectance 
data of 30-m. The Landsat data are available on week to 16-days period. The framework 
described by Anderson et al. (2011) is based on relying solely on remote sensing data not only 
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from Landsat but with the utility of information from multiple sensors. This framework uses two 
different approaches –a thermal sharpening and the Spatial Temporal Adaptive Reflectance 
Fusion Model (STARFM) to enhance the remote sensing spatial and temporal resolution. The 
original spatial resolution of TIR bands of the Landsat 5 and 7 is 120 and 60 m, respectively and 
that of MODIS is 1 km. The thermal sharpening approach developed by Kustas et al. (2003) is 
used to enhance the spatial resolution of the TIR band of a sensor to its corresponding shorwave 
bands. For example, the spatial resolution of Landsat 5 at the shortwave bands is 30-m and the 
corresponding TIR is 120-m. A relationship usually exists between TIR band and the 
corresponding surface reflectance data in terms of vegetation indices. The STARFM approach 
developed by Gao et al. (2006) was originally developed to provide surface reflectance at the 
Landsat spatial resolution of 30-m based on high temporal resolution of MODIS data in between 
Landsat overpass dates. STARFM follows statistical methods to develop relationships between 
Landsat and MODIS coincident scenes to map temporal changes based on MODIS. Anderson et 
al. (2011) applied the STARFM approach directly on ETa maps developed during Landsat and 
MODIS coincident dates to fuse (or predict) ETa maps in between Landsat overpass dates. 

 
In the application of DisALEXI, four input are held constant. Vegetation height is estimated 

in a similar way as in ALEXI based on the land use classification. Linear interpolation between 
the seasonal maximum and minimum canopy height ݄௖,௠௔௫ and ݄௖,௠௜௡ , respectively, is applied 
using the fraction of cover as 

 
݄௖ ൌ ݄௖,௠௜௡ ൅ ௖݂ ∙ ൫݄௖,௠௔௫ െ ݄௖,௠௜௡൯              3.2.7 

 
A tabulated values of maximum and minimum canopy height is provided in Anderson et al. 

(2007). Three inputs to ALEXI are also used as inputs to DisALEXI including the incoming 
shortwave solar radiation, downwelling longwave radiation Sd and Ld, respectively, and wind 
speed. The air temperature Ta at the blending height of 50 m at time t2 estimated by ALEXI is 
used as an input to DisALEXI. A list of required input data for the application of DisALEXI are 
shown in Table 4. Examples of DisALEXI model performance over selected areas are shown in 
Table 5. 

 
Table 4: Summary of input data required for the application of DisALEXI model 

Data  Source 
Spatial 
Resolution 

Weather forcing  

Incoming shortwave solar radiation (Sd) 
Downwelling longwave radiation (Ld) 
Air Temperature Ta at 50 m 
Wind Speed (u)  
Vapor Pressure (ea)  
Atmospheric Pressure (P)  

 

GOES 
GOES 
Derived from ALEXI 
ASOS/AWOS/NARR 
Local meteorological 
observations 

 

20 km 
20 km 
5-10 km 
40 km 
Local scale  

Biophysical parameters 

Leaf Area Index (LAI) 
Canopy Height (hc) 
Land use classification 

 

Airborne, Landsat, MODIS 
Based on land cover type 
Airborne, Landsat, MODIS 

 

1-1000 m 
1-1000 m 
1-1000 m 
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Characteristic Leaf size (s) 
Absorptivity of air, canopy, soil 

Based on land cover type 
Based on land cover type 

1-1000 m 
1-1000 m 

Remote Sensing  

Radiometric surface temperature (TR) 
 

 

Airborne, Landsat, MODIS 
 

 

1-1000 m 

 

Table 5: Examples of applications of DisALEXI model and reported performance. 
Study area, 

dataset 
Climatic 
Region 

Land use Domain 
Performance (SEBF) 

(W/m2) 
Citation 

    Rn  G H LE all N  
Southern 
Great Plains, 
Oklahoma 
SGP79 

Humid Winter  
wheat, 
pasture, 
grassland 

Research 
sites 

- - - - 38  {Norman, 
2003 
#129} 

Bushland, 
Texas, 
BEAREX08, 
2008 

Semi-arid  cotton Research 
sites 

37.7 42.0 54.7 77.2 53.1 66 {Anderson
, 2012 
#396} 

SEBF: surface energy balance fluxes  



25 
 

3.3. Hybrid ET Model 

 
General 
 
The Hybrid-ET couples an energy balance with a water balance model to provide estimates 

of ET at the field scale. The application of thermal based remote sensing energy balance models 
using Landsat data provide estimates of SEBF and daily ET during the specified satellite 
overpass dates that are 8-16 days apart. The imagery from Landsat Thematic Mapper sensors are 
specifically used as they have a reasonable pixel resolution to provide in-field variability for 
most agricultural applications. On the other hand, as there are temporal gaps in the Landsat data, 
so providing continue estimates of ET using a traditional water balance approach can result in 
continuity in the estimates.  

 
The TSEB developed by Norman et al. (1995) with recent modifications described in Kustas 

and Norman (1999a, 2000) is used to provide instantaneous estimates of SEBF and daily ET. 
Detailed description about the TSEB is provided in Section 3.1 and Appendix A.  

 
On the other hand, the tradition water balance approach described by Allen et al. () is used to 

estimate daily ET. The Hybrid-ET models suggests a modification to the FAO-56 by introducing 
the use of a reflectance based basal crop coefficient in place of the traditional standards in the 
FAO-56. In addition to providing estimates of daily ET, Hybrid-ET also provides estimates of 
soil water content in the root zone of the crop or vegetation. The two models are coupled using 
data assimilation through the common variable actual ET. While the FAO-56 water balance 
approach provides estimates of the entire root zone soil water status as an averaged single value, 
the dynamic soil water content estimates used in the Hybrid-ET approach provides estimates at 
multiple layers to allow for comparisons with soil water content measurements under different 
root water extraction models. 
 
Model Description 

 
Energy and Water Balance Models 
 
The hybrid ET model suggested the use of the TSEB model to provide estimates 

instantaneous SEBF including LE. Daily values of ET during satellite overpass date are 
calculated using extrapolation methods including the evaporative fraction (EF) and the reference 
ET fraction (ETrF) methods described in Chavez et al. (2008).  

 
The traditional FAO-56 (Allen et al. 1998a) approach to estimate ET using the dual crop 

coefficient method  represents conditions when crops are under soil water stress as 
 

ܧ ௖ܶ ൌ ሺܭ௦ ∙ ௖௕ܭ ൅ ௘ሻܭ ∙ ܧ ଴ܶ                 3.3.1 
 
where ܧ ௖ܶ is the crop ET, ܭ௦ the soil water stress coefficient with ܭ௦ ൌ 1.0 for no soil water 
stress and ܭ௦ ൏ 1.0 is water stress conditions exist, ܭ௘ the soil evaporation coefficient, and ܧ ଴ܶ 
the reference crop ET based on a grass reference crop. To estimate Ks and Ke, water balance 
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calculations for the root zone and the top soil layer are required on a daily bases with more 
details found in Allen et al. (1998a).  
 
The water balance, WB, of the root zone is 
 
௜ܦܯܵ ൌ ௜ିଵܦܯܵ െ ሺ ௜ܲ െ ܴ ௜ܱሻ െ ௜ܫ െ ௜ܴܥ ൅ ܧ ௖ܶ,௜ ൅ ܦ ௜ܲ         3.3.2 
 
where SMDi is the soil moisture deficit at the end of day i, P the precipitation, RO the losses due 
to water runoff, I the irrigation water, CR the capillary rise, ETc the crop ET, and DP losses due 
to deep percolation. 
  

Traditionally, tabulated Kcb values are used to estimate ET (Allen et al. 1998a). Considerable 
progress has been made for improving estimates of ET and crop water requirements with 
remotely sensed values of Kcb (Bausch 1993; Bausch and Neale 1987, 1989; Neale et al. 1989; 
Neale et al. 2005). For example, the linear relationship between Kcb and the soil adjusted 
vegetation index (SAVI) for corn yielding what’s known as the reflectance-based basal crop 
coefficient (Kcbrf). The Kcbrf for corn are based on the based on the findings of Neale et al. (1989) 
and Bausch (1993) and for soybean as an adaptation of the dry bean Kcbrf developed by Jayanthi 
et al. (2001). 

 
௖௕௥௙೎೚ೝ೙ܭ ൌ ܫܸܣ1.835ܵ െ 0.034

௖௕௥௙_௦௢௬௕௘௔௡ܭ ൌ ܫܸܣ1.638ܵ െ 0.003ൠ              3.3.3 

 
The use of Kcbrf provides improved estimates of actual ETc at times when remotely sensed 

images are available. Also the use of linearly interpolated Kcb values in between those Kcbrf 
values instead of the tabulated ones can result in improved estimates of ET between satellite 
overpass dates. Interpolation of Kcb from the Kcbrf is more effective, especially under shorter time 
periods in between satellite image acquisition, as is the case for the current study, compared to 
the crop growing stages periods suggested by Allen et al. (1998a). 

  
Soil Moisture Model 
 
For the evaluation of estimates of soil moisture content further analysis needs to be carried 

out to provide soil moisture estimates at multiple layers so it could be compared to the 
measurements. A soil moisture dynamics model is implemented to provide such estimates. The 
model used in the Hybrid ET is a simple one-dimensional modeling scheme similar to the 
modeling approach described in the simple biosphere SiB model by Sellers et al. (1986) and 
applied as in  Luo et al. (2003) (Eq. (3.3.4)). 
 

ଵܦ
ௗఏభ
ௗ௧

ൌ ܫ െ ܧ െ ଵܵ െ ܳଵ,ଶ

௜ܦ
ௗఏ೔
ௗ௧

ൌ ܳ௜ିଵ,௜ െ ௜ܵ െ ܳ௜,௜ାଵ

௡ܦ
ௗఏ೙
ௗ௧

ൌ ܳ௜ିଵ,௡ െ ܵ௡ െ ܳ௡ ۙ
ۖ
ۘ

ۖ
ۗ

                3.3.4 
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where   is the soil moisture content, t the time increment, i number increment from 1 to n the 
total number of soil layers, D layer thickness, I infiltration rate, E evaporation rate from the soil 
surface and the upper most layer, Si water uptake from a layer i the root zone, Qi,i+1  leakage or 
soil water flux from layer i to i+1, and Qn the drainage from the bottom most layer. The root 
zone up to the maximum root extent of the crops is divided into 7 layers for both corn and 
soybean fields with the top six layers depths of 010, 1020, 2030, 3045, 4560, and 6080 
cm and the bottom most layer depths of 80120 and 80100 cm for corn and soybean fields, 
respectively. 

 
The ET components including soil evaporation E and plant transpiration T, obtained 

estimated by the WB model are used as inputs to the soil moisture dynamics model assuming 
unstressed water condition as initial boundary condition. The soil moisture content at the root 
zone for each soil layer is then recalculated by introducing the soil water potential   with the 
corresponding Feddes reduction function () (Feddes et al. 1976; Feddes et al. 1978) to 
account for soil moisture stress conditions and to update root water uptake by plants roots. 
Following an iterative procedure at each time step, the soil moisture content is updated until 
reaching an acceptable minimum error. Detailed description of how to estimate the different 
components of soil moisture dynamics models is shown in Appendix B with the corresponding 
soil water characteristics shown in Table B1. 

 
Data Assimilation Approach 
 
The estimated ET from the TSEB and the WB models is used to couple the two models using 

data assimilation technique. The hybrid ET suggested the use of the statistical interpolation (SI) 
method described by Daley (1993). The SI method was generally used since 1940s for improving 
spatial estimates or forecast of different state variables such as temperature and water vapor 
using a network of point measurements through minimizing error variances (Daley 1993). To 
improve model estimates at location ݎ଴ based on measurement points at locations ݎ௞ the SI 
algorithm can be described by as 

 
ܧ ௐܶ஻

஺ ሺݎ଴ሻ ൌ ܧ ௐܶ஻
஻ ሺݎ଴ሻ ൅ ∑ ௞ܹ൫ܧ ்ܶௌா஻ሺݎ௞ሻ െ ܧ ௐܶ஻

஻ ሺݎ௞ሻ൯
௄
௞ୀଵ        3.3.5 

 
where superscripts A and B refer to after and before assimilation, respectively, ETWB and ETTSM  
are the estimated ET based on WB and TSEB models, respectively, and W the weight or Kalman 
gain of the error for each of the observation points.  

 
The least square estimates for W can be described as ∑ ௟ܹሾߩ௞௟ ൅ ௞ߝ

ଶሿ ൌ ௞଴ߩ
௄
௟ୀଵ  where ൑ ݇ ൑

଴ߪ  the model error correlation, ε2 the normalized observation error equals , ܭ
ଶሺݎ௞ሻ ஻ߪ

ଶ⁄  with ߪை
ଶ 

and ߪ஻
ଶ represents the variances in ETTSEB and ETWB estimates with respect to measured ET, 

respectively. With the goal of minimize the after assimilation error variance the normalized error 
variance can be described as ߝ஺

ଶ ൌ ஺ߪ
ଶ ஻ߪ

ଶ ൌ 1 െ ∑ ௞଴ߩ ௞ܹ
௄
௞ୀଵ⁄  where ߝ஺

ଶ and ߪ஺
ଶ are the error and 

the error variance after assimilation. 
 
In the hybrid approach each model point is updated from a single observation point hence a 

single constant W applied for each analysis point. Also the observation points and the model 
points coincide hence ݎ଴ ൌ ଴ߩ ௞ andݎ ൌ 1. Consequently Eq. (3.3.5) is then simplified to 
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ܧ ௐܶ஻

஺ ൌ ܧ ௐܶ஻
஻ ൅ܹሺܧ ்ܶௌா஻ െ ܧ ௐܶ஻

஻ ሻ              3.3.6 
 
with a minimized model variance equal to ߝଶ and ܹ ൌ ଶߝ ሺ1 ൅ ଶሻߝ ൌ ஻ߪ

ଶ ሺߪ஻
ଶ ൅ ஺ߪ

ଶሻ⁄⁄  
 
In one of the applications of the hybrid ET (Geli 2012), the analysis of the error in variances 

showed that the resulting values of W for all observation points was approximately equal when 
compared to each other; hence, a constant value of W can be used for all observation points. This 
is similar to the approach that was followed by Schuurmans et al. (2003) except that they used 
arbitrary values for W. 

 
Geli (2012) applied the SI method is applied using two different options for the value of W. 

The weights can be assumed constant i.e. time invariant hence a constant value of W can be 
applied for entire period of analysis. The weights can be calculated for each satellite overpass 
date which result in a time variant value for W. Consequently, assimilation of ETTSEB into WB 
result in updated ET and root zone soil moisture content. 

  
Update of Ks and SMD 

 
On satellite overpass dates the assimilated ET value is used to update the root zone soil 

moisture status by back calculating new values for Ks and SMD. Due to assimilation the resulting 
new value of ET is followed by updating only the values of Ks and Ke since ETo remains 
unchanged and Kcb is replaced by the remotely sensed value Kcbrf. Estimation of Ke is based on 
moisture conditions of the top 10 cm of the soil hence it is expected to have less variation than 
the value of Ke, and therefore assumed to remain unchanged after assimilation. As estimation of 
Ks requires knowing the root zone soil moisture status, the water balance condition is updated by 
back calculating a new value for Ks and consequently updating the value of SMD as well. The 
updated value of SMD is then transferred to the next time step leading to an updated soil 
moisture status after assimilation for a number of subsequent days depending on the water stress 
conditions. 

 
A list of required input data for the application of the hybrid ET model is shown in Table 6. 

Examples of the hybrid ET model performance over selected areas are shown in Table 7. 
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Table 6: Summary of input data needed for the application of the hybrid ET model. 

Data  Source 
Spatial 
Resolution 

Weather forcing  

Incoming shortwave solar radiation (Rs) 
Air temperature (Ta) 
Wind Speed (u) 
Vapor Pressure (ea) 
Atmospheric Pressure (P) 
Height of measurement of Ta (zt) 
Height of measurement of u (zu) 

 

Ground based observations 
 
 

 

Local scale  

Biophysical parameters 

Leaf Area Index (LAI) 
Canopy Height (hc) 
Land use classification 
Mean Leaf size (s) 
Absorptivity of air, canopy, soil 
Height and width of clumps  

 

Ground based observations or 
remote sensing estimates  
 
Lookup table 
Lookup table 

 

Local scale or 
30-m 

Remote Sensing  

Radiometric surface temperature (TR) 
Surface reflectance in the visible and 
near infrared bands  

 

Airborne, Landsat, MODIS  
Airborne , Landsat, MODIS 

 

1-1000 m 
1-1000 m 

Soil Data 

Field capacity, wilting point 
Soil type and Texture 

 

Field measurements 

 

Local Scale 

 

Table 7: Example of applications of the hybrid ET model and related performance. 
Study area, 
dataset 

Climatic 
Region 

Land Use Domain Performance (RMSE) Citation 

    Rn  G H LE ET N  
Ames, Iowa 
SMACEX, 
2002 

Humid Corn 
soybean 

Walnut Creek 
Watershed 

18 28 30 47 0.67 31 Geli 2012 
 

Bushland, 
Texas, 
BEAREX08, 
2008 

Semi-arid Dry land 
and 
irrigated 
cotton 

Research site 22 50 46 41 0.64 16 Neale et 
al. 2012 
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Study area, 
 dataset 

Climatic 
Region 

Land use Domain 
Performance 

(ET mm/month) 
Citation 

CONUS, 
Flux NET 

Diverse Crop, forest, 
shrubland, 
grassland 

CONUS, 
MODIS 

RMSE: 8.5 to 20 mm,  
single towers 

Senay et al, 
2013 

CONUS,  
EC Flux Towers 

Diverse crop, forest, 
shrubland, 
grassland 

CONUS, 
MODIS 

RMSE: 24 - 30 mm  
multiple towers,  

 

Velpuri et al., 
2013 

Texas High Plains, 
Lysimeter 

Humid corn and 
sorghum 

Research site, 
Landsat 

RMSE: 12% of  
mean at seasonal scale 

Senay et al, 
2014 

Colorado Rivers 
Basin 

Arid-
semiarid 

Mixed Basin wide, 
Landsat 

MBE of 10%, 
single stations 

Singh et  al, 
2014 
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3.4. METRIC Model 

 
General 

 
The METRIC was conceptualized on the big leaf assumption for modeling mass/energy 

exchange at the surface. This assumption is mainly utilized to represent the resistance to sensible 
heat flow above the surface. For most applications over agricultural areas, such an assumption 
can fairly describe the inherent surface conditions during most of the growing period. METRIC 
uses a modified version of the bulk sensible heat flux equation that is based on the differences 
between the aerodynamic and the near-surface air temperature. Instead the model introduces the 
use of the air temperature difference, dT, at two heights near the surface and empirically relates it 
to the radiometric surface temperature obtained from remote sensing. With the use of dT, the 
model manages to avoid the difficulties in estimating the aerodynamic temperature and the 
potential errors caused by the use to TR in its place. One of the advantages of the model is that it 
does not necessarily require the use of a land use map to calculate some related biophysical 
parameters. However, Allen et al. (2007b) state that it is important to use land use classification 
maps in the application of METRIC when available as they can be used to specify momentum 
roughness length values and soil heat flux vs. net radiation relationships as described below. 

 
As the METRIC model is based on the surface energy balance equation it calculates the 

latent heat flux as a residual. All estimates of SEBF are instantaneous including LE which can be 
extrapolated to values of daily ETa. METRIC was based on the SEBAL model (Bastiaanssen et 
al. 1998a; Bastiaanssen et al. 1998b) with some modifications especially regarding the 
calibration of the latent heat fluxes at the two limiting wet and dry conditions, using pixels 
identified over well irrigated alfalfa as the wet upper limit instead of a water body. However, the 
selection of pixels or fields for a given scene with such two limits is subjective by nature and 
requires some level of experience and knowledge about the area under study. Some challenges 
might arise with the selection of such pixel when using MODIS date due to its coarser spatial 
resolution.  

 

 
Figure 5: Description of METRIC model 
 

Basic Truth 
Evaporation 
consumes 
Energy 

ET H 
Rn 

G 

ET = Rn - G - H The energy balance includes 
all major sources (Rn) and 
consumers (ET, G, H) of 
energy 
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Model Description 
 
The instantaneous LE is estimated as the residual of the energy balance equation as 
 

ܧܮ ൌ ܴ݊ െ ܩ െ  3.4.1                   ܪ
 
The net radiation ܴ݊ can be estimated as 
 
ܴ݊ ൌ ሺ1 െ ሻܴ௦ߙ ൅ ܴ௅↓ െ ܴ௅↑ െ ሺ1 െ  ௢ሻܴ௅↓            3.4.2ߝ
 
where ߙ is the broadband surface albedo, ܴ௦ the incoming shortwave radiation, ܴ௅↑ the outgoing 
longwave radiation, ܴ௅↓ the outgoing longwave radiation and ߝ௢ the broadband surface 
emissivity. 
  

The broadband surface albedo can be estimated as 
 

ߙ ൌ ∑ ௦,௕ߩ
଺
௕ୀଵ ∙  ௕                   3.4.3ݓ

 
where ݓ௕ is the weighting coefficient with typical values provided by Allen et al. (2007b)Allen 
et al. 2007 and ߩ௦,௕ the at-surface reflectance for each band b and can be estimated as described 
in Appendix C. 

 
The incoming shortwave radiation ܴ௦, which is considered same for non-mountainous areas, 

can be estimated as 
 

ܴ௦ ൌ ௌ஼ܩ ∙ ߠ	ݏ݋ܿ ∙ ݀௥ ∙ ߬௦௪                 3.4.4 
 
where ܩௌ஼is the solar constant taken as (1367 W m-2), ܿݏ݋	ߠ the cosine of the solar zenith angle, 
݀௥ the inverse squared relative earth-sun distance 1 ݀ଶ⁄  estimated as described in Appendix C, 
and ߬௦௪ the broadband atmospheric transmissiviy which can be estimated following Allen (2005) 
as described in Appendix C. 
 
 The outgoing longwave radiation ܴ௅↑ can be estimated using the Stefan-Boltzmann equation as 
 
ܴ௅↑ ൌ ௢ߝ ∙ ߪ ∙ ௌܶ

ସ                    3.4.5 
 
where ߪ is the Stefan-Boltzmann constant taken as 5.67 ∙ 10ି଼ܹ݉ିଶିܭସ,	ߝ௢ the broadband 
emissivity (dimensionless), and Ts the surface temperature (K) which basically refers to the 
radiometric surface temperature TR. 
 
A corrected radiometric surface temperature ௦ܶ can be estimated using a modified Planks 
equation. This corrections is based on calculating a thermal radiance from the surface ܴ௖ 
(Markham and Barker 1986).  
 

௦ܶ ൌ
௄మ

௟௡ቀ
ഄಿಳ∙಼భ

ೃ೎
ାଵቁ

                    3.4.6 
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where ܭଵ and ܭଶ are constants for Landsat images for band 6 in ܹ݉ିଶିݎݏଵି݉ߤଵ (Appendix C), 
ܴ௖ the corrected thermal radiance from the surface (ܹ݉ିଶିݎݏଵି݉ߤଵ), and ߝே஻ the narrow band 
emissivity. Description of how to estimate ߝ௢ and ߝே஻ is provided in Appendix C. ܴ஼ can be 
estimated following Wukelic et al. (1989) as 
 

ܴ஼ ൌ
௅లିோು
ఛಿಳ

െ ሺ1 െ ߬ே஻ሻ ∙ ܴ௦௞௬                3.4.7 

 
where ܮ଺ is the spectral radiance of band 6 (ܹ݉ିଶିݎݏଵି݉ߤଵ) which represents the at-sensor 
radiance, ܴ௉ the path radiance in the 10.4-12.5 ݉ߤ band (ܹ݉ିଶିݎݏଵି݉ߤଵ), ܴ௦௞௬ the narrow 
band downward thermal radiation from a clear sky (ܹ݉ିଶିݎݏଵି݉ߤଵ) and ߬ே஻the narrow band 
transmissivity of air.  
 
ܴ௦௞௬ can be estimated following Wukelic et al. (1989) as 
 
ܴ௦௞௬ ൌ ሺ1.807 ∙ 10ିଵ଴ሻ ∙ ௔ܶ

ସ ∙ ሾ1 െ 0.26 ∙ ሺെ7.77݌ݔ݁ ∙ 10ିସ ∙ ሺ273.15 െ ௔ܶሻଶሻሿ   3.4.8 
 
where ௔ܶ is the air temperature (K). Based on analysis carried for several image dates using 
MODTRAN, (Allen et al. 2007b) suggested that ܴ௉ ൌ 0.91, ߬ே஻ ൌ 0.866, and ܴ௦௞௬ ൌ 1.32 for 
low aerosol conditions. However these values can be replaced by ܴ௉ ൌ 0, ߬ே஻ ൌ 1, and ܴ௦௞௬ ൌ
0 which leads to ignoring the use of ܴ஼ as if L6 is directly used. Using the uncorrected values of 
L6 has a small effect on the estimated ETa especially over areas with low and high ET values 
and slightly large for midrange ETa values. 

 
The incoming longwave radiation ܴ௅↓ can be estimated using Stefan-Boltzmann equation as  
  

ܴ௅↓ ൌ ௔ߝ ∙ ߪ ∙ ௔ܶ
ସ                    3.4.9 

 
where ߝ௔ is the effective atmospheric emissivity which can be estimated originally using an 
empirical described by Bastiaanssen (1995) adjusted by Allen et al. (2007b) based on data from 
Idaho as 
 

௔ߝ ൌ 0.85൫െ݈݊ሺ߬௦௪ሻ൯
଴.଴ଽ

                  3.4.10 
 
with the application of SEBAL the coefficients of 1.08 and 0.265, which were based on data 
from Egypt, were used instead of 0.85 and 0.09, respectively. 
 
The soil heat flux G can be estimated using the empirical equation described in SEBAL as based 
on Bastiaanssen (2000) as 
 
ீ

ோ೙
ൌ ௌܶ ∙ ሺ0.0038 ൅ 0.0074 ∙ ሻߙ ∙ ሺ1 െ 0.98 ∙  ସሻ          3.4.11ܫܸܦܰ

 
where ߙ is the surface albedo and ௌܶ surface temperature (C). For recent application of METRIC 
a different equation provided by Tasumi (2003) based on vegetation cover conditions is used as 
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ீ

ோ೙
ൌ 0.05 ൅ 0.18 ∙ ݁ሺି଴.ହଶଵሻ∙௅஺ூ											݂ݎ݋	ܫܣܮ ൒ 0.5

ீ

ோ೙
ൌ ଵ.଼଴∙ሺ்ೄିଶ଻ଷ.ଵ଺ሻ

ோ೙
൅ ܫܣܮ	ݎ݋݂											0.084 ൏ 0.5

ቑ          3.4.12 

 
As indicated by Allen et al. (2007b) both Eqs. 3.4.11 and 3.4.13 performed similarly well 

with irrigated crops at Kimberly, Idaho. Noteworthy that these equations are designed to work 
over tilled agricultural soils. Over desert soil G is adjusted based on Ts (Allen 2012) as  

 
௔ௗ௝ܩ ൌ ܩ െ 5 ∙ ൫ ௌܶ	ௗ௘௠ െ ௌܶ	ௗ௘௠೟೓ೝ೐ೞ

൯											݂ݎ݋	 ௌܶ	ௗ௘௠ ൐ ௌܶ	ௗ௘௠೟೓ೝ೐ೞ
	      3.4.13 

 
where ௌܶ	ௗ௘௠ and ௌܶ	ௗ௘௠೟೓ೝ೐ೞ

 are de-lapsed Ts calculated as described later. For water and snow 
surface G can be estimated as 
  
ீ

ோ೙
ൌ 0.5                      3.4.14 

 
where water bodies are identified with areas having NDVI<0 and snow areas with ௌܶ ൏ 4 C and 
ߙ ൐ 0.47. 
 
The sensible heat flux, H, can be estimated as 
 

ܪ ൌ ఘ∙௖ು∙ௗ்

௥ೌ೓
                     3.4.15 

 
where ߩ is the air density kg m-3, ܿ௉ the specific heat of air taken as 1004 J kg-1 K-1, ݀ܶ the 
temperature difference ሺ ଵܶ െ ଶܶሻ between two heights (ݖଵ and ݖଶ), and rah the aerodynamic 
resistance to heat transport (s m-1). ߩ can be estimated as described in Allen et al. 1998 as 
 

ߩ ൌ ଵ଴଴଴∙௉

ଵ.଴ଵ∙ሺ்ೄିௗ்ሻ∙ோ
                    3.4.16 

 
where P is the atmospheric pressure where a single value can be estimated as described in 
Appendix (C).  
 
The solution to H is obtained iteratively as described below with initial estimate of the 
aerodynamic resistance ݎ௔௛ assuming neutral condition as 
 

௔௛ݎ ൌ
௟௡ቀ೥మ

೥భ
ቁ

௨∗∙௞
                     3.4.17 

 
where ݖଶ and ݖଵ are heights (m) above the zero displacement height, d, of the vegetation, ݑ∗ the 
friction velocity (m s-1), k the von Karman’s constant taken as 0.41. Under neutral conditions the 
friction velocity can be estimated as  
 

∗ݑ ൌ
௞∙௨ೣ

௟௡ቀ ೥ೣ
೥೚೘

ቁ
                     3.4.18 



35 
 

 
where ݑ௫ is the wind speed (m s-1) at height ݖ௫ ,  ݖ௢௠ the momentum roughness length (m) 
which can be estimated based on the vegetation height h following Brutsaert (1982) as 
 
௢௠ݖ ൌ 0.12 ∙ ݄                    3.4.19 
 
The iterative procedure followed to estimate H can be summarized by 
  

1- Estimate the wind speed, ݑଶ଴଴, at the blending height of 200 m above the weather station 
which assumed constant for the entire scene as 
 

ଶ଴଴ݑ ൌ ∗ݑ
௟௡ቀ మబబ

೥೚೘
ቁ

௞
                  3.4.20 

At the weather station ݑ∗can be used to calculate using Eq. (xx) assuming neutral conditions. 
 ௢௠ can be estimated as described in Eq. xx using the canopy height at the weather station asݖ
h=0.3 which was based on data from Idaho. 
  
2- Spatial estimates of ݑ∗ is then calculated for the entire area under study using as 

 

∗ݑ ൌ
௞∙௨మబబ
௟௡ቀ మబబ

೥೚೘
ቁ
                   3.4.21 

 
where spatial estimates of ݖ௢௠can be calculated based on the availability of data as 

a. In case of a land use map available ݖ௢௠ can be estimated for agricultural areas 
based on LAI (Tasumi 2003) as 
 

௢௠ݖ ൌ 0.018 ∙  3.4.22                 ܫܣܮ
 
For other types of surfaces non-agricultural areas typical ݖ௢௠values are suggested 
by Allen (2012) (Appendix C). A minimum value for ݖ௢௠ can be set as 0.005 for 
bare agricultural soils. However Tasumi et al. (2005b) indicated the insensitivity 
of estimated Eta to the value of ݖ௢௠. 

 
b. In case of no land use ݖ௢௠ can be estimated based on NDVI (Bastiaanssen 2000) 

as 
 

௢௠ݖ ൌ ሺܽ݌ݔ݁ ∙ ܫܸܦܰ ൅ ܾሻ               3.4.23 
 
Another suggested model by Allen et al. 2001a as 
 

௢௠ݖ ൌ ݌ݔ݁ ቀܽ ∙ ே஽௏ூ
ఈ

൅ ܾቁ                3.4.24 

 
where a and b are regression coefficient that need to be derived from plots of 
ln	ሺݖ௢௠ሻ against ܰܫܸܦ or ܰܫܸܦ ⁄ߙ . Note that ܽ and ܾ need to be derived for each 
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vegetation type and local condition. ݖ௢௠ can be estimated based on canopy height 
and different albedo values can be selected for different surface cover types. 

 
3- The aerodynamic resistance ݎ௔௛ is then calculated, assuming neutral atmospheric 

conditions, using Eq. (3.4.17) along with ݑ∗ with the suggested values of ݖଵ and ݖଶ. The 
height ݖଵ is just above the d and ݖଶ at some distance above d. The study by Bastiaanssen 
(1995) indicated that ݖଵ ൌ 0.1 and ݖଶ ൌ 2.0 m. 
 

4- H is then calculated using Eq. 3.4.15 based on ݎ௔௛ in step 3 and dT where  
 

 ݀ܶ ൌ ௭ܶభ െ ௭ܶమ                  3.4.25 
 
with  ௭ܶభ and ௭ܶమ are the air temperature at ݖଵand ݖଶrespectively. However it is not 
necessary that ௭ܶభ and ௭ܶమto be known and as indicated by Bastiaanssen et al. 1995 that 
dT can be assumed is linearly related to Ts as ݀ܶ ൌ ܾ ൅ ܽ ∙ ௦ܶ_ௗ௘௠ with a and b are 
empirical calibration coefficients determined for a given satellite scene. ௦ܶ_ௗ௘௠ is the 
radiometric surface temperature delapsed adjusted to a common arbitrary elevation and it 
can be estimated as ௦ܶ_ௗ௘௠ ൌ ௦ܶ ൅  with lapse (K) can be estimated based on ݁ݏ݌ܽܮ
digital elevation model as described in Appendix C. 
 

The linear relationship between Ts and dT can be developed using information about 
surface energy budget at two extreme ends of known ET conditions. These two extreme 
ends are defined at the coldest wet and hot dry agricultural fields for each individual 
scene. The ET at these two cold and hot pixels defined as ܧ ௖ܶ௢௟ௗ and ܧ ௛ܶ௢௧ will have 
known values.  For the cold pixel ܧ ௖ܶ௢௟ௗ can be estimated as  
 
ܧ ௖ܶ௢௟ௗ ൌ 1.05 ∙ ܧ ௥ܶ                 3.4.26 
 
where ETr is the reference ET for alfalfa crop. The 5% increase in ETr was to consider 
wet soil surface condition under the full cover at LAI >4.0 and dense vegetation 
conditions. However during non-growing season where the coldest pixel might has ETcold 
lower than that of ETr the relationship developed by Tasumi et al. (2005a) can be used. 
 ௖௢௟ௗ and dT at the cold pixel can be calculated based on the surface energy balance asܪ
 
௖௢௟ௗܪ ൌ ܴ௡ െ ܩ െ 1.05 ∙  3.4.27               ܶܧ
 

݀ ௖ܶ௢௟ௗ ൌ
ு೎೚೗೏∙௥ೌ೓_೎೚೗೏

ఘ೎೚೗೏∙௖ು
                 3.4.28 

 
During non-growing season ETcold can be estimated as ܧ ௖ܶ௢௟ௗ ൌ ܽ ∙ ܫܸܦܰ ∙ ܧ ௥ܶ with ܽ 
varies between 1.25-1.3. 
 

For the hot pixel EThot is assumed as zero. However, it is recommended to make sure 
that this assumption is valid by considering the weather data for a period of 10 days 
before. In some cases, a residual evaporation from the bare soil surface can be considered 
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as 0.05-0.15 of ETr. Based on this assumption Hhot and dThot can be estimated as  ܪ௛௢௧ ൌ
ܴ௡ െ ݀  and ܩ ௛ܶ௢௧ ൌ ሺݐ݋݄_ܪ ∙ ݐ݋݄_ߩሻሻ/ሺ	ݐ݋݄_ሺ݄ܽ_ݎ ∙ ܿ_ܲ	ሻ 
 

Using the information from the hot and cold pixels a linear relationship can be 
developed and the coefficient a and b in Eq. xx can be estimated as ܽ ൌ
ሺ݀ ௛ܶ௢௧ െ ݀ ௖ܶ௢௟ௗሻ ൫ ௦ܶ_௛௢௧ െ ௦ܶ_௖௢௟ௗ൯⁄  and ܾ ൌ ݀ ௛ܶ௢௧ െ ܽ ∙ ௦ܶ_௛௢௧ 
 

A map of ݀ܶ can be calculated using Eq. (3.4.25) which can be used to estimate H. 
An approximate air temperature can also be estimated as ௔ܶ ൌ ௦ܶ െ ݀ܶ. 
 

5- Correction for atmospheric stability condition is accounted for using Monin-Obukhov 
similarity theory (MOST) as described in Appendix C. with ݖଵ ൌ 0.1 and ݖଶ ൌ 2.0, Ψ௠ 
and Ψ௛can be estimated as described in Appendix C. 
 

6- Using an iterative process steps 4-5 are repeated to calculate the sensible heat flux using 
the updated values of rah and ݑ∗until the successive values for dThot and rah at the hot dry 
pixel stabilized. Generally, this process takes about 4 to 5 steps of iterations at which the 
correct values of H is estimated. 

 
Note that the METRIC provide estimates of instantaneous LE which can be extrapolated to 

daily value using the reference ET fraction (ETrF) as ܨݎܶܧ ൌ ܧ ௜ܶ௡௦௧ ܧ ௥ܶ⁄  with ܧ ௜ܶ௡௦௧is the 
instantaneous ET in depth of water units (mm hr-1 ) equivalent to the instantaneous LE (W m-1) 
which can be estimated as ܧ ௜ܶ௡௦௧ ൌ 3600 ∙ -is the latent heat for vaporization (J kg ߣ with ߣ/ܧܮ

1) calculated as ߣ ൌ ൫2.501 െ 0.00236 ∙ ሺ ௦ܶ െ 273ሻ൯ ∙ 10଺ 
 
The daily ET in units of mm day-1, ܧ ଶܶସ , can be estimated s 
 
ܧ ଶܶସ ൌ ܨݎܶܧ ∙ ܧ ௥ܶ_ଶସ                   3.4.29 
 
where ܧ ௥ܶ_ଶସ is the cumulative 24-hour ETr for the day of the image. 
 
Typical data needed for the application of METRIC model are provided in Table 8 with 
examples of model results over selected areas in Table 9. 
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Table 8: summary of input data needed for the application of the METRIC model.  

Data  Source 
Spatial 
Resolution 

Weather forcing  

Air Temperature (Ta) 
Wind Speed (u)  
Vapor Pressure (ea)  

 

Ground Observation 
Ground Observation 
Ground Observation 

 

Local Scale 
Local Scale 
Local Scale 

Biophysical parameters 

Leaf Area Index (LAI) 
Land use classification (optional) 
Digital Elevation Model 

 

Airborne/ Landsat/ MODIS 
Airborne/ Landsat/ MODIS 
Hydro1k/ NED 

 

1–1000 m 
1–1000 m 
30 –1000 m 

Remote Sensing  

Radiometric surface temperature (TR)  
(top of the atmosphere) 
Multispectral reflectance  
(top of the atmosphere) 

 

Airborne, Landsat, MODIS   
 
Airborne, Landsat, MODIS 

 

1–1000 m 
 
1–1000 m 

 
Table 9: Example of applications of METRIC model and the reported performance.  
Study area,  
dataset 

Climatic 
Region 

Land Use Domain Performance 
ET 

Citation 

Ames, Iowa 
SMACEX, 2002 

Humid Corn, 
soybean  

Walnut Creek 
Watershed 

RMSE: 0.6-0.9  
mm/day 
 

(Gonzalez-
Dugo et al. 
2009) 

Montpelier, Idaho, 
1985 

Semi-arid Sedge 
forage 
crop  

Bear River 
Basin 

RE: 16% mm/day 
RE: 4% seasonal 
 

(Allen et al. 
2007a) 
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3.5. SEBS Model 

 
General 

 
Similar to SEBAL and METRIC models, the SEBS model treats the surface as one-source to 

formulate its network resistance for the estimation of the sensible heat flux, H. With the 
application of energy balance at the surface, the model calculates the latent heat flux using a 
constrained residual method. The model applies a modified Penman-Monteith equation provided 
by Menenti (1984) at known limiting surface condition combined with evaporative fraction 
concept to estimate a constrained values of H and ܧߣ. Moreover, a physically based estimate of 
the roughness length for heat transport is introduced in SEBS. As indicated by Su et al. (2005), 
the model is designed so that it can be applied at local to regional scales and therefore at different 
spatial resolutions.  

 
It is observed that differently from the previously described models TSEB and METRIC 

(Sections 3.1 and 3.4), the SEBS model does not consistently estimate Rn or its components. As 
indicated by Su et al. (2005); Su (2002), all Rn components can be based on measurements, 
partially estimated, or parameterized. So when comparing SEBS performance with models that 
use similar energy balance remote sensing based approaches, this could be in its advantage. 

   
Model Description 

 
The model applies the surface energy balance equation to estimate the different fluxes as 
 

ܴ௡ ൌ ଴ܩ ൅ ܪ ൅  3.5.1                   ܧߣ
 
with ܴ௡ calculated as 
 
ܴ௡ ൌ ሺ1 െ ሻߙ ∙ ܴ௦௪ௗ ൅ ߝ ∙ ܴ௟௪ௗ െ ߝ ∙ ߪ ∙ ଴ܶ

ସ             3.5.2 
 
with α is the broadband albedo in the visible and near-infrared band, ܴ௦௪ௗ the downward 
shortwave radiation, ܴ௟௪ௗ the downward longwave radiation, ߝ the broadband emissivity in the 
thermal infrared band, ߪ the Stefan-Boltzman constant, T0 the radiometric surface temperature. 
In most of the model applications, ߝ is calculated based on a model described by Chen et al. 
(2004) as 
 
ߝ ൌ ௖ߝ ∙ ௖݂ ൅ ௦ߝ ∙ ሺ1 െ ௖݂ሻ                  3.5.3 
 
where ߝ௖and ߝ௦ are the canopy and soil emissivities, respectively, taken as 0.985 and 0.978 when 
using Landsat data. In some applications of SEBS, the value of ߝ is estimated based on Ta using 
the Swinbank equation described in Campbell and Norman (1998). The albedo is obtained from 
MODIS data for regional applications and sometime typical values from literature are used. ܴ௦௪ௗ 
and ܴ௟௪ௗ	generally from measurements and in some cases ܴ௟௪ௗ is estimated using the Stefan-
Boltzman equation which require Ta measurements at a reference height. 
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The soil heat flux ,ܩ଴, is estimated as a function of ܴ௡ as 
 

଴ܩ ൌ ሾΓ௖ ൅ ሺ1 െ ௖݂ሻ ∙ ሺΓ௦ െ Γୡሻሿ ∙ ܴ௡               3.5.4 
 
with Γ௖ ൌ 0.05 for full vegetation cover (Monteith 1973) and Γ௦ ൌ 0.315 for bare soil (Kustas 
and Daughtry 1990),  ௖݂ the fraction of vegetation cover estimated as a function of the vegetation 
index NDVI (Baret et al. 1995) as 

௖݂ ൌ 1 െ ቀே஽௏ூିே஽௏ூ೎
ே஽௏ூೞିே஽௏ூ೎

ቁ
௞
                  3.5.5 

 
where ܰܫܸܦ௦ and ܰܫܸܦ௖ are the NDVI values for bare soil and full canopy cover, respectively, 
k varies between 0.6-1.25 with a value of 0.6175 used by McCabe and Wood (2006). 
 

The turbulence heat fluxes H and LE are estimated applying the Monin-Obukhov similarity 
theory MOST. Following MOST the sensible heat flux can be estimated as 
 

଴ߠ െ ௔ߠ ൌ
ு

௞௨∗ఘ௖೛
ቂ݈݊ ቀ௭ିௗబ

௭೚೓
ቁ െ Ψ௛ ቀ

௭ିௗబ
௅
ቁ ൅ Ψ௛ ቀ

௭బ೓
௅
ቁቃ          3.5.5 

 
where ߠ଴ is the potential temperature at the surface, ߠ௔ the potential air temperature at height z 
above the surface,	ߠ଴ െ  ௔  represents the mean temperature, k Von Karman constant taken asߠ
0.40, ܿ௣ is the specific heat of air,	݀଴  the zero plane displacement height, ݖ଴௠ roughness height 
for momentum transfer, ݖ଴௛ the roughness height for heat transfer, ݑ∗ the friction velocity 
estimated as ݑ∗ ൌ ሺ߬଴ ⁄݌ ሻଵ ଶ⁄  with p the air density, and L is the Obukhov length defined as 
 

ܮ ൌ െ
ఘ஼೛௨∗యఏೡ
௞௚ு

                     3.5.6 

 
with ߠ௩ is the potential virtual temperature near the surface and g the gravitational acceleration. 
The mean wind speed profile can be defined as 
 

ݑ ൌ ௨∗
௞
ቂ݈݊ ቀ௭ିௗబ

௭బ೘
ቁ െ Ψ௠ ቀ

௭ିௗబ
௅
ቁ ൅ Ψ௠ ቀ

௭బ೘
௅
ቁቃ             3.5.7 

 
The surface roughness parameters ݖ଴௠, ݖ଴௛, and ݀଴ can be estimated using three different 

methods depending on the availability of data as indicated by Su (2002) using  
 

a- The model proposed by Massman (1997) and tested by Su et al. (2001) if near surface 
wind speed, leaf area index, and vegetation height data are available. 

b- The empirical relationships proposed by Brutsaert (1982) if only vegetation height data 
are available. 

c- The tabulated values by Wieringa (1986, 1993) 
 
with respect to option (a) tݖ଴௛ can estimated as  
 
଴௛ݖ ൌ ଴௠ݖ ⁄ଵሻିܤሺ݇݌ݔ݁                   3.5.8 
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where B-1 is the inverse Stanton number. The value of ݇ିܤଵ can be estimated using the proposed 
model by Su et al. (2001) as  
 

ଵିܤ݇ ൌ ൤ ௞஼೏
ସ஼೟∙൫௨∗ ௨ሺ௛ሻ∙൫ଵି௘ష೙೐೎ మ⁄ ൯⁄ ൯

൨ ∙ ௖݂
ଶ ൅ 2 ௖݂ ௦݂ ቂ

௞∙൫௨∗/௨ሺ௛ሻ∙ሺ௭బ೘ ௛⁄ ሻ൯

஼೟
∗ ቃ ൅ ௦ିଵܤ݇ ௦݂

ଶ     3.5.9 

 
where ܥௗ is the drag coefficient of the foliage elements taken as 0.2, ܥ௧ the heat transfer 
coefficient of leaf which has the range of 0.005ܰ ൑ ௧ܥ ൑ 0.075  with N is the number of sides 
of a leaf to participate in heat transfer, ܥ௧∗ the heat transfer coefficient for soil estimated as 
 

∗௧ܥ  ൌ ଶିݎܲ ଷ⁄ ܴ݁∗
ିଵ ଶ⁄                     3.5.10 

 
with ܲݎ the Prandtl number and ܴ݁∗ the roughness Reynold number estimated as 
 
 ܴ݁∗ ൌ ݄௦ݑ∗ ⁄ߥ                      3.5.11 
 
with hs the roughness height of the soil, ߥ the kinematic viscosity of the air estimated as 
 
ߥ  ൌ 1.327 ∙ 10ିହ ∙ ሺ݌଴ ⁄݌ ሻ ∙ ሺܶ ଴ܶ⁄ ሻ                3.5.12 
 
with ݌ and ܶ the ambient pressure and temperature and ݌଴= 101.3 kPa and ଴ܶ=273.15K.  
The within-canopy wind speed profile extinction coefficient ݊௘௖ can be estimated as a function 
of the cumulative leaf drag area at the top of the canopy as 
 

݊௘௖ ൌ
஼೏∙௅஺ூ

ଶ௨∗
మ ௨ሺ௛ሻమ⁄

                    3.5.13 

 
where ܥௗ is the drag coefficient of the foliage elements taken as 0.2, LAI is the leaf area index, 
u(h) the horizontal wind speed at the top of the canopy. The value of the LAI can be obtained 
either from ground based measurements (Su et al. 2005) or remote sensing based estimates as a 
function vegetation indices (McCabe and Wood 2006; Su et al. 2005) as 
  
ܫܸܦܰ ൌ 0.6868 ∙  ଴.ଵ଼ଵ଴                 3.5.14ܫܣܮ
 
For a bare soil surface case the ݇ܤ௦ିଵ is estimated using Brutsaert (1982) model as  
 
௦ିଵܤ݇ ൌ 2.46ሺܴ݁∗ሻଵ/ସ െ ݈݊ሺ7.4ሻ                3.5.15 
 

By introducing the concept of evaporative fraction (Λ) and using the surface energy balance 
at two limiting conditions ܧߣ can be estimated. During a dry condition when ܧߣௗ௥௬ approaches 0 
and sensible heat flux, ܪௗ௥௬ , is at its maximum value the surface energy balance can be 
described as 
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ௗ௥௬ܧߣ ൌ ܴ௡ െ ଴ܩ െ ௗ௥௬ܪ ≡ ݎ݋			,0
ௗ௥௬ܪ ൌ ܴ௡ െ ଴ܩ

ൠ               3.5.16 

 
During a wet-limit condition, the sensible heat flux is at its minimum and the latent heat flux, 

 ௪௘௧ , at its lowestܪ ,௪௘௧ , approaches its maximum or potential value and the sensible heat fluxܧߣ
value the surface energy balance can be described as 
 
௪௘௧ܧߣ ൌ ܴ௡ െ ଴ܩ െ ௪௘௧ܪ ≡ ݎ݋			,0

௪௘௧ܪ ൌ ܴ௡ െ ଴ܩ െ ௪௘௧ܧߣ
ൠ               3.5.17 

 
 
The concept of relative evaporative fraction, Λ௥ , can be described as 
 

Λ௥ ൌ
ఒா

ఒாೢ೐೟
ൌ 1 െ ఒாೢ೐೟ିఒா

ఒாೢ೐೟
                 3.5.18 

 
Or in terms of sensible heat flux as 
 

Λ௥ ൌ 1 െ ுିுೢ೐೟
ு೏ೝ೤ିுೢ೐೟

                   3.5.19 

 
The value of H estimated as described in Eq. xx is constrained by the two limiting wet and 

dry conditions of ܪ௪௘௧ and ܪௗ௥௬. The limiting ܪ௪௘௧  during wet conditions is estimated using a 
modified Penman-Monteith P-M equation (Monteith) of ܧߣ described by Menenti (1984). When 
grouping the resistance terms into bulk internal (stomatal) and external (aerodynamic) the P-M 
equation can be described as indicated by Menenti (1984) as  

 

ܧߣ ൌ
୼∙௥೐∙ሺோ೙ିீబሻାఘ஼೛∙ሺ௘ೞೌ೟ି௘ሻ

௥೐∙ሺఊା∆ሻାఊ∙௥೔
                 3.5.20 

 
where Δ the saturation vapor pressure gradient with respect to temperature, ݁ and ݁௦௔௧ the actual 
and saturated vapor pressure, ߛ the psychrometeric constant, ݎ௘ the aerodynamic resistance, and 
  ௜ which isݎ ௜ the bulk surface internal resistance. As there is some difficulty in estimatingݎ
function of the water availability using the wet limit eliminate the need to estimate ݎ௜ as it 
approaches 0. Therefore, during wet limit and combining Eqs. Xx and xx ܪ௪௘௧ can be estimated 
as  
  

௪௘௧ܪ ൌ
ሺோ೙ିீబሻିቂ

ഐ಴೛
ೝ೐ೢ

ቃ∙ቂ೐ೞష೐
ം

ቃ

ଵା∆
ം

                  3.5.21 

 
The external resistance ݎ௘ can be estimated as   
 

௘ݎ ൌ
ଵ

௞௨∗
ቂ݈݊ ቀ௭ିௗబ

௭బ೓
ቁ െ Ψ୦ ቀ

௭ିௗబ
୐
ቁ ൅ Ψ୦ ቀ

௭బ೓
୐
ቁቃ             3.5.22 

 
and the external resistance at the wet limit ݎ௘௪ can be estimated as 
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௘௪ݎ ൌ ଵ

௞௨∗
ቂ݈݊ ቀ௭ିௗబ

௭బ೓
ቁ െ Ψ୦ ቀ

௭ିௗబ
୐౭

ቁ ൅ Ψ୦ ቀ
௭బ೓
୐౭
ቁቃ            3.5.23 

 
with L୵ the wet limit stability length estimated as  
 

௪ܮ ൌ െ ఘ௨∗య

଴.଺ଵ∙௞∙௚∙ሾሺோ೙ିீబሻ ఒ⁄ ሿ
                  3.5.24 

 
The latent heat flux, ܧߣ can be estimated using the evpoarative fraction Λ as 
 

Λ ൌ ఒா

ோ೙ିீబ
ൌ ஃ౨∙ఒாೢ೐೟

ோ೙ିீబ
                   3.5.25 

 
The model input data provided in Table 10 represents typical requirements as there were 
variability on the methods followed to obtain values of ܴ௡ either from measurements or 
estimates. Examples of SEBS model application and reported performance is shown in  

Table 11 
 
Table 10: Summary of input data needed for the application of SEBS model.  

Data Source Spatial Resolution 

Weather forcing  

Incoming shortwave solar 
radiation (Sd) 
Downwelling longwave radiation 
(Ld) 
Air Temperature (Ta) 
Wind Speed (u)  
Vapor Pressure (ea)  
Atmospheric Pressure (P)  

 

Ground Observations/ NLDAS/GOES 
 
Ground Observations/ NLDAS/GOES 
 
Ground Observations/ NLDAS 
Ground Observations/ NLDAS 
Ground Observations/ NLDAS 
Ground Observations/ NLDAS 

 

14-20 km 
 
14-20 km 
 
Local scale- 14 km 
Local scale- 14 km 
Local scale- 14 km 
Local scale- 14 km 

Biophysical parameters 

Leaf Area Index (LAI) 
Canopy Height (hc) 
 
Land use classification 
Albedo 

 

Ground Observations/ Landsat/ MODIS 
Ground Observations/ Based on land 
cover type 
Landsat/ ASTER/ MODIS 
Landsat/ ASTER/ MODIS 

 

Local scale -1 km 
Local scale -1 km 
 
30-1000 m 
30-1000 m 

Remote Sensing  

Radiometric surface temperature 
(TR) (atmospheric correction) 
Multispectral reflectance 
 (atmospheric correction) 

 

ASTER/ Landsat/ MODIS   
 
ASTER/ Landsat/MODIS 

 

15-1000 m 
 
15-1000 m 
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Table 11: Example of applications of SEBS and the reported performance. 

Study area, 
dataset 

Climatic 
Region 

Land Use Domain 
Performance 
RMSE  W/m2 

Citation 

    Rn G H LE N  
Maricopa, AZ, 1987 
 
Walnut Gulch, AZ, 
1990, 
MONSOON’90 
 

Semi-arid 
 
Semi-arid 
 
Semi-arid 

Cotton 
 
Shrubland 
 
Grassland 

Research Site 
 
Walnut Gulch 
Experimental 
Watershed 

23 
 
35 
 
41  

5 
 
46 
 
43 

21 
 
29 
 
37 

29 
 
83 
 
61 

19 
 
320 
 
281 

(Su 2002) 
 
(Su 2002) 
 
(Su 2002) 
 

Ames, Iowa 
SMACEX, 2002 

Humid Corn 
Soybean 

Walnut Creek 
Watershed 

   47 
44 

 (Su et al. 
2005) 

RMSE: root mean square error 
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3.6. ReSET Model 

 
General 
 
The ReSET model presented by Elhaddad and Garcia (2008) is based on the same modeling 

concept of SEBAL developed by Bastiaanssen et al. (1998a). To model the exchange of mass 
and energy at the surface, ReSET assumes the surface as a homogenous extended one-layer. It 
applies the surface energy balance equation to estimate the latent heat flux, LE, as the residual. 
These instantaneous estimates of LE can then be extrapolated to daily values of ET. Typically, 
thermal-based remote sensing models such as TSEB, SEBAL, METRIC and SSEBop including 
ReSET basically provide estimates of ET during satellite overpass dates. In the case of using 
Landsat data, which has ideal spatial resolution for agricultural applications, the maps of ET can 
be obtained every 16-days or sometimes 8 days. To fill in the gap in between satellite overpass 
dates, different methods were applied and presented in many studies. These gap filling methods 
are not particularly part of modeling approach such as TSEB, SEBAL, METRIC, ReSET and 
other thermal-based models. (Elhaddad and Garcia 2008) suggested the use of a simple linear 
temporal interpolation approach to fill-in the gap based on measured actual ET. To account for 
regional variation of near surface wind speed, the ReSET model also suggests the use of spatially 
interpolated ground-based wind speed measurements. As indicated by (Elhaddad and Garcia 
2008), these two modifications are meant to account for the spatial and temporal variability of 
ET estimates to support local to regional scale applications.  

 
Additional modifications to the ReSET model were introduced by (Elhaddad and Garcia 

2011) that account for the spatial variability in the hot and cold pixels as well as reference ET 
(ET0). Typical applications of SEBAL, METRIC which the ReSET is based on, use a single hot 
and cold pixel as well as reference ET to estimate actual ET for an entire scene regardless of the 
size of the study area. These modifications include the development of maps of hot and cold 
pixel and reference ET. Using such maps allows to account for spatial variation of sensible and 
latent heat fluxes H and LE, respectively. The sensible heat flux, H, in ReSET is estimated based 
on these two anchoring hot and cold pixels. It is assumed that H at the cold pixel is zero and at 
the hot pixel LE is zero.  

  
Model Description 
 
The net radiation (ܴ௡) at the surface in the ReSET model is estimated based on the basic 

principles of radiation balance as 
 

ܴ௡ ൌ ሺ1 െ ሻܴ௦ߙ ൅ ௔ߝ ∙ ߪ ∙ ௔ܶ
ସ െ ௦ߝ ∙ ߪ ∙ ௦ܶ

ସ             3.6.1 
 
where Rs is the incoming shortwave solar radiation (W m-2), ߙ  the surface albedo, Ta and Ts 
are the air and radiometric surface temperature (K), respectively, and ߝ௔ and ߝ௦ are the emissivity 
of air and surface, respectively. The soil heat flux, G, is estimated as a function of Rn, NDVI, Ts 
and ߙ  as shown in Eq. (3.4.12) that was originally described by Bastiaanssen et al. (1998a).  

 
The sensible heat flux, H, is estimated using Eq. (3.4.16) which was originally described by 

Bastiaanssen (1998). A linear relationship can be developed between dT and the radiometric 
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surface temperature Ts as ݀ܶ ൌ ܽ ௦ܶ ൅ ܾ using information from two anchoring hot and cold 
pixels. It is assumed that the values of H and LE at the cold and hot pixels are known with and 
equal zero. At the hot pixel, a value of zero basically indicates that there is no evapotranspiration 
(ET) occurring over a fallow dry agricultural field. The energy balance equation at surface can be 
described as ܪ ൌ ܴ௡ െ  With this value of H at the hot pixel the corresponding value of dT .ܩ
can then be estimated. It is important to account for any wetting events for a period of at least a 
week before the satellite overpass dates that may induce soil evaporation and hence violating the 
assumption of zero ET. If such conditions are present, it is recommended that a water balance 
approach be used to estimate possible ET rates and the corresponding LE values. Over the cold 
pixel, a zero value of H basically indicates that ET is at its maximum rate at fully irrigated 
agricultural field. Based on this assumption, the value of dT equals zero. However, in some cases 
during internally calibrated mode, the model uses reference ETo to estimate the value of H as 
ܪ ൌ ܴ௡ െ ܩ െ 1.05 ∙ ܧ ௥ܶ with ETr is reference ET for an alfalfa reference crop. 

 
As the ReSET model is intended to be used for regional scale applications it accounts for 

spatial variability of ET by introducing a series of modifications including weather data and the 
anchoring hot and cold pixels. Instead of using wind speed measured at one weather station, the 
ReSET applies spatial interpolation approach i.e. ordinary kriging (Elhaddad and Garcia 2008) 
using information from multiple ground stations. The wind speed is needed during the 
calculation of aerodynamic resistance and H. Similarly, spatially distributed instantaneous 
reference ETr is also developed during the application of ReSET and applied during internally 
calibrated cases. However, it not specified at what conditions the ReSET model uses the internal 
calibration approach. Moreover, maps of hot and cold pixels account for spatial variability of ET 
from local to regional scales.  

  
Typical model inputs include, in genera,l ground-based weather forcing data, remote sensing 

data including radiometric surface temperature and surface reflectance. Table 12 provide more 
details about the required model input. Example of applications of ReSET model with the 
resulted performance evaluation is summarized in Table 13. The application of the ReSET model 
using the described inputs the model performance for estimating ET showed an average relative 
error of about 12 mm day-1 based on comparison with ground-based lysimeter measurements. 
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Table 12: Summary of input data needed for the application of ReSET model.  

Data  Source 
Spatial 
Resolution 

Weather forcing  

Air Temperature (Ta) 
Wind Speed (u)  
Vapor Pressure (ea)  

 

Ground Observation 
Ground Observation 
Ground Observation 

 

Local Scale 
Local Scale 
Local Scale 

Biophysical parameters 

Leaf Area Index (LAI) 
Land use classification (optional) 
Digital Elevation Model 

 

Landsat 
Landsat 
Hydro1k/ NED 

 

1–1000 m 
1–1000 m 
30–1000 m 

Remote Sensing  

Radiometric surface temperature 
(TR) (top of the atmosphere) 
Multispectral reflectance (top of 
the atmosphere) 

 

Landsat 
 
Landsat 

 

30–120 m 
 
30–m 

 
Table 13: Example of applications of ReSET model and the reported performance   

Study area, 
dataset 

Climatic 
Region 

Land Use Domain 
Performance 

ET 
Citation 

Bushland, TX Semi-arid Alfalfa 
Sorghum 

Research sites RE: 5% mm/day 
RE:-11% mm/day 

(Elhaddad et al. 
2011)  

PVID, Ca Semi-arid Alfalfa Research sites 
 

RE: -1.5% annual  (Elhaddad et al. 
2011) 

RE: relative error 
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3.7. MODIS ET Model 

 
General 

 
The MODIS ET approach described by (Mu et al. 2011) to estimate ET is originally based on 

Penman-Monteith (P-M) equation of (Monteith 1965). Initial efforts of MODIS ET was 
presented by Cleugh et al. (2007) and followed by multiple revisions by Mu et al. (2007); Mu et 
al. (2011). The MODIS ET model is intended for operational regional and global scales 
applications for ET estimation. As its name suggests, the model utilizes mainly MODIS data at 1 
km spatial resolution.  However, this review discusses its potential use to monitor ET at field to 
local scales that is suitable for agricultural water use evaluation.  

 
The P-M equation is originally designed and restricted for the application over vegetated 

areas assuming the surface as a one-source big leaf to estimate ET. MODIS ET approach, 
however, considered the surface consists of multiple sources defined by bare soil, canopy, and 
wet canopy leaves and the P-M equation on each. The MODIS ET approach further considered 
that each of these sources are formed of multiple sources. This approach has been followed to 
account for a wide range of surface conditions of bare soil and canopy from wet to dry and 
stressed to unstressed. The approach has been applied at such scales using. 

 
This physically based approach provides estimates of actual ET by calculating the available 

energy as well as aerodynamic and surface resistances. As the model is applied at regional scale 
it uses daily meteorological reanalysis gridded datasets and provides estimates of ET at different 
temporal resolution including daily, 8-day, monthly and annual values.  
 
Model Description 

 
The MODIS ET is based on the Penman-Monteith (P-M) equation (Monteith 1965) which 

can be described as  
 

ܧߣ ൌ
௦∙஺ାఘ∙஼೛∙ሺ௘ೞೌ೟ି௘ሻ ௥ೌ⁄

௦ାఊ∙ሺଵା௥ೞ ௥ೌ⁄ ሻ
                  3.7.1 

 
where ܧߣ is the latent heat of evaporation, ߣ latent heat flux, ݁௦௔௧ the saturated vapor pressure, ݏ 
the rate of change in ݁௦௔௧ to air temperature, A the available energy partitioned between sensible, 
latent, and soil heat fluxes, ߩ the air density, ܥ௣ specific heat capacity of air, ݎ௔ the aerodynamic 
resistance, ߛ  the psychrometric constant estimated as ߛ ൌ ௣ܥ ∙ ௔ܲ ∙ ௔ܯ ሺߣ ∙ ⁄௪ሻܯ  with ܯ௔ and 
 ௦ the effective surface resistanceݎ ,௪ are the molecular masses of dry and wet air, respectivelyܯ
to evaporation from land surface and transpiration from plant canopy, ௔ܲ the atmospheric 
pressure. 
 
The net radiation ܴ௡ can be estimated as 
 
ܴ௡ ൌ ሺ1 െ ሻߙ ∙ ܴ௦ ൅ ሺߝ௔ െ ௦ሻߝ ∙ ߪ ∙ ௔ܶ

ସ              3.7.2 
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where ߝ௦ is the surface emissivity taken as es=0.97, ܴ௦ the downward shortwave radiation, and 
 ௔ the air emissivity which can be estimated asߝ
 
௔ߝ ൌ 1 െ ൫ି଻.଻ൈଵ଴݌ݔ0.26݁

షరൈ்ೌమ൯                3.7.3 
 

The surface albedo ߙ is taken from MODIS product, Ta the air temperature in (C).  
In MODIS ET A represents the part of Rn that is partitioned between sensible and latent heat 
fluxes. A special case is introduced which assumes that there is no soil heat flux interaction 
between the soil and the atmosphere where the surface is 100% covered with vegetation. The 
available energy A and the related canopy and soil components ܣ௖ and ܣ௦௢௜௟, respectively, can be 
estimated as  
 

஺ୀோ೙೐೟
஺೎ୀ௙೎∙஺

஺ೞ೚೔೗ୀሺଵି௙೎ሻ∙஺
ቋ                     3.7.4 

 
The fraction of vegetation cover, ௖݂ , is estimated as a function of the enhanced vegetation 

index (EVI) as 
 

௖݂ ൌ
ா௏ூିா௏ூ೘೔೙

ா௏ூ೘ೌೣିா௏ூ೘೔೙
                   3.7.5 

 
with  
 
ܫܸܧ ൌ ݊ܽ݅ܩ ∙ ఘಿ಺ೃିఘೝ೐೏

ఘಿ಺ೃା஼భ∙ఘೝ೐೏ି஼మ∙ఘ್೗ೠ೐ା௅
               3.7.6 

 
where ߩேூோ, ߩ௥௘ௗ, and ߩேூோ, are the surface reflectance in the blue, red and near infrared bands, 
respectively, ݊ܽ݅ܩ the gain factor taken as 2.5, L canopy background adjustment, C1 and C2 
coefficients for the aerosol resistance (Huete et al. 2002), ܫܸܧ௠௜௡ and ܫܸܧ௠௔௫ are EVI values for 
bare soil and dense green vegetation and in some case can be taken as 0.05 and 0.95, 
respectively. However, in a recently revised version of MODIS ET, (Mu et al. 2011) suggested 
the use of fraction of absorbed photosynthetically active radiation fPARas a surrogate for ௖݂ (Los 
et al. 2000) as 
   
௖݂ ൌ  3.7.7                     ܴܣ݂ܲ

 
Where fPAR is obtained from the 8-day 1 km MODIS product. 
 
The soil heat flux, G, can be estimated following Jacobsen and Hansen (1999) as  
 

௦௢௜௟ܩ ൌ ቐ
4.73 ∙ ௜ܶ െ 20.87			 ௠ܶ௜௡೎೗೚ೞ೐ ൑ ௔ܶ௡௡ೌೡ೐ ൏ ,ܥ25° ௗܶ௔௬ െ ௡ܶ௜௚௛௧ ൒ ܥ5°
0.0				 ௔ܶ௡௡ೌೡ೐ ൒ 	ݎ݋	ܥ25° ௔ܶ௡௡ೌೡ೐ ൏ ௠ܶ௜௡೎೗೚ೞ೐	ݎ݋	 ௗܶ௔௬ െ ௡ܶ௜௚௛௧ ൒ ܥ5°
0.39 ∙ 																																																																																																													௜ܣ

    3.7.8 

 
ܩ ൌ ௦௢௜௟ܩ ∙ ሺ1 െ ௖݂ሻ                   3.7.9 
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where ௜ܶ is the daytime or nighttime average air temperature (C), ௠ܶ௜௡೎೗೚ೞ೐ the threshold value of 
air temperature below which the stomata will close completely and halt plant transpiration, 
௔ܶ௡௡ೌೡ೐ the annual average daily air temperature in degrees, and ܩ௦௢௜௟ represents the soil heat flux 

when ௖݂=0.0. The nighttime average air temperature cane be estimated as  
 
௡ܶ௜௚௛௧ ൌ 2.0 ൈ ௔ܶ௩௘ െ ௗܶ௔௬                 3.7.10 

 
with ௗܶ௔௬ is the average daytime air temperature and, ௔ܶ௩௘ the daily average air temperature.   
The total daily ܧߣ  and potential ܧߣ ,ܧߣ௣௢௧ can be estimated as  
 
ܧߣ ൌ ௦௢௜௟ܧߣ ൅ ௧௥௔௡௦ܧߣ ൅  ௪௘௧_஼               3.7.11ܧߣ
 
௣௢௧ܧߣ ൌ ௦௢௜௟೛೚೟ܧߣ ൅ ௧௥௔௡௦೛೚೟ܧߣ ൅ ௪௘௧_஼ܧߣ ൅  ௪௘௧_௦௢௜௟          3.7.12ܧߣ

 
where ܧߣ௦௢௜௟ is the evaporation from the soil surface, ܧߣ௧௥௔௡௦ the plant transpiration, and ܧߣ௪௘௧_஼ 
evaporation from intercepted precipitation by canopy, ܧߣ௦௢௜௟೛೚೟ the potential soil evaporation, 

 .௪௘௧_௦௢௜௟ the evaporation from wet soilܧߣ  ௧௥௔௡௦೛೚೟ the potential plant transpiration, andܧߣ

 
The soil evaporation ܧߣ௦௢௜௟ can be estimated considering different surface components moist 

(wet) and saturated surface conditions. The evaporation during moist (wet) soil surface ܧߣ௪௘௧_௦௢௜௟ 
can be estimated as 

 

௪௘௧_௦௢௜௟ܧߣ ൌ
൫௦∙஺ೞ೚೔೗ାఘ∙஼೛∙ሺଵ.଴ି௙೎ሻ∙௏௉஽ ௥ೌ ೞ⁄ ൯∙௙ೢ ೐೟

௦ାఊ∙௥೟೚೟ ௥ೌ ೞ⁄
             3.7.13 

 
where VPD is the vapor pressure deficit estimated as ሺ݁௦௔௧ െ ݁ሻ. The wet and saturated surface 
components are identified using  ௪݂௘௧ which represents the fraction of the surface either bare soil 
of canopy that is covered by water.  ௪݂௘௧ can be estimated using Fisher et al. (2008) model based 
on the relative humidity ܴܪ as 
 

௪݂௘௧ ൌ ቄ0.0																													ܴܪ ൏ 70%
70%									ସܪܴ ൑ ܪܴ ൑ 100%

              3.7.14 

 
The aerodynamic resistance at the soil surface,ݎ௔௦, which considered parallel to both 

resistances to convective and radiative heat transfer ݎ௛௦ and ݎ௥௦, respectively, and can be 
estimated as  

 
௔௦ݎ ൌ

௥೓ೞ∙௥ೝೞ
௥೓ೞା௥ೝೞ

                     3.7.15 

 
Description of how to estimate ݎ௛௦ and ݎ௥௦ is provided in Appendix D.  

 
The soil evaporation during saturated conditions is at the potential rate and can be estimated 

as  
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௦௢௜௟_௣௢௧ܧߣ ൌ
൫௦∙஺ೞ೚೔೗ାఘ∙஼೛∙ሺଵ.଴ି௙೎ሻ∙௏௉஽ ௥ೌ ೞ⁄ ൯∙ሺଵ.଴ି௙ೢ ೐೟ሻ

௦ାఊ∙௥೟೚೟ ௥ೌ ೞ⁄
           3.7.16 

 
The total soil evaporation ܧߣ௦௢௜௟ can be estimated following Fisher et al. (2008) and Bouchet 

(1963) as  
 

௣௢௧ܧߣ ൌ ௪௘௧_௦௢௜௟ܧߣ ൅ ௦௢௜௟_௣௢௧ܧߣ ∙ ቀ
ோு

ଵ଴଴
ቁ
௏௉஽ ఉ⁄

             3.7.17 

 
where the parameter ߚ is taken as 200.  

Evaporation from canopy interception is estimated based on Biome-BGC model by Thornton 
(1998) to  

 

௪௘௧_஼ܧߣ ൌ
ሺ௦∙஺಴∙௙೎ାఘ∙௖ು∙ሺ௘ೞೌ೟ି௘ሻ∙௙೎ ௥௛௥௖⁄ ሻ∙௙ೢ ೐೟

௦ା
ುೌ∙೎ು∙ೝೡ೎
ഊ∙ഄ∙ೝ೓ೝ೎

             3.7.18 

 
where ܿݒݎ is the wet canopy resistance to latent heat transfer estimated as the sum of the 
aerodynamic resistance, ܿݎ݄ݎ , and the surface resistance ݎ௦. ܿݒݎ and ܿݎ݄ݎ can be estimated as 
described in Appendix F. 
 
Plant transpiration, ܧߣ௧௥௔௡௦ , can be estimated as  
 

௧௥௔௡௦ܧߣ ൌ
ሺ௦∙஺಴∙௙೎ାఘ∙௖ು∙ሺ௘ೞೌ೟ି௘ሻ∙௙೎ ௥ೌ⁄ ሻ∙ሺଵି௙ೢ ೐೟ሻ

௦ାఊ∙ሺଵା௥ೞ ௥ೌ⁄ ሻ
             3.7.19 

 
where ݎ௔ and ݎ௦ are the aerodynamic and surface resistances estimated as described in Appendix 
F. 

 
The MODIS ET model was applied at global scale using local and global metrological data from 
ground observation and from the global modeling and assimilation office (GMAO). A summary 
of required input data for the application of MODIS ET is provided in Table 14.  Example of 
model application and related performance statistics are shown in  

Table 15.  The provided summary results are obtained from the application of MODIS ET at 
the global scale compared with measured ET at selected FLUXNET sites (Mu et al. 2011).  
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Table 14: The input data needed for the application of MODIS ET model.  

Data  Source 
Spatial 
Resolution 

Weather forcing  

Incoming shortwave Solar Radiation  
Air Temperature (Ta) 
Humidity (RH)  
Atmospheric Pressure (P)  

 

AmeriFlux-GMAO* 
AmeriFlux-GMAO* 
AmeriFlux-GMAO* 
AmeriFlux-GMAO* 

 

Local scale-1 km 
Local scale-1 km 
Local scale-1 km 
Local scale-1 km 

Biophysical parameters 

Leaf Area Index (LAI) 
Fraction of Absorbed Photosynthetic Active 
radiation (FPAR) 
Land use classification 
Albedo 
Biome Properties (Tmin_open, Tmin_close, 
VPD_open, VPD_close, gl_sh, gl_e_wv, Cl, 
RBL_min, RBL_max) 

 

MODIS 
MODIS 
 
MODIS 
CMG 
Look-up table 

 

1 km 
1 km 
 
1 km  
0.05 
1 km 

Remote Sensing  

Multispectral Reflectance/NDVI   

 

MODIS   

 

1 km 

The GMAO data is originally at 1.0*1.25 degrees resampled to 1 km resolution (Zhao et al. 2005) 
CMG: climate model grid 
 
Table 15: Examples of applications of MODIS ET model and reported performance  

Study area, 
dataset 

Climatic 
Region 

Land Use Domain Performance 
ET 

Citation 

AmeriFlux Sites, 
2000-2006 

Diverse 

 

Mixed 

 
 

Global RMSE:0.9 
(mm/day) 

{Mu, 
2011 
#277} 
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3.8. SSEBop Model 

 
General 

 
The SSEBop model (Savoca et al. 2013)is an extension and operational version of the SSEB 

approach (Senay et al. 2007) and can be considered a semi-empirical model based on providing a 
direct relationship between ܧ ௔ܶ and radiometric surface temperature. The SSEBop which is 
developed for operational applications can provide estimates of ܧ ௔ܶ at multiple spatial scales 
including local, regional, and continental. The main assumption of SSEB is that a thermally 
based scaled evaporative fraction can describe the related vegetation and soil water consumption 
rate or specificallyܧ ௔ܶ. The SSEBop suggests combining of this scaled evaporative fraction with 
the reference crop to estimate ܧ ௔ܶ using a simple linear relationship. With such the SSEBop 
model assumes the surface as a one-source in modeling the evapotranspiration process. The 
scaled evaporative fraction can be considered as a normalized temperature difference that ranges 
between 0-1 developed for a given pixel. This is an important distinction for SSEBop where each 
pixel has its own lower and upper limits through the pre-defined dT parameter. The rationale of 
the SSEBop approach, is that models such as METRIC and SEBAL use similar assumptions to 
estimate the sensible heat flux, based on the differences between near-surface air temperatures. It 
is also similar in logic to the findings by (Sadler et al. 2000) that differences between soil surface 
and air temperature is linearly related to soil moisture. 
 

Note that the SSEBop does not provide estimates of surface energy fluxes such as Rn, H, G, 
and LE but rather directly provides estimates of ܧ ௔ܶ on daily and 8-day time scales. On the other 
hand, the SSEBop provides a parameterization to estimate clear-sky Rn which is key to estimate 
the pre-defined difference in temperature (dT) between the bare/dry (hot) and vegetated/wet 
(cold) surfaces. Moreover, the SSEBop suggests a methodology for predefining the limiting 
conditions that allows for the definition of the hot and cold pixel reference limits. The main input 
to SSEBop models are the reference ܧ ௢ܶ and radiometric surface temperature. As the SSEBop 
was originally designed to be used over fairly homogenous horizontal agricultural surfaces, 
recent modifications have been included to account for areas with variable elevation as well as 
improving its performance over wide range of vegetation conditions. 

  
Model Description 

 
Although the SSEBop model does not solve all the energy balance terms explicitly, it defines 

the limiting conditions based on clear-sky net radiation balance principles. The SSEBop 
approach (Senay et al. 2013) pre-defines unique sets of “hot/dry” and “cold/wet” limiting values 
for each pixel unlike the original SSEB formulation which uses a set of reference hot and cold 
pixel-pairs applicable for a limited, uniform hydro-climatic region. To estimate ET routinely, the 
only data needed for the SSEBop method are surface temperature (Ts, K), air temperature (Ta, 
K) and grass reference ET (ETo, mm).  

 
With this simplification, ETa can be estimated using Eqn. (1) as a fraction of the ETo. The 

ET fraction (ETf) is calculated using Eq. (3.8.2). 
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 ETokETfETa **                          3.8.1 
 
where ETo is the grass reference ET for the location; k is a coefficient that scales the ETo into the 
level of a maximum ET experienced by an aerodynamically rougher crop such as alfalfa. A 
recommended value for k equal to 1 was used in this study (Senay et al. 2013; Singh et al. 2014). 
The ET fraction can be estimated as 
 

TcTh

TsTh

dT

TsTh
ETf







                          3.8.2 

 
where Ts is the satellite-observed radiometric surface temperature of the pixel whose ETf is being 
evaluated on a given image date; Th is the estimated Ts at the idealized reference “hot/dry” limit 
of the same pixel for the same time period; Tc is the estimated Ts at the idealized “cold/wet” 
limit of the same pixel; dT is a pre-defined temperature difference between Th and Tc; Negative 
ETf is set to zero. 
 

The cold limiting condition, Tc, is calculated from Ta as follows. Because the satellite 
thermal data (Ts) is acquired during the morning hours at a nominal overpass time of 10:30 am, 
the daily maximum air temperature is more closely related to it than the daily minimum 
temperature. The maximum air temperature is more readily available from weather datasets than 
the hourly temperature for large scale applications. After examining the relationship between Ts 
and Daymet data (Thornton et al. 2014) daily maximum air temperature in well-vegetated pixels, 
where NDVI is greater than 0.8, a median correction coefficient of 0.985 was established from 
Landsat images acquisition in the US. (Senay et al. 2013) reported more details on the procedure 
used for establishing the correction coefficient, c. The overall approach of the SSEBop model is 
presented in Figure 6: Schematic of the SSEBop model methodology.Figure 6.  
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Figure 6: Schematic of the SSEBop model methodology. 
 

In this case, dT is pre-defined for the study location as explained in (Senay et al. 2013) using 
the formulation in Equation 3. It is calculated under clear-sky conditions assumption and 
assumed not to change much from year to year, but is unique for each day and location.  
 

݀ܶ ൌ ோ೙∙௥ೌ೓
ఘೌ∙஼೛

                           3.8.3 

 
where Rn is daily average clear-sky net radiation J.m-2.s-1, rah is the aerodynamic resistance to 
heat transfer from a hypothetical bare and dry surface, taken as 110 sm-1 (Senay et al. 2013), ߩ௔ 
is the density of air (kg/m3), estimated as a function of air pressure and Ta (Allen et al. 1998b);  
 ௣ is the specific heat of air at constant pressure (1.013 kJ kg-1 K-1).  All are taken withܥ
multiplying factors for consistent energy, mass, volume and time units. 
 

By rearrangement of Eqs. 3.8.1            3.8.3, ETa can be 
formulated as the product of commonly used surface energy balance parameters as shown in Eq. 
3.8.4. 

 

ܧ ௔ܶ ൌ
ఘೌ∙஼೛
ோ೙∙௥ೌ೓

ሺ݄ܶ െ ሻݏܶ ∙ ݇ ∙ ܧ ைܶ                     3.8.4 

 
The most important simplification is based on the knowledge that the surface energy balance 

process is mainly driven by the available net radiation (Rn). Since thermal remote sensing is 
conducted under clear-sky conditions, the SSEBop method assumes a location- and date-specific 
constant temperature difference, dT, between the hot/dry and cold/wet limiting reference points. 
While converting the daily average Rn into sensible heat flux at the time of satellite-overpass, we 
realize the temporal mismatch between the instantaneous satellite-overpass and the daily average 
Rn. As empirical data showed, the daily average clear-sky Rn is a good predictor of the available 
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cumulative energy that would raise the temperature of a bare-dry surface at the time of satellite 
overpass, with a seasonal range of 2 to 25 K on winter and summer days, respectively. This not 
only assumes clear-sky at the time of satellite overpass but also clear-sky for the entire day. 
However, this assumption is only used to get an empirical estimate of dT, but not to solve the 
energy balance at the time of satellite overpass and hence the approach appears to hold as good 
estimator of dT, removing the need to manually select hot and cold pixels.   

 
The input data for the application of SSEBop are summarized in Table 16. Note that SSEB 

and SSEBop models were designed for applications over agricultural and other vegetated areas at 
local to continental scales to provide estimates of  ܧ ௔ܶ at daily-8-day and monthly-annual scales, 
respectively. Examples of SSEB and SSEBop applications with the reported performance are 
provided in Table 17. 

 
Table 16: Summary of input required for the application of SSEBop model 
Input variable Source Spatial Resolution 
Weather forcing 

Readily available reference ET (ETo), or 
Air temperature (Ta) 
Temperature correction coefficient (Tc) 

 

Ground Observations, 
GLDAS, Daymet 
 

 

Local scale 
 
 

Biophysical parameters 

Digital elevation Model DEM 
Albedo 

 

SRTM, Hydro1k, NED 
MODIS 

 

30 – 1000 m 
1000 m 

Remote Sensing  

Radiometric surface temperature (TR) 
(atmospherically corrected) 
Surface Reflectance  
(atmospherically corrected) 

 

Landsat, MODIS 
 
Landsat, MODIS 

 

100 – 1000 m 
 
30 – 250 m 
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Table 17: Examples of SSEBop model application and reported performance.  

Study area, 
 dataset 

Climatic 
Region 

Land use Domain 
Performance 

(ET mm/month) 
Citation 

CONUS, 
Flux NET 

Diverse Crop, forest, 
shrubland, 
grassland 

CONUS, 
MODIS 

RMSE: 8.5 to 20 mm,  
single towers 

Senay et al, 
2013 

CONUS,  
EC Flux Towers 

Diverse crop, forest, 
shrubland, 
grassland 

CONUS, 
MODIS 

RMSE: 24 - 30 mm  
multiple towers,  

 

Velpuri et al., 
2013 

Texas High Plains, 
Lysimeter 

Humid corn and 
sorghum 

Research site, 
Landsat 

RMSE: 12% of  
mean at seasonal scale 

Senay et al, 
2014 

Colorado Rivers 
Basin 

Arid-
semiarid 

Mixed Basin wide, 
Landsat 

MBE of 10%, 
single stations 

Singh et  al, 
2014 

MBE: Mean Bias Error 
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3.9. PT-JPL Model 

 
General 

 
The PT-JPL model described by Fisher et al. (2008) basically utilizes the Priestly-Taylor 

(PT) equation (Priestley and Taylor 1972) to estimate latent heat flux LE. It has proven to work 
well under different land surface conditions.  The approach followed by Fisher et al. (2008) is 
based on reducing the potential to actual rates of LE using plants physiological limits and a soil 
drought constraint. These physiological limits used in PT-JPL include the leaf area index, the 
fraction of green canopy cover that is actively transpiring, and plant temperature and soil 
moisture. The PT equation represents an empirical one-source model parameterization for 
estimating LE. However, the PT-JPL assumed the surface consists of multiple sources and the 
PT equation is applied for each. The total actual LE is the sum of the contributions from each of 
the defined surface components. Fisher et al. (2008) defined three surface components where the 
PT is applied including bare soil, vegetation canopy, and wet canopy leaves due to precipitation 
interception. This is similar to the approach followed in MODIS ET when applying P-M 
equation over different surfaces to estimates the total LE. 

 
The intent of the PT-JPL model is to provide estimates of LE on a monthly basis and at 

global scales. However, this review explores its potential use for local to regional scales and 
daily temporal resolutions. The model as described by Fisher et al. (2008) provides only 
estimates of LE and in some cases the net radiation ܴ݊.  
 
Model description 

 
The original PT equation to estimate LE can be described as  
 

ܧܮ ൌ ௚݂ߙ௉்
∆

∆ାఊ
ܴ݊                   3.9.1 

 
where ௚݂ is the fraction of the green cover, ߙ௉்	known as PT constant taken as 1.26, ∆ the slope 
of the saturation-vapor pressure curve, and ߛ the psychrometric constant~0.066	݇ܲܽ	°ିܥଵ. The 
fraction of green cover ௚݂is calculated as 
 

௚݂ ൌ
௙ಲುಲೃ
௙಺ುಲೃ

                      3.9.2 

 
where ூ݂௉஺ோ is the fraction of photosynthetically active radiation integrated by total vegetation 
cover and can be estimated as a linear function of NDVI based on (Zhang et al. 2005) as 
 
ூ݂௉஺ோ ൌ 1.0 ൈ ܫܸܦܰ െ 0.05                 3.9.3 

 
with 0.05 <	ܰ1.0 > ܫܸܦ and 0.0 < ூ݂௉஺ோ < 0.95. 
 
while ஺݂௉஺ோ is the fraction of photosynthetically active radiation absorbed by green vegetation 
cover and can be estimated as a linear function of SAVI based on Gao et al. (2000) as 
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஺݂௉஺ோ ൌ 1.2 ൈ 1.136 ൈ ܫܸܣܵ ൅ 1.2 ∗ ሺെ0.04ሻ            3.9.4 

 
Note that was originally obtained using EVI instead of SAVI, however, as indicated by Gao 

et al. (2000) and Fisher et al. (2008) both behave similarly and account for soil background 
effects which allow for more accurate estimation of the green vegetation cover.  

 
The net radiation over canopy and bare soil components  ܴ݊௖ and ܴ݊௦ are estimated based on 

Beer’s law (Fisher et al. 2008) as  
 

ܴ݊௦ ൌ ܴ݊ ∙ ሺെ݇ோ௡݌ݔ݁ ∙ ሻܫܣܮ
ܴ݊௖ ൌ ܴ݊ െ ܴ݊௦

ൠ                3.9.5 

 
with ݇ோ௡ is the extinction coefficient taken as 0.60, the total green and non-green leaf area index 
LAI can be estimated based on inverted Beer’s low (Ross 1975) as 
 

ܫܣܮ ൌ ି௟௡ሺଵି௙೎ሻ

௞ುಲೃ
                    3.9.6 

 
with ݇௉஺ோ taken as 0.5. 
 

The model provide estimates of ܧܮ for different surface components bare soil, canopy cover, 
and interception defined as ܧܮௌ,  ܧܮ஼, and ܧܮ௜ , respectively with the total LE equal to 

  
ܧܮ ൌ ஼ܧܮ ൅ ௌܧܮ ൅  ௜                  3.9.7ܧܮ
 
Canopy transpiration,ܧܮ஼, can be estimated as 
 

஼ܧܮ ൌ ሺ1 െ ௪݂௘௧ሻ ∙ ௚݂ ∙ ்݂ ∙ ெ݂ ∙ ߙ ∆

∆ାఊ
ܴ݊௖             3.9.8 

 
where ௪݂௘௧ is the fraction of the wet surface which can be predicted based on the relative 
humidity RH as ௪݂௘௧ ൌ ܪܴ ସ with threshold ofܪܴ ൏ 70% for 0%, ܴܪ ൌ 93% for 50%, and 
ܪܴ ൌ 100% for 100% wet surfaces. This approach is similar to that followed by Stone et al. 
(1977) 
 
The plant temperature constraint ்݂  can be estimated as (June et al. 2004)   
 

்݂ ൌ ݌ݔ݁ ൬െቀ ೘்ೌೣି ೚்೛೟

ఒ
ቁ
ଶ
൰                 3.9.9 

 
where ௠ܶ௔௫ is the maximum air temperature, and ߣ ൌ ௢ܶ௣௧. The optimum plant growth 
temperature, ௢ܶ௣௧, which is estimated using an updated CASA model (Potter et al. 1993) by 
Fisher et al. (2008). The CASA model assumes that ௢ܶ௣௧ is the ௠ܶ௔௫  at the peak canopy activity. 
Fisher et al. (2008) suggested that ௢ܶ௣௧ is the ௠ܶ௔௫ when light absorptance, green leaf area, and 
temperature are high and VPD is low or 
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௢ܶ௣௧ ൌ ௠ܶ௔௫		ܽݐ	ݔܽ݉ ቄ
௉஺ோ∙௙ಲುಲೃ∙ ೘்ೌೣ

௏௉஽
ቅ              3.9.10 

 
The plant moisture constraint ெ݂ can be estimated based on the relative change in light 
absorptance as  
 

ெ݂ ൌ ௙ಲುಲೃ
௙ಲುಲೃ೘ೌೣ

                     3.9.11 

 
with ஺݂௉஺ோ೘ೌೣ

 represents the maximum ஺݂௉஺ோ. The described ெ݂ equation mainly assumes that 
light absroptance varies in response to plant moisture stress and no moisture stress occur at peak 
light absorptance. This parameter has effects mainly over sites with seasonal droughts (Fisher et 
al. 2008).  
  
The soil evaporation ܧܮ௦ can be estimates as  
 

௦ܧܮ ൌ ൫ ௪݂௘௧ ൅ ௌ݂ெሺ1 െ ௪݂௘௧ሻ൯ ∙ ߙ
∆

∆ାఊ
ሺܴ݊௦ െ  ሻ           3.9.12ܩ

 
where ௌ݂ெ is the soil moisture constraint which represents an index of the soil moisture deficit 
following the approach of Bouchet (1963) and can be estimated as 
 

ௌ݂ெ ൌ ௏௉஽ܪܴ ఉ⁄                     3.9.13 
 
with the constant ߚ taken as 1.0 kPa. 
 
The canopy interception evaporation component is estimated as  
 

௜ܧܮ ൌ ௪݂௘௧ߙ
∆

∆ାఊ
ܴ݊௖                   3.9.14 

 
The PT-JPL was applied at global scale using gridded dataset from the International Satellite 
Land-Surface Climatology Project, Initiative II (ISLSCP-II) and validated over different climatic 
regions at FLUXNET sites. The input data required for the application of PT-JPL are provided in 
Table 18 and example of reported performance statistics shown in  

Table 19.  
 
 
 
 
 
 
 
 
 
 
 
 



61 
 

 
Table 18: summary of input data required for the application of the PT-JPL model. 

Data Source Spatial Resolution 
Weather forcing  

Net Radiation (Rn) 
Maximum Air temperature (Ta_max) 
Actual Vapor Pressure (ea) 
Relative Humidity (RH) 
Vapor Pressure Deficit (VPD) 

 

FLUXNET, ISLSCP-II  
FLUXNET, ISLSCP-II  
ISLSCP-II  
FLUXNET  
FLUXNET   

 

Local scale-1  
Local scale-1 
1 
Local scale 
Local scale 

Remote Sensing  

Surface reflectance in the visible and 
near infrared bands  

(atmospherically corrected) 

 

MODIS, AVHRR 

 

250m-1 

 
Table 19: Examples of applications of PT-JPL model and reported performance  

Study area, 
dataset 

Climatic 
Region 

Land use Domain Performance Citation 

Global/ 
FLUXNET 
  

Diverse mixed Global RMSE: 16 mm/month 
RMSE: 12 mm/year 

{Fisher, 
2008 #270} 

Global, 
FLUXNET 

Tropical Mixed Global RMSE: 22.9 W/m2 Monthly (Fisher et 
al. 2009) 
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4. MODEL INPUTS, OUTPUTS AND EVALUATION 

 
4.1. Model evaluations 

 
The spatial estimates of SEBF and ET provided by most remote sensing based energy 

balance models are generally evaluated using ground -based measurements. For such, ground 
based measurements mostly consist of flux towers mounted with Bowen ratio (BR) or Eddy 
Covariance (EC) energy balance systems, lysimeters, scintillometers, and sapflow methods. 
Considering the differences in the scale of the measurements among these different methods, 
evaluation of remote sensing based SEBF is carried out on only small portion of an image map 
that covers hundreds of meters to a few kilometers due to the characteristics of the method. The 
general notion is that evaluating a small portion of the image should provide a good indication 
about the quality of the entire image map. This approach implies that the evaluation of modeled 
spatial maps of SEBF are based on the notion of synthesizing the comparison with measurements 
conducted at local scale is representative of the underlying larger scale spatial variability of the 
of area under study. However, there are a few issues that need to be considered including a) the 
differences in the spatial scales between estimates and measurements, b) the representativeness 
of the measurements and their locations with respect to the spatial surface variability, c) time 
scale of measurement compared to that of the estimates, d) accuracy and related uncertainties of 
measurements that vary with each of these methods. 

  
Despite the fact that all of these types of ground based measurements have been used and 

described in the literature individually or combined, the majority of model evaluations have used 
BR and EC systems, and, to some extent, scintillometers. The use of EC has been favored out 
these three methods. Site specific, field campaigns, and regional experiments provided some of 
the SEBF in the US including for example the Soil Moisture-Atmosphere Coupling Experiment 
(SMACEX) conducted in Iowa (Kustas et al. 2005), the Southern Great Plain Experiment 
(SGP97) conducted in Oklahoma (Jackson et al. 1999), the First ISLSCP (International Satellite 
Land Surface Climatology Project) Field Experiment (FIFE) (Sellers et al. 1988, 1992) , and 
others with a combination of EC and BR systems. Global SEBF are provided for by FLUXNET 
(Baldocchi et al. 2001) with over 500 EC systems distributed over a wide range of land cover 
types. 

     
With respect to the quality of the measurements in issues (c) and (d) above, several studies 

have reported about the performance of EC based flux measurements, as these systems provide 
independent measurements of turbulent heat fluxes.  Studies have indicated that there is a lack of 
closure in the energy balance of about 20% (Twine et al. 2000). This issue has led to suggested 
methods (Brotzge and Crawford 2003; Twine et al. 2000) for energy balance closure by using 
either a Bowen ratio (H/LE) or Residual approach. The former approach is used to distribute the 
closure error between H and LE while the latter attributes the entire error to the LE 
measurements. There is no definitive agreement in the literature on which one should be 
followed. Both approaches have been equally applied and they can provide different indications 
about the quality of the estimated spatial SEBF.   
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Regarding the representativeness of measurements described in (a) and (b), studies have 
showed that direct comparison of measurements for evaluation of estimated SEBF may not be 
valid (Li et al. 2008) considering the use EC, BR, and scintillometer. Measured fluxes typically 
originate from an upwind area called source area (SA) or footprint that encompass few hundreds 
of meters to a few kilometers. The size of the flux footprints is dependent on atmospheric 
stability, wind direction and speed, surface roughness, and height of measurements. Examples of 
typical footprint for BR and scintillometer based measurements are shown in Figure 7. This 
indicates that the spatial extent of the measurements should be the same or larger in size than the 
spatial resolution of estimates (Brunsell et al. 2011; Li et al. 2008). This issue might be of a 
lesser effect with the use of scintillometers since they can have a footprint of few kilometers. 
Several footprint models are available in literature and varies in complexity including the model 
by Horst and Weil (1992, 1994), {Schmid, 1994 #381@@author-year;Schmid, 1997 
#382@@author-year}and Hsieh et al. (2000) with a review provided by Schmid (2002). With 
other methods of measuring ET such as lysimeter and sapflow, the issue of mismatch of spatial 
scale between measured and estimated flux, which in this case ET, would be a concern. This 
issue will be evident except for estimates with spatial resolution on the same order of magnitude 
as measurements such as those based on airborne remote sensing. 

 
 

 
 

Figure 7: Typical footprints for EC/BR towers and scintillometer path 
 
4.2. Extrapolation of ET across Time Scales 

 
Some of the models, described above, especially those based on thermal remote sensing 

approaches, provide instantaneous estimates of SEBF at the satellite overpass time. For the 
interest of evaluating ET the latent heat flux is extrapolated to daily values of ET. Different 
extrapolation approaches have been used including the evaporative fraction (EF), reference ET 
fraction (ETrF), and others with variation in both (Chavez et al. 2008; Lhomme and Elguero 
1999). Generally, most of these methods are based on preserving a functional ET metrics in 
terms of a fraction determined at the time of the scene. This fraction can be calculated using the 
estimated flux combined with meteorological measurements either reference ET or available 
energy. It is assumed that this fraction, which ranges between 0-1, is constant throughout the 
day. Several studies have indicated that such assumption is valid for data spanning between 
midmorning to midday as shown by Brutsaert and Sugita (1992); Lhomme and Elguero (1999) in 
the case of the EF, and Allen et al. (2007b) for the case of ETrF. Attention should be paid to 
early morning and late afternoon hours as this assumption might not hold. The preference of 
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using one method or the other was highlighted by Allen et al. (2007b); Chavez et al. (2008). 
They indicated that the EF method would work better over cropped lands with soil moisture 
stress, heterogeneous vegetation cover, and, generally, during non-advective conditions, while 
the ETrF worked better over unstressed croplands and advective conditions.  

 
Extrapolation of daily ET to monthly and seasonal time period can be obtained by integrating 

the daily values. In the case of Landsat based estimates of daily ET, interpolation in between 
image dates can be carried for the ET fraction, e.g. ETrF. Using a reference ET from ground-
based weather data, the daily actual ET can be calculated for these dates (Allen et al. 2007b). 
Another procedure for extrapolating to seasonal ET at the Landsat product resolution is the use 
of data fusion Spatial Temporal Adaptive Reflectance Fusion Model (STARFM) suggested by 
Gao et al. (2006). The method basically combines the high temporal, low spatial resolution 
surface reflectance data from MODIS with the low temporal, high spatial resolution of the 
Landsat to fill in the gaps between the Landsat-based estimates of ET-typically a thermal based 
modeled ET. The model predicts the temporal variability in the Landsat-based ET based spectral 
similarity, temporal difference, and spatial distance information obtained from a set of Landsat-
MODIS scenes pairs. 

 
4.3. Spatial and Temporal Resolution of Input Data. 

 
Several studies (Anderson et al. 2012a; Kustas et al. 2003; Li et al. 2008) indicated that for 

mapping ET for agricultural applications, the moderate resolution of Landsat sensors with a 
spatial resolution of 60-120 m and 30 m in the thermal and the visible bands respectively, is the 
most suitable. Such resolution allows for monitoring individual crops that are useful for detailed 
water-use information and over all agricultural water management. Note that the thermal data of 
the Landsat at 60-120 m resolution is now provided at a higher resolution of 30 m. However, the 
coarse temporal resolution of 16-day provides one or two scenes per month during clear sky 
conditions. In the case of cloudy regions, the number of images per growing season would be 
limited to only a few which can contribute to reducing the accuracy of estimating seasonal ET. 
Anderson et al. (2012a)suggested that a 4-day revisit time of with the same nominal spatial 
resolution of the Landsat sensors would be the optimal for agricultural application. On the other 
hand, the high temporal spatial resolution data of 1-2 day of MODIS sensors provide a 
continuous monitoring tool for tracking the variability of the surface and canopy growing 
conditions. The limiting factor with MODIS data however, is its coarse spatial resolution of 1 km 
in the thermal band. Such resolution does not allow to discriminate ET from individual cropped 
fields. With the use of non-thermal based models such as those inferring ET from vegetation 
indices, the spatial resolution of MODIS data in the visible bands of 250-m could allow for 
mapping of ET over individual crop fields when these fields are in the same order of magnitude. 
Based on the findings of Anderson et al. (2012a), it is argued that such VI-based methods would 
over estimate ET during fast drying periods of canopy.  

 
In an effort to providing continuous remote sensing data that is suitable for agricultural 

application, a thermal sharpening approach was presented by Agam et al. (2008); Kustas et al. 
(2003). The main concept of this approach, is to use vegetation variability information accounted 
for in terms of VIs obtained from the visible bands to increase the resolution of the thermal band 
i.e. the thermal bands of Landsat and MODIS can be sharpened to 30-m and 250-m, respectively.  
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As the sharpening approach was applied on Landsat and MODIS datasets it was indicated they 
work better when variations in surface moisture are already well captured by the thermal signal. 
This has been typically the case with Landsat data and over some regions with the use of MODIS 
data (Anderson et al. 2012a). It is suggested that an improved the thermal sharpening algorithm 
would have the potential of improving MODIS data for its uses in agricultural applications 
(Anderson et al. 2012a). This will also help to account for periods and regions with considerable 
cloud cover that could limit the sole use of remote sensing data from Landsat.   

 
5. CONCLUDING REMARKS 

 
The emergence of remote sensing approaches for estimating ETa since 1990s resulted in the 

development of several modeling concepts based on the intended use and application. The use of 
remote sensing approaches in general have the advantage of all other traditional methods for 
estimating ET since it has the ability of capturing the associated spatial and temporal variability. 
These models which ranged in complexity and data requirements were used in several ways 
including estimation of actual ETa for detection of crop water stress, crop water requirements at 
daily to seasonal scales, water rights applications, and several applications related to agricultural 
water resources management. However, a limited use of the remote sensing of ETa can be 
observed for applications at basin scale water management such as the Colorado River. This can 
be attributed to several issues related to  

 
a) Weather forcing and remote sensing data needed at such scales, as well as ground 

observation for model evaluation 
b) Applicability of models at such scales,   
c) Wide range of reported model accuracies. 

 
All these models require weather forcing data that represents the particular area of study. 

Remote sensing estimates of ET at field to local scales can be obtained using ground-based 
observations and at a reasonably accuracy within agricultural areas. However, for regional scale 
applications, the use of spatial weather forcing data is eminent obviously due to the associated 
spatial variability of ET. Different gridded weather forcing datasets are currently available. One 
of these datasets is the NLDAS-2 that provides the highest spatial and temporal resolution with 
1/8th degree grids (~ 14 km) and hourly time scales. Comparison of the NLDAS grids with 
ground-based observations showed variable accuracy depending on the underlying surface 
heterogeneity from mountain valleys in the western US to the Great Plans as described by Lewis 
et al. 2014. Under all scenarios, the use of these data adds to the uncertainty of ET estimates that 
need to be accounted for. Some models such as ALEXI were developed to avoid the use of near 
surface weather forcing data in order to reduce such uncertainties. There is a need to identify the 
associated uncertainties in using such gridded data and it is effects on modeling actual ET for 
agricultural applications.  

  
The different modeling concepts described above ranged from simple one-layer to multilayer 

multisource approaches. Such modeling concepts were considered in developing the models 
described in Section 3 to account for homogenous to heterogonous surface conditions and local 
to regional scales. As shown in Tables 1-18, it appears that there is a wide range of reported 
accuracies based on different model performance evaluation criteria. Using these reported 
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accuracies as an inter-comparison of model performance based on their concepts and 
parameterization rather actual comparison with the same dataset, can be inconsistent and provide 
misleading indications. This arises from the fact that each of these models uses different kinds of 
input forcing data and output results in terms of spatial and temporal resolutions. For such, 
models, an inter-comparison scheme is needed in a way that allows for specifically evaluating 
their concepts and parameterizations and account for uncertainties related to the forcing data and 
ground-based observations of estimates of actual ET.  

 
Evaluation of models performance has been achieved by comparing estimates of actual ET 

and in some cases surface energy balance fluxes with ground-based observations. These 
observations for example can include point-based eddy covariance, Bowen ratio, lysimeters, and 
sapflow which provide observations that represent sub-meter to few hundreds of meters of the 
surface. Other larger scale observations can include scintillometers which provides observations 
that can represents few hundreds of meters to few kilometers of the surface. The ground-based 
observations should have spatial extent that is larger or at least same as those of the spatial 
resolution estimates.     
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Appendix A: Description of the TSEB Model 

 
The clumping factor Ω can be estimated following the approach described by Campbell and 

Norman (1998) as 
  

Ωሺሻ ൌ ஐሺ଴ሻ

ஐሺ଴ሻାሾଵିஐሺ଴ሻ∙ୣ୶୮ሺିଶ.ଶሾሿುሻሿ
               A.1 

 
ܲ ൌ 3.8 െ  A.2                   ܦ0.46
 
where Ωሺ0ሻ is the clumping factor when viewed at nadir, and D the ratio of vegetation height vs. 
width of clumps. Example of some typical values shown in Campbell and Norman (1998). Ωሺ0ሻ 
can be estimated from the general knowledge of vegetation cover and LAI as described in Kustas 
and Norman (2000). For row crops the fraction of surface covered by bare soil fs is estimated as 
the sum of areas of bare soil seen between rows and through farrows assuming random 
distribution of leaves as 
 
௦݂ ൌ ሺ1 െ ௖݂ሻ ൅ ௖݂ ∙ ௦݂௥                 A.3 

 

௦݂௥ ൌ ݌ݔ݁ ቀି଴.ହ௅஺ூಽ
ୡ୭ୱሺ଴ሻ

ቁ                  A.4 

 

௦݂ ൌ ݌ݔ݁ ቀି଴.ହ∙ஐሺ଴ሻ∙୐୅୍
ୡ୭ୱሺ଴ሻ

ቁ                 A.5 

 
Where LAIL is the local LAI estimated as ܫܣܮ௅ ൌ ܫܣܮ ௖݂⁄ ,  Ωሺ0ሻ can then be calculated by 
solving Eqs. Xx znc xx. There are many equations available in literature to estimate the 
fractional cover fc where used with TSEB as 
 
௖݂ ൌ 1 െ  ሻ                 A.6ܫܣܮሺെ0.5݌ݔ݁

 

௖݂ ൌ 1 െ ቀ ே஽௏ூ೘ೌೣିே஽௏ூ

ே஽௏ூ೘ೌೣିே஽௏ூ೘೔೙
ቁ
௔
                A.7 

 
where ܰܫܸܦ௠௔௫ and ܰܫܸܦ௠௜௡ are the full cover and bare soil values of NDVI, the coefficient ܽ 
describes the orientation of leaves of canopy and ranges between 0.6 to 1.0 for erectophile to 
planophile canopies. 
 
The aerodynamic resistance ܴ௔ can be estimated as 
  

ܴ௔ ൌ
ቂቀ೥ೠష೏೚

೥೚೘
ቁିట೘ቃቂ௟௡ቀ

೥೟ష೏೚
೥೚೘

ቁିట೓ቃ

௞మ௨
               A.8 

 
where ݖ௨ and ݖ௧ are the measurement height for wind speed and air temperature, respectively, ݀௢ 
the zero-plane displacement height estimated as ݀௢ = (2/3) ݄௖ with ݄௖ the canopy height, ݖ௢௠ the 
roughness length for momentum taken as ݖ௢௠ = (1/8) ݄௖, ߰௠and ߰௛ the stability correction 
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functions for momentum and heat, respectively (Brutsaert 1982), k  von Karman constant  taken 
as k=0.41. 
 
The resistance ܴ௫ can be estimated as  
 

ܴ௫ ൌ
஼ᇲ

௅஺ூ
൬

௦

௨೏శ೥బ೘
൰                   A.9 

 
where s is the leaf size estimated as four times LAI divided by the perimeter. Suggested nominal 
leaf sizes are provided by Anderson et al. (2007) with a value of s =0.05 is used over most 
croplands. ܥᇱ is coefficient derived from weighting a coefficient in the equation for leaf 
boundary layer resistance over the height of the canopy. Acknowledging uncertainties in ܥᇱ a 
value of 90 s-1/2  m-1 is suggested by Norman et al. (1995). The wind speed ݑௗ೚ା௭బ೘ near canopy 
elements at height d + zom and can be estimated as 
 

ௗ೚ା௭೚೘ݑ ൌ ௖ݑ ∙ ݌ݔ݁ ቆെܽ ቀ1 െ
ௗ೚ା௭೚೘

௛೎
ቁቇ             A.10 

 
where hc is the canopy height, uc the wind speed at the top of the canopy and can be estimated as 
 

௖ݑ ൌ ݑ ቈ
௟௡ቀ೓೎ష೏೚

೥೚೘
ቁ

௟௡ቀ೥ೠష೏
೥೚೘

ቁିట೘
቉                  A.11 

 
where u is the wind speed above canopy measured at height zu , the stability correction function 
for momentum, ߰௠ , is suggested to be negligible due to roughness sublayer as indicated by 
Norman et al. (1995), a an extinction coefficient estimated as described in Kustas and Norman 
(2000) as  

ܽ௫ ൌ 0.28ሺΩሺሻ ∙ ௅ሻଶܫܣܮ ଷ⁄ ∙ ݄௖
ଵ/ଷ ∙  ଵ/ଷ             A.12ିݏ

 
where s the mean canopy leaf width, and LAIL the local leaf area index estimated as LAIL=LAI/fc.  
The resistance Rs can be estimated as can be estimated as  
 

ܴ௦ ൌ
ଵ

௔ା௕௨ೞ
                    A.13 

 
where a and b are constants equals to 0.004 and 0.012, respectively, and us the wind speed near  
soil surface at 0.05-0.20 m where the effect of soil surface roughness is minimal and can be 
estimated using following Norman et al. (1995) as   
 

௦ݑ ൌ ௖ݑ ∙ ݌ݔ݁ ቆെܽ ቀ1 െ
଴.଴ହ

௛೎
ቁቇ               A.14 

 
A revised version of Eq. (12) provided by Kustas and Norman (1999a, 2000) in which Rs is 
updated with the knowledge of Ts and Tc , as a was also replaced by c (Ts-Tc) (1/3), with c = 
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0.0025. The extinction coefficient, a, can be estimated as indicated by Kustas and Norman 
(2000) as 
 

ܽ௦ ൌ 0.28ሺΩሺሻ ∙ ሻଶܫܣܮ ଷ⁄ ∙ ݄௖
ଵ/ଷ ∙  ଵ/ଷ             A.15ିݏ

 
The stability correction functions for momentum and heat ߰௠ and ߰௛ can be estimated using 
Monin-Obukov stability theory to account for atmospheric stability conditions as correction 
functions and ݑ∗ the friction velocity which can be estimated under neutral atmospheric 
conditions. Under unstable conditions  
 

Ψ௠ ൌ 2 ∙ ݈݊ ቀଵା௫
ଶ
ቁ ൅ ݈݊ ቀଵା௫

మ

ଶ
ቁ െ 2 ∙ ሻݔሺ݊ܽݐܿݎܽ ൅ గ

ଶ
          A.16 

 

Ψ௛ ൌ 2 ∙ ݈݊ ቀଵା௫
మ

ଶ
ቁ                  A.17 

 

ݔ ൌ ቀ1 െ 16 ௫

௅
ቁ
ଵ/ସ

                   A18 

 
And for stable conditions  
 

Ψ௠ ൌ െ5 ∙ ቀଶ
௅
ቁ                   A.19 

 

Ψ௛ ൌ െ5 ∙ ቀଶ
௅
ቁ                    A.20 

 
where L represents the Monin-Obukov length estimated as  
 

ܮ ൌ ିఘ∙ሺ௨∗ሻయ

଴.ସ௚൤൬ ಹ
೎ು∙೅ೌ

൰ା଴.଺ଵሺாሻ൨
                 A.21 

 
where E is the mass evaporation rate and ݑ∗ the friction velocity which can be estimated under 
neutral atmospheric conditions as 
  

∗ݑ ൌ
௞∙௨

௟௡ቀ೥ೠష೏೚
೥೚೘

ቁ
                    A.22 

 
and for other stability conditions as 
 

∗ݑ ൌ
௞∙௨

௟௡ቀ೥ೠష೏
೥೚೘

ቁିట೘
                   A.23 
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Appendix B: Hybrid ET Model  

 
Description of the Soil Moisture Dynamics Model 

 
The soil moisture dynamics model as described in the main body of the paper by Eq. (xx) 

require the calculation of the infiltration, soil water uptake, leakage between layers and drainage 
from the bottom most layer. 

 
The infiltration of water at the soil surface in to the soil profile is estimated using Eq. (A1) as 

described in the daily multi-layered water balance (DAMUWAB) by Verdoodt et al. (2005) 
  

ܫ ൌ ݉݅݊ ቀܲ ൅ ܵ ௜ܵ௡௜, ௦௔௧ߠଵ൫ܦ െ  ௙௖൯ቁ              B.1ߠ

 
where P is the precipitation, SSini the initial water storage at the soil surface which represents the 
amount of water supply that exceeds the infiltration capacity with a maximum storage of SSmax 
and the excess water lost at the surface as runoff Verdoodt et al. (2005). 
 

ܵܵ௠௔௫ ൌ 0.5 ∙ ݎ ∙ ቀ௦௜௡
మሺఙି∅ሻ

௦௜௡ሺఙሻ
ቁ ∙ ൬

ଵ ௧௔௡ሺఙା∅ሻାଵ ௧௔௡ሺఙି∅ሻ⁄⁄

ଶ∙൫௖௢௦ሺఙሻ൯∙൫௖௢௦ሺ∅ሻ൯
൰         B.2 

 
where r is the surface roughness which varies between 70 to 15 mm for light tilled and untilled 
land, respectively,  the clod angle or furrow angle in radians which varies between 0.5 - 0.8 rad, 
and   the field declination. 
 

The soil evaporation estimates from the WB were used as an input to the dynamic soil 
moisture model.  

 
Leakage of water between adjacent layers from layers i to layer i+1 is estimated using Eq. 

(A3) as described in the BUDGET model by Raes (2002). 
 

ܳ௜,௜ାଵ ൌ ௜ܦ ∙ ߬௜ ∙ ൫ߠ௦௔௧,௜ െ ௙௖,௜൯ߠ ∙
௘ഇ೔షഇ೑೎,೔ିଵ

௘ഇ೔షഇ೑೎,೔ିଵ
            B.3 

 
߬௜ ൌ 0.0866 ∙ ݁଴.଼଴଺ଷ∙௟௢௚భబሺ௄ೞೌ೟ሻ               B.4 
 
where s  is the soil moisture content at saturation, fc the soil moisture content at field capacity, 
Ksat the saturated hydraulic conductivity, and  the drainage characteristic. 
The deep percolation or the drainage from the bottom-most layer is estimated using as 

xKQ nn sin , where Kn is the hydraulic conductivity of the bottom-most layer, and x the slope 

angle, taken as 3 degrees as described in the simple biosphere model SiB by Sellers et al. (1986)  
and Luo et al. (2003). 

 
The water uptake by plants root can be initially estimated using Eq. (A6) as described by 

Prasad (1988); Verdoodt et al. (2005) assuming unstressed water conditions. 
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௜ܵ ൌ 2 ∙ ቀ1 െ
஽ೝ೔,బ.ఱ
஽ೝ

ቁ ∙ ቀ஽ೝ೔
஽ೝ
ቁ ∙  B.6 ݎܶ

 
where Tr is the total transpiration amount from the entire root zone, Dri the extension of the root 
zone with in the soil layer i, Dri,0.5 the soil depth in the middle of extension of root in the soil 
layer i, and Dr the rooting depth. The initial value of Si can be used to initialize soil moisture 
content all soil layers and the corresponding soil water potential. Under water limited 
conditions, the water uptake by plant roots is then adjusted to account for water stress conditions 
using the approach described in the SWATRE model by Feddes et al. (1976); Feddes et al. 
(1978); Li et al. (2001); Luo et al. (2003) as 
 

௜ܵ ൌ
ఈ೔
మ∙ிഊሺ௭ሻ

ఈ∙ிഊሺ௭ሻ∙ௗ௭׬
 B.7        ݎܶ

 
where  is the dimensionless Feddes reduction function estimated based on  (Eq. A8),  
coefficient with suggested values > 1.1 by Passioura (1985) and 0.5 by Li et al. (2001), and F(z) 
the specific root fraction function with respect to the soil depth z estimated using Eq. (A9) Li et 
al. (2006). 
 

ሺ߰ሻߙ ൌ

ە
ۖ
۔

ۖ
ۓ

0
టభିట

టభିటమ
1

టିటర
టయିటర
0

		

߰ ൒ ߰ଵ
߰ଶ ൑ ߰ ൏ ߰ଵ
߰ଷ ൑ ߰ ൏ ߰ଶ
߰ସ ൑ ߰ ൏ ߰ଷ
߰ ൒ ߰ସ ۙ

ۖ
ۘ

ۖ
ۗ

               B.8 

 
ሻݖሺܨ ൌ െߚ௭ ∙ ݈݊ሺߚሻ                  B.9 
 

ߚ ൌ 0.01ቀ
ଵ
ௗೝൗ ቁ                   B.10 

 
where  is an empirical fitting parameter that determines the root distribution with depth and can 
be estimated using Eq. (A10), dr the rooting depth, 1 oxygen deficiency point or soil water 
potential at saturation, 4 soil water potential at wilting, 2 and 3 are maximum soil water 
potential head for which the crop is not water stressed with 2 corresponds to soil moisture 
potential at field capacity and 3 changes with the atmosphere evaporative demand. Different 
sets of values for the  limits are reported in the literature e.g. see Clemente et al. (1994). 
 

The saturated hydraulic conductivity (Ksat), fc, and the permanent wilting point (PWP) for 
each soil type were estimated using the soil water characteristic model developed by Saxton and 
Rawls (2006) based on the U.S. Department of Agriculture (USDA) soil database that covers 
most of the US soils,  and K were estimated following the formulation of Clapp and 
Hornberger (1978) as 

 

߰ ൌ ߰௦ ∙ ቀ
ఏ

ఏೞ
ቁ
ି௕

                   B.11 
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ܭ ൌ ௦௔௧ܭ ∙ ቀ
ఏ

ఏೞ
ቁ
ଶ௕ାଷ

                  B.12 

 
where s is the soil water potential at saturation, b empirical constant with different values 
tabulated for each soil type by Clapp and Hornberger (1978).  
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Appendix C: METRIC Model  

 
The at-surface reflectance for each of the shortwave bands can be estimated as 
 

௦,௕ߩ ൌ
ோ೚ೠ೟,ೞ,್
ோ೔೙,ೞ,್

ൌ
ఘ೟,್ିఘೌ,್
ఛ೔೙,್∙ఛ೚ೠ೟,್

                 C.1 

 
where ܴ௢௨௧,௦,௕ and ܴ௜௡,௦,௕ represent at-surface hemispherical incoming and reflected radiances 
(W m-2 µm-1), ߬௜௡,௕ effective narrow band transmittance for incoming solar radiation,  ߬௢௨௧,௕ 
effective narrow band transmittance for outgoing shortwave radiation, ߩ௧,௕ the top of the 
atmosphere reflectance, ߩ௔,௕ the path reflectance estimated as  
  	
௔,௕ߩ ൌ ௕ܥ ∙ ൫1 െ ߬௜௡,௕൯                 C.2 
 
where the typical values of the constant ܥ௕ are provided by Allen et al. (2007b), The at-sensor or 
top of the atmosphere reflectance, ߩ௧,௕, which can be estimated as 
 

௧,௕ߩ ൌ
గ∙௅೟,್∙ௗమ

ாௌ௎ே್∙௖௢௦	ఏೝ೐೗
                  C.3 

 
where ܮ௧,௕ the spectral radiance for each band b (W m-2 ster-1 µm-1) which can be calculated as a 
function of the digital number (DN) as described in Chander and Markham (2003), the mean 
solar exoatmospheric irradiance for each band b (W m-2 µm-1) with typical values provided by 
Chander and Markham (2003), ߠ௥௘௟ the solar zenith angle relative to the normal to the land 
surface slope, and ݀ the earth-sun distance in astronomical units and can be estimated as  
 

݀ଶ ൌ ଵ

ଵା଴.଴ଷଷୡ୭ୱ	ሺ஽ை௒∙ଶగ ଷ଺ହ⁄ ሻ
                C.4 

 
where DOY is the Julian day of year. ߬௜௡,௕ and ߬௢௨௧,௕ can be estimated as  
 

߬௜௡,௕ ൌ ଵܥ ∙ ݌ݔ݁ ቂ
஼మ∙௉

௄೟∙௖௢௦	ఏ
െ ஼య∙ௐା஼ర

௖௢௦	ఏ
ቃ ൅  ହ             C.5ܥ

 

߬௢௨௧,௕ ൌ ଵܥ ∙ ݌ݔ݁ ቂ
஼మ∙௉

௄೟∙௖௢௦	ఎ
െ ஼య∙ௐା஼ర

௖௢௦	ఎ
ቃ ൅  ହ            C.6ܥ

 
where the value of the constants C1 to C5 are provided in Allen et al. (2007b), ߟ the satellite 
zenith view angle, ߠ the solar zenith angle over horizontal surface (radiance).	ܭ௧ dimensionless 
turbidity coefficient with 0 ൏ ௧ܭ ൑ 1.0 where ܭ௧ =1 for clean air and ܭ௧ ൌ 0.5 for extremely 
turbid, dusty or polluted air, ܲ the air pressure (kPa) which can be estimated as a function of the 
elevation above sea level, z, as  
 

ܲ ൌ 101.3 ∙ ቀଶଽଷି଴.଴଴଺ହ∙௭
ଶଽଷ

ቁ
ହ.ଶ଺

                C.7 

 
The precipitable water, W, (mm) can be estimated as 
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ܹ ൌ 0.14 ∙ ݁௔ ∙ ܲ ൅ 2.1                  C.8 
 
where ݁௔ the vapor pressure (kPa).   
 
The broadband atmospheric transmissivity, ߬௦௪, can be estimated following Allen (1996); Allen 
(2005) as 
 

߬௦௪ ൌ 0.35 ൅ 0.627 ∙ ݌ݔ݁ ൬
ି଴.଴଴ଵସ଺∙௉

௄೟∙௖௢௦	ఏ
െ 0.075 ቀ ௐ

௖௢௦	ఏ
ቁ
଴.ସ
൰        C.9 

 
As indicated by Allen et al. (2007b), Eq. (C.9) is valid for values of ߠ ൏ 1.3	radians.  

 
The constant for ܭଵ and ܭଶ needed for estimating top of the atmosphere surface temperature 

Ts based on the radiances for Landsat images are given in Table C.1 (Allen et al. 2007b).   
Table C.1: the values of ܭଵ and ܭଶ needed to calculate radiometric surface temperature for 
Landsat images for band 6. 
 
Table C.1: Summary of K1 and K2 values used to estimate TOA radiometric surface temperature 
with Landsat 5 and 7.  

 ଶܭ ଵܭ 

Landsat 5 607.76 1260.56 

Landsat 7 666.09 1282.71 
 

The broadband and narrow band emissivities ߝ௢ and ߝே஻, respectively, can be estimated using 
empirical equations by Tasumi et al 2003a for different types of surfaces indicated by NDVI (the 
normalized vegetation index) as  
 
For soil and vegetation covers indicated by ܰܫܸܦ ൐ 0 
 
௢ߝ ൌ 0.95 ൅ ܫܣܮ	ݎ݋݂															ܫܣܮ0.01 ൑ 3
௢ߝ ൌ ܫܣܮ	ݎ݋݂																																					0.98 ൐ 3
ே஻ߝ ൌ 0.97 ൅ ܫܣܮ	ݎ݋݂									ܫܣܮ0.0033 ൑ 3
௢ߝ ൌ ܫܣܮ	ݎ݋݂																																						0.98 ൐ 3

ൢ           C.10 

         
For water and snow covers with albedo of 0.47 and ൑ ௢ߝ , 0 ൌ 0.985 and ߝே஻ ൌ 0.985, 
respectively. 
 
The leaf area index LAI can be estimated empirically based on SAVI (Bastiaanssen et al. 1998b) 
as 
  

ܫܣܮ ൌ
௟௡ቀ

బ.లవషೄಲೇ಺಺ವ
బ.ఱవ

ቁ

଴.ଽଵ
ூ஽ܫܸܣܵ	ݎ݋݂																	 ൑ 0.687          C.11 

 
ܫܣܮ ൌ ூ஽ܫܸܣܵ	ݎ݋݂																																							6 ൐ 0.687          C.12 
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where SAVI is the soil adjusted vegetation index estimated based on the top of the atmosphere 
reflectance in the red and near infrared bands 3 and 4, ߩ௧,ଷ and ߩ௧,ସ , respectively, and calculated 
as  
 

ܫܸܣܵ ൌ
ሺଵା௅ሻ∙൫ఘ೟,రିఘ೟,య൯

൫ఘ೟,రାఘ೟,ర൯
                 C.13 

 
Generally, for the calculation of SAVI, the value of L is taken as L=0.5. However, in 

METRIC applications, SAVI is adjusted to use L=0.1 (Allen et al. 2007b). The NDVI can be 
estimated as 

 

ܫܸܦܰ ൌ
൫ఘ೟,రିఘ೟,య൯

൫ఘ೟,రାఘ೟,ర൯
                   C.15 

 
The lapse is estimated differently for relatively flat terrain and mountainous slopes (Allen 

2012) as  
 

݁ݏ݌ܽܮ ൌ ௟௔௦௣௘,௙௟௔௧ܥ ∙
ሺ௭ି௭೏ೌ೟ೠ೘ሻ

ଵ଴଴଴
ݖ	ݎ݋݂																					 ൑  ௕௥௘௔௞        C.16ݖ

 

݁ݏ݌ܽܮ ൌ ௟௔௦௣௘,௙௟௔௧ܥ ∙
ሺ௭್ೝ೐ೌೖି௭೏ೌ೟ೠ೘ሻ

ଵ଴଴଴
൅

௟௔௦௣௘,௠௢௨௡௧௔௜௡ܥ ∙
ሺ௭ି௭್ೝ೐ೌೖሻ

ଵ଴଴଴

ݖ	ݎ݋݂											 ൑  ௕௥௘௔௞       C.18ݖ

 
where ܥ௟௔௦௣௘,௙௟௔௧ is the lapse rate for relatively flat terrain with a range of 0-15 K/km, 
 ௗ௔௧௨௠ an arbitraryݖ ,௟௔௦௣௘,௠௢௨௡௧௔௜௡ the lapse rate for mountain slopes and taken as 10 K/kmܥ
datum specified where ௦ܶ_ௗ௔௧௨௠ ൌ ௦ܶ, and ݖ௕௥௘௔௞ the elevation at the base of a mountainous 
terrain. 
 
The Monin-Obukhov length is calculated as 
 

ܮ ൌ െ
ఘ∙௖ು∙௨∗య∙்ೞ_೏೐೘

௞∙௚∙ு
                  C.19 

 
Note that for unstable condition ܮ ൏ 0, for stable conditions ܮ ൐ 0 and for neutral conditions 
ܮ ൌ 0. Corrected values for ݑ∗and ݎ௔௛ as follows 
 

∗ݑ ൌ
௨మబబ∙௞

௟௡ቀ మబబ
೥బ೘

ቁିஏ೘ሺమబబ೘ሻ
                  C.20 

 

௔௛ݎ ൌ
௟௡ቀ೥మ

೥భ
ቁିஏ೓ሺ೥మሻାஏ೓ሺ೥మሻ

௨∗∙௞
                 C.21 

 
The stability correction functions for momentum and heat transport Ψ௠ and Ψ௛, respectively, for 
unstable conditions can be estimated as 
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Ψ௠ሺଶ଴଴௠ሻ ൌ 2 ∙ ݈݊ ቀ
ଵା௫ሺమబబ೘ሻ

ଶ
ቁ ൅ ݈݊ ൬

ଵା௫ሺమబబ೘ሻ
మ

ଶ
൰ െ 2 ∙ ሺଶ଴଴௠ሻ൯ݔ൫݊ܽݐܿݎܽ ൅

గ

ଶ

Ψ௛ሺଶ௠ሻ ൌ 2 ∙ ݈݊ ൬
ଵା௫ሺమ೘ሻ

మ

ଶ
൰

Ψ௛ሺ଴.ଵ௠ሻ ൌ 2 ∙ ݈݊ ൬
ଵା௫ሺబ.భ೘ሻ

మ

ଶ
൰ ۙ

ۖ
ۘ

ۖ
ۗ

   C.21 

          
 
where 
 
 

ሺଶ଴଴௠ሻݔ ൌ ቀ1 െ 16 ଶ଴଴

௅
ቁ
଴.ଶହ

ሺଶ௠ሻݔ ൌ ቀ1 െ 16 ଶ

௅
ቁ
଴.ଶହ

ሺ଴.ଵ௠ሻݔ ൌ ቀ1 െ 16 ଴.ଵ

௅
ቁ
଴.ଶହ

ۙ
ۖ
ۘ

ۖ
ۗ

                C.22 

    
For stable atmospheric condition Ψ௠ and Ψ௛ can be estimated as 
 

Ψ௠ሺଶ଴଴௠ሻ ൌ െ5 ∙ ቀଶ
௅
ቁ

Ψ௛ሺଶ௠ሻ ൌ െ5 ∙ ቀଶ
௅
ቁ

Ψ௠ሺ଴.ଵ௠ሻ ൌ െ5 ∙ ቀ଴.ଵ
௅
ቁۙ
ۖ
ۘ

ۖ
ۗ

                  C.23 
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Appendix D: MODIS ET Model  

 
The resistances to radiative and convective heat transfer ݎ௥௦ and ݎ௛௦ , respectively, can be 

estimated as 
 

௥௦ݎ ൌ
ఘ∙௖ು

ସ.଴∙ఙ∙ ೔்
య                    D.1 

 
௛௦ݎ ൌ  ௧௢௧                     D.2ݎ
 
where ݎ௧௢௧ is the total aerodynamic resistance to vapor transport which represents the sum of the 
surface and aerodynamic resistances to vapor transport ݎ௦ and ݎ௩, respectively and can be 
estimated as  
 
௧௢௧ݎ ൌ ௧௢௧௖ݎ ∙  ௖௢௥௥                   D.3ݎ
 
with  ݎ௖௢௥௥ represents a correction based on atmospheric temperature ௜ܶ and pressure ௔ܲ taken as 
20 C and 101300 Pa, respectively. 
 

௖௢௥௥ݎ ൌ
ଵ.଴

భబభయబబ
ುೌ

∙ቀ
೅೔శమళయ.భఱ
మవయ.భఱ

ቁ
భ.ళఱ                 D.4 

 

௔ܲ ൌ ௌ்ܲ஽ ∙ ଵݐ
௧మ                    D.5 

 

ଵݐ ൌ 1.0 െ ௅ோೄ೅ವ∙ா௟௘௩

்ೄ೅ವ
                  D.6 

 

ଶݐ ൌ
ீೄ೅ವ

௅ோೄ೅ವ∙
ೃೃ
ಾಲ

                    D.7 

 
where ܴܮௌ்஽ is the standard temperature lapse rate 0.0065 K m-1, ௌ்ܶ஽ the standard temperature 
at 0.0 m elevation 288.15 K, ܩௌ்஽ the standard gravitational acceleration 9.80665 m s-1, RR the 
gas law constant 8.3143 m3 Pa mol−1 K−1, MA molecular weight of air 28.964410-3 kg mol-1 and 
ௌ்ܲ஽ the standard pressure at 0.0 elevation 101.325 Pa. 

 
The variable ݎ௧௢௧௖ can be estimated as a function of the boundary layer resistance, rbl (s m-1) 

and VPD as  
 

௧௢௧௖ݎ ൌ ൞

ܦܸܲ																																																																																		,௠௔௫݈ܾݎ ൑ ௢௣௘௡ܦܸܲ

௠௔௫݈ܾݎ െ
ሺ௥௕௟೘ೌೣି௥௕௟೘೔೙ሻ∙ሺ௏௉஽೎೗೚ೞ೐ି௏௉஽ሻ

൫௏௉஽೎೗೚ೞ೐ି௏௉஽೚೛೐೙൯
௢௣௘௡ܦܸܲ			, ൏ ܦܸܲ ൏ ௖௟௢௦௘ܦܸܲ

ܦܸܲ																																																																																							,௠௜௡݈ܾݎ ൒ ௖௟௢௦௘ܦܸܲ

  D.8 

 
where ܸܲܦ௢௣௘௡ and ܸܲܦ௖௟௢௦௘ (Pa) are the values of VPD when there is no water stress on 
transpiration and with water stress that leads stomata to close, respectively. Values of ݈ܾݎ௠௔௫ , 
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 ௖௟௢௦௘ are provided in Mu et al. (2011) in a form of a lookup table forܦܸܲ ௢௣௘௡ , andܦܸܲ ,௠௜௡݈ܾݎ
the different biomes.   

 
For the calculation of evaporation from wet canopy leaves due to interception, the 

aerodynamic resistance ܿݎ݄ݎ and ܿݒݎ  can be estimated as 
 

ܿݎ݄ݎ ൌ ௥௛௖∙௥௥௖

௥௛௖ା௥௥௖
                   D.9 

  

݄ܿݎ ൌ ଵ.଴

௚௟_௦௛∙௅஺ூ∙௙ೢ ೐೟
                  D.10 

 
ܿݎݎ ൌ ఘ∙௖ು

ସ.଴∙ఙ∙ ೔்
య                    D.11 

 
ܿݒݎ ൌ ఘ∙௖ು

௚௟_௘_௪௩∙௅஺ூ∙௙ೢ ೐೟
                  D.12 

 
where ݄ܿݎ is the wet canopy resistance to sensible heat, ܿݎݎ the resistance to radiative transfer 
through air, ݈݃_݄ݏ the leaf conductance to sensible heat per unit LAI, ݈݃_݁_ݒݓ the leaf 
conductance to evaporated water vapor per unit LAI, and ߪ the Stefan-Boltzman constant. Mu et 
al. 2011 suggested values for ݈݃_݄ݏ and ݈݃_݁_ݒݓ based on a lookup table for the different 
biomes. 

 
The aerodynamic and surface resistances ݎ௔ and ݎ௦ , respectively, required to estimate plant 

transpiration ܧߣ௧௥௔௡௦  can be calculated as 
 

௔ݎ ൌ
௥௛∙௥௥

௥௛ା௥௥
                     D.13 

 

݄ݎ ൌ ଵ.଴

௚௟_௕௟
                     D.14 

 
ݎݎ ൌ ఘ∙௖ು

ସ.଴∙ఙ∙ ೔்
య                    D.15 

 
where ݄ݎ and  ݎݎ  are the resistances to convective and radiative heat transfer, respectively, 
calculated based on Biome-BCG model of Thornton (1998), and  ݈݃_ܾ݈ the leaf-scale boundary 
layer conductance estimated as equal to ݈݃_݄ݏ. The surface resistance ݎ௦ for daytime and 
nighttime indicated by the subscript i can be estimated as the inverse of canopy resistance, ܥ௖, as 
 

௦_௜ݎ ൌ
ଵ

஼೎_೔
                     D.16 

 

௖_௜ܥ ൌ ൝
ீೄଶ∙൫ீೄ_೔ଵାீ಴ೆ൯

ீೄ_೔ଵାீೄଶାீ಴ೆ
∙ ܫܣܮ ∙ ሺ1.0 െ ௪݂௘௧ሻ,				ܫܣܮ ൐ 0.0, ሺ1.0 െ ௪݂௘௧ሻ ൐ 0.0

ܫܣܮ																																																																							,0.0 ൌ 0.0, ሺ1.0 െ ௪݂௘௧ሻ ൌ 0.0
  D.17 

 
௦2ܩ ൌ  D.18                    ݄ݏ_݈݃
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஼௎ܩ ൌ ݑܿ_݃ ∙  ௖௢௥௥                  D.19ݎ
 
ௌ_௡௜௚௛௧1ܩ ൌ 0.0                   D.20 
 
ௌ_ௗ௔௬1ܩ ൌ ௅ܥ ∙ ݉ሺ ௠ܶ௜௡ሻ ∙ ݉ሺܸܲܦሻ ∙  ௖௢௥௥            D.21ݎ
 
with the subscript i indicates the value during daytime and nighttime, ܩ௦2 the leaf boundary-
layer conductance, ݃_ܿݑ the cuticular conductance per unit LAI taken as a constant value of 
0.00001 m s-1, ܩௌ_௡௜௚௛௧1 and ܩௌ_ௗ௔௬1 are the nighttime and daytime stomatal conductance.  
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Appendix E: SSEBop Model  

 
The net radiation component for the application of SSEBop can be estimated as 
 

ܴ௡ ൌ ܴ௡௦ െ ܴ௡௟                   E.1 
 
where ܴ௡௦ is the net shortwave solar radiation (MJ/M2/D) and ܴ௡௟ the net longwave radiation 
(MJ/M2/D). ܴ௡௦ can be estimated as 
 
ܴ௡௦ ൌ ሺ1 െ ሻߙ ∙ ܴ௦                  E.2 
 
with ߙ is the albedo with a value of 0.23 used in SSEBop, ܴ௦ the incoming shortwave solar 
radiation (MJ/M2/D) calculated as a function of the ground surface elevation z (m) and the 
extraterrestrial radiation (MJ/M2/D) as  
 
ܴ௦ ൌ ሺ0.75 ൅ 2 ൈ 10ିହ ൈ ሻݖ ∙ ܴ௔               E.3 
 
The extraterrestrial radiation, ܴ௔ , can be calculated as  
 

ܴ௔ ൌ
ଶସൈ଺଴

గ
∙ ௌ஼ܩ ∙ ݀௥ሾ߱ௌ݊݅ݏሺ߮ሻ݊݅ݏሺߜሻ ൅  ሺ߱ௌሻሿ      E.4݊݅ݏሻߜሺݏ݋ሺ߮ሻܿݏ݋ܿ

 
where is the solar constant taken as 0.0820 (MJ/m2/min), ݀௥ the inverse of the earth-sun 
distance, ߱ௌ the sun hour angle (rad), ߮ the latitude (rad), ߜ the solar declination. ݀௥ and ߜ  are 
estimated as a function of the Julian day of year J as 
 

݀௥ ൌ 1 ൅ 0.033 ൈ ݏ݋ܿ ቀ ଶగ
ଷ଺ହ

 ቁ               E.5ܬ

 

ߜ ൌ 0.409 ൈ ݊݅ݏ ቀ ଶగ
ଷ଺ହ

ܬ െ 1.39ቁ               E.6 

 
The sun hour angle, ߱ௌ, is calculated as a function of ߮ and ߮ as 
 
߱ௌ ൌ ሺ߮ሻ݊ܽݐ൫െݏ݋ܿܿݎܽ ∙  ሻ൯              E.7ߜሺ݊ܽݐ
 
The net longwave radiation,  ܴ௡௟ , is estimated as  
 

ܴ௡௟ ൌ ߪ ∙ ቀ ೘்ೌೣ
ర ି ೘்೔೙

ర

ଶ
ቁ ∙ ൫0.34 െ 0.14ඥ݁௔൯ ∙ ቀ1.35

ோೞ
ோೞ೚

െ 0.35ቁ       E.8 

 
where ߪ is the Stefan-Boltzman costant taken as 4.903 ൈ 10ିଽ  (MJ/K4/m2/d), Tmax and Tmin 
are the maximum and minimum air temperatures, and  ܴ௦ ܴ௦௢⁄  is the ration between the 
calculated ሺܴ௦ሻ and clear-sky solar radiation ሺܴ௦௢ሻ. This ration is estimated as 1.0 since the 
SSEBop operates under the assumption of clear clear-sky conditions. The vapor pressure ݁௔ is 
calculated as   
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݁௔ ൌ ݁௢ሺ ௠ܶ௜௡ሻ ൌ ݁
൬
భళ.మళൈ೅೘೔೙
೅೘೔೙శమయళ.య

൰
              E.9 

 
with ݁௢ሺ ௠ܶ௜௡ሻ is the saturated vapor pressure at ௠ܶ௜௡ as approximation of the dew point 
temperature.   
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1. INTRODUCTION 

Consumptive water-use in agriculture can be defined as the amount of water consumed by 
agricultural activities that cannot be returned or reused.  It includes mainly two components; 
evaporation, which is the loss of water from wet bare soil or through the irrigation application 
process; and transpiration, which is the loss of water from plants. Usually over a vegetated 
surface these two components occur simultaneously and hence are combined and referred to as 
evapotranspiration (ET). A more specific term is actual ET (ETa) which refers to the ET from 
growing vegetation at different stages of growth and subject to water availability in the plant root 
zone. The term “reference ET” –ETo or ETr for grass and alfalfa reference crop, respectively, 
refers to the potential rate of ET under existing climate forcing.  Actual evapotranspiration, ETa, 
can be estimated using different approaches including direct or indirect measurements, process 
modeling, or combination of both.  There are many ETa measurement methods available 
described in the literature including Bowen ratio, eddy covariance, sap flow gauges, lysimeters, 
scintillometers, and direct measurements of water balance components such as inflow and 
outflow at farm to regional scales.  Estimation of ETa of agricultural vegetation has also been 
conducted using the crop coefficient and reference ET method. The reference ET being estimated 
through different approaches including the Penman-Monteith (P-M), Blaney-Criddle (B-C), 
Priestly-Taylor(P-T), Hargreaves (H) etc. Actual ET can also be estimated through water balance 
calculations, surface energy balance and more recently remote sensing techniques.  ETa 
represents the main consumptive component when estimating the total water-use for agricultural 
systems.  The total water requirement for an irrigation system includes, in addition to the 
consumptive water-use, two other components: conveyance losses in the distribution system and 
irrigation system application losses on the farm and fields.  Typically, these “losses” are non-
consumptive in nature, with the excess infiltration water and surface runoff typically available to 
downstream users.  The total irrigation water requirement of a large irrigation system can be 
accounted for by estimating the consumptive water-use for each crop based on estimates of ETa 
along with the corresponding cropped area, and estimating related conveyance losses and 
irrigation application efficiencies. These two components are typically not measured and 
generally accounted for as a percentage of consumptive/crop water-use that is based on ET 
estimates. Hence the need for estimating consumptive water-use with a reasonable accuracy 
clearly rises from the fact that it can help to better manage available water resources.  
 

Irrigation water withdrawal is a major and an important component of the US water use as it 
represents about 31% of the total water withdrawals. These water use estimates are published by 
the United State Geological Survey (USGS) in the 5-years reports since 1950 as part of the 
National Water Use Information Program. Over the years this water-use information is generally 
based on compilation of data provided by different sources or entities, different methods of 
measurements, and different methods of estimates of consumptive water-use with each having its 
own associated level of uncertainty. Because of these uncertainties, any observed trends derived 
from this water-use information over the years may have lower level of confidence and may not 
reflect the actual variation (Dickens et al., 2011). In order to provide estimates of irrigation 
water-use the USGS follow a number of approaches  as described in the 5-year reports that 
include direct measurements and, if not available, in-direct methods such as water-use 
coefficients that are generally based on published articles, averages from previous report ET 
models, published plant consumptive water use, and irrigation diversions (Dickens et al., 2011). 
In recent years one of the most common indirect methods used to estimate consumptive water-



99 
 

use is modeling ETa using the Blaney-Criddle (B-C), and Penman-Monteith (P-M) equations 
with crop coefficients (Dickens et al., 2011). The need for a unified, consistent and more 
accurate method to estimate ETa is important to reduce some of the related uncertainties ETa 
estimation through different methods. Remote sensing techniques have already shown the 
potential for meeting these needs with reasonable level of accuracy, even with the fact that they 
have recently emerged. As there are currently many available remote sensing-based ETa 
methods, there is still a need to provide a unified, perhaps, agreeable set of methods across wide 
range of users and decision makers. With this in mind and as part of the Sustain and Manage 
America’s Resources for Tomorrow program (WaterSMART) program under the water census, 
the USGS is looking towards providing such set of acceptable and agreeable remote sensing 
methods. This report represents some of the effort towards achieving this goal (DOI, 2012). A 
recent 3-year report by the USGS states such needs with the ultimate goal of improving the 
quantification of irrigation water use and consequently irrigation water withdrawal (DOI, 2012). 

 
The recent advances in the use of remote sensing technology showed that it can provide more 

accurate estimates of ETa and consequently consumptive water-use compared to traditional 
methods such as B-C (Dickens et al., 2011). These advances were met with a gradual move 
toward the use of remotely sensed ETa to account for consumptive and total irrigation water-use 
that are evident in many published reports and articles by government agencies, universities, and 
other entities (e.g. Allen and Robison, 2007; Eckhardt, 2013). This gradual move was 
accompanied by different practices that include exploring and developing of a wide range of 
modeling algorithms, investigation of needed input data and the associated effects of using data 
for local and regional scales applications, and evaluating the need for trained personnel for 
efficient application and adoption of such technology by the different entities.  As a result many 
remote sensing-based models have been developed that conceptually ranged from physically 
based, empirical, and mixed models. Examples of such models include the two-source energy 
balance (TSEB) (Kustas and Norman, 1999; Norman et al., 1995), the Atmosphere-Land 
Exchange Inverse (ALEXI) (Anderson et al., 1997; Mecikalski et al., 1999) the Disaggregated 
Atmosphere-Land Exchange Inverse (DisALEXI) (Norman et al., 2003), the Mapping 
Evapotranspiration with Internalized Calibration (METRIC) (Allen et al., 2007a, 2007b), the 
Hybrid ET (Neale et al., 2012), the MODIS ET  (Mu et al., 2007, 2011), the Simplified Energy 
Balance System (SEBS) (Su, 2002), the Simplified Surface Energy balance (SSEB) (Senay et al., 
2011, 2008), and the Priestly-Taylor evapotranspiration (PT-JPL) (Fisher et al., 2008). The input 
data used or needed with these models include multispectral and thermal infrared images that are 
generally available from a suit of satellites managed by the USGS and NOAA. Other input data 
requirements include weather forcing data that can be optioned from ground-based observations 
and/or gridded data that are generally available from multiple sources such as North American 
Land Data Assimilation System (NLDAS). 

 
It is worth mentioning that most remote sensing ET models are able to provide maps of ETa 

during the satellite overpass dates. If there is a gap between these dates –due to satellite overpass 
return period or the presence of clouds – usually other traditional methods need to be applied to 
fill-in such gaps. Some of the methods that are used for gap filling include the use of weather 
forcing data and reference ET estimates (Allen et al., 2007b; Elhaddad and Garcia, 2011; Senay 
et al., 2013), the use of remote sensing information from multiple sources such as data fusion 
approach (Gao et al., 2006; Norman et al., 2003), coupling remote sensing and water balance 
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approach (Geli, 2012; Neale et al., 2012), and in some cases a mixture of two or more of these 
methods.  Hence providing seasonal ETa estimates may not necessarily be based solely on 
remote sensing.  With the above described combination of models and wide range of complexity, 
input data requirement, and the type of the needed of ETa estimates in terms of temporal and 
spatial resolution have resulted in different types of models applications for reporting 
consumptive water-use by government agencies. For example the US Bureau of Reclamation has 
applied interchangeably METRIC and ReSET models (Eckhardt, 2013), the USGS applied 
SSEBop model (Savoca et al., 2013), and some States (e.g. Nevada and Idaho) have used 
METRIC (Allen and Robison, 2007). 

 
  However, in some cases, when different States share water from the same river basin, or in 

general the same source of water, if each State applies and uses a different remote sensing 
model-based ETa estimate, different and inconsistent estimates of total irrigation water 
withdrawal could result. Consequently, difficulties would arise among users in accepting 
estimates provided by individual States which could result in improper management of available 
water resources. Moreover, duplication of effort could also be evident with such practice. A 
typical example of such case is the Colorado River basin that is shared by 7 States including 
Wyoming, Utah, Nevada, New Mexico, Arizona, and California. Due to the differences in the 
methods used for estimating ETa by these States. The above mentioned issues are evident and 
inevitable unless agreement on approaches and methods for estimating ETa via remote sensing is 
reached. 

 
This report is intended to provide insight on the potential use of remote sensing for ETa 

estimation, describing some of the related uncertainties pertained to the application of different 
modeling approaches, as well as the related input data requirements. The approach followed in 
this analysis is based on an inter-comparison scheme of candidate models tested over selected 
sites using unified input datasets.  Five candidate models were used in this analysis including 
METRIC, SEBS, SSEBop, ReSET, and DisALEXI. Two test sites have been selected to test 
these models that are located in the US with each having different climatic region and vegetation 
cover type and growing conditions.  

 

2. METHODOLOGY 

2.1 Models Description 

2.1.1 METRIC and ReSET 

A brief description of the models used in this analysis is provided herein with more details 
available in part 1 of this report (Geli and Neale, 2015). The general “big leaf” concept, or what 
can be described as a one-layer approach, is used by some models including METRIC, ReSET, 
and SEBS to provide estimates of ET using the surface energy balance. 
 

ܴ݊ ൌ ܧߣ ൅ ܪ ൅  15          ܩ
 
where ܴ݊ is the net radiation (W m-2), G the soil heat flux (W m-2), ܧߣ the latent heat flux  
(W m-2), H the sensible heat flux (W m-2).  Other models such as DisALEXI apply the same 
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surface energy balance equation but utilize a two-source modeling approach. Generally, most of 
these models provide reasonable estimates of Rn and G. The major difference among these 
models lies in the method used for estimating H and E. On the other hand, some models 
estimate ETa directly using empirical approaches such as SSEBop. 
 

The ReSET and METRIC models provide estimates of Rn using the basic radiative energy 
balance at the surface as  
 

ܴ݊ ൌ ሺ1 െ ሻܴ௦ߙ ൅ ܴ௅↓ െ ܴ௅↑ െ ሺ1 െ  ௢ሻܴ௅↓     16ߝ
 
where ߙ is the broadband shortwave surface albedo, ܴ௦ the incoming shortwave radiation (W m-

2), ܴ௅↑ the outgoing longwave radiation (W m-2), ܴ௅↓ the outgoing longwave radiation (W m-2) 
and ߝ௢ the broadband shortwave surface emissivity. ܴ௦ can be estimated as ܴ௦ ൌ ௌ஼ܩ ∙ ߠ	ݏ݋ܿ ∙
݀௥ ∙ ߬௦௪ with ܩௌ஼ is the solar constant taken as (1367 W m-2), ܿݏ݋	ߠ the cosine of the solar zenith 
angle, ݀௥ the inverse squared relative earth-sun distance ( 1 ݀ଶ⁄ ), and ߬௦௪ the broadband 
shortwave atmospheric transmissiviy. ܴ௅↑ and ܴ௅↓ are estimated using the Stephan-Boltzmann 
equation (ܴ௅ ൌ ߝ ∙ ߪ ∙ ܶସ ) applied either on the surface or the sky using the corresponding 
surface or atmospheric emissivity (ߝ ) and temperature (ܶସ).  
 

The soil heat flux, ܩ, can be estimated the equation provided by Tasumi (2003), as function 
of ܴ݊ , leaf area index (LAI), and radiometric surface temperature ( ோܶ) and is applicable for tilled 
agricultural  areas as 
 

ீ

ோ೙
ൌ 0.05 ൅ 0.18 ∙ ݁ሺି଴.ହଶଵሻ∙௅஺ூ											݂ݎ݋	ܫܣܮ ൒ 0.5    17 

 
ீ

ோ೙
ൌ ଵ.଼଴∙ሺ்ೃିଶ଻ଷ.ଵ଺ሻ

ோ೙
൅ ܫܣܮ	ݎ݋݂											0.084 ൏ 0.5     18 

 
The two models estimate H following a semi-empirical approach that relates H with the 

temperature difference at two reference heights above the surface as  
 

ܪ ൌ ఘ∙௖ು∙ௗ்

௥ೌ೓
               19 

 
where ߩ is the air density kg m-3, ܿ௉ is the specific heat of air taken as 1004 J kg-1 K-1, ݀ܶ is the 
temperature difference ଵܶ െ ଶܶ  (K) between two heights ݖଵ and ݖଶ, and ݎ௔௛is the aerodynamic 
resistance to heat transport (s m-1). The solution to H is obtained iteratively to account for 
atmospheric stability conditions initialized with the neutral case. dT can be estimated based on a 
linear relationship as ݀ܶ ൌ ܾ ൅ ܽ ∙ ோܶ that needs to be developed for each scene using two 
reference hot and cold anchoring temperature limits. The general concept behind this linear 
relationship is that at the hot pixel (with known TR value) there is minimal or no ETa (EThot = 0) 
and that at the cold pixel (ETcold) can be estimated as a fraction of the reference ET for alfalfa 
crop (ETr) as 1.05 * ETr. The latent heat flux ܧߣ is estimated as the residual of the surface 
energy balance (Eq. 15). The instantaneous values of ܧߣ can be extrapolated to daily values 
using the reference evaporative fraction (ETrF) method. These two models mostly follow the 
same concepts including the fact that both models do not necessary need atmospherically 
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corrected multispectral reflectance and thermal imagery as raw digital number (DN) data can be 
used. Both models have their own approach for atmospheric correction. Some of the differences 
between the two models is that ReSET describes and uses an approach to generate gridded 
weather forcing data based on available ground-based observations as well as developing gridded 
dT information.  
 
2.1.2 SSEBop 

The SSEBop model (Senay et al., 2013) represents an operational version of SSEB 
developed by Senay et al. (2007). Both SSEB and SSEBop models are based on a simplified 
semi-empirical approach that directly provide estimates of ETa as a function of grass reference 
ET (ET0) as 

 
ܽܶܧ ൌ ݂ܶܧ ∙ ݇ ∙ ܧ ଴ܶ            20 

 
where ݂ܶܧ is the ETa fraction that can be estimated using an empirical scaling approach (Eq.  
  21) based on the radiometric surface temperature TR (Senay et al., 2013) as  

 

݂ܶܧ ൌ ்೓ି்ೃ
்೓ି்಴

ൌ ்೓ି்ೃ
ௗ்

             21 

 
with ௛ܶ and ஼ܶ are hot and cold surface temperatures estimated at idealized reference hot/dry and 
cold/wet limits for a given scene and dT is a predefined temperature difference ranges between 
0-1. The cold surface temperate limit can be estimated as a function of the near surface Ta and an 
adjustment coefficient as described in (Senay et al., 2013) . The temperature difference can be 
estimated as a function of Rn and aerodynamic resistance (ߛ௔௛). The hot surface temperature can 
then be calculated as ௛ܶ ൌ ݀ܶ െ	 ஼ܶ. Hence ETa can be estimate as  

 

ܽܶܧ ൌ ఘ∙஼ು
ோ௡∙ఊೌ೓

∙ ሺ ௛ܶ െ ோܶሻ ∙ ݇ ∙  22         ݋ܶܧ

 
2.1.3 SEBS 

Similar to METRIC and ReSET models, SEBS model solves the energy balance equation at 
two wet and dry limits surface conditions during which H and E can be estimated. The model 
provides estimates of Rn using the basic radiative balance equation as 

 
ܴ௡ ൌ ሺ1 െ ሻߙ ∙ ܴ௦ ൅ ߝ ∙ ܴ௅↓ െ ߝ ∙ ߪ ∙ ோܶ

ସ        23 
 
where ߝ the broadband emissivity in the thermal infrared band.  ܩ can be estimated as  

 
ܩ ൌ ሾΓ௖ ൅ ሺ1 െ ௖݂ሻ ∙ ሺΓ௦ െ Γୡሻሿ ∙ ܴ௡         24 

 
with Γ௖ ൌ 0.05 for full vegetation cover (Monteith, 1973) and Γ௦ ൌ 0.315 for bare soil (Kustas 
and Daughtry, 1990), and  ௖݂ is the fraction of vegetation cover. 
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By introducing the concept of evaporative fraction (Λ) as Λ ൌ ܧߣ ሺܴ݊ െ ⁄ሻܩ  and the relative 
evaporative fraction as Λ௥ ൌ ܧߣ ⁄௪௘௧ܧߣ ൌ 1 െ ሺܧߣ௪௘௧ െ ሻܧߣ ⁄௪௘௧ܧߣ ൌ 1 െ
ሺܪ െ ௪௘௧ሻܪ ൫ܪௗ௥௬ െ ⁄௪௘௧൯ܪ  with subscripts wet and dry refer to the wet and dry surface 
conditions. The SEBS model applies the energy balance at the two dry and wet limits to estimate 
Hdry and Hwet. Note that Hwet is estimated using a modified Penman-Monteith equation and H is 
estimated using the bulk resistance equations as ߠ଴ െ ௔ߠ ൌ ܪ ⁄௣ܿߩ∗ݑ݇ ∙ ሾ݈݊ሺݖ െ ݀଴ ⁄௢௛ݖ ሻ െ
Ψ௛ሺݖ െ ݀଴ ⁄ܮ ሻ ൅ Ψ௛ሺݖ଴௛ ⁄ܮ ሻሿ. Knowing H, Hwet, and Hdry; both Λ௥ and Λ  can then be estimated 
and consequently ܧߣ as   

 
ܧߣ ൌ Λ ∙ ሺܴ݊ െ  ሻ             25ܩ

 
2.1.3 DisALEXI  

The disaggregation modeling scheme DisALEXI was developed to provide surface energy 
balance fluxes estimates at the desired field scale of 1-1000 m that is typical to airborne, Landsat, 
and MODIS based on ALEXI output that is estimated at a coarser resolution of 5-10 km typical 
to GOES (Norman et al., 2003). One of the advantages of the model is that it alleviates the need 
for using near surface air temperature Ta observations that most models depend on. The Tow-
Source Energy Balance (TSEB) model represents the main modeling components of DisALEXI 
as it is being applied at the desired pixel scale that is based on the TR of the high resolution 
imagery. The TR represents the lower boundary condition and Ta at the blending height is the 
upper boundary condition. The TSEB is applied at the high resolution for all the ith pixels (i =1 to 
N) contained within each of the 5-km GOES pixel. The 50-m Ta is considered constant for all 
the ith pixels while using the TR at the high resolution data. Similarly all other surface related 
parameters are treated at the high-resolution ith pixel scale such as the fc,i and canopy height hc,i 
which are generally based on NDVI. 

 
It is worth mentioning that the use of TR images from multiple sensors in the application of 

ALEXI and DisALEXI could result in some biases due to differences in sensors calibration, view 
angle, and atmospheric correction (Norman et al., 2003). A bias correction procedure is 
described by Norman et al. (2003) that needs to be performed prior to the use of these images.  

 
The TSEB model treats surface components, bare soil and canopy, separately when applying 

the surface energy balance equation. The model allows the interaction between the two energy 
balance components at an air-canopy interface just above the surface. The energy balance 
equations for canopy, soil, and combined surface components can be described as Error! 
Reference source not found.Error! Reference source not found.Error! Reference source not 
found.Error! Reference source not found.Error! Reference source not found. 

 
            
 

ܴ݊௦ ൌ ௦ܧܮ ൅ ௦ܪ ൅ ܩ
ܴ݊௖ ൌ ௖ܧܮ ൅ ௖ܪ
ܴ݊ ൌ ܴ݊௦ ൅ ܴ݊௖

ൡ             26 
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The net radiation ܴ݊௖ and ܴ݊௦ of the canopy and soil components, respectively, are estimated 
using the physically based approach of Campbell and Norman (1998) as 
 

ܴ݊௖ ൌ ௖݊ܮ ൅ ሺ1 െ ߬௦ሻ ∙ ሺ1 െ ௖ሻܵߙ
ܴ݊௦ ൌ ௦݊ܮ ൅ ߬௦ሺ1 െ ௦ሻܵߙ

ൠ         27 

          
where ߬௦, ߙ௖ and ߙ௦ are the solar transmittance in canopy, the canopy albedo, and soil albedo, 
respectively, and can be estimated as described in Campbell and Norman (1998), and G can be 
estimated as a function of ܴ݊௦ as 
 

ܩ ൌ ܿீ ∙ ܴ݊௦               28 
 
The value of that ܿீ varies with soil type, moisture content, and time because of the phase shift 
between G and Rns over a diurnal cycle as indicated by Santanello and Friedl (2003). However, a 
constant value of ܿீ can be used for midmorning to midday period- typical acquisition time of 
satellite thermal infrared imagery (Santanello and Friedl, 2003). Typical value for ܿீ as ~ 0.3 
was used in most of the TSEB applications. 
       
The directional radiometric surface temperature ோܶ can be decomposed into the thermodynamic 
temperature of soil and canopy Ts and Tc , respectively, as 

 

ோܶሺሻ ൎ ሾ ௖݂ሺሻ ௖ܶ
ସሺ1 െ ௖݂ሺሻሻ ௦ܶ

ସሿଵ/ସ         29 
 
where ௖݂ሺሻ is the directional fraction of the field of view of the infrared radiometer occupied by 
vegetation which can be estimated as 
 

௖݂ሺሻ ൌ 1 െ exp ቀ	ି଴.ହ∙ஐሺሻ∙௅஺ூ
ୡ୭ୱሺሻ

ቁ          30 

    
where  Ω is the clumping factor and   the radiometer view zenith angle. Ω can be obtained 
following Campbell and Norman (1998).  
 
The sensible heat fluxes over soil and canopy components are calculated as 
 

             

௖ܪ ൌ ߩ ∙ ܿ௉
೎்ି்ಲ಴
ோೣ

௦ܪ ൌ ߩ ∙ ܿ௉
ೞ்ି்ಲ಴
ோೞ

ܪ ൌ ௖ܪ ൅ ௦ܪ ൌ ߩ ∙ ܿ௉
்ೌ ೎ି்ೌ

ோೌ ۙ
ۖ
ۘ

ۖ
ۗ

          31 

 
where Tac is the air temperature at an air-canopy interface, ܴ௫ is the total boundary layer 
resistance of complete canopy leaves, ܴ௦The resistance to heat flow in the boundary layer 
immediately above the soil surface, ܴ௔the aerodynamic resistance. These resistances can be 
estimated as described in Li et al. (2005). 
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The latent heat flux from canopy ܧܮ௖ is calculated using the Priestly-Taylor (P-T) (Priestley 
and Taylor, 1972) formula for the green part of the canopy as 

 

௖ܧܮ ൌ ௉்ߙ ∙ ݂ீ ∙ ቀ ∆

∆ାఊ
ቁ ∙ ܴ݊௖           32 

 
where fG is the fraction of LAI that is green and usually taken as (fG =1),  the slope of the 
saturation vapor pressure versus temperature curve, and  the psychrometric constant 0.066 kPa 
C-1.  
 

The P-T equation is used to provide an initial, specifically a potential rate of transpiration 
with the value of ߙ௉் ൌ 1.26 that needs to be adjusted for actual surface conditions. For example 
two conditions ought to be considered: for well water vegetation under advective conditions a 
value of ߙ௉் ൌ 2.0 is used; while for stressed vegetation which usually transpires at a lower rate 
than the potential rate, using a value of 1.26 will tend to overestimate ܧܮ௖ resulting in unrealistic 
values of ܧܮ௖ ൏ 0. In this case ߙ௉் is iteratively reduced until it reaches in some case	ܧܮ௖ ൌ 0. 
Another approach to estimate ܧܮ௖ was introduced by Anderson et al. (2000) that utilizes light use 
efficiency. This approach has recently been applied over different surfaces and showed 
promising results. More details on this approach is provided in part 1 of this report (Geli and 
Neale, 2015). 

 
DisALEXI provides estimates of instantaneous surface energy balance fluxes including ܧߣ 

(W m-2) during the overpass time and date of any particular sensor. Estimates of daily ET can be 
obtained by extrapolation of instantaneous estimates of ܧߣ using the evaporative fraction (EF) 
method defined as  ܧߣ ሺܴ௡ െ ⁄ሻܩ  (Norman et al., 2003). In some cases (Anderson et al., 2012, 
2007) the EF is adjusted by a factor of 1.1 to account for underestimation of the EF of 5-10 % 
observed during midday hours as indicated by Brutsaert and Sugita (1992). 

 
To provide daily ETa in between Landsat overpass dates, Anderson et al. (2011) followed a 

data fusion framework that uses remote sensing data from multiple sensors. The intent of this 
framework is to provide enhanced remote sensing data temporal resolution at Landsat scale 
throughout the growing season. The framework is based on two algorithms – thermal sharpening 
(Kustas et al., 2003) and the Spatial Temporal Reflectance Fusion Model (STARFM) (Gao et al., 
2006). The former is used to improve the spatial resolution of TIR band of a specific sensor to 
that of the shortwave bands. Usually the TIR bands are available at a relatively coarse resolution 
compared to that of the shortwave bands due to sensors configurations and signal to noise issues. 
The spatial resolution of the TIR band for Landsat 5 is 120-m and it can be enhanced to be at 30-
m of the visible bands. The latter uses statistical methods to develop relationships between 
Landsat and MODIS coincident images. These relationships can then be used to fill the gap 
between Landsat overpass dates that are usually 16-days. Hence the STARFM fuses (predict) 
Landsat scale data based on MODIS. (Gao et al., 2006) developed STARFM to provide surface 
reflectance data, later (Anderson et al., 2011) followed this approach to directly fuse ETa maps. 

 
2.2 Evaluation of Models 

Estimates of spatially distributed surface energy balance fluxes and ETa are evaluated against 
ground-based observations from Bowen ratio (BR) and eddy covariance (EC) towers. The 
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ground-based measurements either from BR or EC originate from a source area, called the 
footprint, located in the upwind direction of the measurement tower and with a variable weight 
of contribution according to several factors including atmospheric stability conditions. The 
footprint represents a 3D weights of the contribution of each defined pixel in the upwind 
direction to the integrated measured flux. In this analysis the footprint model by Horst and Weil 
(1994, 1992) is used. The integrated vertical flux measurements ܨሺݔ, ,ݕ  ௠ canݖ ௠ሻ at a heightݖ
be estimates as the integral of the spatially distributed fluxes ܨ଴ሺݔᇱ, ,ᇱݕ ᇱݖ ൌ 0ሻ multiplied by the 
footprint weight function f and can be described as 
 

,ݔሺܨ ,ݕ ௠ሻݖ ൌ ׬ ׬ ,ᇱݔ଴ሺܨ ,ᇱݕ ᇱݖ ൌ 0ሻ ∙ ݂ሺݔ െ ,ᇱݔ ݕ െ ,ᇱݕ ′ݕᇱ݀ݔ௠ሻ݀ݖ
௫
ିஶ

ஶ
ିஶ   33 

 
where x and y are the upwind and crosswind distances, respectively, from the point 
measurement. The estimated footprint from this model can provide 90% representation of the 
total contributed source area. 
 

Another issue that needs to be considered is related to the lack of energy balance closure of 
EC systems measurement. Such lack of closure can be up to 20% as described by Twine et al. 
(2000). The closure of energy balance can be achieved following one of the methods suggested 
by Twine et al. (2000) that include the Bowen ratio (BR) defined as H/LE and the Residual (Re) 
approaches. The Re method tends to attributes all the error to the measurements of LE while the 
BR method distribute this error between H and LE. As there is no definitive agreement in the 
literature on which one should be followed both methods were used in this analysis to highlight 
the related differences when evaluating models results.    
 

Statistical performance evaluation in this analysis were based on root mean square difference 
RMSD, the mean absolute difference MAD, mean difference or bias (BIAS).  
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where P and O are the estimated and measured values, respectively, n the number of record. 
 

The accuracy of the water balance component was estimated using the coefficient of 
variation (CV) and confidence interval (CI). The 95% CI is estimated as 2 CV following the 
approach described by Clemmens (2009). CV is estimated as the standard deviation divided by 
mean of the values. To estimate CI for the ETa that is estimated as the residual of water balance 
components as  
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with the subscript i represents the water balance component. 
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3. DATA 

Two testing sites were selected to perform the model inter-comparison analysis. These sites 
are located in different climatic regions and exhibit different land cover types and vegetation 
growing conditions. These sites are agricultural fields at the Palo Verde Irrigation District 
(PVID), Palo Verde, CA, and Mead (Mead), Ne.  
 

Different dataset used were used in this analysis including remote sensing data, weather 
forcing data, water balance components (e.g. canal inflow, drains outflow and groundwater 
fluctuations), and surface energy balance fluxes from eddy covariance and Bowen ratio flux 
towers. Unified dataset were meant to be used during the analysis for all models applications, 
however, some models required different input data than the unified dataset provided by USU. A 
brief description of these data is provided in this section.    
 
3.1 Site 1 at PVID 

3.1.1 Site Description 

The PVID is an irrigated agricultural area located in Riverside and Imperial counties, CA and 
it is a privately owned entity (PVID, 2015). The total area of the PVID is about 440 km2 mostly 
covered with alfalfa (70%), cotton (15%) and the remaining (15%) covered with mixed vegetable 
crops (Figure 8). The area diverts irrigation water from the Colorado River via a diversion dam 
at Palo Verde. A network of irrigation and drainages canals supports the gravity-fed surface 
irrigation system. The PVID is located in a climatic region that is characterized by arid to semi-
arid conditions where it receives an average annual precipitation of 50 mm. The eastern side of 
the PVID agricultural area is bordered by the Colorado River and desert lands surround the 
northern and western boarders. The area is relatively level ranging in elevation from 290 amsl at 
the northeast end to 220 m at the southwest end. The underlying soils are alluvial having a 
texture of mixed fine grain clays, silty loams, and sand. The long growing season at the PVID 
allows for year-round harvested agriculture suitable for many crops such as the perennial alfalfa 
crop and some vegetables grown during the winter months.  

 
3.1.2 Remote Sensing Data 

The remote sensing data used in this analysis include images in the multispectral reflectance 
and thermal infrared (TIR) bands. Multiple Landsat 5 scenes during the year of 2008 were 
obtained from the USGS data portal. The data were provided based on the current processing 
system as Level 1 Product Generation System (LPGS). It is worth noting that the raw thermal 
infrared data provided as Band 6 were collected at 120 m pixel resolution and the USGS 
provides a resampled 30 m product processed using cubic convolution resampling method. 
Standardized at-surface reflectance product were provided by the USGS that have already been 
atmospherically corrected. The thermal infrared data were atmospherically corrected to provide 
at-surface radiometric temperatures as described in Section 3.1.3. A list of all Landsat 5 scenes 
used during this analysis is provided in Table 20.  
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Figure 8: The location of the Palo Verde Irrigation District (PVID) along with the land use 
during the growing season of 2008.  

 
3.1.3 Atmospheric correction of TIR data  

The Landsat 5 imagery in the TIR band are currently provided in calibrated digital numbers 
(DN) that can be converted to radiance values. These at-sensor radiance values can then be used 
to estimate at-surface brightness temperatures (TB) as 

    

஻ܶ ൌ
௞మ

௟௡ሾ௞భ ௅⁄ ାଵሿ
              36 

 
where Ts is the surface brightness temperature (K), L is the integrated at-sensor band radiance 
(W m-2 sr-1 m-1), and k1 and k2 are calibration constants. For Landsat 5, k1 =607.76 W m-2 sr-1 
m-1 and k2= 1260.56 K (Chander and Markham, 2003). The radiance can be calculated based on 
the DN as follows 
 

ఒܮ ൌ ௥௘௦௖௔௟௘ܩ ∙ ܳ௖௔௟ ൅  ௥௘௦௖௔௟௘          37ܤ
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with  
 

௥௘௦௖௔௟௘ܩ ൌ
௅ெ஺௑ഊି௅ெூேഊ

ொ೎ೌ೗	೘ೌೣ
 and  ܤ௥௘௦௖௔௟௘ ൌ ܫܯܮ ఒܰ      38 

  
where Grescale (W m-2 sr-1 m-1) and Brescale W m-2 sr-1 m-1 are band-specific rescaling factors 
(Chander and Markham, 2003) provided in the header/metadata file that is associated with each 
Landsat scene.  
 
A radiative transfer model is used to correct for atmospheric effects when estimating Ts based on 
the brightness temperature. MODTRAN 4.1 and 5 radiative transfer model (Berk et al., 1998) 
was used during the analysis along with radiosonde data from the nearest station to the specified 
site.  The model provides estimates of the corresponding at-sensor radiance and bright ness 
temperature for a given set of surface temperature and surface emissivity, and sensor response 
function. A set of different surface emissivity and surface brightness temperatures are estimated. 
This information is then used to create a linear regression equation as 
 

ோܶ ൌ ܽ ൅ ܾ ∙ ஻ܶ ൅ ܿ ∙  ௦௨௥௙௔௖௘          39ߝ
 
where a, b, and c are regression coefficients that corresponds to each scene, and ߝ௦௨௥௙௔௖௘ is the 
surface emissivity estimated as a function of the vegetation fraction of cover fc as 
 

௦௨௥௙௔௖௘ߝ  ൌ ݂ܿ ∙ ௩௘௚ߝ ൅ ሺ1 െ ݂ܿሻ ∙  ௦௢௜௟         40ߝ
 
with ߝ௩௘௚ and ߝ௦௨௥௙௔௖௘ are the soil and vegetation emissivity, respectively and 
 

 ௖݂ ൌ 1 െ ቀ ே஽௏ூ೘ೌೣିே஽௏ூ

ே஽௏ூ೘ೌೣିே஽௏ூ೘೔೙
ቁ
௔
           41 

 
where NDVImax and NDVImin are the NDVI for full cover vegetated surface and bare soil and a is 
a coefficient that ranges between 0.6 to 1.25 for electrophile to planophile canopies. Figure 9 
provides a comparison between TB and TR for one of the Landsat scenes used in this analysis. 
Other models such as METRIC (Allen et al., 2007a, 2007b) uses a different approach to estimate 
TR.   
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Figure 9: scatterplot of showing a comparison between brightness and radiometric surface 
temperatures before and after corrections, respectively, for DOY 131. 
 
Table 20: List of Landsat 5 scenes over the PVID and used in the analysis 

NO. DATE DOY (2008) PATH RAW 
1 19-Jan-2008 19 38 37 
2 11-Feb-2008 42 39 37 

3 27-Feb-2008 58 39 37 
4 07-Mar-2008 67 38 37 
5 23-Mar-2008 83 38 37 

6 08-Apr-2008 99 38 37 
7 24-Apr-2008 115 38 37 

8 10-May-2008 131 38 37 
9 17-May-2008 138 39 37 

10 26-May-2008 147 38 37 

11 11-Jun-2008 163 38 37 
12 18-Jun-2008 170 39 37 

13 13-Jul-2008 195 38 37 
14 29-Jul-2008 211 38 37 
15 05-Aug-2008 218 39 37 

16 21-Aug-2008 234 39 37 
17 15-Sep-2008 259 38 37 

18 01-Oct-2008 275 38 37 
19 17-Oct-2008 291 38 37 
20 09-Nov-2008 314 39 37 

21 18-Nov-2008 323 38 37 
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3.1.4 Weather Forcing Data 

The weather forcing data were obtained from the California Irrigation Management 
Information System (CIMIS) weather stations. The data from three stations located within the 
PVID were used including stations no. 135, 151, and 175 at Blythe NE, Ripley, and Palo Verde 
II (Figure 10). These weather forcing data include measurements of incoming solar radiation 
(Rs), air temperature (Ta), wind speed (U), relative humidity (RH), as well as calculated 
Penman-Monteith grass and/or alfalfa reference ET (ETo/ETr) at hourly and daily time scales. 
The measurements were at 2 m agl for U and Rs and at 1.5 m agl for Ta and RH. An example of 
measured daily average Ta grass reference ET (ETo) is shown in Figure 11. 
 

 
Figure 10: location of weather stations and energy balance flux tower measurements. 
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Figure 11: Timeseries of daily average air temperature Ta and CIMIS grass reference ET (ETo) 
during 2008. 
 
3.1.5 Surface Energy Balance Fluxes 

Surface energy balance flux measurements were obtained from an alfalfa field using a 
Bowen ratio (BR) system developed by Radiation and Energy Balance Systems (REBS) Inc., 
Seattle, WA.  The BR system was installed at an alfalfa field (Figure 12) taking measurements at 
an average height of 2 m agl. The system consists of an Automatic Exchange Mechanism that 
switch the height of the lever arms that holds the air temperature and humidity sensors every 15 
minutes to reduce biases. These 15-minute data are then used to calculate surface energy balance 
fluxes including H and LE at 30-minute averages. Soil related measurements at an average depth 
of 10 cm below the surface include soil heat flux using, soil temperature and water content using 
soil heat flux plate, soil temperature props, and soil moisture sensor, respectively, provided by 
REBS Inc. This set of soil measurements were installed at three locations below a set of two 
Q7.1 net radiometers by REBS Inc. the set of measurements include also air temperature, 
humidity, pressure using temperature, humidity, wind speed and direction. These data were 
managed using a CR10X datalogger by Campbell Scientific Inc., Logan, Utah. Timeseries of 
calculated daily actual ET (ETa) based on the BR measurements during 2008 is shown in Figure 
13. 
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Figure 12: layout of the BR system located over an alfalfa in PVID 

 

 
Figure 13: Plot of daily ETa (mm/day) during 2008 as measured by the BR system along with 
the Landsat overpass dates.  
 
3.1.6 Water Balance Components 

 
The PVID can be considered as a controlled hydrologic system with defined input and output 

water quantities that are routinely measured with a reasonable accuracy. The PVID receives its 
irrigation water from the Colorado River via the Palo Verde diversion dam located at the 
northeast side of the area. The water gets distributed within the PVID via 440 km of irrigation 
canal network and the excess water is collected and returned to the river via a network of 230 km 
of drains. Another source of water input, yet minimal, is the precipitation that accounted for ~ 75 
mm during 2008. Hence the main water input include inflow from the diversion dam, 
precipitation, and the main outflows include drainage water measured at the main outflow drain, 
infiltration percolated to groundwater, lateral canal spills measured before returning to the 
Colorado River and ET. Measured inflow and outflow are shown in Figure 14 and it can be 
obtained from the USGS data portal. Groundwater table fluctuations is monitored using 260 
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wells distributed on one-mile grid with measurements made once at the beginning of each month 
(Figure 15).  

 

 
Figure 14: Measured inflow, outflow, and precipitation at the PVID during 2008 
 
 

 
Figure 15: Groundwater piezometers distribution and the corresponding fluctuations for the 
calendar year 2008. 
 
3.2 Site 2 at Mead 

3.2.1  Site Description 

The site consist of irrigated and dryland agricultural fields located at the University of 
Nebraska Agricultural Research Center (Figure 16), Lincoln, NE. There are three fields 
cultivated with maize and soybean crops with two of them supported with pivot irrigation 
systems and the third is a rainfed field. Planting and harvesting of the maize crop occur during 
summer between Late April/ Early May and Late October, respectively (Table 20). 
Hydrometeorological measurements at the three sites are obtained using EC systems as part of 
the Ameriflux network. The EC towers height is 6 m and the maximum crop height at full cover 
ranges between 1.7 to 2.9 m.  
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Figure 16: Location of dryland (US-Ne 3) and irrigated (US-Ne 1 and US-Ne 2) maize fields in 
Mead, NE.  

 
Table 21: Description of the growing season and crop rotation for the three sites near Mead, NE 

Site Irrigation Crop 
Type/hybrid 

Planting  
Date 

Emergence 
Date 

Harvesting 
Date  

Density 
Plant/ha 

US – Ne 1 Irrigated Maize 
(DKC 61-16-RIB) 

29-April-
2013 

14-May-
2013 

22-October-
2013 

80,400 

US – Ne 2 Irrigated Maize 
(DKC 61-16-RIB) 

30-April-
2013 

15-May-
2013 

22-October-
2013 

78,900 

US – Ne 3 Rainfed Maize 
(DKC 62-98-RIB) 

13-May-
2013 

21-May-
2013 

21-Ocotber-
2013 

50,200 

 
3.2.2 Remote Sensing Data 

Remote sensing data from Landsat 7 and Landsat 8 were used in this analysis.  Multispectral 
reflectance and TIR imagery were obtained during satellite overpass dates. Nine scenes were 
identified that have no or minimal cloud contamination. Apparently there are periods with 
considerable gaps with no data as shown in  
 

Table 22Error! Reference source not found.. Multispectral reflectance for Landsat 7 are 
available for bands 1-5 and 7 while for Landsat 8 are for bands 2-7. TIR image are available in 
band 6 for Landsat 7 with a band width of 10.44-12.5 m while that for Landsat 8 are available 
for bands 10 and 11 with band width of 10.6-11.19 m and 11.5-12.51 m and xx, respectively. 
Band 10 for Landsat 10 is used during this study. All thermal bands were atmospherically 
corrected using MODTRAN to provide surface temperature TR and reflectance data were 
provided via LPDAAC system available through the USGS data portal. 
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Table 22: List of Landsat 7 and 8 scenes provided over Mead, NE site during 2013 

No. Date DOY (2013) Landsat Sensor Path Raw 

1 24-April-2013 114 7 28 31 

2 3-June-2013 154 8 28 31 

3 19-June-2013 170 8 28 31 

4 21-July-2013 202 8 28 31 

5 30-August-2013 242 7 28 31 

6 23-September-2013 266 8 28 31 

7 1-October-2013 274 7 28 31 

8 9-October-2013 282 8 28 31 

9 25-October-2013 289 8 28 31 
 
3.2.3 Weather Forcing and Flux data 

Three ground-based observation towers located within each of the fields provide 
measurements of weather forcing and fluxes. The towers are instrumented with EC systems and 
are part of the AmeriFlux network. The meteorological data were observed by the stations US-
Ne1, US-Ne2, and US-Ne3 with irrigated maize, irrigated rotational maize and soybeans, and 
rainfed (dryland) maize, respectively. 

 

4. RESULTS AND DISCUSSION 

4.1 Palo Verde Irrigation District (PVID) 

An example of spatially distributed estimates of daily ETa for May 10, 2008 -one of the 
satellite overpass dates-for each model including their average is shown in Figure 17. Visual 
inspection of this result clearly showing considerable spatial variability when compared to each 
other. Using the same ETa categories for all maps; four models including their average 
(Average) showed daily ETa values ranging between 0 to 10 mm/day except DisALEXI model 
which did not provide estimates of ETa in 0-1 mm/day category. Figure 18 shows plots of 
histogram – plot of ETa versus their frequency- that correspond to those on Figure 17. The 
METRIC model resulted in ETa values mostly in > 6 mm/day category followed by ReSET 
(Figure 18) with both models showed similar frequency distribution. It is noticed that SSEBop 
model resulted in ETa estimates mostly in only two categories 0-1 and > 6 mm/day with 
relatively similar ETa frequencies in all other ETa categories (Figure 18). This behavior of the 
SSEBop model can be explained by the model parametrization that is based on scaling its 
estimates between 0-1 as described in Eq.   21. These histogram plots provide clear 
indication of how these ETa estimates could be different in terms of spatial variability of daily 
ETa. These differences could have some effects on applications that require daily ETa 
information such as detection of water stress condition, irrigation scheduling, and precision 
agriculture. On applications that require estimates of annual water requirements such differences 
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on daily ETa between these model results might have minimum effects as discussed below. The 
corresponding area-average and total ETa values in mm/day and m3/day, respectively, for each 
model are shown in Figure 18. The results show that the area-average values fall within a range 
of 0.5 mm/day when excluding the results of SSEB models that provided relatively the lowest 
mean value. The area-average values are 4.5, 4.4, 4.0, and 4.2 mm/day for DisALEXI, METRIC, 
ReSET, and SSEBop, respectively, while SEBS model provided 2.4 mm/day which is nearly half 
of all others. Considering the total area of the PVID of 440 km2 (or 439,094, 000 m2) a small 
ETa difference of 0.5 mm/day will result in a total volume water of 220 x 103 m3/day or 58 
Million gallons/day.  

  

      

     
Figure 17: Estimates of daily ETa over the PVID based on METRIC, SEBS, SSEBop, ReSET, 
DisALEXI, and average of all models (Average) for day of year (DOY) 131 or May 10, 2008.  
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Figure 18: Histogram of estimated daily ETa based on all models and their average (Average) for 
DOY 131 May 10, 2008 over the PVID for the results shown in Figure 17 
 

Figure 18The area-average daily ETa estimates during satellite overpass dates are shown in 
Figure 19 with the corresponding values shown in Table A1 (Appendix A). The seasonal 
variation of ETa is clearly shown with values increasing during the summer growing season 
April-August. The variation among models estimates of ETa within each satellite overpass date 
can also be observed with METRIC and SEBS models showing relatively the highest and the 
lowest estimates of ETa, respectively, while the rest of the models showing relatively similar 
behavior. Such variable models behavior shown in Figure 19 during satellite overpass dates 
throughout the growing season supports the fact that evaluating crop water requirements, 
irrigation scheduling, and water stress conditions using different models could result in variable 
crop growth behavior and eventually leading to mismanaged agricultural water resources.     
 

 
Figure 19: Plot of area-average daily ETa (mm/day) for all images and model estimates and their 
average (Average) for satellite overpass dates. The corrsponding values used to create the figure 
are provided in Table A1 (Appendix A).  
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Estimates of ETa during satellite overpass dates were compared against BR measurements 
obtained at one of the alfalfa fields to evaluate the models performance. Generally, fluxes 
measured by point-based system such as the BR towers are based on weighted area integrated 
from the upwind direction or footprint and were estimated as described in Section 2.2. The 
footprint of the BR tower measurements is estimated for each satellite overpass time and overlaid 
over the corresponding ETa images. An example of footprint analysis is shown in Section 0. The 
integrated footprint ETa values during each day were calculated and compared with the 
corresponding ETa measurements by the BR (ETBR) as shown in Figure 20. Two models ReSET 
and METRIC showed narrow scattering around the 1:1 line while SSEBop model showed 
slightly larger scatter. DisALEXI model showed a slight underestimation while SEBS model 
showed considerable underestimation. Generally, all models resulted in an underestimation of 
daily ETa values as indicated by the negative BIAS. Based on the RMSD described in Table 23 
the models can be ranked starting with METRIC with the lowest value followed in order by 
ReSET, SSEBop, DisALEXI, and SEBS.  
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Figure 20: Comparison of estimated and measured daily ETa (mm/day) based on all models and 
their average (Average). 
 
Table 23: Comparison of measured ETBR based Bowen ratio method and estimated ETa based on 
DisALEXI, METRIC, ReSET, SEBS, and SSEBop, and their average (Average). 

 RMSE 
mm/day 

BIAS 
mm/day 

BIAS 
(%) 

MAE 
mm/day 

Sample 
 

Mean 
mm/day 

Std. Dev. 
mm/day 

Measured     16 6.55 2.4 

SSEBop 1.5 -0.2 -7.2 1.3 16 6.35 2.8 

SEBS 2.7 -2.5 -42.0 2.5 16 4.09 2.1 

METRIC 0.9 -0.1 1.6 0.6 16 6.45 1.9 

ReSET 1.3 -0.8 -9.8 1.1 16 5.70 1.7 

DisALEXI 1.8 -1.4 -18.9 1.7 16 5.20 1.4 

Average 1.3 -1.0 -15.3 1.4 16 5.54 1.9 

 
 
Seasonal ETa can be based on approaches that combine remote sensing and traditional 

methods. As described in Section Error! Reference source not found. three models including 
ReSET, METRIC and SSEBop used this approach while DisALEXI used the STARFM 
algorithm (Gao et al., 2006)–a data fusion approach that combines multispectral data from 
multiple sensors to fill-in the gap between Landsat 5 scenes–in addition to a thermal sharpening 
model (Agam et al., 2008; Kustas et al., 2003). Both approaches are described in (Geli and 
Neale, 2015). The seasonal ETa estimates from each model as well as their average is shown in 
Figure 21 with the total annual ETa values and the corresponding uncertainties shown in Table 
25.  
 

Another approach to estimate seasonal ETa based on the water balance calculation was used 
to provide additional estimates for comparison purposes (ETa_WB). Estimates of ETa based on 
remote sensing models were compared to ETa_WB. The water balance components considered 
include diverted inflow water to the main canal, measured returns that include canal spills and 
outfall drains for the site, unmeasured return flow, and precipitation. For the calendar year of 
2008 these values are 2,475 mm, 1,283 mm, 139 mm, and 75 mm over the area of 439.093 km2. 
It is worth noting that the unmeasured return flows are reported by the USBR as constant 
percentage of ~ 5.6% with little information about how it was estimated.  

 
Typically the uncertainty of these components (i.e. inflow and measured return flow) are based 
on gage or device used and may include a number of uncertainties such as reading error, device 
calibration and other potential sources of error (Wahlin et al., 1997). A number of studies (e.g. 
Allen et al., 2005; Clemmens, 2009; Wahlin et al., 1997) were conducted to evaluate the 
uncertainty of flow measurements of water balance components of agricultural areas specifically 
in California. In this study, the CI’s obtained by Wahlin et al. (1997) for some canals and drains 
in Imperial Irrigation District were used since the PVID has flow measurement systems that are 
similar to those evaluated by Wahlin et al. (1997). The uncertainty of the water balance 
components including the inflow, measured returned flow, and unmeasured return flow is 
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assumed to have CI of 2.1% based on the average CI value of those obtained by Wahlin et al. 
(1997). The accuracy for the precipitation is based on the reported accuracy of the rain gage of 
1% as indicated by CIMIS. Following Eq. (          2.1.1 

) and using the value of ETa_WB for year 2008 of 1128 mm (when considering the 
unmeasured return flow) or 1267 mm (without considering the unmeasured return flow), the 
estimated accuracy of ETa_WB is 5.2% or 4.6%, respectively (Table 24). Note that the ETa_WB 
was calculated for the growing season to minimize uncertainties that arise from groundwater 
table fluctuations. These uncertainties in ETa_WB are relatively comparable to those reported for 
the Imperial Valley that fall within  10% (Allen et al., 2005). 

 
Comparison of seasonal ETa estimates based on remote sensing with ETa_WB showed that, 

given the uncertainty in ETa_WB, only two models provided estimates of ETa that fall within the 
95% confidence interval of ETa_WB in both cases, with or without considering unmeasured return 
flow. When considering the unmeasured return flow, the accuracy of ETa estimates based on 
DisALEXI and SSEBop fall within the CI of the ETa_WB of 5.2% with +2.8% and -3.2%, 
respectively. While when not considering the unmeasured return flow, two different models 
METRIC and ReSET provided ETa estimate that fall with the CI or ETa_WB of 4.6% with 
+3.5% and -3.6%, respectively. Three models, ReSET, DisALEXI, and SSEBop underestimated 
ETa_WB (1267 mm 4.6% at 95% confidence level) by -3.6%, -8.6%, and -13.9%, respectively 
while METRIC model overestimated ETa_WB by +3.5% (Table 25). By considering the 
unmeasured return flow as part of the water balance components, ETa_WB becomes 1128 mm 
with a CI of 5.2% at 95% confidence level. In this case, at ETa_WB = 1128 mm, three models 
including DisALEXI, ReSET, and METRIC, overestimated ETa_WB by +2.8%, + 8.4%, and 
+16.3%, respectively, while SSEBop underestimated ETa_WB by -3.2%.  Moreover, the results 
based on the two cases of ETa_WB –with or without considering the unmeasured return flow 
component –show that METRIC and SSEBSop have consistent behavior by always providing 
either overestimation or underestimation of ETa_WB, respectively. On the other hand, DisALEXI 
and ReSET models changed their behavior from overestimation to underestimation when 
including the unmeasured return flow component.  

 

 
Figure 21: timeseries of modeled dailyETa (mm/day) based on METRIC, ReSET, DisALEXI, 
SSEBop, and their average (Average) along with the satellite overpass dates during 2008.   
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Figure 22: Historical 30 years record (1985-2014) of water balance components that include 
measured inflow, outflow, unmeasured return flow, and calculated ETa (ETa_WB). 
 
Table 24: Uncertainties of PVID water balance components based on 30 years of measurements 
and the estimated uncertainty of ETa_WB based on Eq.           2.1.1 
. 

Water Balance Components Water Balance Uncertainty * 

Inflow:   

Precipitation (mm) a 75  1%%  

Inflow Main Canal (mm) b 2,475  2.2% %  
Outflow:   

Canal Spills + Outfall Drain (mm) c 1,283  2.2 % 

Unmeasured Returns d 139  2.2%  

Evapotranspiration (ETa) e 

ሺࢋ ൌ ࢇ ൅ ࢈ െ ࢉ െ  ሻࢊ
1,128 (1,267)#  5.2 % ( 4.6 %)# 

* numbers indicate the 95% confidence level for water balance components 
#  the unmeasured returns were estimated by USBR as fixed percentage of ~5.6% of the total inflow from 
the main canal with no information of how this was estimated. In case we considered this as part of the 
ETa_WB as shown in bracket, the corresponding 95% confidence level is shown as 4.6%. 
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Table 25: Comparison of water balance-based ETa_WB and remote sensing-based ETa on annual 
based for PVID for year 2008 

 Water Balance METRIC ReSET DisALEXI SSEBop 

Actual Evapotranspiration (ETa) (mm) 1,128 
(1,267 ) 

1,312 1,223 1160 1,092 

Uncertainty (%) 
 

5.2 % 
( 4.6%) 

+16.3% 
(+3.5%) 

+8.4 
(-3.6%) 

+2.8% 
(-8.6%) 

-3.2 
(-13.9%) 

Total Inflow (mm) 2,550 2,550 2,550 2,550 2,550 

Total Outflow (mm) 2,550 2,595 2,506 2,443 2,375 

Inflow – Outflow (mm) (0) +45 -45 -108 -175 

The uncertainty values by each model indicate the diversion of remote sensing estimates of ETa from 
water balance based ETa_WB . 
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4.2 Irrigated and Dryland Fields Mead, NE 

Estimates of spatially distributed daily ETa over the three agricultural fields US-Ne 1, and 
US-Ne 2 and US-Ne 3 as well as the surrounding areas based on all models and their average 
(Average) are shown in Figure 23. The example shown is for ETa during DOY 202 July 21, 
2013. The model estimates showed relatively similar patterns in terms of the spatial variability of 
ETa. Areas with relatively low or high ETa values were observed on the same regions by all 
models with some minor differences as indicated by the assigned categories. The corresponding 
histograms of ETa estimates are shown in Figure 24. These histograms indicate that ReSET and 
SEBS model resulted in values ranging from 0-8 mm/day, METRIC and SSEBop models 
showing values ranging from 0-7 mm/day, and DisALEXI model resulting in a narrow 
distribution of values ranging from 2-6 mm/day. In general, these histograms show relatively 
similar distribution or pattern which supports the observed spatial variability shown in Figure 23. 
 

Spatially distributed ETa for all models during all 9 satellite overpass dates is shown in 
Figure 25. The observed similarity of the spatial variability pattern shown in Figure 23 for DOY 
202 July 21 can also be observed on DOY 242, August 30. It should be noted that based on the 
growing season for all three fields, the crops are at their peak growth stage and hence having 
higher ETa rates. Differences in spatial variability pattern can be observed among models 
estimates of ETa on other overpass dates. However, METRIC and ReSET models showed 
similar behavior throughout the growing season when compared to each other. The other three 
models DisALEXI, SEBS, and SSEBop behaved relatively similar when compared to each other 
but as a group they behaved differently compared to METRIC and ReSET models. It should be 
noted that on June 19 the satellite image was slightly contaminated with some clouds which is a 
typical condition over humid regions such as the Mead site. Due to this issue three models 
DisALEXI, ReSET and SEBS did not provide estimates of ETa indicating the possibility of 
obtaining misleading results. In the case of the METRIC model during such cloudy days, nearby 
fields were used as surrogate to obtain estimates of ETa.  

 
Comparison of model estimates with ground-based EC measurements of ETa was carried out 

by integrating the weights of footprint measurements over each model spatial ETa estimates. The 
upwind footprints were calculated for all Landsat overpass dates and times at each of the three 
towers US-Ne 1, US-Ne 2, and US-Ne 3. The footprint typically provides 90% of the total source 
area of measurements. For this study the footprint comprised 2-4 Landsat visible band pixels 
(Landsat pixel size in the visible band is 30-m) on the upwind direction and 2-3 in the crosswind 
direction. An example of flux footprint overlaid with estimates of ETa from DisALEXI is shown 
in Figure 26 at US-Ne 1 for DOY 202 July 21 2013. Following this approach all models 
estimates of ETa were compared with measurements and shown in Figure 27.  

 
Three model estimates showed reasonable scatter around the 1:1 line including DisALEXI, 

SEBS, and SSEBop while the two other models METRIC and ReSET showed relatively large 
scatter away from the 1:1 line. The resulting model average (Average) showed reasonable scatter 
around 1:1 line. The corresponding model performance statistics are provided in Table 26. The 
results indicate that DisALEXI resulted in the lowest RMSE of 1.00 mm/day and the highest was 
from ReSET model followed by METRIC model as 3.2 and 2.9 mm/day, respectively. The other 
two models showed relatively similar behavior having RMSD of 1.3 mm/day for both SSEBop 
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and SEBS models. Generally, all models provided overestimation of ETa with the lowest BIAS 
of 0.2 mm/day provided by SSEBop and the highest BIAS of 2.7 mm/day provided by ReSET.  

 
 

 

  
 
 
 
Figure 23: Estimates of actual evapotranspiration ETa based on DisALEXI, METRIC, ReSET, 
SEBS, and SSEBop models as well as their average (Average) on DOY 202, July 21, 2013. 

 
Figure 24: Histogram of estimated daily ETa based on all models and their average for DOY 131 
May 10, 2008 over Mead for the results shown in Figure 23.   
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     DisALEXI        METRIC                ReSET                     SEBS                  SSEBop 

     

     

                                                                                  

     

     

     

     

     

     

                        
Figure 25: Maps of actual evapotranspiration (ETa) in mm/day during Landsat overpass dates 
resulting from each model. Study sites US-Ne 1 and US-Ne 2 are shown as two circles (black) 
left and right, respectively, and US-Ne 3 square (black). 
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Figure 26: Flux measurement upwind footprint overliad on DisALEXI model estimates of daily 
ETa at field 1 ( irrigated maize) and US-Ne 1 eddy covariance tower on DOY 202, July 21, 
2013. 
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Figure 27: Comparison of estimated and measured ETa based on DisALEXI, METRIC, ReSET, 
SEBS, SSEBop, and their average (Average) and ground-based EC measurements. Models 
estimates are based on footprint integrated values. 
 
Table 26: Summary of model performance statistics for DisALEXI, METRIC, SEBS, SSEBop, 
ReSET, and their average (Average) for estimates of daily ETa during Landsat overpass dates at 
Mead, Ne site. 

 DisALEXI METRIC SEBS SSEBop ReSET Average N  

RMSD (mm/day) 1.0 2.9 1.3 1.3 3.2 1.7 24 
 

BIAS    (mm/day) 0.9 2.5 0.6 0.2 2.7 1.4 24 
 

MAD    (mm/day) 0.9 2.5 1.0 1.1 2.7 1.4 24 
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Figure 28: Barplot of model performance statistics for DisALEXI, METRIC, SEBS, SSEBop, 
ReSET, and their average (Average) for daily ETa during Landsat overpass dates for Mead, Ne 
(Table 26). 
 

The crop growth at the three fields can be described by the observed ETa that is based on EC 
system measurements at the center of each field. Measured seasonal daily and monthly total ETa 
are shown in Figure 29 and Figure 30, respectively. As the three fields are geographically close 
to each other, the observed daily ETa showed similar temporal variability throughout the 
growing season that spans between the End of April and the End of October. The monthly ETa 
can show that the two irrigated fields US-Ne 1 and US-Ne 2 have relatively similar amounts of 
total monthly ETa that are higher than that of the dryland field but not by much.  

 
A comparison of estimated and measured monthly ETa over the three sites is shown in 

Figure 31. Based on visual inspection of Figure 31, it can be observed that METRIC and ReSET 
models provided the largest overestimation of monthly ETa followed to a lesser extent by 
DisALEXI model when compared to EC measurements. The SSEBop model underestimated 
monthly ETa during April-August and overestimated on the rest of the growing season. As 
shown in Figure 32, DisALEXI and SSEBop models provided a narrow scatter of data around 
the 1:1 line while METRIC and ReSET models showed wider scattering away from the perfect 
match line. This performance on a monthly basis by SSEBop and DisALEXI models is 
supported by the evaluation statistics (Figure 33 and Table 27) as the two models show relatively 
low values of RMSD of 23 and 28 mm, respectively. The results provided by METRIC and 
ReSET models had higher RMSD of 49 and 59 mm indicating relatively lower performance 
compared to DisALEXI and SSEBop models. Generally, three models overestimated the 
monthly ETa values including METRIC, ReSET, and DisALEXI, models while SSEBop model 
slightly underestimated monthly ETa. DisALEXI model slightly overestimated monthly ETa as 
indicated by BIAS of 25 mm while METRIC and ReSET models considerably overestimate 
monthly ETa by BIAS of 45 and 46 mm. SSEBop model slightly underestimated monthly ETa 
by a BIAS of -8 mm.  
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Figure 29: Seasonal  ETa based on ground-based eddy covariance (EC) tower measurements at 
the three sites US-Ne 1 (irrigated maize), US-Ne 2 (irrigated maize), and US-Ne 3 (dryland 
maize) along with the Landsat 7/8 overpass dates 
 

 
Figure 30: Monthly total ETa based on ground-based eddy covariance (EC) tower measurements 
at the three sites US-Ne 1 (irrigated maize), US-Ne 2 (irrigated maize), and US-Ne 3 (dryland 
maize). 
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Figure 31: Comparison of measured total monthly ETa based on  ground-based EC 
measurements at the three fields US-Ne 1 (irrigated maize), US-Ne 2 (irrigated maize), and US-
Ne 3 (dryland maize)  with estimated values by DisALEXI, METRIC, SSEBop, and ReSET 
models 
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Figure 32: Comparison of estimated monthly ETa (mm) based on DisLAEXI, METRIC, ReSET, 
SSEBop models and their average (Average) with EC measurements. 
 

0

40

80

120

160

200

240

0 40 80 120 160 200 240

E
st

im
at

ed
 M

on
th

ly
 E

T
a 

(m
m

)

Measured Monthly ETa (mm)

DisALEXI

US-Ne 1

US-Ne 2

US-Ne 3
0

40

80

120

160

200

240

0 40 80 120 160 200 240

E
st

im
at

ed
 M

on
th

ly
 E

T
a 

(m
m

)

Measured Monthly ETa (mm)

METRIC

US-Ne 1

US-Ne 2

US-Ne 3

0

40

80

120

160

200

240

0 40 80 120 160 200 240

E
st

im
at

ed
 M

on
th

ly
 E

T
a 

(m
m

)

Measured Monthly ETa (mm)

SSEBop

US-Ne 1

US-Ne 2

US-Ne 3
0

40

80

120

160

200

240

0 40 80 120 160 200 240

E
st

im
at

ed
 M

on
th

ly
 E

T
a 

(m
m

)

Measured Monthly ETa (mm)

ReSET

US-Ne 1

US-Ne 2

US-Ne 3

0

40

80

120

160

200

240

0 40 80 120 160 200 240

E
st

im
at

ed
 M

on
th

ly
 E

T
a 

(m
m

)

Measured Monthly ETa (mm)

Average

US-Ne 1

US-Ne 2

US-Ne 3



133 
 

 
Figure 33: Summary of models performance statistics for monthly ETa (mm) for DisLAEXI, 
METRIC, ReSET, SSEBop, and their average (Average)  
 
Table 27: Summary of model performance statistics for monthly ETa (mm) for DisLAEXI, 
METRIC, ReSET, SSEBop, and their average (Average)  

 DisALEXI METRIC ReSET SSEBop Average 

RMSD (mm) 28 49 57 23 33 

BIAS (mm) 25 45 46 -8 0.0 

MAD (mm) 26 45 49 18 30 

 
In addition to evaluating the performance of the models on estimates of monthly ETa, 

estimates of total seasonal ETa are also evaluated as summarized in Figure 34 and Table 28. The 
total ETa between April-October for each field is 543, 555, and 464 mm for US-Ne 1, US-Ne 2, 
and US-Ne 3, respectively. As shown in Figure 33 three models including ReSET, METRIC, and 
DisALEXI overestimated the total seasonal ETa while SSEBop provided slightly underestimated 
values. ReSET and METRIC models provided relatively similar overestimation of total seasonal 
ETa at all three fields followed to a lesser extent by DisALEXI model. The SSEBop model 
slightly underestimated total seasonal ETa. The relative error of these models estimates at each 
field is calculated based on the EC measurements as shown in Table 28. It can be noticed that the 
RE is higher for all models at the dryland field US-Ne 3 and similar at the two irrigated fields 
US-Ne 1 and US-Ne 2. For example, the overestimation of total seasonal ETa at the dryland field 
US-Ne 1 by the three models of 36, 55, and 60 %, respectively, is higher than that at the irrigated 
fields. The underestimation of total seasonal ETa at the dryland field US-Ne 1 of -15% provided 
by SSEBop is higher than that at the two irrigated fields. The average RE for all three fields 
indicated significant overestimation of total seasonal ETa by METRIC and ReSET models by 
over 50% while that for the DisALEXI model by about 30%. The percentage overestimation of 
total seasonal ETa by DisALEXI model is about 29% while SSEBop model underestimated the 
total seasonal volume by -10%.   
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Figure 34: Summary of seasonal total ETa (mm) for the months April-October for DisALEXI, 
METRIC, ReSET, and SSEBop models and ground-based EC measurements. 
 
Table 28: Summary of models performance on the total seasonal ETa estimates compared to 
measurements. 

 Total Seasonal ETa (mm)  RE (%) 

 US-Ne 1 US-Ne 2 US-Ne 3  US-Ne 1 US-Ne 2 US-Ne 3 Average 

Measured 543 555 464      

DisALEXI 690 691 631  27% 25% 36% 29% 

METRIC 822 806 741  51% 45% 60% 52% 

SSEBop 516 501 395  -5% -10% -15% -10% 

ReSET 837 840 721  54% 51% 55% 54% 
RE: relative error = (estimated-measured)/measured 
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APPENDICES 

 

Appendix A 

Summary of area average daily ETa estimates for PVID during satellite overpass dates based on 
all models including their average (Average).  
 
Table A1: List of Landsat 5 scenes over the PVID and used in the analysis spatial average ETa 

No  DOY 
(2008) 

DisALEXI METRIC  ReSET  SEBS SSEBop Average 

1  19 1.47 1.79 1.67 0.02 0.07 1.00 

2  42 2.30 1.96 2.20 1.25 1.65 1.87 

3  58 2.84 2.85 2.52 1.45 2.53 2.44 

4  67 2.78 3.08 3.09 1.49 1.88 2.47 

5  83 3.37 4.32 3.89 2.07 3.55 3.44 

6  99 3.71 4.37 3.96 2.23 4.27 3.71 

7  115 3.75 4.46 4.31 3.33 4.98 4.17 

8  131 4.49 4.35 4.01 2.43 4.19 3.89 

9  138 4.58 4.83 3.82 3.29 3.93 4.09 

10  147 4.54 4.27 3.65 3.61 4.98 4.21 

11  163 4.74 6.30 5.98 3.03 5.00 5.01 

12  170 4.98 5.68 4.22 3.88 5.53 4.86 

13  195 4.85 5.24 4.81 3.60 4.69 4.64 

14  211 4.45 5.25 5.41 3.32 4.75 4.63 

15  218 4.18 6.50 6.29 1.69 2.03 4.14 

16  234 3.53 5.09 4.62 2.87 3.54 3.93 

17  259 3.66 3.91 3.33 3.35 3.79 3.61 

18  275 2.83 2.70 2.38 2.66 2.99 2.71 

19  291 2.18 2.52 2.30 2.26 1.97 2.24 

20  314 1.68 3.04 3.14 2.36 2.79 2.60 

21  323 1.51 1.16 1.07 1.60 1.22 1.31 
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Introduction 
The San Rafael River in South-Central Utah, is in a severely degraded state and on the 303(d) list 
of degraded waters, with a low abundance of native fish species, poor fish habitat quality, limited 
native riparian vegetation recruitment, and abundant stands of non-native tamarisk (UWDR 2006; 
Budy et al. 2009). A large-scale restoration scheme is being implemented by both federal and state 
agencies and other entities, including the Utah Center for Water Resources Research (UCWRR) 
at the Utah Water Research Laboratory, Utah State University.  As part of the monitoring program, 
the UCWRR flew an Unmanned Aerial System (UAS) over the river during the autumn of 2015. 
The resulting data and analyses provided by the AggieAirTM Flying Circus will be used to support 
the ongoing efforts of the San Rafael restoration process. The research results from this project 
also add to the body of knowledge regarding the accuracy and limitations of the use of inexpensive 
UAS platforms to provide data, such as digital elevation and terrain models, in place of more 
conventional and expensive approaches (e.g., LiDAR). 

Methods 
The Minion 2.0 UAS was the aerial platform employed by the AggieAir Flying Circus ™ Service 
Center (aggieair.usu.edu) for this project. Minion 2.0 is a traditional fixed-wing aircraft with a 2.7-
m wingspan and 1.2-m total length that carries a payload of two Lumenera Lt965R industrial-grade 
cameras (RGB & NIR 12 MP) and one ICI 9640 Thermal camera (TIR).  Minion was deployed at 
multiple locations along the San Rafael River to capture aerial imagery of the river channel and 
riparian corridor. The UAS was pre-programmed with individual flight lines (9 in total) at 450 m 
above ground level (AGL) to obtain a pixel resolution of approximately 0.10 m for RGB and NIR 
and 0.57 m for TIR  

Orthomosaic Generation 
The imagery captured over the San Rafael River was processed through Agisoft PhotoScan 
Professional (Agisoft LLC, 2016). This is a stand-alone software product that performs 
photogrammetric processing of digital images and generates 3D spatial data. During each flight, 
the UAS continually records its position as each frame is captured along with yaw, pitch, and roll. 
This information is used to produce an orthorectified digital number mosaic. Additionally, the 
software creates a high-density point cloud surface, which is exported as a point file or as a digital 
surface model (DSM).  Imagery from both the RGB and NIR was processed to produce a DSM 
with a similar pixel resolution of 10.5 cm (Figure 1).  The DSM’s that were created for each of the 
9 flights along the San Rafael River were analyzed and ultimately compared to the 2013 Bare Earth 
LiDAR (San Rafael LiDAR 2013) data for vertical and horizontal accuracy. 

http://www.sciencedirect.com/science/article/pii/S0305440312000866#bib1


 
Figure 1.  Example digital surface model (meters) from Agisoft PhotoScan Professional, (Flight 1, San Rafael River 
2015). 

Thermal Image Calibration 
Thermal imagery was captured during all flights, clipped to the pixels representing the river 
channel, and then calibrated using temperature sensors that were located within the river. A 
relationship was established between these deployed instream temperature probes and the 
temperature values extracted from the mosaic at the corresponding locations and used to calibrate 
the thermal imagery.  Figure 2 below represents a close up of the clipped calibrated thermal 
imagery for the river in Flight 1. 
 



Figure 2. Thermal output from Agisoft Photoscan Professional, (Flight 1, San Rafael River). 

 
Horizontal and Vertical Accuracy Assessment 

The main objective of this research was to compare relative vertical and horizontal value estimates 
from the AggieAir derived DSM data with data captured from a LiDAR flight (San Rafael LiDAR 
2013). The vertical assessment was performed using the Agisoft DSM output (one for RGB and 
one for NIR for each flight).  The horizontal assessment was performed using the RGB digital 
number mosaic.  Due to the 2013 LiDAR having been captured 2 years prior to the AggieAir 
imagery, the areas selected for analysis were refined to stable non-changing surfaces (i.e., bare 
ground, rock, or other hard surfaces) and avoiding any steep slopes. The horizontal and vertical 
accuracy was characterized using the National Spatial Data Accuracy Statistic and Root Mean 
Square Error as outlined in Minnesota Planning. Land Management Information Center, 1999, P.4 

The National Standard for Spatial Data Accuracy (NSSDA) statistic is obtained by calculating 
three values: 

• The sum of the set of squared differences between the test dataset and the independent data 
set. 



• The average of the sum, obtained by dividing the sum by the number of test points 
evaluated. 

• The root mean square error statistic (RMSE), which is the square root of the average.   
 
The NSSDA statistic is determined by multiplying the RMSE by a value that represents the 
standard error of the mean at the 95 percent confidence level:   
 

1.7308 when calculating horizontal accuracy  
1.9600 when calculating vertical accuracy 

 
The percentage of random points and level of accuracy assessed for Flight 1 (Table 1) shows that 
2930 points fell within the Flight 1 RGB DSM Footprint.  Using 100% of the points resulted in a 
Root Mean Square Error (RMSE) of 0.774, with a vertical accuracy of 1.52 m National Standard 
for Spatial Data Accuracy, (NSSDA) (Minnesota Planning 1999). Also shown in Table 1 are a 
20% sample of randomly selected points for each flight and all points with difference values (Z2) 
less than 1, 0.5, 0.2, 0.1, and 0.05.  More than half (54.5%) of all of the points within the Flight 1 
RGB DSM had an RMSE of 0.121 with an NSSDA vertical accuracy of 0.237 m.   

Table 1. Vertical accuracies for Flight 1 San Rafael River RGB DSM versus 2013 Bare earth LiDAR.  

 

The highest vertical accuracies have the smallest difference (Z2) values.  Initial investigations have 
determined that points with lower accuracy are close to vegetation, near the edge of the imagery, 
or near areas of high relief.  

In this specific example, horizontal accuracy was calculated for Flight 1 (Table 2) with a RMSE 
of 0.577 and an NSSDA of <1 m.  Twenty points were selected from well-distributed points with 
identifiable features.  American Society of Photogrammetry & Remote Sensing (ASPRS) class 
values and appropriate scales for horizontal accuracy were determined from the RMSE and the 
(NSSDA) values.  

An alternative method to the NSSDA is provided by the American Society of Photogrammetry & 
Remote Sensing (ASPRS) as explained below: 

Explanation of ASPRS Accuracy Standards for Large-Scale Maps 

ASPRS Accuracy Standards for Large-Scale Maps (ASPRS Specifications and Standards 
Committee, 1990) provide accuracy tolerances for maps at 1:20,000-scale or larger 

Flight 1 PCT Points RMSE NSSDA (m) Description Level (diff z2)
100.00% 2930 0.774 1.517 100 % of random points 100%

20.00% 587 0.812 1.592 20 % of random points 20% random
88.87% 2604 0.311 0.61 eliminate all points >1 1
84.47% 2475 0.253 0.495 eliminate all points >0.5 0.5
77.27% 2264 0.201 0.394 eliminate all points >0.2 0.2
67.17% 1968 0.159 0.312 eliminate all points >0.1 0.1
54.54% 1598 0.121 0.237 eliminate all points >0.05 0.05



“prepared for special purposes or engineering applications.” RMSE is the statistic used by 
the ASPRS standards. Accuracy is reported as Class 1, Class 2, or Class 3. Class 1 accuracy 
for horizontal and vertical components is discussed below. Class 2 accuracy applies to 
maps compiled within limiting RMSE’s twice those allowed for Class 1 maps. Similarly, 
Class 3 accuracy applies to maps compiled within limiting RMSE’s three times those 
allowed for Class 1 maps. 

(Geospatial Positioning Accuracy Standards, 1998, 3.1, p. 3-22, 23) 

Flight 1 differs from all other flights for accuracy as horizontal control came in the form of air 
photo targets with RTK GPS post-processed to cm level accuracy. 

Table 2. Horizontal accuracy using 20 points from Flight 1. 

 

 

Conclusions 
A total of 9 UAS flights were successfully completed along 55 river miles of the San Rafael River, 
South-Central Utah. A combination of imagery was captured, including RGB, NIR, and thermal. 
This has allowed the following to be developed; 

1. Color visual (RGB) orthorectified mosaics for all 9 flights at 0.1 m pixel resolution 

2. Near-infrared (NIR) orthorectified mosaics for all 9 flights at 0.1 m pixel resolution 

3. Calibrated orthorectified thermal mosaics for all 9 flights at 0.57 m pixel resolution 

4. Digital Surface Models (DSMs) in raster format for all 9 flights in RGB and NIR at 0.1 
m pixel resolution 

DSMs derived from RGB mosaics in Agisoft had higher accuracies as a whole than DSMs derived 
from NIR mosaics, which we believe is due to the image quality.  NIR capture data is inherently 
“noisy” due to the NIR long pass band filter.  Color imagery (RGB) also has more noticeable 
features. 

The highest vertical accuracies have the smallest difference Z2 values.  Initial investigations have 
determined that points with lower accuracies are placed close to vegetation, near the edge of the 
imagery, or near areas of high relief, and all of these situations are expected outcomes. 

 

  

sum 6.659
Class 1 Class 2 Class 3 average 0.333

0.577 0.29 0.19 RMSE 0.577
1:4,000 1:2,000 1:1,000 NSSDA 0.999

ASPRS
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Managing Western Irrigation Systems in the Face of Urbanization 
2014UT195B 
May 1, 2016 

 
PROJECT LEAD: Douglas Jackson‐Smith 
 

Problem and Research Objectives: 

Most irrigation water in the Intermountain West region is managed, distributed, and delivered to 
individual farmers by thousands of local irrigation or canal companies who operate an estimated 72,000 
km of main irrigation canals (and much larger amounts of minor canals and ditches) in mountain valleys 
across the West.  While much less studied than the much larger federal dam and water distribution 
systems in the West, these organizations remain a vital link in the agricultural irrigation systems 
throughout this region.  In recent decades, the growth of residential settlement in the Intermountain 
West is occurring mostly on formerly irrigated agricultural lands.  The shifts in the socio‐demographic 
characteristics of shareholders and changes in land use patterns associated with urbanization pose new 
challenges to the performance and long‐term viability of local irrigation systems.  This project will 
provide irrigation and canal companies in Northern Utah with scientifically‐based data on the 
characteristics, behaviors, attitudes, and information needs of their shareholders.  Since most 
contemporary shareholders do not actively participate in company planning or decision‐making 
processes, these companies have few opportunities to learn about many of their members.  In this 
project, we are collaborating with leaders of three irrigation companies in Northern Utah to develop, 
distribute, and analyze results from a mail survey instrument to be sent to a sample of their shareholder 
members representing a diverse set of land use contexts along the gradient of urbanization.  Results will 
be useful to the participating companies as they make plans for future investments in new infrastructure 
and/or operating procedures. 
 
This project is designed to help local canal and irrigation companies in Northern Utah better understand 
and adapt to changes associated with the urbanization of an irrigated agricultural landscape.  The 
specific objectives that guide project activities include: 

 document the diverse characteristics of representative shareholders of irrigation companies 
located along a gradient of urbanizing environments 

 better understand the ways that farmer vs. non‐farming shareholders of irrigation 
companies manage their secondary water allocations  

 identify the key opportunities and challenges faced by irrigation companies as they adapt to 
changes in land use and urban pressure 

 

Methodology: 

Activities (since the May 15, 2015 report): 

 We received agreements from four irrigation companies to gain access to their shareholder 
lists in mid‐summer 2015, and implemented a multi‐wave mail survey of a random sample 
of these shareholders beginning on July 31, 2015.  The survey data collection extended until 
October 15, 2015. 

 Overall, surveys were sent to 1,161 shareholders across the four companies. Just 
over half of the surveys went to members of the largest company (the Cache 
Highline Water Association). To be eligible to complete the survey, shareholders had 



to currently own shares and have utilized their water shares themselves at some 
point during 2015. About 15 percent of all shareholders in our sample were 
disqualified because their surveys were undeliverable to the address we were 
provided, were not using their shares themselves, or represented a large number of 
separate water users who had combined membership in a smaller irrigation group 
or association (which then held shares in the larger company from which we drew 
our sample). The disqualification rates were higher for the smaller irrigation 
companies (perhaps because their lists were less frequently updated). 

 Of the remaining 987 eligible households, we received responses from 649, an 
overall response rate of 65.8%.  Response rates across the four companies ranged 
from 55‐58% in Benson and Midway to 64‐70% in the Cache Highline Water 
Association and Logan Northwest Field Canal samples. These high response rates 
are a testament to the relevance and importance of the survey to most 
respondents, and suggest that the findings are a reasonably accurate estimate of 
the characteristics of shareholders throughout the respective irrigation companies. 

 We spent the fall and mid‐winter processing the surveys and analyzing the data. A draft 
report of the results was shared with the board of the Logan Northwest Field Irrigation 
Company in early March, and we revised the report significantly based on their input. We 
then made formal presentations at the LNFIC Annual Shareholders meeting (on March 25, 
2016), and to the CHWA board on May 5, 2016. We have scheduled to present to the 
Midway Irrigation Company board on July 11, 2016. 

 The full written technical report was finalized in early May, 2015, and will be posted to the 
USU Digital Commons report shortly. We also plan to send postcards with links to the on‐
line final report to survey respondents to enable them to see the full survey results. 
 

 
Principal Findings and Significance: 
 

 The survey findings have been summarized for each of the four companies and for the 
combined sample in a technical report “A Profile of Irrigation Company Members in Utah’s 
Urbanizing Landscapes.” Key findings include: 

 Farming is still an important goal, but that it is changing with the gradual acquisition 
of shares by nonfarming members.  

 Each company has a relatively small number of shareholders who control the large 
majority of shares in the company, so most water in these companies is still used for 
commercial agricultural operations. 

 Most shareholders have been long‐time members and are relatively familiar with 
the procedures for using their shares and participating in company decisions.  That 
said, newer members and those with relatively few shares are less well acquainted 
with how the irrigation company operates, and many feel unsure how to get 
involved in company governance.  

 The factors that irrigators consider when making irrigation decisions did not differ 
dramatically between farming and nonfarming (or large vs. small shareholder) 
respondents.   

 Many said they use less water than their shares allow them to use, and a minority 
say they always use their full water share, though larger shareholders were more 
likely to report using their full shares.    



 Informal social ties remain important to sharing knowledge about how to irrigate 
and to address issues that arise during the irrigation season. However, nonfarmers 
and those with fewer shares relied more on previous owners than relatives to learn 
about their irrigation system, and not many were deeply involved in company 
decisions. 

 Most shareholders are satisfied with their irrigation shares and the irrigation 
company.  

 Our results did not uncover evidence of high levels of tension between farmer and 
nonfarmer shareholders, but a small minority of large shareholders with commercial 
farming operations did indicate significant number of negative experiences and 
conflicts.  Similarly, impacts from urbanization and land use change were more 
commonly reported by larger shareholders and in companies that have fewer non‐
farming members.   

 The most commonly cited problems were impacts associated with city stormwater 
running into company canals, and impacts associated with new housing 
development and encroachment by new residents onto irrigation company 
infrastructure.   

 Over two‐thirds of shareholders expressed concern about whether there is 
sufficient water to meet the current or future needs of all shareholders in the 
company. A majority recognized that increasing water conveyance efficiency could 
increase their available water supply, but less than a third said they were willing to 
pay more to reduce seepage if they got more irrigation water.  Larger shareholders 
were most likely to see benefits from piping irrigation canals. 

 Taken as a whole, there is evidence that the changing face of irrigation company 
membership will introduce new challenges for irrigation company management and 
operations. These companies appear to have developed infrastructure and decision‐
making processes that are primarily targeted at meeting the needs of the largest 
shareholders (who use the vast majority of the water supplied by the company.  Yet 
the overwhelming bulk of their shareholders (who admittedly own just a minority of 
total water shares) have less and less interest in using their water for productive 
agricultural uses, and have different concerns and priorities than the large 
shareholding farmers.  

 Results of the surveys were also presented (or are planned to be presented) to the Boards of 
Directors of three of the four companies. 

 The final technical report will be posted to USU’s Digital Commons and information about 
how to access the report will be sent to the Boards of Directors for each company, and to  

 

REPORTABLE PRODUCTS: 

Over the past year, the project has resulted in three potential publications, seven research presentations at 
professional conferences and stakeholder meetings, and one graduate degrees. 

Publications: 

1. Armstrong, A. and D. Jackson-Smith. Under Review. Connections and collaborations in 
local water management organizations of Utah. Submitted to Society and Natural 
Resources February 2016. 



2. Jackson-Smith, D., B. Nielsen, and A. Armstrong. In Preparation. New Faces in Old 
Places: Impacts of Urbanization and Social Change on Irrigation Companies in Northern 
Utah. Paper manuscript planned for submission to Rural Sociology. 

3. Jackson-Smith, D. and B. Nielsen. “A Profile of Irrigation Company Members in Utah’s 
Urbanizing Landscapes.” Technical Research Report. Plans to publish on USU Digital 
Commons May 2016.  

 

Presentations: 

Research Presentation (based on above project(s) - citation) 

1. Armstrong, A. and D. Jackson-Smith. 2015. “Cross-boundary Connections in Sustainable 
Stormwater Policy and Management.” Presentation at 2015 Meetings of the Association 
for Environmental Studies and Sciences (AESS), San Diego, CA, June 25. 

2. Nielsen, B. and D. Jackson-Smith. 2016. “Impacts of Urbanization and Social Change on 
Dynamics of Water Management in Local Irrigation Companies in Northern Utah.” 
Presentation at USU Student Research Symposium, Logan, UT, April 14. 

3. Nielsen, B. and D. Jackson-Smith. 2016. “Impacts of Urbanization and Social Change on 
Dynamics of Water Management in Local Irrigation Companies in Northern Utah.” 
Presentation at International Symposium on Society and Natural Resources, Houghton, 
MI, June 22-26. 
 

Stakeholder Research Presentation (based on above project(s) - citation) 

4. Jackson-Smith, D and B. Nielsen. 2016. “Highlights of Results of Irrigation Shareholder 
Survey” Presentation to Board of Directors, Logan Northwest Field Irrigation Company, 
Logan, UT, March 10. 

5. Jackson-Smith, D and B. Nielsen. 2016. “Highlights of Results of Irrigation Shareholder 
Survey” Presentation at Annual Shareholder Meeting, Logan Northwest Field Irrigation 
Company, Logan, UT, March 25. 

6. Jackson-Smith, D and B. Nielsen. 2016. “Highlights of Results of Irrigation Shareholder 
Survey” Presentation to Board of Directors, Cache Highline Water Association, Logan, 
UT, May 5. 

7. Jackson-Smith, D and B. Nielsen. 2016. “Highlights of Results of Irrigation Shareholder 
Survey” Presentation to Board of Directors, Midway Irrigation Company, Logan, UT, 
July 11. 

 

Degrees granted: 

Armstrong, A. Sociology PhD. June, 2015. (professional placement—obtained a tenure-
track faculty position in the Department of Environmental Studies at LaFayette College 
in Easton, PA. Started January 2016). 
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NIWR Report: Information Systems for Landscape Water Conservation (104B) 
2015UT196B 

Kelly Kopp and David K. Stevens 
 
Problem Description 
 
Drought and the increase in population in Utah and throughout the Intermountain West have 
created water shortages in the region.  The population continues to grow faster than anywhere 
else in the United States and homeowners in Utah use approximately 60% of potable water to 
irrigate landscapes (Utah Division of Water Resources, 2003).  Because water is a limited 
resource, the need for conservation of landscape irrigation water has become increasingly 
important.   
 
Although water is used in high amounts for other purposes as well, “a landscape may serve as a 
visual indicator of water use to the general public due to its visual exposure” (Thayer, 1976).   
As homeowners become more aware of landscape water conservation alternatives, attitudes 
toward drought tolerant landscapes may change throughout the United States.  In 1979, 
Hancock suggested that residential landscape water conservation is “essential to establishing a 
successful water policy aimed at curbing use in all sectors of water conservation” (Hancock, 
1979).   The use of non‐adapted plant species, irrigation system non‐uniformity, poor landscape 
management, and poor landscape design all contribute to excessive water use on landscapes in 
the state. 
 
Many difficulties arise, however, at the prospect of improving landscape irrigation efficiency.  
Obstacles to improvement such as initial startup costs, lack of adequately trained industry 
professionals, and unfavorable consumer reaction are all concerns facing municipalities as they 
encourage landscape irrigation efficiency.  Perceived fairness and equity also become an 
obstacle when water conservation measures are applied uniformly to all users at all times, 
when excess irrigation often is greatest in certain segments of the water‐consuming public 
(Kjelgren, 1999).  Consequently, those persons watering their landscapes in an efficient manner 
only serve to subsidize any costs arising from those persons who are watering inefficiently.  
Identifying the ‘who’ and ‘when’ of landscape water demand will help water suppliers to better 
target conservation measures.  In this technology‐oriented society, many water suppliers have 
the capacity to analyze landscape water use by using their existing water billing data, including 
such information as lot size, tax identification information, and historical water use. 
 
Since 1999, the Center for Water Efficient Landscaping at Utah State University has been 
cooperating with the state’s major water agencies and suppliers to provide landscape irrigation 
system evaluations for residential and commercial irrigators.  Voluntary participants receive 
customized irrigation schedules based on their irrigation systems’ efficiency.  The program 
quantifies water use improvements by combining water use and billing records, dynamic 
evapotranspiration (ET) rates and information regarding landscape size and irrigation system 
efficiency.  Over time, estimations of landscape water demand from reference ET rates can be 



compared to historical water use and billing records in order to create profiles of landscape 
water users within a given service area. Conservation measures may then be more 
appropriately directed toward those consumers who are using water inefficiently. 
 
Research Objectives 
 
Methods for analyzing historical water billing data, acquired from water providers, for 
identifying water customers with a high capacity to conserve landscape irrigation water are 
complex due to the nature of the data.  High capacity to conserve water customers are those 
customers that utilize irrigation water in great excess of actual plant water requirements.  Using 
historical water billing data, and coupling the information with the size of specific properties, a 
reasonable estimate of appropriate water use may be made.   
 
Appropriate database and information systems are needed to mine the large datasets 
associated with water billing data and to perform customized calculations appropriate to 
different water providers. This project began the development of appropriate database and 
information systems and the association of these systems with existing landscape irrigation 
system evaluation data (gathered since 1999) with the overall objective of helping the state’s 
water agencies identify consumers with a high capacity to conserve landscape irrigation 
water. 
 
A further objective of the project is to identify obstacles to landscape water conservation for 
consumers with a high capacity to conserve, such as inefficient irrigation systems, a lack of 
education, or general unwillingness to conserve water (due to attitudes or improper water 
pricing signals). 
 
The project, which began in 2015/2016, will be completed in stages over a period of 3 years, 
which is the typical time frame for the completion of a doctoral level research project.  This 
proposal funded the first stage of the project (1 year), and included the development of the 
database required to meet the overall project objective.  
 
Historically, accessing water billing data across multiple agencies has been difficult because of 
data inconsistencies and general difficulty of use.  Automating billing data analysis eliminates 
the arguably tedious task of going through billing data line‐by‐line, trying to ensure proper 
formatting.  This project identified and utilized new methods of mining water billing data and 
combined these methods with existing landscape irrigation system evaluation data to identify 
properties and water customers with the highest potential to conserve water, as well as to 
determine the overall water‐saving benefits of an existing landscape irrigation system 
evaluation program.  We refined current methods for determining the capacity of water 
customers to conserve by analyzing historical water use and comparing it to an estimated water 
use budget.  
 
 
 



Methodology 
 
Related to this project, a Utah‐based irrigation system evaluation program, a.k.a. The Water 
Check Program (WCP), has developed a mobile application (app) to aid in the collection of 
program data, calculations of complicated equations, and the production of educational 
materials for program clients. 
 
In concert with the app for program data collection, a Structured Query Language (SQL) 
database was developed from the WCP’s original Microsoft Access database.  SQL is a 
programing language designed for managing data held in relational databases. Relational 
databases store information about data and how variables are related to each other. Since 
1986, SQL has been the database standard in the American National Standards Institute (ANSI). 
 
When used in conjunction with the WCP app, the SQL database allows for the acceptance of 
field data collection by one or multiple users remotely, while also allowing system 
administrators the ability to generate custom reports and user access modifications.  A 
customized, web‐based database query tool was also developed as part of this project.  
 
The information system and database development were integrated with statistical modeling 
tools for mining water billing data.  These were combined with existing landscape irrigation 
system evaluation data in order to identify water consumers with a high capacity to conserve.  
Training for a graduate student in database development and use, along with relevant 
statistical methods, was initiated. 
 
We accessed the water billing databases for one major water retailer in Salt Lake County, Utah.  
This retailer, the Salt Lake City Department of Public Utilities (SLCDPU), allowed us to use their 
water billing databases and staff resources for the purposes of this project.  The SLCDPU water 
data are especially desirable due to the general accessibility of their consumption data.  
However, additional water utilities/providers will be incorporated over time.   
 
One obstacle to using water billing data among different water agencies is in the formatting of 
the data.  Each water agency uses a different, and sometimes custom, format for their data.  
Many fields have differing names (i.e., Account Number versus Service ID), text‐based or 
numerical fields, ordering of fields, etc.  CWEL developed a tool to import relevant water use 
data from SLCDPU so the data were more easily used for common analyses.   
 
Principal Findings and Significance 
 
One year into this 3‐year project, the SQL database that has been developed is allowing for 
enhanced analysis of WCP program participant data, as well as analysis of the water use of the 
entire Salt Lake City Department of Public Utilities (SLCDPU) service area.  For example, 2013 
WCP program participants were found to be using 25,000 gallons of water monthly for outdoor 
irrigation.  The average single family home in the service area during the same time period was 
using 17,000 gallons of water monthly for outdoor irrigation.  Following WCP participation, 



2013 participants reduced their monthly irrigation by 8000 gallons monthly, bringing their 
overall water use down significantly and bringing them more in line with other city residents. 
 
Customized reporting based on specific data fields such as zip code, landscaped area (and 
more), plus the ability for advanced statistical analyses, including regression, correlations or 
analysis of variance are now possible.  For example, with the new database, we can easily 
identify the total area of turf area audited in the SLCDPU. This data is now being associated 
with water savings and efficiency and will help guide water conservancy districts and utilities in 
their conservation efforts. 
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Abstract 
Biofiltration of drinking water supplies is a promising method to reduce the potential for production of 
disinfection by products and to minimize the regrowth of microorganisms in water distribution systems. 
Because of the site-specific nature of the implementation of this technology, the proposed project will 
study, at pilot scale, the potential for using biofiltration for reducing and modifying the organic matter 
content of drinking water at the Duchesne, Utah plant managed by the Central Utah Water Conservancy 
District water utilities, and to develop preliminary information pertaining to the design and operation of 
such utilities. 

Problem Description 
Organic compounds have been problematic in source waters for municipal water supplies since the 
advent of modern filtration. Historically, organic compounds caused operational problems due to the 
promotion of uncontrolled biological growth on treatment plant surfaces and in plant piping. They have 
also caused problems in finished water related to the residual taste and odor that prompt consumer 
complaints. Since the 1970s it has been recognized in the water treatment community that some 
organic compounds in source waters may react unfavorably with chlorine-containing disinfectants to 
form trihalomethanes (THMs) and haloacetic acids (HAAs) in finished water, of which some are known 
or suspected human carcinogens. In addition, some organic compounds found in source water are toxic 
in their own right; microcystin and geosmin are often present in surface water supplies influenced by 
certain cyanobacteria.  

Biofiltration has been used to some extent in Europe to remove these naturally occurring organic 
compounds from source waters since the 1970s, and in North America since the later 1980s. The 
biological processes currently in engineering practice in North America include natural processes such as 
slow sand and river bank filtration both of which are currently regulated. Additional processes include 
anoxic treatment during which oxidized organic compounds are reduced to forms more readably 
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removed by conventional or advanced physical/chemical water treatment, or natural organic matter is 
used to reduce nitrate concentrations via denitrification. More recently, aerobic granular filters, in which 
existing granular rapid sand filters are allowed to develop aerobic biofilms capable of reducing the 
concentrations of assimilable organic carbon (AOCs). A review of biological filtration in both water and 
wastewater treatment is found in Chaudhary et al. (2003). 

An important element in the use of any new technique is to be able to measure its performance. 
Traditionally, the performance of BWT systems is determined via the measurement of the amount of 
organic matter at each stage of treatment in the form of overall measures such as AOC (above), 
carboxylic acid concentration (CBXA), among others. Though well established, these measures are time 
consuming multistep lab methods that are unwieldy to use for process control. Using the idea that more 
pertinent measures for incremental biological activity in a biofilter may be suitable, another option may 
be to using a direct measure of metabolic activity, the adenosine triphosphate (ATP) concentration 
(Pharand et al. 2014), for which instrumentation is now in common use, may yield a process activity 
measure that can be correlated with treatment performance measures, such as carboxylic acids (CBXA). 

In as much as every engineering problem is local, the history of biological water treatment in Utah is 
short and it’s necessary to assess the potential for biofiltration water treatment in Utah Drinking Water 
Treatment Plants. Biofiltration for drinking water has been more extensively applied in Europe than in 
the U.S., though significant research was carried out in the U.S. to study the science of biofilm formation 
and activity in granular filters, primarily reported by the American Water Works Association (e.g., 
Ahmad et al. 1998a,b, Alonso et al. 1998, Bablon, et al. 1988, Boe-Hansen et al. 2002). We are proposing 
here a preliminary study of the application of biofiltration in Utah Drinking Water Plants. 

This report describes monitoring results from the Duchesne Drinking Water Biofiltration project in 
conjunction with the Utah Department of Environmental Quality, Division of Drinking Water (UDEQ), the 
Central Utah Water Conservancy District (CUWCD), and Utah State University (USU). A pilot plant 
located at the CUWCD’s Duchesne Water Treatment plant has been operated in parallel with the main 
plant to test three methods related to biofiltration for the control of organic matter that may be 
disinfection byproduct precursors (DBPp). Details of the filters are provided below. Weekly Monitoring 
at several locations in the main plant and the pilot plant, and in the distribution system commenced in 
April 2015 and samples of the pilot plant filter media were obtain less frequently. This report is a 
preliminary assessment of the results. 

Research Objectives 

Objectives 
The proposed project has as its primary objective the assessment and optimization of biofiltration in 
selected Utah Drinking Water Treatment plants at pilot scale. 

Hypotheses 
The research effort was built around the following scientific/engineering hypotheses: 



1. Biofiltration is an effective way to reduce organic matter from Utah source waters 

2. Biofiltration can be used to gain the following potential benefits: enhanced organics removal, 
enhanced turbidity removal, improvement of taste & odor, potential reduction in coagulant and 
polymer dose, reduction in disinfection by-products formation, and improvement of biological 
stability of water in distribution systems 

3. ATP measurements, along with CBXAs, could provide accurate, inexpensive, and easy to use 
tools to monitor the performance of biologically active filters and measure stability of filtered 
water. 

Methodology 
A series of designed experiments were carried out at the Central Utah Water Conservancy District’s 
water treatment plant in Duchesne, UT (Figure 1), to test the hypotheses outlined above. The plant was 
chosen in consultation with project partners from the Utah Division of Drinking Water, and the Utah 
Water Quality Alliance, composed of the staff from large and small water treatment plants in Utah and 
devoted to optimize treatment effectiveness to produce the highest drinking water quality possible. 
Pilot-scale filters were available at the plant that could be easily retrofitted to carry out biofiltration. . 
Three parallel process trains were used. In Pilot plant 1, prechlorination of the water was withheld. In 
Pilot plant 2, both prechlorination and backwash water chlorination were withheld. In Pilot plant 3, all 
chlorination was withheld and nitrogen and phosphorus were added to promote biological activity 
Influent, intermediate, and effluent water samples were collected weekly during this period and assayed 
for general water chemistry, heterotrophic plate count (HPC), dissolved and total organic carbon, 
UV254, ATP, nutrients (N and P), and other measures, and regular samples of the biofiltration media 

were collected during the study to assess the development of the biological consortia through 
microbiological analyses. 

Due to the short duration of the proposed project (April 2015 – March 2016), factorial experiments to 
assess how operational and source water variables influence biofiltration performance were not 
possible. Though we see these types of experiments as critical for future application of the technology, 
the experiments carried out here under naturally occurring variability provide sufficient preliminary 
information to seek external funds in a follow-on project. 

Based on USU’s experience with development of biological activity on filtration media (McNeill et al 
2015), it was anticipated that some time would be required for biofilter start-up.  



 
Figure 1 Central Utah Water Conservancy District – Duchesne Water Treatment Plant 

 

Figure 2 Pilot Biofilters at the CUWCD Duchesne WTP 



Detailed Methods 

Filter operation 
The pilot plant receives raw water from the influent line to the DWTP. Ferric chloride (FeCl3) is added to 
a static rapid mixer. Flow then passes to a flocculator with three basins, each with a residence time of 12 
min and a shear rate, G of 35 1/sec. After settling, flow is split between the three filters with the 
treatments given below. The filtration rate was the same for each filter of 0.2 m3/m2-min. The filters 
were backwashed every 20-50 hours when either the headloss or turbidity exceeded guidelines. 

Water quality monitoring 
During operation of the pilot-scale systems, each pilot treatment train was monitored weekly at three 
locations with replication of ~10% of the total samples. These samples were analyzed in the field for 
temperature, pH, dissolved oxygen, specific conductance, turbidity, UV254, and ATP. The methods are 

found in Table 1 in the Appendix. The samples were then split and preserved as needed for analysis at 
the UPHL using methods found in Tables 2-3 (Appendix A) and in the SHL Standard Operating Procedures 
(State of Utah, 2014). 

Bioactivity monitoring 
On a weekly basis throughout the pilot study, we assessed the ATP concentration associated with the 
filtration media within the biofiltration pilot plants to be used as a surrogate of the microbial activity. 
This was accomplished by sampling the filter media from each system, and measuring the ATP of a 
suspension of the washed medium. Samples were obtained weekly from each pilot plant, and assayed 
for ATP within 24 hours.  

Statistical analysis 
The monitoring data were collected in spreadsheets and entered into a Microsoft SQL Server database 
housed at the UWRL. Statistical analysis of the data was carried out using the statistical package R (R 
Core Team, 2016). Analysis methods included the analysis of variance and the Tukey HSD test. 

Principal Findings and Significance 

Statistical Analysis 
R was used to determine statistical significance between (1) the influent and effluent concentrations of 
the pilot plant, (2) the three different types of filters, and (3) the full-scale plant and pilot plant. The 
analysis of variance (ANOVA) method was used to determine these differences. The ANOVA method 
compares the amount of variation within treatments with the amount of variation between treatments 
(Berthouex and Brown, 2002). If the variation between treatments is significantly larger than the 
variation within treatments then there is evidence to suggest that the mean values of the samples are 
different. The Tukey’s Honest Significant Difference (Tukey HSD) method was then be used to determine 
which treatments differ from one another. The Tukey method uses a 95% family-wise confidence 
interval to compare the means between each pair of samples; therefore a p-value less than 0.05 would 
suggest statistical significance. 



Pilot Plant 

Description of Filters (Figure 2) 
• Pilot Plant 1: Easy Biofilter 

o No pre-chlorine 

o Chlorinated backwash 

• Pilot Plant 2: Biofilter 

o No pre-chlorine 

o Non-chlorinated backwash 

• Pilot Plant 3: Engineered Biofilter 

o No pre-chlorine 

o Non-chlorinated backwash 

o Added P and N 

Comparison of Influent and Effluent Water Quality 
Comparisons of influent and effluent concentrations within the pilot plant were made to determine the 
effect of biofiltration. These results cannot be compared directly with the full scale plant since CUWCD is 
practicing prechlorination at the Duchesne plant and the PP influent samples were taken on the raw 
water. 

NOM removal. TOC, UV254, and SUVA (specific ultraviolet absorption at 254 nm) are all commonly used 
to characterize natural organic matter (NOM) in raw and treated drinking water. One purpose of a 
biofilter is to reduce the amount of NOM in the effluent of a distribution system. A decrease in NOM 
would reduce the potential of forming disinfection by-product’s (DBPs) as well as improve the aesthetics 
of the water (taste and odor, primarily). Therefore, TOC, UV254, and SUVA (dissolved and total) were 
measured to determine if organic material was reduced across each filter. Time series plots showing 
change in concentration over time are found in Figure 3, and boxplots and 95% confidence intervals 
were plotted to show the spread of the data in Figure 4. For the 95% confidence level plots, statistical 
significance is implied if an interval does not cross zero (vertical dashed line in the right hand panel in 
Figure 4). 

Figures 3 and 4 demonstrate that TOC, UV254, and SUVA concentrations were decreased across all three 
filters for all sampling events from May through November 2015. An ANOVA plus TukeyHSD test found 
that the influent and effluent concentrations of all 4 parameters at each filter were statistically different. 
A table of the p-values can be found in the Appendix, Table A1. It can therefore be concluded that each 
biofilter captured and consumed NOM, as expected. Though significant statistically, the actual change in 
TOC was quite small compared to the surrogate measures suggesting that the changes in NOM due to 
bioactivity acted primarily to change the nature of the NOM to a form less sensitive to UV detection. 

 



 

Figure 3. Time series plot of TOC, UV254, and SUVA (dissolved and total) to compare influent vs. 
effluent concentrations. 

 

Carboxylic Acid Removal. One type of ozone by-product is low-molecule-weight organic molecules such 
as carboxylic acids (e.g. Acetate, Formate, and Oxalate) (Crittenden 2012). Therefore, carboxylic acids 
can also be used as a surrogate to estimate the amount of organic matter in a system if ozonation 
precedes filtration. A decrease in carboxylic acids across a filter would indicate good filter performance. 
Figures 5 and 6 show the pilot plant results. Figures 5 and 6 demonstrate that carboxylic acids were 
decreased across all three filters. An ANOVA and TukeyHSD test were conducted and found that the 
influent and effluent concentrations of all 4 parameters at each filter were statistically different. A table 
of the p-values can be found in the Appendix, Table A2. This is another confirmation that the biofilters 
are indeed capturing and consuming organic matter. 

 



 

 

Figure 4.  Boxplots and 95% confidence intervals of TOC, UV254, and SUVA (dissolved and total) to 
compare influent vs. effluent concentrations. 



 

Figure 5. Time series plot of Total Carboxylic Acids, Acetate, Oxalate, and Formate to compare 
influent vs. effluent concentrations. 



 

 

Figure 6. Boxplots and 95% confidence intervals of Total Carboxylic Acids, Acetate, Oxalate, and 
Formate to compare influent vs. effluent concentrations. 



Turbidity Removal. The primary purpose of any filter is to remove stray particles from the chemical 
treatment portion of the plant. Changes in turbidity are commonly measured to determine how 
effective a filter is at particle removal. High turbidity removal and low effluent turbidity would indicate 
an effective filter. Figures 7 and 8 show the pilot plants turbidity results. 

The large difference in turbidity from the influent to the effluent as well as the large turbidity removal 
demonstrated by each filter (Figures 7 and 8) suggests that all of the filters were working effectively. An 
ANOVA and TukeyHSD test were also conducted and found that the influent and effluent concentrations 
of the turbidity at each filter were statistically different. A table of the p-values can be found in the 
Appendix, Table A3. 

Biological Activity. One indicator of microbial activity is ATP; thus high ATP concentrations would 
suggest high biological activity. ATP concentrations were collected at the influent, at the three different 
filter effluents, and from the filter media. Filter media ATP concentrations will be considered in a later 
section. The concentrations were calculated in both units of RLU and pg ATP/mL. The ATP results in pg 
ATP/mL may have not been calculated correctly (Appendix, Figure A1), so Figures 9 and 10 only show 
ATP in units of RLU. The values were plotted on a log scale.  

Figures 9 and 10 show that the highest concentrations of ATP were seen at the influent. An ANOVA and 
TukeyHSD test were conducted and found that both Filters 2 and 3 were statistically different than the 
influent, but that filter 3 was not statistically different. It is not surprising that there are relatively high 
ATP concentrations in the plant influent since the raw water is from Starvation Reservoir with typical 
amounts of bacteria and algae, both of which produce ATP, especially at elevated water temperatures. 

 
 
 
 
 
 
 



 

Figure 7. Time series plot of turbidity to compare influent vs. effluent concentrations. 

 

Figure 8. Boxplots and 95% confidence intervals of turbidity and turbidity removal concentrations. 



 

Figure 9. Time series plot of ATP (on a log scale) to compare influent vs. effluent concentration. ATP 
was calculated in units of RLU. 
 
 
 
 

 

Figure 10. Boxplot and 95% confidence interval of ATP (on a log scale). 

 



These ATP observations were then correlated with CBXA observations in the water phase samples from 
the water quality monitoring (Figure 11) for the pilot plant. This figure shows that Carboxylic Acid, total 
is well correlated with the individual acid components, and ATP is moderately correlated with total CBXA 
and acetate (r = 0.47 and 0.45, respectively). However, when replotted for each sampling location (not 
shown), the only significant correlation with ATP in the pilot plant influent with acetate (r = 0.59), while 
for the pilot plant effluents, significant ATP correlations are in pilot plants 1 and 2 (r = 0.58 and 0.53, 
respectively) with formate, with none in pilot plant 3. These results suggest that the form of the CBXA 
depends on the biofiltration option with the effluent from pilot plants 1 and 2 favoring oxalate with pilot 
plant 3 slightly favoring acetate. 
 

 

Figure 11 Correlation Matrix for ATP and Carboxylic Acids – Pilot Plant Influent and Effluent. ‘*’ means 
correlation is significant at α = 0.05. Black points are pilot plant influent, red, blue, and 
green are pilot plant effluent 1, 2, and 3, respectively. 

Comparison of Biofiltration Methods 
A comparison of each biofilter was made to determine if the biofiltration management approach (i.e. 
chlorinated backwash or nutrient addition) had an impact on filter performance. 
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NOM removal. A separate ANOVA and Tukey test was made to compare each filter individually. Both 
the ANOVA and Tukey test found that there was no statistical difference between filter performance, 
within a 95% confidence interval, for TOC, UV254, or SUVA. The results can be found in the Appendix, 
Table A5. 
Carboxylic Acid Removal. The results for carboxylic acids were very similar to that of TOC, UV254, and 
SUVA; there was no statistical difference between the 3 different filters for total carboxylic acid removal, 
though which of the three CBXA components did differ somewhat. The findings can be found in the 
Appendix, Table A6. 

Turbidity Removal. There was also no statistical difference between each filter for final turbidity or 
turbidity removal. These results can also be found in the Appendix, Table A3. 

Biological Activity. The highest concentrations of ATP should be found on the filter media. Therefore it 
was concluded that the best comparison of microbial activity should be from filter media. Filter 3 should 
have the highest ATP concentrations due to nutrient additions and Filter 1 should have the lowest ATP 
concentrations due to the chlorinated backwash. Figures 12 and 13 show the results of ATP 
concentrations on filter media. ATP concentrations were plotted on a log scale. An ANOVA and Tukey 
test were conducted for the ATP concentrations on the media of each individual filter. It was found that 
each filter is statistically different than each other, the results can be found in the Appendix, Table A7. 
ATP concentration followed the expected trend. Filter 3 had the highest ATP concentrations and Filter 1 
had the lowest concentrations. The ATP results therefore suggest that there is a difference in biofilm 
makeup between each filter. 

Full Scale 
The full-scale and pilot plants were also compared to determine if the pilot plant exhibited similar 
characteristics to the full-scale plant. NOM and turbidity removal for the full scale and pilot plants were 
plotted together to make the comparison. The results can be found in Figures 14 through 17. For NOM 
removal (Figures 14 and 15) the influent concentrations of the full-scale plant were around the effluent 
concentrations of the pilot plant. The only variable that differed was TOC removal. For turbidity the pilot 
plant and full-scale plant showed similar results (Figures 16 and 17). The effluent concentrations of the 
pilot and full-scale plant for both NOM removal and turbidity were similar in all cases. 



 

Figure 12. Time series plot of ATP on filter media (on a log scale). ATP was calculated in units of RLU. 

 
 
 
 
 
 

 

Figure 13. Boxplot and 95% confidence interval of ATP on filter media (on a log scale). ATP was calculated in units of RLU. 

  



 

Figure 14. Time series plot of NOM removal to compare the full-scale plant (Filter Influent/Effluent) 
and pilot plant (PP Influent/Effluentx). 

  



 

Figure 15. Boxplot and 95% confidence interval of NOM removal to compare the full-scale plant and 
pilot plant. 



 

Figure 16. Time series plot turbidity to compare the full-scale plant and pilot plant. 

 

 

 

Figure 17. Boxplot and 95% confidence interval of turbidity to compare the full-scale plant and pilot 
plant. 



 

Figure 18 Boxplot and 95% confidence interval of ATP in water (on a log scale) to compare full-scale 
and pilot plant. 

 
Figure 19 Time series plot of Carboxylic Acid removal to compare the full-scale plant (Filter 

Influent/Effluent) and pilot plant (PP Influent/Effluent). 



 

 

Figure 20 Boxplot and 95% confidence interval of Carboxylic Acids to compare the full-scale plant and 
pilot plant. 



Summary and Conclusions 
A pilot water treatment system at the Central Utah Water Conservancy District’s Duchesne Water 
Treatment Plant consisting of three parallel units was operated for 12 months in a manner that 
promotes biological development in the filters. This was done by simple operational changes limiting the 
application of chlorine at intermediate process stages in all units and by adding nutrients (nitrogen and 
phosphorus) in the third unit. In units 1, 2, and 3, prechlorination was suspended, in units 2 and 3 
chlorination of the backwash water was suspended and in unit 3 nutrients were added to promote 
biological activity. Observations were made weekly from April 2015-March 2016 for a variety of water 
quality measures, including routine operational measures (turbidity, pH, dissolved oxygen, specific 
conductance, others), measures of organic matter (total organic carbon, UV absorbance, carboxylic 
acids), and a measure of biological activity (adenosine triphosphate, or ATP). The systems were sampled 
at the pilot plant filter influent and effluent, the full scale plant filter influent and effluent, and at a 
number of locations in the water distribution system. Additional samples for ATP were obtained from 
the filter media, where microorganisms tend to congregate. 

Comparisons of the influent and effluent concentrations of the pilot plant was made to determine the 
impact of biofiltration on water quality. It was found that NOM removal and turbidity were drastically 
decreased across all 3 filters. A comparison between each filter was also made to determine the impact 
of nutrient addition and chlorinated backwash. There was no statistical difference between filters for 
NOM removal or turbidity, but there was a statistical difference for ATP concentrations. Filter 3, which 
was the engineered biofilter, had the highest ATP concentrations and Filter 1, which had chlorinated 
backwash, had the lowest ATP concentrations. The pilot plant and full-scale plant was also compared. 
The influent concentrations for NOM removal and turbidity of the pilot and full-scale plant were 
dissimilar, but effluent concentrations were similar. 

This study demonstrated that the pilot scale biofilters effectively reduced the amount of organic matter 
measured both as UV254 (~60% removal) and carboxylic acids (~50% removal) from pilot filter influent 
to effluent in all three biofiltration modes. There was not difference in treatment performance between 
the three biofiltration alternatives, though there were small differences in the ATP content of the filter 
media. The removal of organic matter in the full scale plant operated in conventional mode was 
negligible. 

This project represents a first step toward making biofiltration a viable option in Utah Water Treatment 
Plants. Elimination of prechlorination appears to promote the development of a robust biological fauna 
in the filter media with no apparent impact of conventional filter performance (as measured by effluent 
turbidity). This may be beneficial for several reasons: 1) chlorine is expensive and can be hazardous to 
store at a water treatment plant, 2) chlorine production produces significant amounts of air and water 
pollution, imposing public health costs borne by the public, 3) the use of chlorine on raw water may lead 
to the lysing of cells from reservoir and some river sources that contain cyanobacteria, releasing 
cyanotoxins to the water that are soluble and difficult to remove by conventional treatment. 
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Appendix 
 

Table A1. Comparison of NOM removal from influent to effluent. 

 

Variable Sites Compared p-value Statistical Diff.
PP Effluent 2-PP Effluent 1 0.203 No
PP Effluent 3-PP Effluent 1 0.998 No
PP Influent-PP Effluent 1 0.000 Yes
PP Effluent 3-PP Effluent 2 0.266 No
PP Influent-PP Effluent 2 0.000 Yes
PP Influent-PP Effluent 3 0.000 Yes

PP Effluent 2-PP Effluent 1 0.946 No
PP Effluent 3-PP Effluent 1 1.000 No
PP Influent-PP Effluent 1 0.000 Yes
PP Effluent 3-PP Effluent 2 0.965 No
PP Influent-PP Effluent 2 0.000 Yes
PP Influent-PP Effluent 3 0.000 Yes

PP Effluent 2-PP Effluent 1 0.973 No
PP Effluent 3-PP Effluent 1 0.997 No
PP Influent-PP Effluent 1 0.000 Yes
PP Effluent 3-PP Effluent 2 0.996 No
PP Influent-PP Effluent 2 0.000 Yes
PP Influent-PP Effluent 3 0.000 Yes

PP Effluent 2-PP Effluent 1 1.000 No
PP Effluent 3-PP Effluent 1 0.999 No
PP Influent-PP Effluent 1 0.000 Yes
PP Effluent 3-PP Effluent 2 0.999 No
PP Influent-PP Effluent 2 0.000 Yes
PP Influent-PP Effluent 3 0.000 Yes

TOC     
[mg/L]

UV254 
[1/cm]

SUVA-D 
[mg/L]

SUVA-T 
[mg/L]



Table A2. Comparison of Carboxylic Acid removal from influent to effluent. 

 

Table A3. Comparison of final turbidity from influent to effluent and of turbidity removal. 

 

Variable Sites Compared p-value Statistical Diff.
PP Effluent 2-PP Effluent 1 0.888 No
PP Effluent 3-PP Effluent 1 0.974 No
PP Influent-PP Effluent 1 0.000 Yes
PP Effluent 3-PP Effluent 2 0.991 No
PP Influent-PP Effluent 2 0.000 Yes
PP Influent-PP Effluent 3 0.000 Yes

PP Effluent 2-PP Effluent 1 1.000 No
PP Effluent 3-PP Effluent 1 0.924 No
PP Influent-PP Effluent 1 0.000 Yes
PP Effluent 3-PP Effluent 2 0.934 No
PP Influent-PP Effluent 2 0.000 Yes
PP Influent-PP Effluent 3 0.000 Yes

PP Effluent 2-PP Effluent 1 0.896 No
PP Effluent 3-PP Effluent 1 0.630 No
PP Influent-PP Effluent 1 0.000 Yes
PP Effluent 3-PP Effluent 2 0.955 No
PP Influent-PP Effluent 2 0.000 Yes
PP Influent-PP Effluent 3 0.000 Yes

PP Effluent 2-PP Effluent 1 0.931 No
PP Effluent 3-PP Effluent 1 0.978 No
PP Influent-PP Effluent 1 0.000 Yes
PP Effluent 3-PP Effluent 2 0.737 No
PP Influent-PP Effluent 2 0.000 Yes
PP Influent-PP Effluent 3 0.000 Yes

Formate 
[ug/L]

TCBXA 
[ug/L]

Acetate 
[ug/L]

Oxalate 
[ug/L]

Variable Sites Compared p-value Statistical Diff.
PP Effluent 2-PP Effluent 1 0.995 No
PP Effluent 3-PP Effluent 1 0.978 No
PP Influent-PP Effluent 1 0.000 Yes
PP Effluent 3-PP Effluent 2 0.998 No
PP Influent-PP Effluent 2 0.000 Yes
PP Influent-PP Effluent 3 0.000 Yes

PP Filter 2-PP Filter 1 0.997 No
PP Filter 3-PP Filter 1 0.988 No
PP Filter 3-PP Filter 2 0.997 No

Turbidity 
[NTU]

Turbidity 
Removal 

[NTU]



Table A4. Comparison of ATP concentrations from influent to effluent in both units of RLU and pg ATP/mL. 

 

Table A5. Comparison of NOM removal by each individual filter. 

 

Variable Sites Compared p-value Statistical Diff.
PP Effluent 2-PP Effluent 1 0.954 No
PP Effluent 3-PP Effluent 1 0.019 Yes
PP Influent-PP Effluent 1 7.23E-05 Yes
PP Effluent 3-PP Effluent 2 0.066 No
PP Influent-PP Effluent 2 3.31E-04 Yes
PP Influent-PP Effluent 3 0.201 No

PP Effluent 2-PP Effluent 1 0.958 No
PP Effluent 3-PP Effluent 1 0.015 Yes
PP Influent-PP Effluent 1 2.20E-05 Yes
PP Effluent 3-PP Effluent 2 0.051 No
PP Influent-PP Effluent 2 1.00E-04 Yes
PP Influent-PP Effluent 3 0.129 No

ATP       
[RLU]

ATP            
[pg ATP/mL]

Variable Sites Compared p-value Statistical Diff.
PP Effluent 2-PP Effluent 1 0.078 No
PP Effluent 3-PP Effluent 1 0.977 No
PP Effluent 3-PP Effluent 2 0.112 No

PP Effluent 2-PP Effluent 1 0.519 No
PP Effluent 3-PP Effluent 1 0.984 No
PP Effluent 3-PP Effluent 2 0.617 No

PP Effluent 2-PP Effluent 1 0.685 No
PP Effluent 3-PP Effluent 1 0.911 No
PP Effluent 3-PP Effluent 2 0.905 No

PP Effluent 2-PP Effluent 1 1.000 No
PP Effluent 3-PP Effluent 1 0.978 No
PP Effluent 3-PP Effluent 2 0.972 No

SUVA-T 
[mg/L]

TOC [mg/L]

UV254 
[1/cm]

SUVA-D 
[mg/L]



Table A6. Comparison of Carboxylic Acid removal by each individual filter. 

 

Table A7. Comparison of ATP concentrations on the media of each filter in units of RLU and pg ATP/mL. 

 

Variable Sites Compared p-value Statistical Diff.
PP Effluent 2-PP Effluent 1 0.647 No
PP Effluent 3-PP Effluent 1 0.860 No
PP Effluent 3-PP Effluent 2 0.929 No

PP Effluent 2-PP Effluent 1 0.998 No
PP Effluent 3-PP Effluent 1 0.724 No
PP Effluent 3-PP Effluent 2 0.747 No

PP Effluent 2-PP Effluent 1 0.726 No
PP Effluent 3-PP Effluent 1 0.396 No
PP Effluent 3-PP Effluent 2 0.839 No

PP Effluent 2-PP Effluent 1 0.817 No
PP Effluent 3-PP Effluent 1 0.913 No
PP Effluent 3-PP Effluent 2 0.561 No

TCBXA 
[ug/L]

Acetate 
[ug/L]

Oxalate 
[ug/L]

Formate 
[ug/L]

Variable Sites Compared p-value Statistical Diff.
PP Media 2-PP Media 1 2.10E-06 Yes
PP Media 3-PP Media 1 0.00E+00 Yes
PP Media 3-PP Media 2 0.004 Yes

PP Media 2-PP Media 1 0.710 No
PP Media 3-PP Media 1 0.534 No
PP Media 3-PP Media 2 0.952 No

ATP 
[log(RLU)]

ATPpg 
[log(pg/mL)]



 

Figure A21. Time series plot of ATP concentrations on the media of each filter in units of pg ATP/mL (plotted on a log scale).  

 

 



Information Transfer Program Introduction

The individual research projects documented in the Research Project section of this report have information
and outreach components integrated within them. These include research findings published in the technical
literature and findings and water management models and tools provided on the web pages of the Utah Center
for Water Resources Research (UCWRR) and individual water agencies. Beyond this, Information Transfer
and Outreach activities through the UCWRR, the Utah Water Research Laboratory (UWRL), and Utah State
University (USU) have had an impact on the technical and economic development of the State of Utah. As
part of the UCWRR outreach activities supported by USGS 104 funds, there continues to be a vigorous
dialogue and experimentation with regard to the efficiency and effectiveness of outreach activities of the
UCWRR. Faculty are engaged in regular meetings with State of Utah water resources agencies, including the
Department of Environmental Quality (DEQ), the Department of Natural Resources (DNR), the State
Engineer's Office, and numerous municipal water supply and irrigation companies to provide assistance in
source water protection, on-site training, non-point source pollution management, technology transfer,
development of source water protection plans (SWPPs), and efficient management of large water systems
within the context of water-related issues in Utah. UCWRR staff, through the facilities at the UWRL, provides
short courses both on- and off-site within the State of Utah, regionally, and internationally. Generally offered
from one to five days in duration, short courses are tailored to meet the needs of the requestor. The following
is a partial list of information transfer and outreach activities, short courses, and field trainings that involve
UCWRR staff.

Principal Outreach Publications

Principal outreach items include our two newsletters and other reports:

“The Water bLog” (http://uwrl.usu.edu/partnerships/ucwrr_newsletter), which highlights research
projects and their findings,

1. 

“The Utah WaTCH” (http://uwrl.usu.edu/onsite_utahwatchnewsletter), which addresses on-site and
wastewater issues; and

2. 

The Mineral Lease Report (http://uwrl.usu.edu/media/uwrl_reports) submitted to the Utah Office of
the Legislative Fiscal Analyst.

3. 

Additional publications from the UCWRR and UWRL appear regularly as technically-reviewed project
reports, professional journal articles, other publications and presentations, theses and dissertation papers
presented at conferences and meetings, and project completion reports to other funding agencies.

Short Courses

None of the short-courses conducted were related to USGS funded projects in FY 15.
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Information Transfer in Support of the Utah Center for
Water Resources Research (UCWRR)

Basic Information

Title: Information Transfer in Support of the Utah Center for Water Resources Research
(UCWRR)

Project Number: 2015UT198B
Start Date: 3/1/2015
End Date: 2/29/2016

Funding Source: 104B
Congressional

District: 01

Research Category: Not Applicable
Focus Category: Education, None, None

Descriptors: None
Principal

Investigators: R. Ivonne Harris, Carri Lyn Richards

Publications

UCWRR, July 2015, The Water bLog, newsletter from the Utah Center for Water Resources
Research, Vol. 6, No. 1, http://uwrl.usu.edu/sites/default/files/pdf/waterblog_july2015.pdf

1. 

UCWRR, Dec. 2015, The Water bLog, newsletter from the Utah Center for Water Resources
Research, Vol. 6, No. 2,
http://uwrl.usu.edu/sites/default/files/waterblog/waterblog_december2015.pdf

2. 
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Information Transfer in Support of the Utah Center for 
Water Resources Research (UCWRR) 

 
(2015UT198B) 

R. Ivonne Harris 
 

 
Problem 
 
The Water Resources Research Act of 1964 established the Utah Center for Water Resources 
Research (UCWRR). The Center is housed at Utah State University in Logan, Utah.  The general 
purposes of the UCWRR are to foster interdepartmental research and educational programs in 
water resources; administer the State Water Research Institute Program funded through the U.S. 
Geological Survey at Utah State University for the State of Utah; and provide university-wide 
coordination of water resources research. 
 
Objectives 
 
The center plays a vital role in the dissemination of information. Utah is home to approximately 
50,000 miles of rivers and streams and 7,800 lakes. This water is an essential resource for the 
economic, social, and cultural well-being of the State of Utah. As one of 54 water research 
centers, the UCWRR works to "make sure that tomorrow has enough clean water."   
 
A major component of the information transfer and outreach requirements of the UCWRR is the 
development of appropriate vehicles for dissemination of information produced by research 
projects conducted at the Center. This project provides on-going updates of the UCWRR web 
page, with information transfer specifically identified as the key objective. This project is in the 
process of disseminating semi-annual newsletters for the Utah Center that feature research 
projects and their findings, water-related activities in the state, and on-going work by researchers 
affiliated with the Center. 
 
Methods 
 
Web Pages 
 
A vital objective in the dissemination of information for the UCWRR was the development of an 
up-to-date web page.  The UCWRR web pages have been developed to make information 
available, thus creating a tool wherein interested parties can find solutions to water problems.  
The design of the web pages is developed with Adobe “Dreamweaver” software and CSS.  
Pictures are taken from the various on-going projects and added to the web pages.  The address 
for the UCWRR is http://uwrl.usu.edu/partnerships/ucwrr/.  Figures 1 and 2 are pictures of two 
of the pages.  The web pages are works-in-progress and the pages are periodically updated. 
 
1. The “Homepage” explains the Center’s purpose. 
 
2. The “About Us” gives an overview of the center and its affiliations. 
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3. The “People” page gives an overview of the governing body of the center as well as key 

contact staff. 
 
4. The “Research and Publications” page guides readers to the various projects and reports.  

This page is updated periodically. 
 
5. “The Water bLog” page provides access to current and past issues of the Center’s 

newsletter (described in the next section). 
 
6. The “Contact” page has the center’s address and mode of contact. 
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Figure 1.  Home page for the UCWRR. 

 
 

Figure 2.  Research and Publications page for the UCWRR. 
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Newsletter 
 
A semi-annual newsletter The Water bLog continues to be published.  The Water bLog is 
disseminated electronically at the UCWRR web site at 
 
http://uwrl.usu.edu/partnerships/ucwrr/ucwrrnewsletter 
 

 
 

Figure 3: The Water bLog Newsletter home page. 
 

http://uwrl.usu.edu/partnerships/ucwrr/ucwrrnewsletter
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It is also disseminated through e-mail.  The newsletter is e-mailed to approximately 350 readers.  
The main purpose of the newsletter is to highlight research projects and their findings.  These 
will be of great interest and value to the State of Utah, as well as nationally and internationally.   
 
A recent copy of the newsletter was sent out December 2015 and a new one will go out in June 
2016.  One of the research projects featured in the December 2015 newsletter was “Virgin River 
Fish Barrier Modification Model.” UCWRR researchers designed and implemented physical 
and numerical models to develop a modification to the Virgin River fish barrier that would 
prevent non-native red shiner from migrating upstream during flood conditions.  

Red shiner is a non-native fish species in Utah’s Virgin River that often out-competes desirable 
native fish species for food and habitat.  Incremental chemical treatments starting in 1984 have 
proven to be successful in eradicating red shiner in specific reaches of the river. Structures such 
as the Virgin River Gorge fish barrier constructed in 2009 about 20 miles southwest of Saint 
George, Utah, protect native species by preventing red shiner from migrating further upstream. 
This barrier was effective until September 2014 when a major storm event elevated the river 
flow rates beyond the fish barrier’s ability to function as it was originally designed. After the 
flood event, red shiner were again found in significant numbers upstream of the barrier. 

UCWRR researchers at the Utah Water Research Laboratory were commissioned to implement 
physical and numerical model studies of the Virgin River Gorge fish barrier.  Protecting native 
fish species from invasive red shiners is a long-term goal of the Washington County Water 
Conservancy District. This research helps facilitate that goal. 
 

 
The Current Virgin River Gorge Fish Barrier 
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Physical and numerical model at the Utah Water Research Laboratory test the effectiveness of 

structural modifications to the Virgin River Gorge Fish Barrier 
 
Utah State University (USU) and the Utah Water Research Laboratory (UWRL) celebrated 2015 
as the Year of Water.  The year 2015 was also the 50th anniversary of the dedication of the 
UWRL, home of the Utah Center for Water Resources Research (UCWRR).  Students and 
faculty were busy this past fall presenting research and welcoming visitors to the facility through 
Open Houses, Alumni Get-Together and other events. 
 
 

 
Visitors to the Open House and Alumni Get-Together 

 
For an electronic copy of current or past newsletters, please go to: 
 
http://uwrl.usu.edu/partnerships/ucwrr/newsletter/ 

http://uwrl.usu.edu/partnerships/ucwrr/newsletter/
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Figure 4.  The Water bLog, the Newsletter for the UCWRR 

 
Data Base 
 
Another concern the UCWRR has is making available electronic copies of research projects and 
reports.  These are being converted to PDF format and have been added to a database to make 
them available on-line.  This is a work in progress and some of the publications can be found in 
our website at http://uwrl.usu.edu/publications. 

http://uwrl.usu.edu/publications


USGS Summer Intern Program

None.

USGS Summer Intern Program 1



Student Support

Category Section 104 Base
Grant

Section 104 NCGP
Award

NIWR-USGS
Internship

Supplemental
Awards Total

Undergraduate 4 0 0 0 4
Masters 4 0 0 0 4
Ph.D. 3 0 0 0 3

Post-Doc. 0 0 0 0 0
Total 11 0 0 0 11

1



Notable Awards and Achievements

Dr. Bethany Neilson was awarded a travel grant in 2015 as a visiting researcher at the University of New
South Wales.
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Publications from Prior Years

2014UT193B ("Influence of Groundwater/Surface Water Interactions in High Gradient Mountain
Streams") - Articles in Refereed Scientific Journals - Majerova, M., B.T. Neilson, N.M. Schmadel, C.
Snow, J. Wheaton. "Impacts of beaver dams on hydrologic and temperature regimes in a mountain
stream." Hydrology and Earth System Sciences. In Preparation.

1. 

2007UT87B ("Two-Zone Temperature and Solute Model Testing and Development in the Virgin
River") - Articles in Refereed Scientific Journals - Schmadel, N. M., B.T. Neilson, J. Heavilin.
"Spatial considerations of stream hydraulics in reach scale temperature modeling." Water Resources
Research, In Preparation.

2. 

2013UT189B ("Quantification of Water Quality Improvements Through the 900 S Oxbow
Restoration and Stormwater BMP Renovation Project") - Other Publications - Richardson, Jake, 2015,
Presentation to Jordan River Research Synthesis Workshop, Technical Memo related to the Jordan
River, September 2015.

3. 

2006UT69B ("Irrigation Demand Forecasting for Management of Large Water Systems") - Articles in
Refereed Scientific Journals - Bachour R., I. Maslova, A.M. Ticlavilca, W.R. Walker, M. McKee.
2015. Wavelet-Multivariate Relevance Vector Machine Hybrid Model for Forecasting Daily
Evapotranspiration. Stochastic Environmental Research and Risk Assessment, DOI
10.1007/s00477-015-1039-z.

4. 

2006UT69B ("Irrigation Demand Forecasting for Management of Large Water Systems") - Articles in
Refereed Scientific Journals - Hassan-Esfahani, L., A. Torres-Rua, A. Jensen, and M. McKee. 2015.
Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial
Neural Networks. Remote Sensing, 2015, 7, 2627-2646; doi:10.3390/rs70302627.

5. 

2006UT69B ("Irrigation Demand Forecasting for Management of Large Water Systems") - Articles in
Refereed Scientific Journals - Hassan-Esfahani, Leila; Alfonso Torres-Rua; and Mac McKee, 2015,
Assessment of optimal irrigation water allocation for pressurized irrigation system using water
balance approach, learning machines, and remotely sensed data, Agricultural Water Management,
153(2015):42-50.

6. 

2006UT69B ("Irrigation Demand Forecasting for Management of Large Water Systems") - Articles in
Refereed Scientific Journals - Elarab, Manal; Andres Ticlavilca; Alfonso Torres-Rua; Inga Maslova;
and Mac McKee, 2015, Estimating chlorophyll with thermal and broadband multispectral high
resolution imagery from an unmanned aerial system using relevance vector machines for precision
agriculture, International Journal of Applied Earth Observation and Geoinformation.
http://dx.doi.org/10.1016/j.jag.2015.03.017.

7. 

2006UT ("Irrigation Demand Forecasting for Management in Large Water Systems") - Articles in
Refereed Scientific Journals - Maslova, Inga; Andres M. Ticlavilca; and Mac McKee, 2015,
Adjusting wavelet-based multiresolution analysis boundary conditions for long-term streamflow
forecasting, Hydrological Processes, DOI: 10.1002/hyp.10564.

8. 
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