State Water Resources Research Institute Program

Project ID: 2009OH119B
Title: Destruction of Cyanobacterial Toxins in Water with Germicidal UV-254 nm-based Homogeneous and Solar-based Heterogeneous Advanced Oxidation Processes
Project Type: Research
Start Date: 3/01/2009
End Date: 2/28/2010
Congressional District: 1
Focus Categories: Water Quality, Water Supply, Toxic Substances
Keywords: advanced chemical oxidation, advanced oxidation processes, advanced oxidation technologies, AOPs, AOTs, chemical oxidation, hydrogen peroxide, peroxymonosulfate, persulfate, reaction constants, reaction kinetics, second order, solar light, sulfate radicals, sustainability, TiO2, N-doped TiO2, NF-doped TiO2, ultraviolet technologies, UV, visible light
Principal Investigators: Dionysiou, Dionysios (University of Cincinnati); Dionysiou, Dionysios (University of Cincinnati)
Federal Funds: $ 25,000
Non-Federal Matching Funds: $ 51,149
Abstract: The spatial and temporal incident of cyanobacteria harmful algal blooms (Cyano-HABs) in freshwater estuaries is increasing, particularly in Ohio (i.e., Lake Erie and Ohio River) and has become a growing concern among the scientific community. The presence of high concentrations of harmful cyanotoxins from Cyano-HABs in drinking water supplies is a serious threat to human and environmental health. One of the major challenges in assessing the associated health risks is to better understand the environmental/photochemical fate of these toxins. Extensive research has been carried out and tremendous resources are spent on the monitoring and removal of anthropogenic pollutants from ground and drinking water, but relatively little attention has been given to monitoring and the treatment of waters contaminated with cyanotoxins. There is an urgent need to develop and identify effective water treatment technologies to eliminate cyanotoxins from drinking water. In this study we proposed to investigate the (1) mechanisms of the photo-transformation of cyanotoxins in water (2) explore solar-driven catalytic systems for the destruction of cyanotoxins in water; and (3) investigate the fate of cyanotoxins under germicidal action UV (254 nm) (low pressure lamps) or broader spectrum (medium pressure lamps) at various levels of UV fluence in consideration with the presence of UV disinfection systems in several drinking water treatment plants.

The results will provide a fundamental understanding of the photochemical fate of the target cyanotoxins. Such investigations are critical to the development of cost-efficient technologies for treatment of water contaminated with cyanotoxins. The results of this work will provide the data required for (i) a better understanding of the interactions of selected cyanotoxins with light and their photochemical fate in freshwater estuaries, (ii) evaluating the role of novel catalytic materials to destroy cyanotoxins in water as an approach to develop engineering technologies utilizing solar radiation as a renewable source of light, and (iii) determining the magnitude of photochemical transformation of cyanotoxins under specific range of UV radiation fluence in consideration with the UV fluence applied in typical UV disinfection treatment units or required to inactivate specific pathogenic microorganisms.

Progress/Completion Report, 2009, PDF
Progress/Completion Report, 2010, PDF

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: Earl Greene
Page Last Modified: Wednesday, 05-Mar-2014 09:05:07 EST