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COMPARISON OF NEURAL NETWORK AND NEURO-FUZZY TECHNIQUES IN GROUND 
WATER VULNERABILITY MAPPING: A CASE STUDY 

 
Barnali Dixon1 

 
 

1. INTRODUCTION 
Contamination of surface and subsurface waters by anthropogenic activities has been a major concern of 

agencies involved with water management, water quality, water quantity and human health. Ground water (GW) 
accounts for 60% of the fresh water withdrawals in Florida and about 51% of this water is being used without 
further treatment or disinfection (Marella, 19999). Occurrence of well-drained sandy soils and karst features along 
with high rainfall makes Florida’s GW, a major source of freshwater supply, vulnerable to contamination (Berndt 
et al, 1998; Purdum, 2002; Lee et. al, 2002). The proportion of outbreaks associated with groundwater sources in 
Florida increased 87% from the previous reporting period, and these outbreaks were primarily associated (60.7%) 
with consumption of untreated groundwater (Lee et. al, 2002). Close connection between ground and surface 
water, common in Florida, means that pathogens found in surface water may find their way into GW and vice 
versa. In recent years, Florida has been one of the most common relocation destinations in the US. Florida's 
population grew from 4 million in 1955 to 16 million in 2000, the highest growth rate in the nation. As a result, 
we have two inevitable problems throughout Florida i) increased amount of wastewater treatment and resultant 
sludge production, and (ii) increased number (and density) of septic systems. One of the dominant ways of sludge 
disposal is land application. Florida Department of health (FLDEP) has established detailed regulations for 
processing sludge before application and controlling the application of sludge to land.  In 2003, 66% of the sludge 
was land applied in Florida, 17% were land-filled, and remaining 17% accounted for distribution and marketing.  
(http://www.dep.state.fl.us/water/wastewater/dom/reshome.htm). In Florida, parks and golf courses are common 
sites for Class A sludge application whereas many farmers apply Class B sludge to their pasture and farmland to 
reduce cost of fertilizer and lime. Since most processes used for complete pathogen/viral inactivation is not 
sufficient (EPA, 2003), landowners and the public as well as regulatory agencies are justifiably concerned about 
potential negative impacts of the potential spread of pathogens and resultant outbreaks.    Therefore, there is a 
need to adopt waste application practices that take into consideration soil properties, hydrogeology, hydraulic 
loading and contaminant transport characteristics to minimize pathogen contamination risk (EPA, 2003). 
Additionally, in Florida, 31% of the population is served by estimated 2.3 million septic systems. These systems 
discharge over 426 million gallons of waste water per day into the subsurface soil environment (Florida Dept. of 
Health (DOH) http://www.doh.state.fl.us/environment/OSTDS/intro.html). Inadequately treated sewage from 
septic systems can lead to contamination of groundwater and poses a significant threat to drinking water and 
human health (http://www.epa.gov/owm/septic/pubs/homeowner_guide_long.pdf). There are no easy solutions to 
the sludge disposal or septic tank problems in Florida. 

Traditionally state and county regulators used fixed setback distances for sludge application and septic 
tank locations for all geologic setting in their jurisdiction to protect our water resources (EPA, 2003). One 
approach in determining setback is to the use travel time using GW flow characteristics (Yeats and Yeats, 1987). 
A comprehensive study conducted by Matthesss et al (1984) that used the aforementioned approach showed that 
ground water flow-based 50 day residence time was not adequate for all of the sites for virus reduction. It takes 
longer and varied between 160 days and 270 days (EPA, 2003). Study conducted for Ground Water Rule showed 
that setback distances were found to be quite variable (EPA, 2000). Some distances were scientific and others 
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were holdovers from past practices (EPA, 2003).  Very few of them considered preferential flow paths common in 
Florida karst. A table summarized by EPA (2003) listed critical factors that control pathogen/viral transport. They 
are: soil moisture content, type and depth of the soils, soil porperties such as  organic matter and pH as well as 
hydraulic conditions to name a few. It is obvious that these factors vary over the landscape. Therefore, one size 
fits all mode of regulations for establishing setback distances might not be adequate. Conducting site- specific 
studies (on a case by case basis) to regulate entire Florida will clearly be cost prohibitive. Therefore, there is a 
need to strike a balance between expensive site-specific studies and broad-based one-size fits all policy. We are 
proposing to develop a spatially explicit method that will provide a vulnerability map for an area based on similar 
hydrogeological, topographical, climatological, soils, preferential flow pathways and landuse. This will be a 
useful environmental management tool to establish setback rules. This vulnerability map will have explicit 
representation of the possible level of risk associated with GW vulnerability to pathogens. In a gross sense, 
information from soil surveys, hydrologeological parameters, and landuse will be incorporated in a screening tool 
that will provide an indication of the level of risk a particular site may have to GW contamination by pathogen.  
 
 
Coupling of neural networks (NN) and neuro-fuzzy models with a Geographic Information System 
(GIS) will facilitate vulnerability mapping of a complex system with enhanced spatial visualization 
capabilities of the models as suggested by Burrough (1996), Corwin et al., (1996). Integration with GIS 
will allow us to evaluate sensitivity of NN and neuro-fuzzy in a spatial context.  
 
NN are multi-input, multi-output nonlinear models and can represent the complex interactions among 
the input/output parameters. In recent years NN has been successfully used in solving difficult 
hydrological and environmental problems. One major criticism is that it is not possible to determine how 
the solution was found due to the inherent black box nature of the NN. Also, it is also not possible to 
insert prior knowledge to a NN. The question is does NN need prior knowledge?? Also, how sensitive 
NNs are??   
 
Incorporation of fuzzy logic with a GIS has shown to reduce error propagation (Wang et, al, 1990; 
Burrough et al 1992; De Gruizter, et al. 1997). Neuro-fuzzy modeling is an approach where the fusion of 
NN and Fuzzy Logic find their strengths and complement each other (Dixon, 2001, 2002, Khan, 1999, 
Nauck and Kruse, 1999). A key disadvantage of fuzzy logic based approach is inability to meet pre 
specified accuracy and lack of self-learning and generalization capability.  
 
Neuro-fuzzy approach employs heuristic learning strategies derived from the domain of NN theory to 
support the development of a fuzzy system. A marriage between NN and fuzzy logic techniques should 
help overcome the shortcomings of both techniques discussed at length by Nauck and Kruse (1999). A 
neuro-fuzzy technique can learn a system’s behavior from a sufficiently large data set and automatically 
generate fuzzy rules and fuzzy sets to a pre-specified accuracy level. They are capable of generalization, 
thus overcoming to the key disadvantages of fuzzy logic based approach. A fusion of NN and fuzzy 
logic provides a system that usually requires less computational power but has the ability to generalize 
and learn through the convergence of net.  The research reports a case study of Polk County, Florida. 
This County was selected for its extensive agricultural landuse and the presence of underlying alluvial 
aquifer.  This study aimed at using selected parameters from the DRASTIC model (Aller et al.,) with the 
NN and Neuro-fuzzy. Authors are aware of the strength and weaknesses of the DRASTIC model. The 
authors used parameters from the DRASTIC in this study because of readily available GIS layers for the 
Polk County. The intention of this study is not to promote or criticize DRASTIC.  
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2. OBJECTIVES 
 
This study aims at comparing the vulnerability maps developed using NN and neuro-fuzzy methods. 
Specific objectives are to: i) compare the NN models with neuro-fuzzy and (ii) to check the sensitivity 
of NN and neuro-fuzzy models to training data. 
 
 

3. METHODOLOGY 
 
3.1 Digital Database 
 
The DRASTIC model (Aller et al, 1987) is comprised of seven hydro geological variables: Depth to 
ground water (D), Recharge of aquifer (R), Aquifer media (A), Soil media (S), Topography/slope (T),  
Impact of vadose zone (I) and hydraulic Conductivity (C). Only four out of these seven variables were 
used as inputs for both NN and Neuro-fuzzy models. A, T and C were not used in the models due to lack 
of variability. All seven parameters were derived from the primary data layers in a GIS. The primary 
data layers used in this study are potentiometric surface, elevation, soils and geology. All of these 
primary data layers except soils were obtained from US Geological Survey (USGS). The soils data were 
obtained from the Natural Resource Conservation Service (NRCS). Digital Elevation Models (DEMs) 
with 30m resolution were used to generate elevation data for the study area. Potentiometric surface data 
provided by USGS was collected during the fall of 1996. This data was recorded in contour line with 20 
ft interval. Potentiometric surface was generated using the GRASS command s.surf.tps. The data layer 
for D was generated by subtracting potentiometric surface from elevation. The data layer for net 
recharge was obtained from USGS. The net recharge was calculated based on the past behavior of the 
aquifer using MODFLOW at a one square mile cell resolution. The output from the MODFLOW was a 
site file. The site file was interpolated in GRASS to create the data layer R. The data layer for S was 
created through a multi-step process. Soil leaching index and soil pesticide leaching potential data were 
used to create the layer S. Soil leaching index layer was obtained from annual precipitation and soil 
hydrologic group.  Soil pesticide leaching potential was created from soil attenuation, soil infiltration 
and soil permeability data layers. Soil attenuation information was generated from GLEAMS model. 
Please refer to Smith et al. (1994) for details.  Thickness of the clay cap (I) is an important property 
since it influences the recharge to the aquifer and pesticide adsorption and degradation processes. 
GRASS command s.surf.tps was performed on the point data provided by USGS to create the 
interpolated surface. SSURGO data were used create maps for bulk density (BD), soils drainage class 
(D), soil Hydrologic group (H) (referred together as DH), soils structure or pedality. Landuse data we 
obtained from SWFWMD (1999). 

Water quality data from 55 wells were used for validation of the models. The water quality data 
was provided by the Florida Department of Environmental Protection (FLDEP) in an excel spreadsheet 
containg  well ID with locations of wells collected using a Global Positioning System (GPS). GRASS 
command s.menu was used to create site files for the wells. The wells then were reclassed into 2 
categories: contaminated wells and non-contaminated wells. Single occurrence of E Coli was considered 
as contaminated well. (See Appendix A) for summery..  
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3.2 Coupling of NN and Neuro-fuzzy with GIS 
 
Table 1. Example of Training Data used with NEFCLASS-J. 

 Modeling of GW vulnerability was accomplished by 
loosely coupling GIS (GRASS 4.1) and NN software 
PREDICT (Neuralware, 2001, version 2.4) and the 
Neuro-fuzzy software Nefclass-J (Nauck and Kruse, 
1999 version 1.0).  The output function (single column n 
ASCII output) of NEFCLASS-J was modified to make 
files compatible with the GRASS. The NN software 
PREDICT has limitation of number of rows of data it can 
take. It can only take 132,000 of rows for each run. The 
application data for the Polk County consisted of 
4,093,760 rows. So a custom code in VC++ was written 
to break down our application dataset in manageable size 
for the PREDICT. This custom software is available at 

the website:www.stpt.usf.edu/bdixon/gal/mainpage_final.html. 
 
Table 2. Example of Training Data used with PREDICT. 

 
Use of NN and Neuro-fuzzy requires training data and 
application data. The training  and application data for the 
NEFCLASS-J and PREDICT was obtained from the GIS. 
GRASS command r.stats was used to create training dataset. 
This GRASS command generated all possible combinations 
of  D, R, S and I for the County. The training data consisted 
of 408 rows. Examples of training data are given in the 
Tables 1 and 2. 
 
 

 
 
3.3 Development of Neural Network model 
 
The Standard Back Propagation (SBP) architecture provided by PREDICT was used to perform 
classification. Figure 1 shows the Multi Layer Perceptron (MLP) network architecture. SBP is a method 
for training the MLP. It is a method for assigning responsibility for mismatches to each of the processing 
elements in the network; this is achieved by propagating the gradient of the objective function back 
through the network to the hidden units. Based on the degree of responsibility, the weights of each 

individual processing element are modified iteratively 
to improve the objective function. 
 
Use of NN is a 3-step process: i) training, ii) testing and 
iii) application. The entire training data was divided 
into 2 groups training (286) and testing (214) data sets. 
Once the NN was trained and tested, application data 
consisting of 4,093,760 rows were used to generate 

Nefclass J inputs Output vulnerability 

D R S I Lo
w 

Mod 
low 

Moder
ate 

High 

    NF1     
3 1 1 5 1 0 0 0 

7 3 9 7 0 0 1 0 
7 1 5 8 0 0 0 1 
9 1 2 5 0 1 0 0 

NF2 & NF3     
 63 1 1 35 1 0 0 0 
23 3 9 15 0 0 1 0 

23 1 5 10 0 0 0 1 
10 1 2 35 0 1 0 0 

NN  inputs  
Output 

  D R S I Vulnerability 
NN1  
3 1 1 5 1 Low 
7 3 9 7 3 Moderate 
7 1 5 8 4 High 
9 1 2 5 2 Moderately Low 
NN2 & NN3  
63 1 1 35 1 Low 
23 3 9 15 3 Moderate 
23 1 5 10 4 High 
10 1 2 35 2 Moderately Low 
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ground water vulnerability maps. A batch file written in PREDICT automatically ran all the groups that 
were created, and produced the single column output. Examples of training parameter are presented in 
the Table 3.  
  Figure 1.  Multi layer Perceptron Architecture 

          
The training data for NN models was modified by adding a 0, 0, 0, 0 value to a total number of training 
pattern of 410. This was necessary because it was noted during simulation that an input of 0,0,0,0 in the 
application data resulted in a valid class of 1 (which indicates low vulnerability). But in reality these 
zero value represented data value out of the GIS mask but within the region. The following parameters 
were used with the PREDICT classifier: 

Table 3: Parameters of NN Classifier 

Hidden layer=100 Learning Rate 
Output layer=0.01 

Learning Rule Adaptive gradient 
Variable selection model Multiple regression 
Training and testing 10-fold cross validation 

 
The training data obtained from GRASS was inspected and classified based on expert’s opinion 
according to the relationships between input parameter and the output vulnerability category.  D and I 
are inversely related to the vulnerability categories whereas S and R are directly related. Examples of 
training rules are presented in the Table 4. 

Table 4. Example of Rules used to Define Vulnerability. 

Inputs a 
D             (ft) R       (inch/yr) S        (rate) I              (ft) 

Output vulnerability 
categories b 

Low            (0-5) Low               (0-1) Mod low (mod slow) Low           (11-20) Moderate 
Low Low High               (rapid) Low High 
Low Mod low        (5-7) Low                 (slow) High          (51-75) Moderately  low 
Low Mod low High Low High 
High        (51-75) Mod low Mod low Mod          (31-50) Low 
High Mod             (8-10) Mod low Mod low   (21-30) Moderate 
High High                (20) High                Low High 
High       High High High Moderate 

a = inputs obtained from raster data layers 
b = output vulnerability categories: manually classified based on expert’s opinion. 

 
3.4 Development of Neuro-fuzzy model 
 
Neuro-fuzzy model also uses a supervised learning-like algorithm based on fuzzy error back propagation 
(Figure 2). The learning procedure for the fuzzy sets is a simple heuristics. It results in shifting the 
membership functions and in making their supports larger or smaller (Nauck and Kruse, 1999). The 
adaptation of fuzzy sets is carried out by simply changing the parameters of its membership function in a 
way that the membership degree for the current feature value is increased or decreased respectively. 
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In this research, the trapezoidal membership function 
was used since it was the most stable as compared to 
triangular and bell shaped membership functions 
(Dixon, 2001). The training parameter for the Neuro-
fuzzy models are presented in the Table 5. 
Mathematically, trapezoidal membership function can 
be defined as follows:  
 
 
 
 
 
 
 
 
  

                 Figure 2: Neuro-Fuzzy architecture 
 
 For detailed description of membership functions and Neuro-fuzzy architecture please refer to Nauck 
and Kruse (1999). Use of Neuro-fuzzy model is also a 3-step process: i) training, ii) testing/validation 
and iii) application. The testing/validation technique used with the neuro-fuzzy model is ‘cross 
validation’. This approach randomly divides the training data into the number of parts specified by the 
operator (10-fold for this project) and generalized errors are estimated from the results of the learning 
processes that are provided through a mean error and a confidence interval calculated at the 99% level. 
The same data that was used for training the NN was used here with the exception of two rows 
containing data value of 0,0,0,0. Thus the total number of patterns used for training was 408.  
NEFCLASS-J did not have problem in classifying data that were 0 (outside the GIS mask) as ‘0’ 
category representing not classified category.   
 

Table 5: Parameters of Neuro-fuzzy classifier 

Learning Rate 0.01 
No. of fuzzy sets 4 TRAPEZOIDAL for each variable 
Rule learning strategy Best per class 

Maximum number of epochs=1000 Stop control 
Minimum number if epochs= 100 

Validation mode 10-fold cross validation 
 
 
3.5 Sensitivity Analysis  
 
Sensitivity of the training data set was analyzed by changing the training data. A total of 26 models were 
created using neural networks and neuro-fuzzy methods ((13 per method). All models were compared to 
DRASTIC model too. First set of simulations was run using D, R, S and I value as reflected by the 
weight of the parameters outlined by the DRASTIC model. For details on weight of the parameters 
please refer to Dixon et al., (2002). These models from here on will be referred to as NN1, NN2 and so 
on for neural netweoks models and  NF1, NF2  and so on for neuro fuzzy based models (Table 6).  
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 Table 6. Summary of Model Parameters and Model Names 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
3.6 Coincidence reports 
 
Once the vulnerability maps were generated using the above methods, field data were used to generate 
coincidence reports to evaluate their performances. Water quality data for E Coli for 55 wells were used 
in this study. The well water quality data we provided by FL Dept. of Environmental Protection 
(FLDEP). Sixteen out of 55 wells were contaminated with at least one occurrence ce of E Coli. It was 
assumes 1 E coli is an indicator of the presence of contamination movement pathways. A set of 
coincidence reports was generated between vulnerability maps and well contamination data to compare 
actual contamination with potential contamination (or vulnerability) generated by our models. 
 

 
4. RESULTS AND DISCUSSION 

 
4.1 Training of NN model 
 
The Table 7 shows training results of the NN. Internally each category in the classification output is 
considered to be mutually exclusive and is assigned an output node in the neural net. The relative 
entropy measure ensures that the outputs of the NN enforce the mutual dependence of the outputs. It 
maximizes the probability of successful classification. Ideally a very low value of relative entropy  

Models Neural networks Neuro-fuzzy Name of Model 
Model-1 NN1 NF1 DRASTIC 
Model-2 NN2 NF2 DRASTIC DH 
Model-3 NN3 NF3 DRASTIC,DH,PED 
Model-4 NN4 NF4 DRASTIC,DH,PED LULC 
Model-5 NN5 NF5 DRSI 
Model-6 NN6 NF6 DRSI DH 
Model-7 NN7 NF7 DRSI DH PED 
Model-8 NN8 NF8 DRSI DH PED LULC 
Model-9 NN9 NF9 DH PED LULC 
Model-10 NN10 NF10 PED_DH_BD 
Model-11 NN11 NF11 PED_DH_BD_LULC 
Model-12 NN12 NF12 pH_OM_BD 
Model-13 NN13 NF13 DRASTIC, LULC 
Model-14 NN14 NF14 DRSI, LULC 



 9

indicates a good fit of the model to the data. The accuracy gives the fraction of records whose prediction 
is within a specified tolerance of the desired output. By default the accuracy tolerance is set to 20% of 
the range of the output.   
 
 
 
 

Table 7.  NN Models: Performance of Training Data. 
Relative Entropy Model name Patterns Training Set 

Accuracy  
Test Set 
Accuracy  

All Data 
Accuracy  Train Test All 

DRASTIC DH 1733 0.86314 0.857692 0.861512 0.09899 0.108067 0.101714
DRASTIC DH PED 2675 0.873397 0.902864 0.882243 0.115352 0.125596 0.118427
DRASTIC DH PED 
LULC 

7159 0.787867 0.799348 0.791312 0.143857 0.151916 0.146275

DRSI 55 1 0.945455 0.945455 0.003272 0.032348 0.032348
DRSI DH 502 0.766382 0.774834 0.768924 0.16442 0.16174 0.163614
DRSI DH PED 830 0.817241 0.8 0.812048 0.191069 0.188303 0.190236
DRSI DH PED LULC NA NA NA NA NA NA NA 
DH PED LULC 160 0.873874 0.857143 0.86875 0.08823 0.121458 0.098406
PED_DH_BD 57 1 0.929825 0.929825 0.006575 0.016977 0.016977
PED_DH_BD_LULC 256 0.73743 0.688312 0.722656 0.206299 0.203072 0.205329
pH_OM_BD NA NA NA NA NA NA NA 

DRASTIC, LULC NA NA NA NA NA NA NA 

DRSI, LULC 187 0.938462 0.929825 0.935829 0.078415 0.077921 0.078264

 
 
 
4.2 Training Results of NF model 
 
The Table 8 shows characteristics of training data used with the Neuro-fuzzy models. For the model 
NF1, the variable R showed maximum SD whereas for the models NF2 and NF3 variable D showed the 
maximum SD.  
 
 
 

Table 8. Characteristics of Training Data for Neuro-fuzzy Models. 

 
Variable Name mean SD minimum Maximum Missing 

NF 1  
Var 1 D 8.07 1.93 3 10 0 
Var 2 R 3.6 2.79 1 10 0 
Var 3 S 3.77 2.44 0 9 0 
Var 4 I 7.09 1.82 3 10 0 

 
NF 2 and NF 3 

Var 1 D 16.92 14.90 3 63 0 
Var 2 R 3.6 2.79 1 10 0 
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Var 3 S 3.77 2.44 0 9 0 
Var 4 I 20.03 13.44 10 63 0 

 
 
 
 
 Table 9 shows performance of the training data used with Neruo-fuzzy models. NF2 showed 
highest number of misclassification as well as error. This error corresponds to the sum of squared 
differences between targets and outputs and is a measure of the ambiguity of classifications. 
 

Table 9. Neuro-fuzzy Models: Performance of Training Data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4.3 Sensitivity Analysis of NN and NF 
 
4.3.1 Vulnerability maps 
 
The models described below were created in a GIS by incorporating the various permutation 
combination of 14 parameters D, R, A, S, T, I, C, BD, DH, LULC, Soils structure and pedality. The 
same training data sets were used for models are shown in (Tables 6 and 7).  Spatial distribution of 
vulnerability category varied from models to models (Figures 3 and 4).  Due to sheer number of we are 
going to summarize the most interesting simulations in the main document. Please find the 
comprehensive simulation results in the Appendix B. Table 10 shows summery of areal coverage for the 
selected models. 
 
 
 

Name of Model Patterns Accuracy (%) Misclassifications(%) Error 
DRASTIC DH 1733 62.84 37.16 1170.98 
DRASTIC,DH,PED 2677 75.57 24.43 1233.6 
DRASTIC,DH,PED LULC 7159 84.73 15.27 2397.67 
DRSI 55 80 20 25 
DRSI DH 502 58.96 41.04 394 
DRSI DH PED 832 79.81 20.19 363.6 
DRSI DH PED LULC NA NA NA NA 
DH PED LULC 160 82.5 17.5 66.7 
PED_DH_BD 57 71.93 28.07 24.45 
PED_DH_BD_LULC 256 80 20 85 
pH_OM_BD NA NA NA NA 
DRASTIC, LULC NA NA NA NA 
DRSI, LULC 183 90.16 9.84 41.1 
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Figure 3.  Spatial Distribution of vulnerability categories from the model using DH, ped, LULC parameters 
using NF (left); using NN(right) 
 
 

 

     
 
 

       
Figure 4. Spatial Distribution of Vulnerability from Neural networks  models: (left NN2, right  NN3, and 
bottom NN4). Parameters and model names: Drastic DH (NN2), DRASTIC DH, Ped (NN3), DRSTIC , DH, 
Ped, LULC (NN4) 
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Figure 5. Spatial Distribution of Vulnerability from Neuro-fuzzy models: (left NF2, right NF3, and 
bottom NF4). ). Parameters and model names: Drastic DH (NN2), DRASTIC DH, Ped (NN3), DRSTIC , 
DH, Ped, LULC (NN4) 
 
 

Table 10. Spatial Distribution of Vulnerability Categories in Percentage: Selected Models. 

 
 
      
 
 
 
 
 
 
 
 
 
 
 

Vulnerability 
Categories 

Area Coverage by the Models (%) 

 NN2 NF2 NN3 NF 3  NN4 NF4 
Not classified/no data 2 0 2 0 2 1 
Low 9 8 5 3 16 2 
Moderate low 54 87 47 51 36 54 
Moderate 24 0 30 29 42 41 
High 11 5 15 16 5 2 
Total 100 100 100 100 100 100 
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4.3.2 Coincidence Reports 
 
Coincidence reports between vulnerability maps and well data were generated using GRASS raster files 
(Figures 6- 9). A total of 28 models  were created using neural networks and neuro-fuzzy methods ((14 
each). All models were compared to DRASTIC model too.  NN2 performed reasonably good in 
predicting contaminated wells – it did not perform well while classifying non-contaminated wells. NN2 
predicted 5 out of 7 contaminated wells as highly vulnerable category whereas 25 of the non-
contaminated wells were classified as in the high category. A well performing NN or NF model should 
be able to classify contaminated wells in high category and non-contaminated wells in low or 
moderately low vulnerability category. The model NN5 (DRSI) predicted 8 contaminated wells as 
highly vulnerable and 1 well each in the low and moderately low vulnerability category, respectively. 
NN7 (DRSI,DH,ped) and model NN11 predicted equal number of contaminated wells in the highly 
vulnerable category. However, all these 3 models (NN5, NN7 and NN11) over predicted non-
contaminated wells. The comparison of point data to a spatial data for accuracy assessment is not the 
ideal way. The coincidence analysis was performed to get an idea of how the models are performing in a 
relative sense. These values should not be used as absolute indicators of the suitability of models. 
Although the coincidence reports show similar trend for NF 7 and NN7, NF 5 showed drastically 
different results than NN5.  In general, NF models showed higher uncertainty than the NN models while 
predicting contaminated wells. 
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Figure 6. Coincidence report for NN models and well water quality data E Coli data 
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Figure 7. Coincidence report for NN models and non contaminated wells 
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Figure 8. Coincidence between  neuro-fuzzy models and contaminated wells (E Coli). 

 
 



 15

NefclassJ

0
5

10
15
20
25
30
35
40

dh
_p

ed
_lu

lc

dra
sti

c

dra
sti

c_
dh

dra
sti

c_
dh

_p
ed

dra
sti

c_
dh

_p
ed

_lu
lc

dra
sti

c_
lul

c
drs

i

drs
i_d

h

drs
i_d

h_
pe

d

drs
i_d

h_
pe

d_
lul

c

drs
i_l

ulc

ph
_o

m_b
d

pe
d_

dh
_b

d

pe
d_

dh
_b

d_
lul

c

Model

# 
no

n-
co

nt
am

in
at

ed
 w

e

not classified low mod low moderate high no data

 
Figure 9. Coincidence report between neuro-fuzzy models and non contaminated wells. 

 
 
 
 

5. CONCLUSION 
 
Compared to Neuro-fuzzy models, NN models performed better with contradictory data. Coincidence 
reports with well water quality data did not yield conclusive results, nor should they be used as absolute 
indicators. Although for our project integration and use of NN software with GIS was cumbersome and 
time consuming – it predicted better. With the fine-tune of the contradictory data manually could yield 
similar vulnerability maps both from NN and Neuro-fuzzy models and improve well predictions. Further 
studies needed. A larger data set of well contamination may provide better results.    
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