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Executive Summary 

Antibiotics and estrogens are two classes of wastewater contaminants that have been 
detected in US surface waters. The potentially adverse effects of these pollutants on water 
quality are unknown, but will be determined, in part, by their persistence and the biological 
activity of both the parent compound as well as the degradates. Photolysis is one possible loss 
process, and the direct and indirect photolysis of five sulfa drug antibiotics, four nitrofuran 
antibiotics, four fluoroquinolones, and tetracyline has been investigated. The structure of the R-
substituent on the sulfa drugs controls the reactivity; those containing six-membered substituents 
degrade through both direct photolysis and reaction with triplet dissolved organic matter. Both 
processes result in SO2 extrusion. The photochemical kinetic rate constants for the loss of 
tetracycline under natural sunlight are a function of its various environmentally-relevant aqueous 
chemical species, including acid-base equilibria and metal-binding. Direct photolysis has been 
found to be the major photochemical degradation pathway for the nitrofuran antibiotics, with the 
formation of a photostationary state between the syn and anti isomers occurring in the first 
several minutes of light exposure. All antibacterial compounds tested, three sulfa drugs and 
triclosan (an antimicrobial agent), photodegraded to products with no observable antibacterial 
activity. 

 
Introduction  

Reports of pharmaceuticals and personal care products (PPCPs) in natural waters have 
recently appeared with increasing frequency.1-5 Two important subclasses of these emerging 
contaminants are particularly worrisome due to their potential to adversely affect surface waters: 
antibiotics and environmental estrogens. Estrogenic compounds have a demonstrated ability to 
interfere with the development of aquatic organisms,5, 6 while there is concern that the presence 
of antibiotics in natural waters will lead to an increase of antibiotic resistant bacteria.7, 8 These 
compounds are released into surface waters as a result of human use, through discharge of 
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treated and untreated wastewater. An additional, major source of antibiotics comes from their 
wide use in the production of food animals and in fish farming. 1-5  

The magnitude of the effects and potential threat to water quality due to antibiotics and 
hormones is, in part, determined by the compounds’ persistence in aquatic systems. The principle 
goal of this proposed study is to understand one aspect of their persistence—their degradation by 
photochemical processes. Based upon our work9-15 and that of others,11, 16-22 we believe that 
photodegradation may be a major loss process for these compounds in sunlit waters. Thus, it is 
important to understand the photochemical processes that degrade these chemicals in surface 
waters, to identify intermediates and products that are formed, and to assess the biological 
activity of these products. 
 
Methods 
Direct and natural water photolysis experiments 

 Photolysis experiments were performed outdoors under natural sunlight or indoors under 
medium pressure Hg-vapor lamps or a Suntest CPS+ solar simulator equipped with a Xe-arc 
lamp and a UV Special Glass filter to mimic the solar spectrum. Sample solutions were 
contained in quartz test tubes (OD = 13 mm, ID = 11 mm, V = 10 mL). For kinetic analyses 
approximately 0.5 mL samples were withdrawn from the quartz tubes at predetermined intervals 
and analyzed on an 1100 Series Hewlett Packard HPLC equipped with UV-absorbance detection 
and a computer driven data acquisition system. In experiments designed to probe for pH effects, 
various buffer solutions were employed to set the pH values. Solar quantum yields were 
calculated by comparing the rate constant for the disappearance of the PPCPs under either 
natural sunlight or the Suntest CPS+ solar simulator with the rate constant for the disappearance 
of a p-nitroanisole actinometer. For toxicity experiments, test tubes were sacrificed at pre-
selected time intervals and saved for HPLC analysis of remaining antibiotic concentration and 
subsequent antibacterial activity testing. The wavelength dependence of the direct photolysis of 
the nitrofuran antibiotics was probed using a series of cut-off filter tubes (absorbing λ < 320 nm, 
280 nm, and 220 nm). Quartz test tubes containing the photolysis solutions were placed inside 
the filter tubes during photolysis. 

Natural water photolysis experiments were performed in 0.2 μm filtered Lake Josephine 
(LJW) water or Lake Superior (LSW) water. To determine which pathways were responsible for 
the photodegradation, various quenchers were added to or removed from the water samples 
(sodium azide or DABCO for 1O2, isopropanol for radicals, oxygen and isoprene for triplet 
DOM) and the substrate was also photolyzed in DI water in a separate tube. 
  
Speciation dependent behavior of tetracycline 

Association constants which determine the speciation of calcium- and magnesium-
tetracycline complex formation were measured by pH titrations (pH 3 to 11) performed at 
various constant metal concentrations and the collection of UV-vis spectral data. The first order 
rate constant for the loss of tetracycline under simulated sunlight (Suntest CPS+ photosimulator, 
Atlas) was observed at various pH, calcium, and magnesium concentrations. Kinetic experiments 
were performed as detailed above. The concentration-dependent initial rate of photochemical 
degradation was monitored for various initial tetracycline concentrations and extrapolated to 
infinite dilution to determine the first-order rate constant for the loss of tetracycline in the 
absence of self-sensitization. 
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Singlet oxygen (1O2) 
Singlet oxygen reaction kinetics were measured in one of three ways, directly by laser 

flash photolysis (LFP), or indirectly by either steady-state photolysis (SSP) or thermal generation 
of 1O2. In both LFP and SSP experiments the substrate (typically at micromolar concentrations) 
and 100 μM perinaphthenone, a well-defined singlet oxygen sensitizer, were dissolved in 
aqueous buffer solutions. In the LFP experiments, a pulse of laser light excites the sensitizer, 
which then produces singlet oxygen after the excited-state sensitizer is quenched by dissolved 
molecular oxygen. A sensitive Ge-photodiode detector then monitors the phosphorescence 
emission from singlet oxygen. The rate of disappearance of the singlet oxygen phosphorescence 
signal is a measure of a substrate’s activity toward singlet oxygen. The resulting total quenching 
rate constant (ktot) is the sum of the chemical reaction and physical quenching rate constants. 

In SSP experiments, the samples were photolyzed continuously and small aliquots were 
removed for analysis by HPLC. In this case, the disappearance of the PPCP was monitored (as 
decreases in peak area), rather than the singlet oxygen signal. This allows for determination of 
the chemical reaction rate constant (krxn) for the PPCP with singlet oxygen. 
 To avoid any competing photochemical reaction occurring in SSP, thermal generation of 
1O2 was used. In these experiments, 1O2 was generated through the reaction of hydrogen 
peroxide (H2O2) and molybdate (MoO4

2-).23-25 H O  (1 M) was added to a buffered solution 
containing MoO  (1 mM), a reference compound of known k  (FFA; 100 μM), and substrate 
(100 μM). Aliquots of the reaction solutions were added to an aqueous solution of sodium azide 
(507 mM) at a series of time points to quench the reaction. Samples were then analyzed for both 
reference compound and substrate degradation via HPLC.

2 2

4
2-

rxn

 
Product identification 

Since large volumes of photolysate were required for product identification, photolyses 
were executed using a higher intensity light source (450 W medium pressure Hg-vapor lamp) 
which was completely immersed in the photolysis solution (100 μM substrate, 300 mL). After 
photolysis, the solution was concentrated to a total volume of 2 mL and the desired photoproduct 
was isolated using preparative HPLC. Sufficient amounts of product for analysis were obtained 
by combining the collected fraction from multiple injections of the photolysate on the 
preparative HPLC column.  
 Following isolation, the product was identified using an array of analyses including mass 
spectrometry, infrared spectroscopy, and nuclear magnetic resonance (NMR). Mass spectral data 
were obtained for both the raw photolysate and the isolated products using a Bruker BioTOF 
ESI-TOF mass spectrometer. High resolution mass spectra were obtained using an internal 
standard of poly(ethylene glycol). Infrared absorbance spectra were acquired using a MIDAC 
Corporation M-Series FT-IR by placing a solution of the isolated photoproduct in methanol-d4 
between two NaCl plates. The H-NMR and C-NMR spectra of isolated photoproducts were 
obtained on a 

1 13

Varian Inova 300 MHz spectrometer. A quantitative H-NMR spectrum of the 
same sample was acquired using an internal standard.  
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Biological activity 

The ability of the antibacterial compounds and their photolysis products to inhibit 
bacterial growth was tested using E. coli DH5α. The bacteria were maintained on agar plates and 
grown up overnight on Iso-Sensitest broth (ISB) (Oxoid, Inc.) prior to testing. One mL of 
antibacterial compound or photolysis product and 100 µL of E. coli were added to test tubes 
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containing nine mL of ISB prepared in a pH 7 phosphate buffer (9.7 g KH2PO4 and 19.4 g 
Na2PO4 per liter deionized water). The solutions were incubated in the dark at 37 °C while being 
shaken. Bacterial growth was assessed after 8 hours by measuring optical density at 600 nm 
(OD600).    

The antibacterial compounds and their photolysis products were also tested for their 
ability to inhibit bacterial respiration. The respiration assay used was based on the ability of the 
bacteria to reduce iodonitrotetrazolium chloride. E. coli (400µL) was added to 40 mL of ISB and 
incubated at 37 ºC. Once the OD600 of this solution had reached 0.4 (in the exponential phase of 
the growth curve), 1 mL aliquots were centrifuged at 19,000g for five minutes. The supernatant 
was decanted, and 0.5 mL of antibiotic or photolyzed antibiotic was added. The bacterial pellet 
was resuspended, and the tubes were then incubated in the dark at 37 °C while being shaken. 
After one hour of incubation (approximately one generation time), 0.5 mL of a 5 mM solution of 
the tetrazolium salt was added and the tubes were incubated for an additional hour. The tubes 
were then centrifuged, the supernatant decanted, and 1 mL of an organic solution (1:1 
dimethylformamide: ethanol) was added to the bacterial pellet to extract the formazan. The pellet 
was resuspended, and the tubes were incubated in the dark at room temperature for one hour. 
After centrifuging, the absorbance of the supernatant was measured at 464 nm to quantify the 
amount of formazan formed. 
 
Results to date 
Photodegradation of the Sulfa drugs 
 The photolysis rates of the sulfa drugs containing six-membered heterocyclic substituents 
(sulfachloropyridazine, sulfadiazine, sulfamerazine, and sulfamethazine) in Lake Josephine 
(DOC = 5.9 mg/L) water were enhanced by a factor of 1.4-2.6 relative to the photodegradation 
rates in DI H2O. The enhancement in the natural water has been attributed to reaction of the sulfa 
drugs with excited triplet dissolved organic matter (3DOM). Verification that the reaction is 
sensitized by 3DOM was provided by the characteristic enhancement of the degradation upon 
eliminating oxygen from the system and suppression of the degradation upon addition of 
isoprene, quenching of triplet-excited state perinaphthenone during LFP experiments, and the 
lack of reaction between the sulfa drugs and 1O2 as measured using thermal generation methods. 
The natural water photodegradation of sulfadimethoxine matched the degradation in DI H2O, and 
the degradation was thus attributed solely to direct photolysis. The direct photolysis of 
sulfadimethoxine is pH dependent, and is explained by differing reactivity of the protonation 
states. The remaining sulfa drugs’ direct photolysis and triplet-sensitized degradations are not pH 
dependent over the pH range 6-9. 
 The primary product of both direct photolysis and triplet-sensitized degradation was 
identified as an SO2 extrusion product (Figure 1). The yield of this product from sulfamethazine 
was found to be 64%.  
 
Tetracyline 
 The pseudo-first-order rate constant for the photochemical loss of tetracycline was 
observed, under environmentally-relevant conditions, to be dependent on pH and both calcium 
and magnesium concentration. For each of the four acidic protons in tetracycline, deprotonation 
leads to both increased solar action spectrum and increased rate constant for photochemical 
degradation. The binding of tetracycline species to either calcium or magnesium leads to a 
further increase in the action spectrum for solar absorption. In the laboratory, the high 
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tetracycline concentrations (1 to 10 µM) led to significant self-sensitization, especially at higher 
pH values. For example, at a pH of 7.5, the observed pseudo-first-order rate constant appeared to 
double when increasing the initial tetracycline concentration from 1 to 15 µM, with a linear 
dependence on initial tetracycline within the concentration range. As an example of the rapid 
kinetics, the half-life of tetracycline extrapolated to infinite dilution at pH 7.5 was 9.9 minutes, 
where the experimental light intensity was approximately the same as that of a clear summer day, 
noon, 45° latitude.  
 
Photochemical behavior of the nitrofuran antibiotics 
 The photodegradation of the nitrofuran antibiotics (furaltadone, furazolidone, and 
nitrofurantoin; Table 1) was found to be dominated by direct photolysis with the formation of a 
photostationary state between the syn and anti isomers occurring during the first minutes of 
photolysis. The direct photolysis rate constant was quantum yield were calculated for each of the 
nitrofurans.  Environmentally relevant half-lives were determined for mid-season surface waters 
at 45°N latitude and range between 0.08 – 0.44 hours for mid-summer.  Reaction rate constants 
with 1O2 and ·OH were also measured.  Half-lives for these processes were calculated using 
environmentally relevant concentrations; 66 – 488 hours and 74 – 82 hours for 1O2 (10-12 M) and 
OH (10-15 M), respectively.  When compared with direct photolysis half-lives, it is clear that 
indirect photochemical processes will not compete with direct photodegradation. 
 The photodegradation pathway is summarized in Figure 3.  The major photodegradation 
product of the nitrofurans was identified as nitrofuraldehyde, which is also photolaibile.  Direct 
photolysis of nitrofuraldehyde was found to produce NO which is easily oxidized to form nitrous 
acid.  Studies determining the pH dependence of the photolysis of the nitrofurans concluded that 
the degradation is acid catalyzed, indicating that the acid produced from photolysis of the 
nitrofurans further catalyzes their degradation, leading to autocatalytic behavior.  Natural waters 
were found to buffer the initial acid formation. 
 
 
Biological Activity 

Comparing the growth of E. coli DH5α in the presence of unphotolyzed sulfathiazole 
(Figure 2, open circles) versus in the presence of partially photolyzed sulfathiazole (Figure 2, 
closed triangles) revealed little difference in the inhibition of bacterial growth as a function of 
sulfathiazole concentration. Any photolysis products generated at a given point along the curve 
and present in the samples in the photolyzed series in addition to the sulfathiazole would be 
responsible for deviations from the unphotolyzed sulfathiazole series. The concentration at which 
sulfathiazole has reached half of its maximum effective concentration (EC50 values) for these 
two curves were statistically similar. This suggests that the products of the photolysis do not 
retain any significant ability to inhibit bacterial growth; that is, the antibacterial activity of the 
photolyzed solution only comes from the unreacted sulfathiazole. Similar results were observed 
for sulfamethoxazole, sulfachloropyridazine, and triclosan. 
 
Summary of findings 

The photodegradation mechanism for the sulfa drugs containing six-membered 
substituents involves both direct photolysis and reaction with triplet dissolved organic matter 
generating an SO2 extrusion photoproduct. Comparison of these results with those obtained for 
the sulfa drugs containing five-membered substituents reveals that minor structural changes can 
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give rise to disparate environmental loss mechanisms. The photochemical kinetic constants for 
the loss of tetracycline under natural sunlight are a function of its various environmentally-
relevant aqueous chemical species, including acid-base and metal-bound forms. Direct photolysis 
has been found to be the major photochemical degradation pathway for the nitrofuran antibiotics, 
with the formation of a photostationary state between the syn and anti isomers occurring in the 
first several minutes of light exposure. All antibacterial compounds tested, three sulfa drugs and 
triclosan, photodegraded to products with no observable antibacterial activity. 
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Figure 1. Characterization data for the primary photoproduct of sulfamethazine. (A) ESI-TOF 
mass spectrum of the raw photolysate of sulfamethazine showing the parent ion (m/z 301.1, 
MNa+) and the photoproduct (m/z 215.2). (B) ESI-TOF mass spectrum of the isolated 
photoproduct (m/z 215.2). 1H-NMR (C) and 13C-NMR (D; * denotes ethanol peaks) of the 
isolated photoproduct. 
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Figure 2.  Change in optical density at 600 nm after 8 hours for E. coli DH5α in the presence of 
sulfathiazole (open circles) and sulfathiazole plus photolysis products (closed triangles).  
Remaining sulfathiazole concentration is plotted (log of concentration (μM)).  Initial and final 
sulfathiazole concentrations during photolysis (77 μM at 0 hours and 5.2 μM at 6.5 hours) are 
labeled. 
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Figure 3.  (A) Photodegradation scheme of the nitrofuran antibiotics.  Parent and 
isomer conformations were arbitrarily set to anti as the parent and syn as the 
isomer.  For clarity, the reaction of NO to HNO2 is not balanced.  (B)  Balanced 
reaction for NO oxidation to HNO3. 
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Table 1.  The general structure of the nitrofuran antibiotics, with the varying substituents (R) 
shown within the table. 
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