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Introduction

The United States Geological Survey (USGS) Water Census Project is an ambitious
program that will provide unprecedented information on the availability, movement,
and use of water in the United States. This information will make it possible for
water managers and users at local, state, regional, and national scales to

significantly improve the sustainability of the nation’s water resources. To make
best use of this information, it is critical that associated uncertainties be quantified
and communicated in ways that serve the needs of the users as well as the USGS.
This report provides advice on characterizing, quantifying and communicating the
uncertainty in Water Census information and in products based on Water Census
information.

Terminology

The Water Census will yield quantitative and qualitative information as well as tools
that can be used to produce additional information and/or support water
management. This paper focuses on products that are in the form of quantitative
information, which includes measurements and estimates, the latter of which may
be based on modeling. The Water Census will both use and produce such
quantitative information. For example, quantitative information on irrigation water
use could be based on estimates of the irrigated land area in various crops,
measurements of diversions, or a combination of both. We will use the term “data”
to refer to such quantitative information as well as to quantitative products.

Uncertainty in Water Census Data

Virtually all data are uncertain, in that they can deviate from the true values. The
development, release, and use of Water Census data should be informed by the
associated degree of uncertainty. USGS analysts are using a wide range of
uncertainty measures to select methods for developing each of the proposed
products and will likely use some of these methods to decide whether a product is
suitable for release.



Water Census users will use uncertainty information in a variety of ways. Ideally,
the decision to use Water Census data should depend on the level of uncertainty.
For example, a state regulatory agency would likely consider the uncertainty in
USGS estimates of “natural” streamflows before choosing to use them to regulate
instream flows. A Water Census data user might also incorporate uncertainty
information in a formal environmental or economic analysis.

Many Water Census data users, however, will ignore the uncertainties. This could
have unfortunate consequences. For example, state regulations based on highly
uncertain estimates of streamflows could be successfully challenged in court. Hence
it is critical that the USGS quantify and publish uncertainty information for all of its
water census products. It would also be prudent for the USGS to track major uses of
its products and even provide assistance on the use of uncertainty information in
the case of heavily-used products.

We most commonly use statistical methods to characterize uncertainties in data.
These characterizations range from very simple to complex. The general rule is to
use the simplest approach that meets the needs of the data user.

Characterization of Uncertainty- Basic Error Structures
Single Data Values

First consider a single data value, such as the consumptive use at a powerplant
during a given year. Errors in such data are typically modeled as additive or
multiplicative. For additive random error the simplest model is

Data value = true value + bias + random error with zero mean

A bias can be positive or negative. Whenever possible, bias should be eliminated by
some kind of calibration process. (Occasionally, known biases are left uncorrected.
For example, raingage data are biased downward; however they are not commonly
corrected, even though methods to correct bias are available.) The variability of the
random error is characterized by its standard deviation. If the probability
distribution of the error is known and there is no bias, a 95% confidence interval
can be calculated. The normal distribution is most commonly assumed for
computing confidence intervals. The bounds of confidence intervals are random
variables. For example, on average, ninety-five percent of 95% confidence intervals
contain the true value. Note, however, that many users will be unfamiliar with
standard deviations and confidence intervals. Hence it would be useful for the USGS
to provide information on their meaning and uses.

For multiplicative error the simplest models are
Data value = (true value x random error with a mean of 1) + bias

Data value = true value x (random error with mean greater than zero)



For either model there can be either a positive or negative bias. In the first
multiplicative model the bias is constant. In the second model, the bias is
proportional to the true value. As with additive error, bias should be eliminated by
calibration. Multiplicative error is commonly assumed to have a lognormal
distribution. The variability of multiplicative error is fully characterized by its
standard deviation (or coefficient of variation). Note that the two multiplicative
models are equivalent if there is no bias. Also, if there is no bias and the errors are
lognormally distributed, the error structure of natural logarithm of the data is the
same as the unbiased additive case with normal error. As in the case of additive
error, confidence intervals can be constructed if there is no bias.

In the case of instrument measurement errors, bias is sometimes treated as a
random variable (Joint Committee for Guides in Metrology, 2008). For example, a
particular current meter may have an unknown bias. Hence any given meter might
consistently underestimate or overestimate flow. In the case of a randomly chosen
current meter the variance of biases over all meters could be added to the
measurement variability. However, periodic calibration of a meter would reduce
the possibility of bias. A similar approach could be applied to the bias in rain gage
catch. In the water resource arena, biases are generally controlled by calibration or
ignored. However, it would be prudent for the USGS to consider bias in all of its
Water Census products and correct when possible.

Data Vectors or Matrices

For most applications users will be interested in a vector of data (e.g. daily
precipitation at a specific location), or a matrix of data (e.g. daily precipitation at
geographically gridded locations over the same time period). For many applications,
it would be appropriate to assume simple additive or multiplicative errors for each
data value in the vector or matrix, where the errors are uncorrelated.

For some applications errors will be correlated. For example, errors in a vector of
annual water budget estimates of changes in estimated groundwater storage could
be negatively correlated, as overestimation one year could contribute to
underestimation in the succeeding month. There could also be correlation between
vectors in a matrix of data. An example is a matrix of monthly water storages in
nearby lakes, where the monthly storage at each lake is based on a single water level.
Wind setup is likely to introduce errors in the water level data used to compute
storages. These errors could be correlated across lakes, depending on the location
of the measurements. It is relatively easy to accommodate correlation in simple
additive or multiplicative error models.

Other Commonly-Used Measures of Error

In addition to bias and standard deviation, other measures are sometimes used to
characterize errors. For example, mean squared error (MSE) and mean absolute
error (MAE) are commonly used to quantify measurement or model errors when a



set of true values is available. For example, pit gages are assumed to accurately
measure rainfall, and hence are commonly used to characterize errors in
operational rain gages. The mean absolute error of measured or modeled values is
the arithmetic average of the absolute value of the differences between the modeled
or measured values and the true values. It depends on both the bias and the
standard deviation of the errors. The mean square error of measured or modeled
values is the arithmetic average of the squared differences between the modeled or
measured values and the true values. Note that the mean squared error is equal to
the sum of the square of the bias and the variance of the errors. Variations of the
mean squared error are the root mean squared error (RMSE) and the relative root
mean squared error (RRMSE). The RMSE is simply the square root of the mean
squared error. The RRMSE is the square root of the arithmetic average of the
squared errors divided by the true value.

The accuracy of predictions is often quantified by the Pearson correlation coefficient
(R?), which equals the fraction of variance in the true values that is accounted for by
the predictions. The Spearman correlation coefficient is Pearson correlation
coefficient applied to the ranks of the data.

Another measure that is commonly used to estimate the accuracy of hydrologic
models is the Nash-Sutcliffe Efficiency (NSE), as defined below
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where S; and O;are the model and observed values, respectively.

The NSE is essentially 1 minus the MSE standardized by the estimated variance of
the errors.

MSE, RMSE, RRMSE, MAR, R?, and NSE are all useful for characterizing errors in
predictions when true values are known. However, bias and standard deviation are
the most fundamental measures and are most useful in evaluating how errors
“propagate” in calculations based on data.

Complex Error Structure

A simple error structure is clearly inadequate for some Water Census data. An
example is a vector or matrix of daily streamflows obtained from a deterministic
rainfall-runoff model. It is well known that rainfall-runoff models are vulnerable to
“structural” errors that are not well described statistically (Doherty and Welter,
2010). For example, deterministic rainfall-runoff models commonly use simple
methods to model baseflow, leading to systematic time-varying errors. Although
simple measures are commonly used for data with complex errors, they do not
characterize the errors well.



Estimation of Uncertainty of Water Census Data - Water Budget Components

A major goal of Water Census is to provide estimates of the major hydrologic water
budget components for all HUC-12 watersheds in the U.S. Currently the Water
Census provides gridded estimates of precipitation and evapotranspiration (ET),
and in the future will provide daily streamflows at the outlet of all U.S. HUC-12
watersheds.

Evapotranspiration

The Water Census estimates monthly ET on a 1-km grid using the Simplified Surface
Energy Budget Model (SSEBM)(Senay, et al., 2013), which makes use of remotely-
sensed thermal data and model-assimilated weather fields. Currently the Water
Census webpage does not provide estimates of the uncertainty of the ET estimates.
However, Senay et al. (2013) used eddy covariance flux tower data from 45 stations
across the contiguous United States to estimate errors in monthly ET for seven
ecosystem types for the period 2000-2011. The variance explained (R?) by the
model ranged from 0.43 for cropland/natural vegetation mosaic to 0.9 for the urban
landscape, and averaged 0.64 over all land use/land covers. The comparisons with
flux tower measurements also indicate that the SSEBM estimates were biased high
for forest, shrubland, and urban lands, and low for cropland and grassland. However,
it is important to note that flux tower measurements are indirect, and their accuracy
is not well understood.

Of the water budget components, ET is probably the most uncertain. Large
uncertainties in the ET data, if not clearly acknowledged, could undermine efforts to
resolve water conflicts relating to irrigation. (See the Appendix for further
discussion.) Furthermore, the uncertainty of ET estimates has rarely been quantified.
The USGS should use eddy flux tower data to develop general estimates of the error
bias and standard deviation of Water Census estimates of ET at both monthly and
annual time scales. In addition, the USGS should use lysimeter data to investigate
uncertainties in eddy flux tower measurements.

Precipitation

The Water Census provides access to 1-km gridded daily precipitation produced and
archived by the Oak Ridge National Distributed Active Archive Center (ORNL DACC).
These data were generated using the DAYMET model (Thornton et al., 1997), which
is based on the spatial convolution of a truncated Gaussian weighting filter applied
to National Weather Service rain gage data for the period 1980 to the present.

[t does not appear that there is any published information on the accuracy of
DAYMET precipitation. Because DAYMET estimates are based on rain gage data,
they will be biased low. For summer precipitation, the bias in rain gage data is
about 5%, while for winter precipitation the bias range from 3% to 28% (Legates
and DeLiberty (1993). The DAYMET data will be subject to the same biases. The



USGS should consider applying bias corrections to the DAYMET data. Otherwise, it
should advise users of the bias.

In additional to bias in the DAYMET data, there are random errors, the variance of
which depends on the spatial density of the raingage data and the spatial variability
of the rainfall. Atindividual grid points, the errors could be very large, particularly
for convective events (Goodrich, et al, 1995). Users should be cautioned to be wary
about the accuracy of DAYMET rainfall amounts at individual grid points,
particularly for convective rainfall events.

NEXRAD radar data is commonly used conjunctively with rain gage data to improve
the accuracy of representations of the space-time distribution of storm rainfall (e.g.,
Krejewski et al., 2010). The resulting estimates of the spatially distributed rainfall
could be used to evaluate the accuracy of the DAYMET precipitation data (Villarini
et al., 2014). As more radar data is collected, it could be used to improve the
accuracy of the DAYMET data. The USGS should consider partnering with the
National Weather Service to produce a large storm catalog based the conjunctive
use of rain gage and NEXRAD data.

Water Budget for a Gaged Watershed

In stream-gaged watersheds for which there are no significant consumptive uses
and no significant groundwater flows in or out of the watershed (such as a
groundwater underflow or ET directly from groundwater), the annual water budget
is given by

S(t+1) - S(t) = AS(t) =P(t) - ET(t) - Q(t)
where: S(t) and S(t+1) are the watershed storages at the beginning and end of year t
AS(t) is the change in watershed storage in year t
P(t) is the total watershed precipitation during year t
ET(t) is the total watershed evapotranspiration during year t
Q(t) is the streamflow out of the watershed

For any gaged watershed in the nation, USGS Water Census data can be used to
estimate annual watershed precipitation and evapotranspiration for the period
2000-2011 (the current duration of the ET data). Hence it is possible to estimate
the annual change in watershed storage for the same period.

It is also possible to directly estimate the annual change in watershed storage over
the same period. The main components are changes in the water content of
groundwater, lakes, ponds, wetlands, soil moisture, and snowpack. The water
content of large surface storages is commonly monitored. For those that are not,
estimates of annual changes in their water storage could be estimated from
remotely sensed data and supplemented by hydrologic modeling, as could annual



changes in soil moisture and snowpack. Estimates of the annual water budget for
gaged watersheds throughout the United States would provide useful insight into
the accuracy of Water Census data on water budget terms.

The Appendix provides a simple example of a water budget using Water Census and
stream gage data to estimate the annual change in groundwater storage
contributing to baseflow. For this example, the Water Census ET data appears to
significantly underestimate actual ET. The USGS should conduct annual water
budgets for gaged watersheds throughout the U.S. to obtain insight regarding the
accuracy of water budget data produced by the Water Census data.

Characterization of Errors in Water Census Data with Complex Error
Structure- Historical Daily Streamflows

USGS researchers have recently completed a study of alternative methods for
estimating historical daily streamflows at ungaged locations in the southeast United
States (Farmer et al., 2014). The study team used a wide range of metrics to
evaluate the performance of the methods, applied to the estimated daily
streamflows, no-failure storage-yield curves, and streamflow statistics (including
fundamental daily statistics and flow-duration curves). Seven metrics were used,
including the Nash-Sutcliffe efficiency applied to untransformed and log-tranformed
predictions, root-means squared error, and the Pearson correlation coefficient.

The approach used by Farmer et al. (2014) wisely acknowledges the fact that Water
Census estimated daily flows will be used to generate a variety of products (e.g.
flow-duration curves and storage-yield curves) that will be used in a variety of ways.
In most cases the only practical way to estimate the uncertainties in such products
will be through regional studies that use methods similar to those in Farmer et al.
(2014). The difference will be that the purpose of such studies would be to evaluate
uncertainties, rather than to select estimation methods. Also, such studies may need
to consider other products, such as the seven-day, 10-year low flow (Q7,10) and
Indicators of Hydrologic Alteration (Richter et al., 1996).

Farmer et al. (2014) demonstrated that there was no one modeling method that
produced the best results for all metrics and products. This raises the question of
whether the USGS should provide estimates of certain high-demand products, such
as Q7,10, or flow-duration curves, rather than letting the user extract these products
from estimated daily flows.

Communication of Uncertainty

The USGS Water Census will have many customers, and its products will be used in a
wide variety of predicable and unpredictable ways. It is essential that users of
Water Census data be provided with uncertainty information that enables them to



understand the limitations of the data. In particular, the USGS should specifically
mention inappropriate uses of Water Census data. Sophisticated users should be
provided with information that enables them to estimate how water census data
uncertainty propagates through analyses conducted with the data. We also
recommend that the USGS to develop the capacity to track the use of Water Census
data so that it can detect inappropriate uses of the data as well as improve products
and perhaps develop new ones.

For all Water Census data with simple error structures, the USGS should provide
information on biases as well as confidence limits and standard deviations (in real-
space or log-space, as appropriate). This information should be accompanied by a
carefully written narrative on uncertainty. The USGS has always done an
exceptional job of communicating uncertainties associated with all its paper and
web-based products. Given the likely diversity of Water Census users and uses, the
communication challenge will be much greater.

Water Census products with complex error structures are more challenging. The
estimated historical daily streamflows are the main such products. It is not yet clear
how these streamflows will be estimated, or exactly how they will be used. We
recommend that the USGS develop these products regionally, using methods similar
to those used by Farmer et al. (2014). The use of such methods will enable the
estimation of the uncertainties associated with the most likely products that will be
based on the estimated streamflows. The USGS should also track the use of this
product to help discourage misuse.

Recommendations

Throughout this report we have made recommendations regarding uncertainty and
Water Census products. These are summarized below.

Data with Simple Error Structures

* Use bias, standard deviation and confidence intervals as the primary
measures of uncertainty; associate descriptive terms based on confidence
limits (e.g., Excellent, Very Good, Fair and Poor)

* Use as much data as possible to “refine” Water Census data and estimate
uncertainties

o Conduct annual water budgets for gaged watersheds throughout the
U.S. to obtain insight regarding the accuracy of water budget data
produced by the Water Census data.

o Consider de-biasing DAYMET precipitation data using the de-biasing
methods in the literature.

o Consider using NEXRAD data conjunctively with DAYMET data to
refine the DAYMET data for major storms.



o Use flux tower data to develop general estimates of the error bias and
standard deviation of Water Census estimates of ET at both monthly
and annual time scales.

o Use lysimeter data to investigate biases in flux tower measurements

Data with Complex Error Structures

Use regional studies such as Farmer et al. (2014) to develop and evaluate the
uncertainty in Water Census data using metrics that reflect their most likely
uses.

Consider providing estimates of certain high-demand products based on
daily streamflows, such as Q7 10, or flow-duration curves, rather than letting
the user extract these products from estimated daily flows.

Communication

Develop and implement a consistent strategy for communicating the
uncertainty associated with each Water Census product.

Track the use of Water Census products and consider providing assistance
(e.g. guidance documents) on the use of uncertainty information in the case
of heavily used products.

Use the tracked information on the use of Water Census data to improve the
uncertainty information.

Specify inappropriate uses of Water Census Data



Appendix- Example Water Budget for a Gaged Watershed

As discussed in the body of this report, the USGS Water Census data can be used to
estimate annual precipitation and evapotranspiration for the period 2000-2011,
enabling calculation of the annual change in in water storage for the same period. It
is also possible to directly estimate the change in storage annually and over the 12-
year period. Here we conduct a water budget for a watershed in which the annual
change in water storage is dominated by the annual change in groundwater storage
contributing to baseflow. The results provide useful insights regarding the accuracy
of the water budget terms.

We estimate the change in groundwater storage by assuming that the groundwater
system acts like a linear reservoir, such that groundwater flow contributing to
streamflow at time t is proportional to the groundwater storage. That is,

Qg(t) = WS,(t)

where: Qgw(t) is the groundwater flow contributing to sreamflow (cfs)
Sg (t) is the groundwater storage contributing to streamflow ( cfs-days)
w is a constant (days.)

During periods when there is no recharge and streamflow is entire composed of
baseflow, it is easily shown that

Q(t) =k Q(0)
where k = exp(-t/w).

Based on this result one can estimate the annual change in groundwater storage
contributing to baseflow as

Sg(t+1) = Sg(t) = w[Q(t+1) - Q(1)]

We have applied this approach to the Eau Pleine River in Wisconsin. The gaged
portion of watershed has an area 220 square miles. The land use is dominantly
agricultural, and there are no large surface water storages in the watershed.

Based on the streamflow on October 1 of each year, we estimated the annual water-
year change in groundwater storage assuming values of k equal to 0.95, 0.99, and
0.999, a range of k that covers most all streams in Wisconsin. The data and results
are given in Table A-1.
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Table A-1

DATA
Precip. ET Q AS Q (Oct 1) | Q (Sept 30)
Water Year (in) (in) (in) (in) (cfs) (cfs)
2001 33.4 20.7 12.4 0.4 9.4 15.0
2002 46.0 20.9 18.7 6.3 15.0 90.9
2003 25.0 19.4 10.6 -5.0 92.1 5.2
2004 29.9 19.9 9.3 0.7 5.3 6.6
2005 28.7 20.3 6.9 1.5 6.7 11.7
2006 28.4 19.8 4.5 4.1 12.5 8.7
2007 30.3 20.3 5.0 5.0 9.0 16.3
2008 27.0 21.0 8.6 -2.6 17.2 4.8
2009 29.1 19.5 4.5 5.1 5.0 5.5
2010 411 21.4 13.5 6.2 6.7 52.6
2011 37.5 21.2 16.5 -0.2 51.5 7.4
CALCULATIONS
= 0.95 k =0.99 k = 0.999
Water Year dS (in) Diff. (in) dS (in) Diff. (in) dS (in) Diff. (in)
2001 0.0 0.3 0.1 0.3 0.9 -0.6
2002 0.3 6.1 1.3 5.0 12.8 -6.5
2003 -0.3 -4.7 -1.5 -3.6 -14.7 9.7
2004 0.0 0.7 0.0 0.7 0.2 0.5
2005 0.0 1.4 0.1 1.4 0.8 0.6
2006 0.0 4.1 -0.1 4.1 -0.6 4.7
2007 0.0 5.0 0.1 4.9 1.2 3.8
2008 0.0 -2.5 -0.2 2.4 -2.1 -0.5
2009 0.0 5.1 0.0 5.1 0.1 5.1
2010 0.2 6.0 0.8 5.4 7.8 -1.6
2011 -0.1 0.0 -0.7 0.6 -7.5 7.3
Cumulative Diff. = 21.5 21.6 22.4

The most striking result of this analysis is that the water budget based on the Water
Census data indicates a net increase of about 22 inches of watershed storage over
the 11-water-year period (2001-2011). This result is in sharp contrast to the
estimates of net change in storage computed from baseflow, which ranges from -1
inch to zero inches. The latter result is clearly the most reasonable. We know of no
mechanism that would explain a 22-inch increase in watershed storage over an 11-
year period. We believe that this anomalous result is due to a consistent error in
one or more water budget terms. It is highly unlikely that the streamflow data are
biased. The precipitation data are likely biased low, by about 15% (estimated from
information in Legates and DeLiberty (1993)), or 53 inches. Hence it appears that
the evapotranspiration data for the period 2010 through 2011 are biased high by
about 75 inches (33%).

Given these results, it is critical that similar water budget calculations be made at all
watersheds that have been gaged during the period 2001-2011. A large bias in the
Water Census ET data could create major problems, particularly in regions where
there are major conflicts over water use. For example, in the Central Sands region of
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Wisconsin, which is just southeast of the Eau Pleine watershed, steady increases in
the area of irrigated agricultural lands since the 1950s are likely responsible for
observed decreases in lake levels and stream baseflow. However, many of the
agricultural producers have not accepted this explanation. Water Census ET values
that are biased low could easily undermine efforts to resolve this water use conflict.
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