State Water Resources Research Institute Program

Project ID: 2007MN215B
Title: Enhanced Contaminant Remediation: Fermentation as a Method to Enhance Dissolution of Hydrophobic Compounds
Project Type: Research
Start Date: 3/01/2007
End Date: 2/28/2008
Congressional District: Fifth
Focus Categories: Toxic Substances, Groundwater, Treatment
Keywords: Enhanced solubility, Hydrophobic compounds, Fermentation, Desorption, Biostimulation, Bioremediation
Principal Investigators: Novak, Paige; Novak, Paige
Federal Funds: $ 0
Non-Federal Matching Funds: $ 7,475
Abstract: Recently researchers have been working to develop innovative technologies to address both sorbed phase contaminants and non-aqueous phase liquid (NAPL) source areas in situ. Among these technologies are Surfactant-Enhanced Aquifer Remediation and cosolvent flooding. Both of these technologies involve the injection of chemicals into an aquifer in a manner designed to "flood" the impacted zone, thereby mobilizing sorbed contaminant mass and NAPL (ITRC, 2002). The mobilized contaminant is subsequently extracted and treated ex situ. Although effective, these methods depend on our ability to adequately contact the contaminants with surfactants or cosolvents. This can be a challenge, and is typically addressed by adding large quantities of chemical in the hope that this will facilitate contact. A novel, and perhaps better method of cosolvent and/or biosurfactant delivery, is through the stimulation of naturally occurring organisms that produce various cosolvents and biosurfactants in situ through fermentative processes. These processes can be stimulated by addition of readily degradable carbon sources (i.e. sugars) to the aquifer. Multiple fermentation pathways exist, each yielding a particular set of end products, including alcohols, ketones, volatile fatty acids and gases. It is hypothesized that the combination of cosolvents and biosurfactants that are produced in situ during fermentation can contribute to the release of sorbed contaminants and aid in the dissolution of NAPL present within the aquifer. In the case of trichloroethene (TCE), application of a carbon source will also promote enhanced reductive dechlorination, a process in which TCE is reduced to benign end products through microbial degradation. Therefore the application of carbon will achieve two objectives: (1) aid in dissolution of NAPL and sorbed mass, and (2) stimulate the indigenous microbial community to degrade the released mass. Although a great deal of research has focused on the later, no laboratory studies have addressed the former.

We propose that an accelerated cleanup of lingering source areas can be achieved by optimizing the production of cosolvents and biosurfactants via fermentation processes. Therefore, we propose to investigate how the supply of various carbon sources to soil impacts the production of cosolvents and biosurfactants through fermentation. The effect of these compounds on the solubility of a common hydrophobic contaminant, TCE, will also be determined through simple solubility experiments.

Progress/Completion Report, PDF

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: Earl Greene
Page Last Modified: Tuesday, 15-Jan-2013 00:03:19 EST