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Understanding how watershed characteristics and climate influence the baseflow component of stream
discharge is a topic of interest to both the scientific and water management communities. Therefore, the
development of baseflow estimation methods is a topic of active research. Previous studies have demon-
strated that graphical hydrograph separation (GHS) and conductivity mass balance (CMB) methods can
be applied to stream discharge data to estimate daily baseflow. While CMB is generally considered to
be a more objective approach than GHS, its application across broad spatial scales is limited by a lack
of high frequency specific conductance (SC) data. We propose a new method that uses discrete SC data,
which are widely available, to estimate baseflow at a daily time step using the CMB method. The pro-
posed approach involves the development of regression models that relate discrete SC concentrations
to stream discharge and time. Regression-derived CMB baseflow estimates were more similar to baseflow
estimates obtained using a CMB approach with measured high frequency SC data than were the GHS
baseflow estimates at twelve snowmelt dominated streams and rivers. There was a near perfect fit
between the regression-derived and measured CMB baseflow estimates at sites where the regression
models were able to accurately predict daily SC concentrations. We propose that the regression-derived
approach could be applied to estimate baseflow at large numbers of sites, thereby enabling future
investigations of watershed and climatic characteristics that influence the baseflow component of stream
discharge across large spatial scales.

Published by Elsevier B.V.
1. Introduction

Scientists and managers are often interested in identifying how
watershed characteristics (e.g. geology, land use, soil type, etc.) and
climatic conditions influence baseflow discharge to streams.
Addressing such processes requires quantitative estimates of
baseflow discharge across a gradient of watershed types. The
development of quantitative methods for baseflow estimation is
also necessary to understand water budgets (Stewart et al.,
2007), estimate groundwater discharge (Arnold and Allen, 1999)
and associated effects on stream temperature (Hill et al., 2013),
and address questions of the vulnerability and response of the
water cycle to natural and human-induced change in environmen-
tal conditions, such as stream vulnerability to legacy nutrients
(Tesoriero et al., 2013). Given the importance of baseflow, many
methods have been used to quantify the baseflow component of
stream discharge beginning with Boussinesq (1877).

Approaches for baseflow estimation can be grouped into two
general categories: graphical hydrograph separation (GHS) meth-
ods, which rely on stream discharge data alone, and tracer mass
balance (MB) methods, which rely on chemical constituents in
the stream, stream discharge, and the streamflow end-member
constituent concentrations (runoff and baseflow). Many different
approaches for GHS exist, including recession curve methods and
digital filter methods. Recession curve methods are generally con-
sidered more objective than digital filter methods because they
provide an assumed integrated signal of basin hydrologic and geo-
logic characteristics through identification of a linear recession-
constant based on the falling limb of the hydrograph (Barnes,
1939; Hall, 1968; Gardner et al., 2010). However, the ability of
recession curve methods to quantify groundwater discharge to
streams has been questioned because of the accuracy of the
method assumptions (Halford and Mayer, 2000). Digital filter
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methods either filter high frequency (assumed to be surface runoff)
signals from low frequency (assumed to be baseflow) signals
(Nathan and McMahon, 1990), or identify and connect successive
minima on a stream hydrograph, and define baseflow as the line
connecting the minima (Wahl and Wahl, 1988; Wolock, 2003).
The definitions of basin-specific parameters used in these methods
are generally subjective and not based on hydrologic processes
(Stewart et al., 2007).

It has been suggested that MB methods for baseflow estimation
are more objective than GHS because measured stream water con-
centrations, and either measured or estimated end-member con-
centrations, are related to physical and chemical processes and
flow paths in the basin (Stewart et al., 2007; Zhang et al., 2013).
One type of MB method that is commonly applied is the conductiv-
ity mass balance (CMB) method, which uses specific conductance
(SC) as a chemical tracer for hydrograph separation. One advantage
of CMB over other types of MB methods is that SC is relatively easy
and inexpensive to measure. Additionally, high frequency SC mea-
surements can be obtained using in-situ SC probes. High frequency
SC data and CMB methods have been used to estimate baseflow
across gradients of watershed size and land use settings (Covino
and McGlynn, 2007; Miller et al., 2014; Pellerin et al., 2007;
Stewart et al., 2007).

While CMB methods are generally considered to be more objec-
tive than GHS methods, their application is limited by the fact that
they require high frequency SC records that are not always widely
available over long time periods or spanning large numbers of
watersheds. Multiple studies have developed methods to calibrate
GHS estimates of baseflow to CMB estimates of baseflow (Lott and
Stewart, 2013; Stewart et al., 2007; Zhang et al., 2013). Once cali-
brated at a specific stream location, and assuming that the end-
member SC concentrations are constant over time, the GHS meth-
ods can be applied to long term stream discharge records at that
location to estimate baseflow for time periods that span date
ranges greater than those for which high frequency SC data are
available. Li et al. (2014) showed that as little as six months of high
frequency SC data can be used to calibrate a recursive digital filter
model, which can then be applied to long term stream discharge
records to estimate baseflow. This approach overcomes the CMB
limitations associated with the lack of long-term SC records, but
is only applicable at sites that have high frequency SC data avail-
able for GHS calibration. Unfortunately, high frequency SC data
are not generally available at large numbers of sites within a given
region. Therefore, the use of CMB, or calibration of GHS to CMB, to
estimate baseflow and quantify environmental drivers of baseflow
discharge across broad spatial scales is limited.

We propose that discrete SC concentration data and daily mean
discharge data, which are frequently available at large numbers of
sites, can be used with a CMB method to estimate baseflow at a daily
time-step for the period of record of discharge data, thereby increas-
ing the number of sites at which CMB can be used to estimate base-
flow. The proposed approach involves the calibration of site-specific
regression models that relate discrete SC concentrations to stream
discharge and time to predict daily SC concentrations, and subse-
quently regression-derived CMB baseflow estimates, for the period
of stream discharge record. A similar regression approach has been
used to estimate water quality data, and subsequently groundwater
discharge to a tropical stream for time periods when no water qual-
ity data exist (Genereux et al., 2005), but has not been applied to a
number of sites and compared with other baseflow estimates from
the same sites. The objective of this study is to test the proposed
approach by comparing the regression-derived baseflow estimates
with CMB baseflow estimates calculated using measured high
frequency SC data (assumed to be the most objective estimates of
baseflow) at twelve snowmelt dominated streams and rivers in
the Upper Colorado River Basin (UCRB). As previously reported by
Miller et al. (2014), CMB methods are well suited for estimating
baseflow in snowmelt dominated watersheds. Baseflow estimates
calculated using a commonly applied GHS model were also com-
pared with measured CMB baseflow estimates.

2. Materials and methods

2.1. Site description

The UCRB is a heavily regulated watershed located in the wes-
tern United States and drains an area of 294,000 km2. The headwa-
ters are high elevation catchments in the Rocky Mountains and the
downstream end of the UCRB is located at Page, AZ, downstream of
Lake Powell on the Colorado River (Fig. 1). Miller et al. (2014) esti-
mated baseflow discharge at a daily time step for the period of
record at fourteen sites draining large watersheds in the UCRB
characteristic of snowmelt dominated hydrology using measured
high frequency SC data with a CMB approach. As part of this pro-
cess sites were screened for impacts due to anthropogenic activi-
ties. Twelve of these fourteen sites are included in the present
methods comparison (Fig. 1, Table 1). Two of the fourteen sites –
The Gunnison River at Delta, CO and The Uncompahgre River at
Colona, CO – are not included in the present study because the
short periods of record for which high frequency SC data are avail-
able at these sites resulted in a limited discrete SC data set that was
not adequate for development of regression models to estimate
daily SC concentrations. Drainage areas range from 1500 km2 at
PLAT to 62,000 km2 at CO3. Average baseflow estimates range from
1.0 ± 1.2 m3/s to 103 ± 9.6 m3/s, and the fraction of total stream-
flow estimated to be baseflow ranges from 11% to 59% (Table 1).
Detailed site descriptions for these twelve locations are available
in Miller et al. (2014).

2.2. Data sources

Daily mean discharge, daily mean SC, and discrete SC data were
obtained from the U.S. Geological Survey (USGS) National Water
Information System (NWIS) database. The date ranges for which
data were acquired were limited to date ranges for which both
daily mean discharge and daily mean SC data were available. Peri-
ods of records ranged from 3 to 37 years and the number of dis-
crete samples used in regression model calibration (for
estimation of daily regression-derived SC concentrations) ranged
from 17 to 623 (Table 1). Detailed information regarding the peri-
ods of record, average discharge, and average SC at each site are
available in Miller et al. (2014).

2.3. Regression-derived daily SC

Discrete SC values were related to daily discharge, time, and up
to 7 additional variables that describe annual seasonality and var-
iability in stream discharge of varying length. Nine different mod-
els were fitted at sites having more than 10 years of discrete SC
data and 7 models were fitted at sites having less than 10 years
of discrete SC data. The general form of the regression equations
is described by Eq. (1). Table 2 shows the nine permutations of
Eq. (1) that were used to simulate SC. Regressions were conducted
in R (R Development Team, 2014).

ln SC ¼ ln Q þ ln Q2 þ T þ sin 2pT þ cos 2pT þ sin 4pT

þ cos 4pT þ FA ð1Þ

where SC is the estimated discrete daily specific conductance
(lS/cm), Q is daily discharge (m3/s), T is time expressed as decimal
years (e.g. 2005.25 = April 1, 2005), and FA is an additive
combination of one of the groups of flow anomalies generated by



Fig. 1. Map showing the locations of the study streams in the UCRB. Inset shows the location of the UCRB in the southwestern United States.

Table 1
Period of record and number of SC values used to estimate regression-derived daily SC concentrations. Sites are listed in order of increasing drainage area.

Site ID Site name USGS station ID Drainage
area
(km2)

Average
baseflow
(m3/s)a

Period of
record
(years)

Number of discrete SC
data points used in
regression model calibration

PLAT Plateau Creek Near Cameo, CO 09105000 1533 3.0 ± 0.4 (56%) 17 165
EAGLE Eagle River Below Milk Creek Near Wolcott, CO 394220106431500 1554 3.7 ± 0.4 (25%) 6 42
GUN1 North FK Gunnison River Above Mouth NR Lazear, CO 09136100 2510 4.5 ± 0.2 (32%) 3 17
WHITE White River Below Meeker, CO 09304800 2652 11.9 ± 0.8 (59%) 5 245
DOL1 Dolores River at Bedrock, CO 09169500 5245 2.1 ± 0.2 (25%) 33 336
DOL2 Dolores River Near Bedrock, CO 09171100 5561 1.0 ± 1.2 (11%) 33 300
YAMPA Yampa River Near Maybell, CO 09251000 8762 13.4 ± 2.3 (30%) 20 79
DOL3 Dolores River Near Cisco, UT 09180000 11,862 3.9 ± 0.3 (31%) 6 43
GUN3 Gunnison River Near Grand Junction, CO 09152500 20,520 39.4 ± 5.0 (57%) 37 407
CO1 Colorado River Near Cameo, CO 09095500 20,584 54.4 ± 4.5 (47%) 30 623
CO2 Colorado River Near Colorado-Utah State Line 09163500 46,229 103 ± 9.6 (55%) 33 343
CO3 Colorado River Near Cisco, UT 09180500 62,419 93.1 ± 0.4 (50%) 6 51

a Average baseflow from Miller et al. (2014) calculated using continuously-collected SC data. Values in parentheses are the ratio of mean baseflow to mean streamflow.
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Table 2
Regression models used to generate regression-derived daily specific conductance values. ‘x’ indicates that the variable was included in the model. Flow anomalies were
calculated using the R package waterData (Ryberg and Vecchia, 2012).

Model
number

Daily
discharge

Daily
discharge,
squared

Time
(T)

Seasonality Flow anomalies

Group 1 Group 2 Group 3

Single-peak annual
variability
[sin(2pT) + cos(2pT)]

Dual-peak annual
variability
[sin(4pT) + cos(4pT)]

1 year 30 day 1 day 100 day 10 day 1 day 10 year 5 year 1 year 3 month 1 day

1 x x x
2 x x x x
3 x x x x x
4 x x x x x x
5 x x xx x x x x
6 x x x x x x
7 x x x x x x x
8 x x x x x x x x
9 x x x x x x x x x

Fig. 2. Break-point analysis for the streamgage located at the Colorado River near
Cameo, Colorado (CO1). The points on the graph indicate the estimated long-term
average BFI values (the fraction of baseflow in total streamflow) for a range in N-
parameter values. Using the R statistical package ‘‘segmented’’, the break-point in
the piece-wise linear relationship of the points was estimated to occur at N = 14.7.
The optimal N-parameter value for this site was set to 15 days (the nearest integer
value).
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the R package, waterData, and described in the corresponding report
by Ryberg and Vecchia (2012).

Annual seasonality is described using simple Fourier series that
generate either one (sin2pT + cos2pT) or two concentration peaks
per year (sin2pT + cos2pT + sin4pT + cos4pT). Flow anomalies
(FA) are dimensionless, orthogonal time series calculated from
measured daily discharge that describe the variability in stream
discharge at different time scales (e.g. 1 day, 30 days, 1 year;
Vecchia et al., 2008). Flow anomalies have been found to be corre-
lated to the observed variability of concentrations of pesticides and
nutrients in other studies (Vecchia et al., 2008; Ryberg et al., 2010),
and therefore were expected to add significant explanatory power
to the regressions used to predict SC. Table 2 shows the three dif-
ferent groups of flow anomalies used for this study.

The best model for each site was selected by evaluating (1)
model regression diagnostic statistics, including adjusted R2, p-val-
ues of the variable coefficients, and the Nash–Sutcliffe efficiency
index (E; Nash and Sutcliffe, 1970); (2) diagnostic plots of residuals
and fitted values, including fitted vs observed values, normal prob-
ability plots of model residuals, and model residuals vs the fitted
values, discharge, and time; and (3) Akaike Information Criteria
corrected for finite sample sizes (AICc) (Akaike, 1973, 1974;
Hurvich and Tsai, 1989). Regression-derived daily SC values were
computed using the best model identified for each site. Estimated
daily SC values were corrected for retransformation bias using the
correction factor of Ferguson (1986).

In addition to the model form, regression-based estimates of
daily water quality are influenced by the sampling frequency and
the distribution of samples with respect to season and discharge
(Preston et al., 1989; Guo et al., 2002). To minimize bias and error
in the regression-based estimates of SC, we verified that discrete SC
samples were distributed throughout the period of record and
were representative of all seasons and the range of flow conditions
at each site. Discrete SC samples were collected in every year of the
period of record at 10 of 12 sites; two sites, DOL1 and DOL2, had
gaps of 1 year and 3 years, respectively. All sites had at least 4 sam-
ples per year for their period of record (median = 10 samples per
year) and all sites had 1 or more samples per quarter for 80% of
their period of record (median = 2 samples per quarter). At all sites,
one or more samples were collected at discharge values exceeding
the 90th percentile of the period-of-record discharge in at least
50% of the years of the period of record for the site.

2.4. Baseflow estimates

2.4.1. Graphical hydrograph separation
The widely used base-flow index (BFI) program developed by

Wahl and Wahl (1988) was applied in this study to estimate base-
flow from daily hydrographs, as an example GHS approach. The BFI
program, which is a smoothed minima approach, is based on meth-
ods developed at the Institute of Hydrology (1980a,b). First, the
daily streamflow time series is divided into N-day non-overlapping
consecutive periods, and the minimum daily flow value within
each of the N-day non-overlapping consecutive periods in the
streamflow time series is calculated. Turning points for the base-
flow hydrograph then are identified as the N-day minimum values
that are at least 10% lower than adjacent N-day minimum values.
These turning points are connected through linear interpolation
and define the base-flow hydrograph line. Daily baseflow estimates
calculated in this way are herein referred to as graphical hydro-
graph separation baseflow (QBF-GHS).

The value for N, which defines the width of non-overlapping
periods used in the BFI method, typically is set to a value of 5 days.
Wahl and Wahl (1995) point out, however, that the value of N can
be optimized by computing the long-term average BFI value (i.e.,
percentage of base flow in total flow) for a range in N values, and
then identifying the break point in the relationship between N
and long-term average BFI values. In our study, the break point
was determined for each site by (1) computing long-term average
BFI values for a range (1, 2, . . . ,30) of N values and then (2) using
the R statistical package ‘‘segmented’’ (Muggeo, 2008; Muggeo
and Adelfio, 2011) to determine the break point in the piecewise
linear relationship. Fig. 2 shows an example break-point plot for
the streamgage located at Colorado River near Cameo, Colorado
(CO1).



Table 3
Diagnostic statistics for the best specific conductance regression model selected at
each site. Sites are listed in order of increasing drainage area.

Site ID AICc-selected model
number

Best model
number

Adjusted
R2

E

PLAT 3 3 0.88 0.88
EAGLE 1 1 0.97 0.98
GUN1 2 2 0.95 0.97
WHITE 3 3 0.88 0.89
DOL1 9 3 0.69 0.70
DOL2 9 7 0.87 0.87
YAMPA 9 9 0.81 0.84
DOL3 5 5 0.85 0.88
GUN3 7 7 0.91 0.91
CO1 5 5 0.95 0.95
CO2 3 3 0.96 0.96
CO3 2 2 0.94 0.94
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2.4.2. Conductivity mass balance
Baseflow was estimated at a daily time step using a CMB

approach (Pinder and Jones, 1969; Stewart et al., 2007):

Q BF ¼ Q
SC� SCRO

SCBF � SCRO
ð2Þ

where QBF is base flow discharge (m3/s), Q is total stream discharge
(m3/s), SC is the specific conductance (lS/cm) of either the mea-
sured daily mean SC or the regression-derived daily SC, SCRO is
the SC of the runoff end-member (lS/cm) and SCBF is the SC of
the baseflow end-member (lS/cm). Two different CMB baseflow
estimates were generated for each day of the record at each site
using Eq. (2). Daily CMB baseflow estimates calculated using the
measured daily mean SC data obtained from in-situ SC probes are
herein referred to as measured baseflow (QBF-MEAS), and daily CMB
baseflow estimates calculated using the regression-derived daily
SC estimates obtained from the calibration of regression models
using discrete SC data are herein referred to as regression-derived
baseflow (QBF-REG).

SCRO and SCBF are both estimated values. SCRO represents low SC
water that is delivered to the stream during snowmelt, and SCBF

represents the integrated SC signature from all subsurface flow
paths discharging to the stream upstream of the measurement
point and is high SC groundwater. Following Miller et al. (2014),
SCRO was defined as the average in-stream SC during snowmelt
from two streams draining small high-elevation watersheds in
the headwaters of the UCRB (33 lS/cm). SCRO was held at a con-
stant value of 33 lS/cm on all dates, at all sites, and for calculation
of both QBF-MEAS and QBF-REG. Unique SCBF values were calculated at
a daily time step for each site by calculating the 99th percentile SC
concentration, which occurred during low-flow conditions, for
each year of the record at each site and interpolating between
these yearly values. Daily SCBF values were calculated in this way
using daily mean measured SC concentrations for calculation of
QBF-MEAS, and using regression-derived daily SC concentrations for
calculation of QBF-REG. Detailed information regarding the calcula-
tion of end-member SC concentrations, and justifications for the
end-member calculation approaches are provided in Miller et al.
(2014). The three assumptions regarding application of the CMB
method, that is (1) contribution from other end-members are neg-
ligible, (2) end-member SCRO concentrations are constant over the
period of record, and (3) end-member SC concentrations are signif-
icantly different from one another (Sklash and Farvolden, 1979),
are also addressed in detail in Miller et al. (2014).

2.4.3. Mean daily baseflow hydrographs
When comparing amounts and seasonal patterns in baseflow

among sites and/or when investigating among-site patterns in
baseflow as a function of physical watershed characteristics or cli-
mate, it is useful to have mean daily estimates of baseflow for the
period of record. Mean daily baseflow hydrographs were generated
by calculating mean daily QBF-MEAS, mean daily QBF-REG, and mean
daily QBF-GHS values for the period of record at each site (i.e. mean
QBF-MEAS, mean QBF-REG, and mean QBF-GHS for all QBF-MEAS, QBF-REG or
QBF-GHS values estimated on January 1st, for all values estimated on
January 2nd, etc. such that 365 mean values are estimated at each
site for each type of baseflow estimate). Mean daily hydrographs
were generated in the same way using daily measured stream dis-
charge values.

2.5. Baseflow comparison statistics

Nash–Sutcliffe efficiency (E) values were used as measures of
baseflow model fit. QBF-MEAS was treated as the ‘‘observed’’ variable
for the calculation of E, whereas QBF-REG and QBF-GHS were treated as
the predicted variables. E values were calculated for the daily
baseflow estimates for all data and separately for two seasons –
snowmelt (April–July) and lowflow (August–March). The percent
difference in the cumulative mean daily baseflow, from the mean
daily baseflow hydrographs, was also calculated. Similar to what
was done for the calculation of E values, the QBF-MEAS cumulative
mean daily baseflow was treated as the ‘‘observed’’ variable for
percent difference calculations, whereas QBF-REG and QBF-GHS cumu-
lative mean daily baseflows were treated as the predicted
variables.
3. Results and discussion

3.1. Regression-derived daily SC

The best model selected to generate regression-derived daily SC
values varied among the 12 sites; 6 different model forms were
identified as the best model at one or more sites. Selected model
diagnostic statistics for the best model at each site are presented
in Table 3 (see Supplementary material-Appendix A for complete
model diagnostic statistics for the best models). Models for all sites
except EAGLE included variables for daily discharge, time, and sin-
gle-peak annual variation (Table 2); EAGLE was the only site that
relied on a simpler model using only daily discharge and time. At
9 of the 12 sites, additional terms capturing dual-peak annual var-
iation or various scales of flow variability improved the regression
models.

The best model was selected using the AICc score at 10 of the 12
sites. At sites DOL1 and DOL2, the AICc-selected best model had
undesirable fit characteristics that were not present in one or more
other models for those sites. At site DOL1, model 9 was the AIC-
selected best model, however that model contained significant
residual seasonal variability, predicted values were biased high
compared to observed values, and only one of the four flow anom-
aly variables was significant at a = 0.05. Model 3 was selected
instead because it improved all of these fit characteristics and
resulted in an improvement in both the adjusted R2 and E values,
while also reducing the number of variables used to fit the data.
At site DOL2, model 9 was the AICc-selected best model, however
the predicted values were biased high compared to the observed
values. Model 7, a more parsimonious model, was selected instead
because it improved that relation with no significant changes in
other model diagnostic plots or diagnostic statistics. At all other
sites, the AICc-selected model was deemed the best model after
reviewing model diagnostic statistics and residual diagnostic plots.

Adjusted R2 values for the best regression models ranged from
0.81 to 0.97, and E values ranged from 0.84 to 0.98 at eleven of
the twelve sites (Table 3). There was a slightly poorer regression
model fit at DOL1, where adjusted R2 was 0.69 and E was 0.70.
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These regression diagnostic statistics indicate that there was
generally good correspondence between the measured discrete
SC concentrations and the regression-derived SC concentrations.
Further, diagnostic regression plots of residuals showed uniform
scatter as a function of fitted values, discharge, and time (see
Supplementary material-Appendix B for plots of model residuals
vs fitted values and fitted vs observed values for the best models
selected at each site).
Fig. 3. Daily discharge, CMB measured baseflow (solid black line), CMB regression-
derived baseflow (dashed red line), and GHS baseflow (dashed black line) for a wet
year (water year 2011) and a dry year (water year 2012) at (a) CO1 and (b) DOL1.
Note that the scales on the y-axes are variable among sites. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
3.2. Comparison of baseflow estimates

Daily QBF-REG estimates were nearly identical to daily QBF-MEAS

estimates with the exception of three sites. Specifically, with the
exception of the three Dolores River Sites (DOL1, DOL2, and
DOL3), E values comparing QBF-REG to QBF-MEAS were between 0.95
and 0.99 (Table 4); indicating a near perfect fit between the
QBF-REG and QBF-MEAS estimates. Seasonally, there was little differ-
ence between QBF-REG and QBF-MEAS estimates during snowmelt
and during low-flow conditions at the non-Dolores River sites,
with snowmelt and low-flow E values ranging from 0.96–0.99
and 0.85–0.98, respectively. E values comparing QBF-REG and
QBF-MEAS estimates at DOL2 and DOL3 were 0.86 and 0.87,
respectively; again indicating an excellent fit. There was a worse
fit at DOL1, with E = 0.45. Taken together with the regression
model diagnostic statistics (Table 3), indicating relatively poor
model fit at DOL1, this result suggests that the moderately poor
fit between QBF-REG and QBF-MEAS at this site may be due, at least
in part, to the relatively poor fit obtained by the regression model.

In contrast to the excellent fit between QBF-REG and QBF-MEAS,
QBF-GHS deviated from QBF-MEAS at all sites. E values comparing
QBF-GHS to QBF-MEAS ranged from �120 to 0.29 (Table 4), with E
values being <0 at 9 of the 12 sites, indicating that the mean of
QBF-MEAS is a better predictor of baseflow than the QBF-GHS

estimates. QBF-GHS estimates were more similar to QBF-MEAS during
low-flow conditions than during snowmelt at all sites with the
exception of CO1 (i.e. greater E values during low-flow; Table 4).
Fig. 3 shows an example of daily baseflow estimates obtained using
the three approaches during a wet year (water year 2011) and a
dry year (water year 2012) at a site where there was a good fit
between QBF-REG and QBF-MEAS estimates (CO1) and a site with a
relatively poor fit between QBF-REG and QBF-MEAS estimates (DOL1).
At both sites the greatest deviation between QBF-MEAS and QBF-REG

or QBF-GHS occurred during the snowmelt time period.
Fig. 4 shows the mean daily baseflow hydrographs for QBF-MEAS,

QBF-REG, and QBF-GHS, expressed as cumulative baseflow volumes. As
observed for the period of record baseflow estimates, the mean
daily cumulative QBF-REG were more similar to the mean daily
cumulative QBF-MEAS than were QBF-GHS at all sites. The same
Table 4
Nash–Sutcliffe Efficiency (E) values comparing daily CMB measured baseflow (treated as ‘‘
baseflow (QBF-GHS) for the period of record at each site. E values were calculated using all
period only. Also shown are the N-parameter values used for GHS. Sites are listed in orde

Site ID QBF-REG

All times Low-flow Snowmelt

PLAT 0.98 0.96 0.98
EAGLE 0.99 0.92 0.98
GUN1 0.99 0.98 0.99
WHITE 0.99 0.94 0.99
DOL1 0.45 0.47 0.34
DOL2 0.86 0.83 0.88
YAMPA 0.99 0.97 0.98
DOL3 0.87 0.81 0.85
GUN3 0.98 0.96 0.98
CO1 0.98 0.93 0.98
CO2 0.98 0.95 0.98
CO3 0.95 0.85 0.96
pattern was observed for the ratio of cumulative baseflow to
cumulative streamflow (hereafter, BFI), with BFIMEAS values being
more similar to BFIREG values than BFIGHS at all sites (Table 5).
The greatest deviation between mean daily QBF-MEAS and mean
daily QBF-REG was at DOL1, where the absolute value of the percent
difference between the cumulative QBF-MEAS and QBF-REG was 51%,
followed by DOL3 and DOL2, where the percent differences were
18% and 16%, respectively (Table 5). The percent difference
between the cumulative QBF-MEAS and QBF-REG was 64% for all
non-Dolores River sites. As described in Miller et al. (2014), the
Dolores River runs through the Paradox Valley, where the Bureau
of Reclamation has been intercepting and removing high conduc-
tivity groundwater before it discharges to the river for almost
two decades (Chafin, 2003). This management action has likely
resulted in short-time scale variations in baseflow discharge that
observed’’ value) with daily CMB regression-derived baseflow (QBF-REG) and daily GHS
data, data during the low-flow time period only, and data during the snowmelt time
r of increasing drainage area.

QBF-GHS N-parameter

All times Low-flow Snowmelt

0.29 0.57 0.14 13
�0.11 �0.46 �0.93 18
�10 0.12 �16 6
0.07 0.39 �0.42 15
�5.9 0.21 �9.0 6
�120 �2.9 �200 6
0.20 0.49 �0.33 17
�20 �0.05 �43 6
�0.98 �0.18 �1.6 11
�0.19 �0.51 �0.47 15
�0.63 0.45 �1.27 13
�0.86 �0.18 �1.57 17



Fig. 4. Cumulative mean daily baseflow for CMB measured baseflow (solid black line), CMB regression-derived baseflow (dashed red line), and GHS baseflow (dashed black
line). Mean daily stream hydrographs are also shown (solid grey line). Sites are listed in order of increasing drainage area from left to right and top to bottom. Note that the
scales on the y-axes are variable among sites. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Cumulative mean daily baseflow for CMB measured baseflow (QBF-MEAS), CMB regression-derived baseflow (QBF-REG), and GHS baseflow (QBF-GHS). The absolute value of the
percent difference between the cumulative mean daily QBF-MEAS (treated as ‘‘observed’’ value) and QBF-REG and QBF-GHS, as well as the BFI values obtained using the CMB measured
baseflow (MEAS), CMB regression-derived (REG), and GHS hydrograph separation approaches are also shown. Sites are listed in order of increasing drainage area.

Site ID Cumulative baseflow (�107 m3) Percent difference BFIa

QBF-MEAS QBF-REG QBF-GHS QBF-REG (%) QBF-GHS (%) MEAS REG GHS

PLAT 9.50 9.78 7.98 3.0 16 0.54 0.56 0.45
EAGLE 11.6 11.9 10.1 2.7 13 0.24 0.24 0.20
GUN1 14.1 13.6 24.0 4.0 70 0.29 0.28 0.53
WHITE 34.9 36.2 29.5 3.9 16 0.57 0.59 0.47
DOL1 6.58 9.96 14.2 51 116 0.24 0.36 0.53
DOL2 3.14 3.64 14.8 16 370 0.11 0.12 0.54
YAMPA 43.6 42.6 31.8 2.4 27 0.31 0.30 0.22
DOL3 12.1 14.2 27.0 18 120 0.28 0.32 0.65
GUN3 125 127 166 1.1 33 0.52 0.53 0.74
CO1 168 167 196 0.5 17 0.47 0.46 0.54
CO2 324 334 368 3.1 14 0.52 0.54 0.61
CO3 294 297 311 1.2 5.9 0.47 0.47 0.50

a BFI values calculated as the ratio of the sum of the cumulative baseflow for each hydrograph separation approach (MEAS, REG, or GHS) to the sum of the cumulative
streamflow.
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are difficult to account for with intermittent discrete SC samples;
thereby contributing to a relatively large percent difference
between the cumulative QBF-MEAS and QBF-REG baseflow volumes.
While the Dolores River is directly impacted by the interception
and removal of groundwater, all of the study sites are regulated
to some degree. Taken together, these results suggest that the
regression-derived baseflow estimation approach is applicable in
regulated streams and rivers, but that caution is warranted when
applying the approach at sites directly impacted by anthropogenic
activities that alter the natural discharge and/or chemical compo-
sition of streams over short time scales.

Cumulative QBF-GHS estimates deviated from the QBF-MEAS esti-
mates to a greater extent than did QBF-REG at all sites. As observed
for the example daily data (Fig. 3), the greatest deviation between
mean daily cumulative QBF-MEAS and QBF-GHS occurred during snow-
melt, when the slopes of the mean daily cumulative QBF-GHS base-
flow curves deviated most from those of the QBF-MEAS curves
(Fig. 4). Cumulative QBF-GHS and BFIGHS values were greater than
QBF-MEAS and BFIMEAS, respectively at 8 of the 12 sites. This finding
is consistent with that of Kronholm and Capel (2014), who reported
that GHS estimates of baseflow were greater than CMB estimates of
baseflow in a stream draining an irrigated watershed in Washing-
ton that has a single extended (�5 months) high flow season,
similar to that of a snowmelt-dominated hydrograph. Cumulative
QBF-GHS deviated most from QBF-MEAS at the Dolores River sites
(116–370% difference) and at GUN1 (70% difference, Table 5),
where QBF-GHS and BFIGHS were greater than QBF-MEAS and BFIMEAS,
respectively. The breakpoint analysis identified N-parameter values
of 6 as the optimal values at these four sites (Table 4). The absolute
value of the percent difference between the cumulative QBF-MEAS

and QBF-GHS values at the other sites ranged from 5.9% to 33%
(Table 5), where the N-parameter values were between 11 and
18. These results suggest that larger N-parameter values (>10 days)
are more appropriate than shorter values (<10 days) for estimating
QBF-GHS in snowmelt-dominated systems. This finding is not sur-
prising given the extended high flow periods (e.g. 30–90 day snow-
melt periods) at the study sites. Taken together these results
suggest that the breakpoint analysis and subsequent estimation
of QBF-GHS using the Wahl and Wahl (1988, 1995) approach may
not be appropriate for use in snowmelt dominated systems, and
future investigations of if/how the parameters associated with this
GHS approach can be calibrated to better match QBF-MEAS estimates
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is warranted. Comparison of CMB baseflow estimates with esti-
mates obtained from other GHS approaches may identify GHS
approaches that are more appropriate for estimating baseflow in
snowmelt-dominated streams and rivers.

4. Conclusions

The results of this study demonstrate that baseflow discharge
can be estimated at a daily time step for the period of record of
stream discharge data using discrete SC data and daily stream dis-
charge data. These daily baseflow estimates are obtained through
the development of regression models that relate discrete SC con-
centrations to discharge and time, and the application of the CMB
hydrograph separation method (a step-by-step summary of how
the approach can be applied is provided in Supplementary
material-Appendix C). There was an excellent fit between the
regression-derived baseflow estimates and baseflow estimates
calculated from measured high frequency SC data at those sites
where the regression models were able to accurately model SC.
Moreover, regression-derived baseflow estimates were more simi-
lar to baseflow estimates obtained from measured high frequency
SC data than were estimates obtained using a commonly applied
GHS approach. Among-site comparisons of baseflow estimates sug-
gests that GHS N-parameter values of >10 days provide baseflow
estimates that are more similar to high frequency SC-derived esti-
mates than do shorter N-parameter values (<10 days), but that the
GHS approach applied in this study may not be appropriate for
snowmelt-dominated systems without further calibration of model
parameters. Discrepancies between baseflow estimates obtained
using measured high frequency SC data and those obtained using
the regression approach at sites on a heavily managed river suggest
that the regression approach should be used with caution at sites
that are known to experience short time-scale variations in base-
flow discharge. These results provide a new approach for estimation
of baseflow that can be applied at large numbers of streams and riv-
ers. In turn, baseflow estimates at large numbers of sites can be used
to identify watershed or climatic characteristics that influence base-
flow discharge to streams and rivers across large spatial scales.
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