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Report Follows 



Note:  This is a draft.   

1.  Scour Models 

In this section two scour models that will be used in the study are described.  These include 

the widely used in the United States HEC model and an alternative recent Chinese model.  It 

is noted that the HEC model uses one equation to predict scour whereas the Chinese model 

utilizes two equations depending on the flow conditions.  In subsequent sections these two 

models will be compared based on a reliability analysis using existing scour data in order to 

determine the best model to be used in evaluating effects of changing land use. 

 

1.1  HEC Equation 

The approach which is used most often in the USA is the “HEC-Equation”. The name is 

originated in the fact that the procedure is outlined in the Hydraulic Engineering Circular #18. 

It has been developed at the Colorado State University which is the reason why sometimes it 

is also called “Colorado-Equation”. According to the HEC model the expected scour depth 

can be calculated as the following: 
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In this Equation the following definitions are used: 

• sy = predicted scour depth 

• 4321 ,,, KKKK = correction factors due to the appearance of several pier shapes, flow 

attack angles, bed conditions and armouring of the bed material; see below for details 

• b = pier width 

• 1y = flow depth measured directly upstream of the site 

• Fr = Froude number, [William Froude, Englishman, 1810-1879]; see below for details 



The Froude number is of great importance in various areas of hydrodynamic science. It is a 

dimensionless quantity defined as the ratio of inertial force and the gravitational force in a 

specific hydrodynamic system. The Froude number is expressed as: 
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where:  

• v = stream velocity 

• g = acceleration of gravity 

• h = 1y  (flow depth measured directly upstream of the site) 

• c = wave velocity 

Based on the value of the Froude number a flow can be categorized into one of three cases: 

1. 1<Fr   drifty flow 

2. 1=Fr   critical flow 

3. 1>Fr   supercritical flow 

The following picture visualizes the meaning of the different areas of the Froude number. It 

shows a river right after a stone is thrown into it: 

  

 



 

Fig. 1  Illustration of Froude number areas 

 

Note the analogy which exists between the Froude number and the Mach number [Ernst 

Mach, Czech, 1838-1916] which is used in aviation.  
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Where:      

• v = velocity of the specific compound 

• sc = sonic speed 

 

In the HEC equation (Eq. 1), four correction factors appear.  The first, 1K  accounts for the 

different pier shapes which are used most often for bridge piers. The following table 

illustrates those: 

 

 

Fig. 2  Typical pier shapes 

 



 

 

 

Values for :1K  

square nose 1.1 

round nose 1.0 

circular nose 1.0 

group of 

cylinders 1.0 

sharp nose 0.9 

Note: 1K =1.0 if the angle of flow attack exceeds 5°. 

 

2K is a function of the angle of flow attack θ and the ratio of the pier length to the pier width 

b
L .  It can be determined by: 
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Typical values for K2 are as follows: 

 

θ, [°] L/b=4 L/b=8 L/b=12 

0 1.0 1.0 1.0 

15 1.5 2.0 2.5 

30 2.0 2.8 3.5 

45 2.3 3.3 4.3 

90 2.5 3.9 5.0 

 



Depending on the size of the underwater dunes and on the sediment transport conditions, 3K  

can be found as: 

 

Bed Conditions 

Dune Height, 

[m] K3 

clear-water N/A 1.1 

plane bed and N/A 1.1 

anti-dune flow   

small dunes 0.6 to 3 1.1 

medium dunes 3 to 9 1.1 to 1.2

large dunes ≥9 1.3 

 

 

For the definition of the last correction factor, K4, the soil particle size D is needed.  The size 

of the medium-sized soil particle is called mD  and has length units. Another name is 50D  

where the “50” is the percentage of soil particles which have already passed a grid once this 

size is met. Grading curves show the distribution of sizes and give information about the soil.  

Other characteristic particle sizes are 8416 , DD  and 95D . 

 

The last correction factor, 4K , is a dimensionless factor that can be determined by: 
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Where RV  is a dimensionless velocity ratio: )(
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iV  is the incipient motion velocity meaning that at this velocity the average-sized soil particle 

starts floating:    )50(
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Generally speaking, the incipient flow velocity can be determined for a soil particle of size 

nD , where n again is the mass-percentage of soil which has already passed the grid. The 

velocity can be calculated as: 
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The pier width b is being measured as shown in the following sketch irrespective to  the 

number of pier columns: 

 

 

 

Fig. 3  Definition of pier width, b 

 

1.2  Chinese Scour Model 

 

As a result of laboratory tests as well as field data, several scour equations were investigated 

in China. Gao et al. [1992] finally developed a simplified pier-shape coefficient and came up 

with two equations, one for clear-water conditions and another for live-bed conditions: 

 



For clear-water conditions the Chinese model is: 
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In this equation the following parameters are used: 

• sK  = factor related to pier shape. It takes values of 1.0 for  cylinders, 0.8 for 

round nosed piers and 0.66 for sharp nosed piers. 

• b  = pier width 

• 0y  = water depth at the pier 

• mD  = diameter of the average sized soil particle 

• 0V  = flow velocity 

• cV  = critical flow velocity; see below for details 

• 'cV  = approach velocity in the constricted reach; see below for details 

 

To visualize the meaning of the critical velocity, cV , one can consider that whether the soil 

particles are in motion (live-bed) or not (clear-water) depends on the ratio of actual flow 

velocity to critical velocity. If this ratio is greater than one, live-bed conditions are present 

whereas clear-water conditions can be expected if the ratio is less than one. The actual value 

for cV  has units of velocity and is given by: 
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• sρ  = density of the sediment particles of the soil 

• ρ  = density of water 

 



Once the critical velocity is known, the incipient approach velocity can be calculated by: 

c
m

c V
b

D
V *)(*645.0' 053.0=         (11) 

 

The term )
'
'

( 0

cc

c

VV
VV

−
−

, inherent in both the clear-water and live-bed equations, is a 

dimensionless parameter characterizing the flow intensity. 

 

 

For live-bed conditions, the Chinese model becomes: 
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Looking at both equations (Eqs. 9 and 10) the only differences between live-bed and clear-

water is the factor 0.65 which was 0.78 for clear-water and the power of c for live-bed 

conditions which is defined as: 
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The parameter c will always be less than one, making sure that the estimated scour depth for 

clear-water conditions will never be less than the one for live-bed conditions. 

 

An important note is the fact that all the above equations used for the Simplified Chinese 

approach are dimensional and have to be used with SI-units. Therefore, lengths have to be 

inputted in [m] and velocities in [m/sec]. Theoretically, the densities have to be also used with 

SI-units [kg/m³] but in this case it does not matter since when looking at the whole term that 

includes the densities it is found that it is dimensionless.



2.  Reliability Analysis of the HEC Equation 

The ultimate test of any prediction model is how reliably does it predict the behaviour it is 

trying to model.  In the present section a summary of the reliability procedures used to 

critically compare the two scour models (HEC Model and Simplified Chinese Equation 

Model) is provided.  The first procedure is based on the use of a reliability index, β, whereas 

the second approach is based on regression analysis.  The data used for the reliability studies 

are based on the report “Channel Scour at Bridges in the United States” (FHWA-RD-95-184) 

by Landers and Mueller. 

  

Reliability estimates using “lamda” values 

As mentioned before the scour predicting equation which is used most frequently in the area 

of the USA is the HEC-18-equation. Taking the measurements from the Landers data as an 

input for this equation, assuming that the correction factor 3K  = 1.15 for all live-bed 

conditions (medium height dunes) enables to compare the HEC results to the actual measured 

scour depths: 

 



The data points are sorted by increasing actual scour depth and the continuous even 

symbolizes the optimal prediction where actual scour depth = predicted scour depth. The vast 

majority (88.6%) of actual scour depths are below 2.5 meters (8.2ft) and for this range there 

are hardly underestimations. Unfortunately this does not necessarily mean that the approach is 

quite close to the actual scour depth. As it can be seen in the picture above, overestimations 

are quite enormous and up to 9 times the actual scour depth. An advantage of the HEC-

equation is that statistically speaking there are not many bridge sites where scour depths 

deeper than 2.5 meters can be expected and therefore it should be a conservative approach for 

the majority of sites.  

But does the hope just to overestimate satisfy completely? 

As per definition 
predicted

actual
=λ  scour depth, it can be said that as the scour depth increases, 

the variation of the HEC equation increases as well. At the point of maximum actual scour 

depth in the Landers data the underestimation is up to 500% and at another point of about the 

same actual scour depth the prediction meets the actual scour depth quite close as 0.1≈λ . 

When comparing the numbers of points which are under- and overestimated it comes out that 

89.9% of all HEC-predictions provide overestimations, i.e. 0<λ . 

 



 

 

 

 

 

 

 

 

When determining the reliability index β , its quality essentially depends on the performance 

of the lambda table. In the case of bridge scour there are many parameters which are used and 

for this reason there are many options to sort the data sets.  

Examples are  

• pier-shape,  

• conditions (live-bed or clear-water),  

• cohesive or non-cohesive bed material,  

• bed material size,  



• Froude number, 

• Reynolds number, 

• etc. 

 

As the pier shape is a factor which is used by most of the existing scour equations, the 

following picture illustrates the relation of the lambda values for data sets with the same pier 

shapes: 

 

The lambda values for sharp nosed (58 data sets) and for squared (66 data sets) piers are quite 

similar respectively. The latter have an COV of  7.6%, the sharp nosed sets of 6.1%. When 

looking at the 243 data sets for circular and rounded piers it comes out that there is a huge 

variation ranging from lambda values of 0.02 to 5.75 and a COV of 87.3% indicating that a 

sorting only by pier-shapes is not sufficient yet. Especially taking one group for all the 

circular and rounded piers and therefore getting a lot of data sets (243) is not pertinent. 

 

To approve one will have to sort by another characteristic parameter additionally. 



 

Shen et al. [1969] found the so called Reynolds number [Osborne Reynolds, Irishman, 1842-

1912] to be important: 

“Since the horseshoe vortex system is the system of local scour and the strength of the 

horseshoe vortex system is a function of the pier Reynolds number, the equilibrium depth of 

scour should be functionally related to the pier Reynolds number” 

Horseshoe vortices are produced by the flow which streams against a barrier, i.e. a bridge 

pier. They are normal to the water surface while the so called wake vortices are those existing 

parallel to the water surface.  

 

 

 

 

 



 

 

 

 

 

 

The dimensionless Reynolds number Re is defined as: 

ν
υ

η
υρ LL ***Re ==              (1) 

 

Where:   

• ρ = characteristic density of the medium, [kg/m³) 

• � = absolute value of the characteristic velocity, [m/s] 

• L = characteristic length, in our case: pier width, [m] 

• η = characteristic dynamic viscosity, [kg/(m*s)] 

• ν  = characteristic kinematical viscosity, [m²/s] 

 

Once the Reynolds number exceeds a specific critical value the flow turns from a laminar to a 

tumultuous or also known as turbulent behaviour. Generally speaking the Reynolds number 

can be applied for any media like fluids and gas. It is widely used in the fluid mechanics.  

Commonly applied for pipes it is obvious that for a river usually we will have laminar flow 

but still the Reynolds number has an important meaning. Assuming that we have a constant 

kinematical viscosity at an average water temperature the Reynolds number is somewhat 

related to the discharge rate Q. As 0*** ybVAVQ == , the Reynolds number can be found 

as: 
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Neglecting the fact that ν  is a function of the water temperature, the Reynolds number is the 

discharge rate per unit pier width. 

For water at a temperature of 5°C (41°F) the kinematical viscosity ν  can be found to be 

610*52004.1 − [m²/s]. 

 

The Reynolds numbers for the whole Landers data ranges from approximately 100,000 to 

3,000,000.  

I will introduce five groups: 

1. 000,450Re0 ≤<  

2. 000,700Re000,450 ≤<  

3. 000,000,1Re000,700 ≤<  

4. 000,400,1Re000,000,1 ≤<  

5. 000,000,3Re000,400,1 ≤<  



The lambda values for each of the four groups are plotted below: 

 

 

 

The coefficients of variation of group 1 to group 5 are 163.2%, 74.4%, 12.7%, 3.9% and 5.3% 

respectively. The numbers of data sets for each group are 79, 70, 72, 75 and 71. 



The COVs of group one and two are pretty high but indicate another interesting relation when 

plotting COV over average Reynolds numbers of each group: 

 

In words: The more water volume per time runs against the bridge pier, the less the variation 

of the lambda values produced by the HEC equation.  Starting at approximately Re=1200, the 

COV is acceptable. 

 

Using the Froude number introduces another important hydraulic parameter as a value to sort 

by. The smallest Froude number is 0.033 and the biggest was 0.835 if applied to the Landers 

database. Again I used five approximately equally sized groups: 

 

1. 115.00 <≤ Fr  

2. 180.0115.0 <≤ Fr  

3. 280.0180.0 <≤ Fr  

4. 370.0280.0 <≤ Fr  

5. ∞<≤ Fr370.0  



 

 

 

 

The coefficients of variation are 191.5%, 44.8%, 5.2%, 4.9% and 2.1% for groups one to five 

respectively. As per definition 
0
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As the flow velocity is located in the enumerator in both parameters, the Reynolds and the 

Froude number, it is very likely that the faster the stream goes the less variation the HEC 

results have. Even when using all the Landers data sets and plotting lambda over flow 

velocity a similarity to the plots of lambda over Froude number and accordingly Reynolds 

number can not be denied: 

 

 

To have an improved accuracy of the predictions and a fewer COV for each group I will use 

two parameters in a row for the lambda table. As the flow velocity influences both, Re and Fr, 



I will use only one of those: The Froude number. Consequently the other parameter to take 

into consideration for the lambda table should not be related to the flow velocity. As 

mentioned above a sorting by the pier-shape is not very useful. Instead using a parameter 

which is not related to the flow velocity either can be achieved with the average particle size 

mD . 

 

 

 

As the picture above illustrates, the HEC results seem to become less varying as the average 

sized soil particle becomes bigger.  

 

Using pier shape and the size of the average soil particle the following table of the left side 

was produced. For each result with a COV of the included lambdas of more or equal to 10% I 

subdivided those results depending on its Froude number. The results can be seen on the right 

side: 

 



pier shape 

median lambda, 

[-] 

COV, 

[%]  Fr limits 

median lambda, 

[-] COV, [%] 

squared 0.2902 7.58  0 to 0.12 1.4862 228.01

rounded, 

circular 0.6337 87.27 ---> 0.12 to 0.21 0.5327 35.81

sharp 0.3279 6.09  0.21 to 0.32 0.3541 5.27

    

0.32 to 

unlim 0.2266 2.31

       

Dm limits 

median lambda, 

[-] 

COV, 

[%]  Fr limits 

median lambda, 

[-] COV, [%] 

0 to 0.005 0.69906 92.73 ---> 0 to 0.08 1.3705 227.54

0.005 to 0.02 0.3817 5.53  0.08 to 0.15 0.8023 83.15

0.02 to 0.035 0.1559 1.92  0.15 to 0.25 0.3983 15.08

0.035 to unlim 0.2255 1.7  

0.25 to 

unlim 0.302 5.51

 

As the pretty high COVs for low Froude numbers less or equal 0.15 indicates, there is still a 

high level of modelling uncertainties even if a two-step-division as obtained above is used. 

To continue a further subdivision one would need more data. This is because the smallest 

group used above already contains approximately only 60 data sets. For example: 

Rounded, circular piers and 12.00 <≤ Fr  includes 57 measurements. 

 

The lambda table shown above is only one of the possible ways to sort the database. Other 

criteria could be chosen which again would provide different lambda tables. 



Reliability estimates using regression analysis 

 

To perform a reliability analysis several parameters have to be known and a way in finding 

them has to be chosen previously. The reliability index β can be calculated as the following: 

 

fP*1−Φ=β           (1) 
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In eq. (1) fP  is the Probability of Failure and Φ is the function of the cumulative normal 

distribution. To interpret β for practical use the following table can be used which shows the 

values for β as a function of the Probability of Failure: 

 

Pf β 

0.1 1.28

0.01 2.33

0.001 3.09

0.0001 3.71

0.00001 4.26

0.000001 4.75

0.0000001 5.19

0.00000001 5.62

0.000000001 5.99

 

In most practical situations the use of equation (2) will take place as the exact determination 

of fP  is linked with several difficulties and uncertainties. 



Basically the idea behind is to take the input data a designer would use with the HEC-

equation. Subsequently this result is being compared with the actual scour depth and its 

variations. Theoretically when calculating reliability indices both standard deviations have to 

be considered: The one from the resistance and the one from the load. In our case where the 

resistance is being symbolized by the designer’s result using the HEC-equation, we only have 

one value and for this reason the standard deviation for the resistance equals zero. 

 

Basically there are two ways to determine the mean and standard deviation of the load Q: 

Using a regression analysis or using a lambda table.  

The way to perform a regression analysis is to put in several parameters which are considered 

to influence the scour depth significantly and also to put in the measured actual scour depth. 

Therefore to come up with a regression analysis it is necessarily to have lots of data from 

existing sites and accurate measurements. After that a computer can calculate an equation 

which approximately fits the measured scour depths. The difference between actual scour 

depth and the depth provided by the regression equation is quite important, of course, and its 

minimization is most important. The researcher has to find parameters and its pertinent limits 

for which the included data sets have approximately the same dependencies of input 

parameters and scour depth. 

If the use of Lambda Tables is the way to go one takes a scour prediction equation, for 

example the HEC equation, the SCE or others and applies it to existing data where also the 

actual scour depth has to be known. After calculating the prediction results those have to be 

compared to the actual scour depth as ratio actual divided by predicted scour depth. As 

already mentioned, this ratio is known as bias or l. The most challenging part with the use of 

lambda tables is to find parameters which are not kept under consideration by the used scour 

equation. In other words when sorting the lambda table by parameters which are already used 

for the scour equation the table should provide a limited range of lambda values respectively. 



Of course the above said is only true if the equation used to predict the scour depth accounts 

for the parameter correctly. As some parameters can be used directly (e.g. pier width) but 

others are hard to put into numbers (e.g. pier shape). Empirically chosen numbers may vary 

from site to site, soil to soil, country to country, etc. 

 

 

Qµ  is the prediction obtained by the Regression analysis or by the use of Lambda tables. I 

will use the result of a regression analysis as I expect more accurate results this way. When 

using one value for each parameter using the HEC-equation we get one prediction depth 

which automatically equals Rµ .  I will produce random variables for each parameter needed 

as input for the regression equation. Each will be produced following its pertinent random 

distribution. For this reason we will have several predictions from the regression analysis to 

compare it with the HEC-prediction and subsequently we will have 0≠Qσ . The number of 

random variables produced for each data set of the Landers database can be chosen. I will 

start with 10 cycles and in the beginning I will just use one regression analysis for all Landers 

data. When using the pier width b, the flow velocity 0V , the flow depth 0y , the average 

particle size mD , the Froude number Fr and the actual scour depth sy  as an input it turns out 

that the result provided by a multiple regression analysis is: 
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After having deleted the parameters with unknown values there were 358 data sets left to be 

used with the HEC-equation. As described before, the parameters used in eq.(3) are each 

following either normal or lognormal distributions. The following table summarizes the 

random distribution and the standard deviation for the several parameters respectively: 



 

 

parameter 

name meaning 

random 

distribution 

standard 

deviation 

y0 flow depth lognormal 10%*mean 

b pier width deterministic  

V0 flow velocity lognormal 25%*mean 

Dm 

average particle 

size lognormal 

given in 

database 

Fr Froude number lognormal 16%*mean 

e residual error normal 0.41 

 

The calculated reliability indices are plotted over the actual scour depth where the straight 

even symbolizes a reliability index of 3.5 which usually is the target value: 

 

Apparently the scattering is quite huge and when looking at the whole set of reliability 

indices, the obtained coefficient of variation equals 5.18. When running the procedure 10 



times the average percentage of data sets which actually provide a reliability index greater 

than 3.5 is 37.6%. The scattering becomes less once a certain actual scour depth is exceeded. 

The histogram reveals that although the average of 3.01 is quite close to the desired 3.5, the 

majority (62%) of sets provides a beta value of less than 3.5. Approximately one third 

(37.15%) of sets have a beta value less than 2.33 which represents a probability of failure of 

only 1:100 and for 5.4% the reliability index becomes even negative. 

 

 

To answer the question in which cases a greater reliability index can be expected it is quite 

obvious to look at the equation for beta first. The enumerator includes the designer’s 

prediction result using the HEC equation minus the average result of the regression equation: 

QR µµ −  

Therefore the bigger the designer’s result and the smaller the regression result, the bigger the 

reliability gets in the end. When comparing the lambda values with the reliability indices and 



looking at those sets where 1>λ , one could expect beta values with negative algebraic signs 

as consequently RQ µµ >  and as the denominator equals  

22
QR σσ +  

it can not take any negative values.  

 

As can be seen above, for l >1 nearly all beta values are >0. One explanation could be the 

lack in accuracy originated in the fact that the scour depths calculated by using the regression 

equation do not exactly match 

the actual scour depths. As a 

result I will perform another 

regression analysis using 

subdivided parts of the 

database later on to reduce the 

differences between actual 

scour depths and those 



determined with the regression equation which at this point are still quite big. 

 

 

 

Another way to find explanations for the variety of reliability indices is to look at it as a 

function of other hydraulic or hydrodynamic parameters such as the flow velocity, discharge 

rate per flow width, discharge rate per pier, the Froude number or the flow intensity. The 

discharge rate per flow width can be determined as: 
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If additionally multiplied by the pier width one gets the discharge rate per pier: 
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The following plots can be used to interpret the reliability indices β as a function of the 

several parameters. Again the straight even symbolizes a desired β of 3.5. 

 



 

 

 



 

 

 

 

 

 



 

 

When using a basis-10-logarithmic scale for the reliability index over the flow velocity 

respectively, it reveals that the scattering increases while the flow velocity is increasing, too. 

After sorting the beta values by increasing flow velocity and dividing into three 

approximately equally spaced groups of 119 (120), the following means can be determined: 

2.49, 2,75, 4.12. The coefficients of variation take the following values: 3.51, 4.58, 9.19. 

Concluding with increasing flow velocity both, the reliability and the variation of the beta 

values increase. For faster streams the HEC-equation obtains conservative results. Still, the 

percentage of reliabilities less than 3.5 are 72.5%, 66.7% and 41.5% sorted by increasing flow 

velocity.  

 

Usually the discharge rate is determined as water volume per time and bridge pier. When 

calculating it following the first equation above as discharge per meter flow width the 

observed dependencies clear out more accurate. This can be found when sorting the 

determined reliability indices by the discharge rate not using the pier width b and another time 

sorting by the discharge rate per pier which does include the pier width b. I divided each time 

into three groups which are approximately equally spaced with 120 (118) data sets. 

 

  

 

 

 



Discharge per Flow Width:   

small discharge mean 1.64

   COV 5.88

   sets >3.5 14.20%

    sets <3.5 85.80%

medium 

discharge mean 3.15

   COV 2.49

   sets >3.5 36.7

    sets <3.5 63.3

large discharge mean 4.02

   COV 3.67

   sets >3.5 55.9

    sets <3.5 44.1

 

Discharge per Pier:                       

small discharge mean 1.81

   COV 6.85

   sets >3.5 18.30%

    sets <3.5 81.70%

medium 

discharge mean 2.93

   COV 2.34

   sets >3.5 28.3

    sets <3.5 71.7

large discharge mean 4.08

   COV 3.17

   sets >3.5 60.2

    sets <3.5 39.8



The change in average reliability is more significant for the discharge per flow width. For the 

COV no certain rule can be observed. Looking at the percentage of sets in each group which 

exceed a reliability index of 3.5 it can be found that the difference between group one and two 

(small and medium discharge) is bigger for a discharge per flow width while for the 

difference between group two and three (medium and large discharge) the opposite can be 

found. Looking at both plots the behaviour of the general reliability as a function of the 

discharge rate can be found to be quite similar. With an increasing discharge rate the 

reliability seems to get close to the desired value of 3.5 than it is for a small discharge rate. 

This counts no matter in which way the discharge rate is been calculated and no matter 

whether the pier width is included or not. 

 

Quite an interesting notice can be taken when comparing reliability plotted over the flow 

velocity and a second time reliability over the Froude number. Although the flow velocity 

can be found in the enumerator of the latter, the behaviour of β with increasing Froude 

number is actually different to the one from β wich increasing flow velocity. 

I divided the data sets into three parts: 

 

1. 25.00 <≤ Fr  

2. 5.025.0 <≤ Fr  

3. 0.15.0 <≤ Fr  

 

Due to this ranges the observation numbers are not equally spaced but consist 187, 148 and 23 

data sets. While in the beginning the reliability indices get bigger with increasing Froude 

numbers when getting closer to the critical Froude number of 1.0 β starts decreasing 

extremely. The mean values of β are 2.89, 3.47 and -0.18 for groups 1 to 3 respectively. 

Unlike this the variation is increasing continuously with COVs of 2.77, 5.57 and 7.84. As one 



could expect the percentages of data sets which have a reliability index greater than 3.5 

behaves analogically to the mean β. Speaking in numbers a percentage of 32.6%, 43.2% and 

8.7% can be observed. The significant difference between flow velocity and Froude number 

and especially its origin is of outstanding interest.  

 

Trying to explain on possible reason I will give some more information on the Froude 

number: 

When looking at a dam Fr would usually be subcritical before and after the dam but 

supercritical when accelerating while falling down the dam. 

 

Exceeding the critical Froude number Fr=1 is quite uninterrupted but once the flow has a 

negative acceleration and the Froude number falls below the critical value intense vortices 

occur which again cause a lot of erosion. For this reason designer set huge rocks or concrete 

blocks right underneath the dam to make sure the transformation happens where they want it 

to prevent scour of the stream bed. Additionally some people use concrete for the whole basin 

next to the dam as it will sustain the erosion. 

Knowing this one has to consider an extreme flood event. The discharge will not be constant 

any more but increase. Also the flow velocity and the depth will increase. But as the flow 



depth is in the denominator to the 0.5th power and also the flow velocity will raise more 

intense the Froude number is going to transform to the supercritical area at one point. After a 

certain period of time this process will go back analogically to the procedure described for the 

dam and therefore will cause intense erosion.  

The measurements of flow velocity and depth given in the Landers database are collected 

while no flood event was present. As some data sets are already pretty close to the critical 

Froude number under normal conditions they tend to get to a supercritical level more likely 

than those which have lower Froude numbers under normal conditions. Again this could 

cause a lower reliability index.  

The above said proofs the necessity to account for the subcritical or supercritical flow 

behaviour of a river and does not support the opinion of some authors who claim the Froude 

number to be of identical explanatory power as the flow velocity. Both are important 

hydrodynamic parameters and have to be kept under consideration. 

 

The flow intensity is an important parameter and equals the ratio of flow velocity to critical 

flow velocity. The latter is the velocity at which an incipient motion of the average sized soil 

particle can be observed. Several equations have been developed to determine the critical 

velocity. I am going to use the one used in the Simplified Chinese Equation: 
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Where: 

• 0y  = flow depth, 



• mD  = average particle size, 

• ρ  = density of water, 

• sρ  = density of soil, 

 

Knowing the flow velocity at which the average sized soil particle starts floating one can 

calculate the flow intensity defined as the actual flow velocity over the critical flow velocity. 

 

cV
V

Int 0=  

 

In order to calculate the flow intensity several approaches have been provided especially to 

account for the difference between cV  in the open river compared to the corresponding cV  in 

the constricted reach of the pier site. The Simplified Chinese Equation uses another definition 

to account for the flow intensity which includes the “…approach velocity corresponding to 

the critical velocity and incipient scour in the accelerated flow region at the pier” 'cV . I am 

going to use the cV  for the open river conditions to find out about general relations and 

dependencies.  

A general subdivision has to be taken to consider whether clear-water or live-bed conditions 

are present. The necessity for this subdivision is due to the fact that for clear-water conditions, 

there is no soil particle “input” into the scour hole. In other words the soil volume taken out of 

the scour hole equals the volume of the future hole. It is not being filled up afterwards either.  

Whereas for live-bed conditions soil is being transported out of the scour hole and into the 

scour hole at the same time. Therefore the volume of the future scour hole equals the volume 

of soil taken out minus the volume of soil put in the hole. Also, once the flood event is over 

the hole will be filled up to a certain level. The limit between clear-water and live-bed 



conditions is symbolized by the vertical straight even in the plot below whereas the horizontal 

even equals a desired reliability index of 3.5. 

The following plot illustrates the distribution of the entirety of calculated flow intensities. 

Note that a flow intensity equal to 1.0 is the limit state between clear-water and live-bed 

conditions. 

 

As for most of the sites live-bed conditions were found to be present the explanatory power of 

the 56 data sets which represent only 15.6% of the whole database is questionable.  

Despite this I want to mention the differences in the averages of reliability indices which 

equals 3.15 for live-bed conditions but only 1.76 for clear-water conditions. This indicates 

that the HEC Equation is predestined to be used with live-bed conditions although it tries to 

account for channel bed conditions by the different values of factor 3K . 

 

 

I break down those β values for live-bed conditions one more time. 

• 5.31 <≤ Int  



• Int≤5.3  

The average reliability increases while the variation decreases. The averages and COVs are 

respectively:  

Averages: 

• 3.08 

• 3.49 

Coefficients of variation: 

• 5.71 

• 2.89 

The result which one can interpret due to these observations is that for a ratio of 
cV

V0 >3.5 the 

average reliability is pretty close to the desired 3.5 and although the COV is still quite high, it 

is way less the one for lower values of the flow intensity. Still, one has to keep in mind that 

for the observed 50 sets where the flow intensity exceeded 3.5 still 20% of sets had an 

reliability index βless than 2.0 which meaning is a probability of failure of approximately 

1:80. 

 

As the flow depth inherent in the Froude number’s denominator has the power of 0.5, its 

weight in the resulting value is reduced. When taking the ratio of flow velocity over water 

depth, this reduction is taken away and the trend is more obvious as can be seen in the plot 

below. Although the vast majority of measurements provide a ratio of less or equal 1.0, a 

trend can be found: As the above mentioned ratio increases, the average reliability index 

decreases.  Although only 26 sets which represent 7% of the whole database have a 
0

0

y
V

 ratio 

greater 1.5 one can observe the reliability indices to decrease abruptly for this range. For a 

ratio less than 1.5 the average β equals 3.2 with a COV of 4.05 whereas for those sets with a 



ratio greater than 1.5 the average β beta is even negative and equals -0.51 with a COV of 

3.81. 

 

 

 

Simplified Chinese Equation Analysis 

 

When attempting to interpret the scour depths predicted by the Simplified Chinese Equation 

one has to know that the purpose of this equation is not to be used directly as a design 

equation but to predict the expected scour depth pretty accurate. In other words the result 

obtained by the SC-Equation is not supposed to be conservative. 

Plotting the SCE-predicted scour depth over the actual measured scour depth delivers some 

facts of interest. Note that the straight even represents an optimal prediction where predicted 

scour depth equals measured scour depth. 

 



 

 

Like the HEC-equation, the uncertainties increase for an actual scour depth greater than 3.5m 

(11.5ft). Unlike the HEC-equation underestimations can already be observed for actual scour 

depth less than 3.5m, too. As already mentioned this is due to the fact that the Simplified 

Chinese Equation lacks of a safety factor as the HEC-equation has. The SCE tends to 

overestimates though.  

Two ranges of predicted scour depth can be found for which the SCE varies quite a lot 

compared to the actual scour depth:  

m3.1≈  

m6.3≈  

When comparing the SCE results to the measured scour depth one finds underestimations of 

10 to 15 times which is quite enormous. 

These similarities with the results of the regression analysis are quite interesting as one could 

presume those to be of the same origin. I will focus on that later on and try to find reasonable 



explanations. Assuming that the used database it statistically significant one can approach a 

prediction to find out about the probability of underestimation.  

 

 

As can be seen with increasing predicted scour depth the probability to underestimate first 

increases until spy  equals approximately 2.25m (7.4ft) after which it goes up again. The 

minimum probability is 6.7% while the greatest slightly exceeds 80%. 

To find out how useful this plot actually is one needs to know about the distribution of the 

SCE-predicted depths. I will plot the histogram in steps of 0.5m. 



 

For predictions less 0.5m (1.64ft) and greater than 2m (6.5ft) the number of sets in this range 

falls below 20 thus the statistically significance can be questioned out of those limits. Within 

these limits the found percentages might be a rough support to interpret the predicted scour 

depths and its accuracy.  

 

Another way to judge the over- and underestimation is to plot lambda over the measured 

scour depths. Remember that 
spy
s

=λ  where s equals the actual scour depth and spy  is the 

SCE-predicted depth. The even shows the location of the optimal prediction meaning that the 

predicted scour depth equals the actual scour depth. 

 



 

 

The scattering appears somewhat similar to a shaft of light starting in the axes’ origin. In other 

words with increasing actual scour depth both the mean lambda as well as the COV of the 

lambdas increase. This could be expected as the actual scour depth s happens to be in the 

enumerator of l and for this reason an increasing s causes an increasing l, too. The accession 

in scattering can be explained due to the fact that with an increasing s a deflection of a certain 

amount between s and the SCE-predicted scour depth spy causes a larger difference for the l-

value.  

For actual scour depths less than 1m the mean l equals 0.76 with a coefficient of variation of 

593%. Ranging from 1m to 3m of measured scour depth the mean increases to 1.19 varying 

by a COV of only 70%. The average lambda for all sets with an actual scour depth exceeding 

3m equals 2.85, the COV goes up to a value of 360%.  

 

 



Although some dependencies can be found the flow depth directly upstream of the bridge 

pier seems to have a rather small influence on l. While the average lambdas take values 

between 0 and 1.5 an increasing ratio of actual over predicted scour depth can be obtained for 

flow depths between the limits of approximately 4m (13.1ft) and 10m (32.8ft).  

 

 

 

The majority of data sets 

happen to show a flow depth 

between 0m and 4m but there 

are still quite a few sets with 

0y  increasing 4m. See the 

histogram of the flow depth 

on the right side. 

 



The reason for the increase of lambda values for a range of flow depth of 4m to 10m could be 

that starting in this range both, the discharge rate per bridge pier as well as the flow intensity 

start to increase. The SCE seems to be more accurate once the incipient increase of flow 

intensity is completed.  

 

 

The plots below show the flow depth over the discharge rate per bridge pier (left) and the flow 

intensity (right) respectively. 

 

 

 

 

Unlike the flow depth the lambda values occur to be much more linked to the flow velocity 

0V . For 0V <1.5
s
m  the mean lambda equals 1.24 with a huge COV of 815%. Those represent 

about 60% of all data sets. The lambdas for flow velocities that exceed 1.5
s
m  the average 

lambda equals 0.84 while the COV cuts down to 30%.  



 

 

The plot above illustrates that the scour causing potential of slow flow velocities is being 

underestimated. A conclusion related to that is that apparently the SCE assumes a distinct 

dependency between scour depth and flow velocity which does not exist to that extent.  

Although the flow velocity influences the predicted scour depth in different ways in the HEC 

and SCE equation the same underestimation can be found using the HEC equation. For the 

HEC equation the flow velocity appears in the enumerator of the Froude number which itself 

is taken to the 0.43th power. Looking at the SCE-equation the flow velocity is inherent in the 

flow intensity term: 
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Neglecting the three marked outliers with increasing critical flow velocity cV  lambda 

decreases continuously.  

 

 

 

 

 

Comparing the plot above to the one on the right 

which shows actual scour depth over critical flow 

velocity reveals that there is a pronounced 

dependency between critical flow velocity and 

scour depth which the SCE does not account for 

to a pertinent extent yet.  

 

 

 



The vast majority (75%) of average particle sizes happens to be smaller than 0.02m (0.8inch) 

which leads to a limited statistical significance of the remaining data sets. Lambdas seem to 

take greater values for small mD  and for those around 0.075m (3inches). As mentioned before 

the explanatory power of this observation is questionable. 

 

 

 

 

 

 

 

 



 

 

The plot above shows l over the Froude number Fr. As could be expected the plot appears 

somewhat similar to l over 0V  as the latter happens to be in the enumerator of the Froude 

number. Unlike the plot showing the flow velocity on the abscissa, the graphic including the 

Froude number shows lambda values close to 1.0 for Fr>0.5. Note that for fast flow velocities 

l appears somewhat asymptotically to 0.  

Besides this difference it can be found that for increasing flow velocities as well as for 

increasing Froude numbers the lambda values decrease and generally speaking the SCE 

results become more conservative. 

 

 



 

 

To find out about the links between lambda and the discharge rate Q I will use the discharge 

rate per meter flow width. It equals flow velocity times flow depth. The flow depth does have 

a less distinct influence on l thus the plot shown above is quite similar to lambda over flow 

velocity. The maximum scour occurs when the discharge is maximal while this happens 

during flood events. Assuming that the measurements on which the data is based were taken 

under ordinary conditions the calculated Q would not be the discharge rates which caused the 

measured scour depths. Again for live-bed scour this assumes that the scour hole is not filled 

up again yet.  

 

 

 

 

 

 



Knowing that the flow intensity equals 
cV

V0  the plot below can be interpreted. It is quite 

similar to both plots: l over 0V  and l over cV . This indicates that the influence of 0V  is more 

intense than the one from cV .  

 

 

For a ratio of 0V  to cV greater than 3.5 the lambda values level off where nearly all values are 

less than 2.0. Dividing the plot above into three ranges delivers a trend regarding to average 

values and coefficients of variation: 

• Int<2.0:   mean:  1.24 

COV: 913% 

• 2.0≤ Int<4.0  mean: 0.85 

COV: 77% 

• 4.0≤ Int   mean: 1.14 

COV: 30% 



To figure out whether the flow intensity is being accounted for in a pertinent way one shall 

look at the plot below which shows predicted (*) and actual (o) scour depth over flow 

intensity. 

 

 

 

The trend appears to be quite similar: Most of the values are in a flow intensity range less than 

3.5 (86%) and a scour depth less than 2.5m (92% of spy , 89% of s). For flow intensities 

greater than 5 the scour depth increases for both, the predicted as well as the actual scour 

depth. 

 

Although the mentioned similarities can be observed there are still recognizable differences. 

32 values (representing 9% of the whole database) of the actual scour depth with a flow 

intensity less than 3.5 have greater actual scour depth than the maximal predicted scour depth. 

The latter equals 3.71m while the maximal actual scour depth equals 7.65m. The same trend 

can be observed for flow intensities ≥  3.5. 



Besides these huge differences which can be found, for a small range of 3.5<Int<5 the 

predicted and actual scour depths do not vary that much. Looking at the predicted (actual) 

scour depth a mean of 0.97 (0.81) with a COV of 15% (18%) can be observed. Those values 

represent 8.1% of the whole amount of available data sets. 

 

 

The reliability index is plotted over the actual scour depth while the straight even illustrates 

the location of the desired reliability index of 3.5. 

 

 

 

Running the reliability analysis 1,000 times the mean reliability index β equals 1.53 and 

produces a coefficient of variation of 337%. Taking a look at the target reliability index of 3.5 

an average of 37.9 data sets (10.6%) have a β actually greater than that. In other words 10.6% 

of the SCE-predicted scour depths satisfy the claim to have a probability of failure less than 

≈1:1,050. 



The shown plot itself looks similar to the graphic which shows β over actual scour depth for 

the HEC-equation.  

 

 

 

 

 

The distribution of reliability indices can be visualized with the help of the plot below. 

 

 

 

 

 

One simple way to check the results is two plot β over lambda which reveals the same 

deficiencies as could be found analyzing the HEC-equation. The regression equation seems to 

include some uncertainties.  



 

 

For l>1.0 the reliability indices should be all in the negative range which most of them are 

not.  

 

 

Again replacing lambda by the quotient of regression result over SCE-predicted scour depth 

obtains a plot that appears more logically. 

 

 

 



 

Although this new plot appears somehow theoretically correct it proofs that the regression 

results and the actual scour depths still have discrepancies. If they would be identical the plots 

of beta over lambda and beta over the quotient of regression result and SCE-prediction should 

be the same. To find a regression equation which fits accurately is hard and I will focus on 

that later on. Theoretically the other way to get rid of the uncertainties described above would 

be to use the actual measured scour depth for the determination of the expected scour depth 

Qµ  as well instead of using a regression equation. The reason why this is not recommendable 

at all is because one should treat Qµ  as a random variable to account for its nature as a 

random distributed variable. Therefore if one does not want to accept an uncertainty in the 

result the only way is to find another improved regression equation. Nevertheless I will use 

this one first regression equation for all of the data sets for the further calculations and come 

up with an improvement equation later on. Note that one will have to accept a certain amount 

of inaccuracy inherent in the regression equation no matter which one is used. The less these 

uncertainties are the better the results will be and the more realistic the calculated reliabilities 

are. 

 

 

 

 

 

 

 

 

 

 



 

 

 

For shallow rivers a limited reliability can be found. With very small β values going down to 

-6 the SCE-results become more reliable with increasing river depth where the increase of 

beta is somewhat linear until a flow depth of approximately 4.0m (13.1ft) is reached. From 

that point on the reliability indices level off but still quite a huge variation can be found for 

mym 80.4 0 ≤≤ . 

 

 

 

 

 

 

 

 



Dividing the flow depth in three ranges the following data can be found: 

 

 

• my 0.40 < :   mean β 0.54 

COV of β 316% 

 

• :0.80.4 0 mym <≤   mean β 2.94 

COV of β 177% 

 

• :0.80 my ≥    mean β 2.32 

COV of β 50% 

 

 

As the flow depth is part of the Froude number looking at the plot above which reveals a 

distinct dependency between the reliability index β and the flow depth 0y  one expects a 

relation between the Froude number and the reliability against failure due to scour as well. 

 

 

 

 

 

 

 

 



The following plot shows the Froude number over the river depth to proof and illustrate the 

relation between Fr and 0y  while the plot below that shows β over Fr. As usual the even 

symbolizes the location of a desired β=3.5. 

 

 

 

 



Looking at the lower plot shown above one can find an important difference between the 

results obtained by the HEC equation and those from the SCE equation. While one could find 

rather less clear dependencies for the HEC results the ones that can be find at this point are 

more helpful. While for small Froude numbers the variation of reliability indices still is quite 

huge the COV becomes less with increasing Froude number. As can be seen the average β 

clearly decreases once the Froude number gets closer to 1.0. Although less obvious the latter 

trend could also be found for the HEC equation and the explanation given at the comments in 

the HEC chapter of this thesis are very likely to be the reason for the decrease found in the 

plot above, too: For a river with Fr close to a critical value of 1.0 it is more likely to exceed it 

when a flood event occurs. Once the flood is gone and the Froude number drops below 1.0, 

the occurring scour is immense. For further details look at the chapter about the HEC equation 

and its comments on that topic. 

 

The difference in dependency between reliability indices and Froude numbers when 

comparing HEC and SCE predictions is due to the fact that the Froude number is already used 

to predict scour depth in the HEC but not in the SCE equation. Therefore it is quite useful to 

improve the SCE predictions using Fr while the help it provides for the HEC results is not that 

reasonable. The Froude number has already been used for the HEC equation and for this 

reason its predictions do not depend on Fr anymore.  

 

The following plots illustrate the above said. Those show predicted scour depth over Froude 

number for the HEC (upper plot) and the SCE (lower plot) equation. Although linear 

dependencies can only be found in certain ranges of Froude numbers it is quite obvious that 

the HEC predictions depend more on the Froude number than those provided by the SCE 

equation.  

 



 

 

 

 

 

 

Generally speaking parameters that are already inherent in the SC-equation have a less 

distinct dependency on the reliability indices β than those which has not been accounted for 

yet. This statement assumes a pertinent input of the certain parameter in the prediction 

equation. The above said is true not matter which scour depth prediction equation is used, the 

equation out of the Hydraulic Engineering Circular or the Simplified Chinese Equation. 

 

 

 

 

 



Looking at the relations between beta and the pier width b shows that for small pier widths 

the variation of the produced reliability indices is huge while it becomes smaller with 

increasing b. Note that for a b equal to 1.04m (3.4ft) β drops down to values less reliable than 

-6. To find out a reason for that I will take wave lengths, wave periods, orbital velocities of 

the water particle, etc. into consideration later on. 

 

 

 

 

 

 

 

 

 

 

 



Close to the pier width b is the correction factor sk  which accounts for the pier shape.  

Although it would be inaccurate to get safety factors out of the plot of reliability index over 

sk  a trend can be found. For small values equal to 0.66 (sharp nosed piers) of the pier shape 

factor an average β of -0.1 can be found. For  sk =0.8 (round nosed piers) the mean beta 

equals 1.9, for sk =1.0 it is 2.8 and for sk =1.2 the average beta equals 1.7. Therefore one can 

find the general rule that the greater sk  is, the greater the average reliability index will be. 

The observations regarding to this safety factor have to be taken carefully though as the 

values it takes are man-made and not measurements. 

 

 

 

 

 

 

 



The flow intensity can be determined as the flow velocity over the critical velocity: 

cV
V

Int 0=  

For usual values of Int the reliability indices scatter a lot whereas for greater values of Int the 

variation is quite small. Unfortunately the number of sets in this range is quite small, too, thus 

the statistical significance is questionable.  

When subdividing the database into two parts the mean betas and pertinent COVs are 

respectively: 

 

• 0.4<Int   mean β = 1.55 

COV   = 374% 

• Int≤0.4   mean β = 2.08 

COV  = 142% 

 

Note that the first range represents 91.4% of all sets while the second one represents only 

8.6%. 

 



Most of the discharge rates per bridge pier that could be found take values less or equal to 

30[m³/s] (1,060 ft³/s). Plotting the abscissa in a logarithmic scale to the basis 10 while keeping 

the ordinate in linear scale points out that all the negative reliability indices occur for a 

discharge rate Q less than 10 m³/s. For greater Q the noted β start levelling off while still 

having quite a huge variation. The data sets which actually exceed a reliability of 3.5 are 

located in the medium range of flow intensities in a range between approximately 0.6 m³/s to 

about 30 m³/s. 

 

 

 

Comparison of the two scour prediction models and analysis of the effect of changing 

land use 

 

This work is in progress. 


	
	Report for 2004RI23B: Stream Stability and Scour Potential for Rhode Island Bridges

	Microsoft Word - wrc_scour.doc
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65


