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THEORY OF AQUIFER TESTS 91

disparity might be due, in part, to the range of stress involved. He
states—

* * * during the pumping test of 1940 the head in the Lloyd sand declined to
a new low over a considerable area in the vicinity of the pumped wells, and con-
sequently the stress in the skeleton of the aquifer reached a new high. It is to be
expected that the modulus of elasticity would be smaller for the new, higher
range of stress than for the old range over which the stress had fluctuated many
times. AQUIFER TESTS—BASIC THEORY

WELL METHODS—POINT SINK OR POINT SOURCE
CONSTANT DISCHARGE OR RECHARGE WITHOUT VERTICAL LEAKAGE
EQUILIBRIUM FORMULA

Wenzel (1942, p. 79-82) showed that the equilibrium formulas
used by Slichter (1899), Turneaure and Russell (1901), Israelson
(1950), and Wyckoff, Botset, and Muskat (1932) are essentially
modified forms of a method developed by Thiem (1906), as are the
formulas developed by Dupuit (1848) and Forchheimer (1901).
Thiem apparently was the first to use the equilibrium formula for
determining permeability and it is frequently associated with his
name. The formula was developed by Thiem from Darcy’s law and
provides a means for determining aquifer transmissibility if the rate
of discharge of a pumped well and the drawdown in each of two
observation wells at different known distances from the pumped
well are known. The Thiem formula, in nondimensional form, can be
written as

T=Q loge (7’2/7'1)’ (1)

210’(81‘—82)

where the subscript e in the log term indicates the natural logarithm.
In the usual Geological Survey units (see p. 73), and using common
logarithms, equation 1 becomes

T=5277Q 10810 (7'2/7'1), (2)
$1—8;

where
T=coefficient of transmissibility, in gallons per day per foot,
Q=rate of discharge of the pumped well, in gallons per minute,
r, and r,=distances from the pumped well to the first and second

observation wells, in feet, and

s, and s,=drawdowns in the first and second observation wells, in feet.
The derivation of the formula is based on the following assumptions:
(a) the aquifer is homogeneous, isotropic, and of infinite areal extent;
(®) the discharging well penetrates and receives water from the entire
thickness of the aquifer; (c) the coefficient of transmissibility is con-
stant at all times and at all places; (d) pumping has continued at a



92 GROUND-WATER HYDRAULICS

uniform rate for sufficient time for the hydraulic system to reach a
steady-state (i.e., no change in rate of drawdown as a function of time)
condition; and (¢) the flow is laminar. The formula has wide appli-
cation to ground-water problems despite the restrictive assumptions
on which it is based.

The procedure for application of equation 2 is to select some con-
venient elapsed pumping time, ¢, after reaching the steady-state con-
dition, and on semilog coordinate paper plot for each observation
well the drawdowns, s, versus the distances, ». By plotting the values
of s on the arithmetic scale and the values of r on the logarithmic scale,
the observed data should lie on a straight line for the equilibrium
formula to apply. From this straight line an arbitrary choice of
s and s; should bemade and the corresponding values of ryand ryrecorded.
Equation 2 can then be solved for 7'

Jacob (1950, p. 368) recognized that the coeflicient of storage
could also be determined if the hydraulic system had reached a steady-
state condition (see assumption d, above), for thereafter the drawdown
is expressed very closely by the nondimensional formula

_Q 2.25T¢
=& T log, r’S )
or, in the usual Survey units and using common logarithms,

264 0.3Tt
=28 10g,, 231 @

S

Thus after the coefficient of transmissibility has been determined, the
coordinates of any point on the semilogarithmic graph previously
described can be used to solve equation 4 for the coefficient of storage.

NONEQUILIBRIUM FORMULA

Theis (1935) derived the nonequilibrium formula from the analogy
between the hydrologic conditions in an aquifer and the thermal
conditions in an equivalent thermal system. The analogy between
the flow of ground water and heat conduction for the steady-state
condition has been recognized at least since the work of Slichter (1899),
but Theis was the first to introduce the concept of time to the mathe-
matics of ground-water hydraulics. Jacob (1940) verified the deri-
vation of the nonequilibrium formula directly from hydraulic concepts.

The nonequilibrium formula in nondimensional form is

Q [~ e
s=-C ¢ du, 5
4rT) pgure u v ®)

where u=r2S/4T¢, and where the integral expression is known as
an exponential integral.
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Using the ordinary Survey units equation 5 may be written as

RSN ©)

T 1.8738/7¢ U

where

u=1.87rS/Tt,

s=drawdown, in feet, at any point of observation in the vicinity
of a well discharging at a constant rate,

@=discharge of a well, in gallons per minute,

T'=transmissibility, in gallons per day per foot,

r=distance, in feet, from the discharging well to the point of
observation,

S=coeflicient of storage, expressed as a decimal fraction,

t=time in days since pumping started.

The nonequilibrium formula is based on the following assumptions:
(a) the aquifer is homogeneous and isotropic; (b) the aquifer has
infinite areal extent; (c¢) the discharge or recharge well penetrates
and receives water from the entire thickness of the aquifer; (d) the
coeflicient of transmissibility is constant at all times and at all places;
(e) the well has an infinitesimal (reasonably small) diameter; and
(f) water removed from storage is discharged instantaneously with
decline in head. Despite the restrictive assumptions on which it is
based, the nonequilibrium formula has been applied successfully
to many problems of ground-water flow.

The integral expression in equation 6 cannot be integrated directly,
but its value is given by the series

© -u

f ¢ du=W(u)=—0.577216—log, u-+u
1.8738/78 U

w?  wr ut

—5:_2_1_*—3'-—3-!—4"—4!’ ----- (7)
where, as already indicated,

1.8772S
u= T: (8)

The exponential integral is written symbolically as W(u) which
is read “well function of u.” Values of W(u) for values of % from
10~ to 9.9, as tabulated in Wenzel (1942), are given in table 2. In
order to determine the value of W(u) for a given value of u, using
table 2, it is necessary to express u as some number () between 1.0
and 9.9, multiplied by 10 with the appropriate exponent. For ex-
ample, when % has a value of 0.0005 (that is, 5.0X107*), W(u) is
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determined from the line N=5.0 and the column N10~* to be
7.0242.

Referring to equations 6 and 8, if s can be measured for one value
of » and several values of £, or for one value of ¢ and several values of r,
and if the discharge Q is known, then S and T can be determined.
Once these aquifer constants have been determined, it is possible,
theoretically, to compute the drawdown for any time at any point on
the cone of depression for any given rate and distribution of pumping
from wells. It is not possible, however, to determine 7" and S directly
from equation 6, because 7' occurs in the argument of the function and
again as a divisor of the exponential integral. Theis devised a con-
venient graphical method of superporition that makes it possible to
obtain a simple solution of the equation.

The first step in this method is the plotting of a type curve on
logarithmic coordinate paper. From table 2 values of W(u) have
been plotted against the argument « to form the type curve shown in
ficure 23. It is shown in two segments, A—A and B-B, in order that
the portion of the type curve necessary in the analysis of pumping
test data could be plotted on a sheet of convenient size. Curve B-B
is an extension of curve A-A and overlaps curve A-A for values of
W(u) from about 0.22 to 1.0.

Rearranging equations 6 and 8 there follows

"114.6
s=| — Q:I W(u) )
or
log s=| log 1142',6QJ+10g W(w) (9a)
and )
T
T _1.87S:|u (10)
or
” I T
lOg 7——- _IOg m:l—i—log u (10&)

If the discharge, @, is held constant, the bracketed parts of equations
92 and 10a are constant for a given pumping test, and W(u) isrelated to
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TABLE 2.—Values of W(u) for values of u between 10~ and 9.9

L
2
3

NX10-1%  NX10-8  NX10-12 NX10-1! NXI10-10 NX10-* NXI10-! NXI10-7 NX10-¢ NX10-8 NX10-¢ NX10-* NX10-? NX10-t

CRNIONMAWN DO CXNGNARNIO=O COTANMBWN O SO WN—~O

P B i g LOOOIIO IO NDINNNINIDNNININ e e e

33. 9616 31. 6590 29. 3564 27.0538 24.7512 22.4486 20.1460 17.8435 15.5409 13.2383 10.9357  8.6332 6.3315  4.0379 1.8229
33. 8662 31. 5637 29, 2611 26.9585 24.6550 22,3533 20.0507 17.7482 15.4456 13.1430 10.8404  8.5379 6.2363  3.9436  1.7371
33.7792 31. 4767 29.1741 26.8715 24.5680 22.2663 19.9637 17.6611 153586 13.0560 10.7534  8.4509 6. 1404 3.8576 1.6595
33. 6992 31. 3966 29. 0940 26.7014 24.4880 22,1863 18.8837 17.5811 15.2785 12.9759 10.673¢  8.3709 6.0695  3.7785  1.5889
33. 6251 31. 3225 29.0199 26,7173  24.4147 22,1122 19.8096 17.5070 15.2044 12.9018 10.5993  8.2968 5.9955  3.7054 1
33. 5561 31. 2535 28. 9509 26,6483 24.3458 22.0432 19.7406 17.4380 15.1354 12,8328 10.5303  8.2278 5.9266  3.6374 1
33. 4916 31.1890 28. 8864 26.56838 24.2812 21.9786 19.6760 17.3735 15.0700 12,7683 10.4657  8.1634 5. 8621 3. 5739 1.
33. 4309 31.1283 28. 8258 26.5232 24.2206 21.9180 19.6154 17.3128 15.0103 12.7077 10.4051  8.1027 5.8016  3.5143 1.3578
33.3738 31,0712 28. 7686 26.4660 24,1634 21.8608 19.5583 17.2557 14.9531 12.6505 10.3479  8.0455 57446  3.4581 1
33.3197 31.0171 28.7145 26.4119 24.1094 21.8068 19.5042 17,2016 14.8990 12.5964 10.2939  7.9915 5.6906  3.4050 1

33. 2684 30. 9658 28. 6632 26.3607 24.0581 21.7555 19.4529 17.1503 14.8477 12.5451 10.2426 7.9402 65.6394 3.3547 1

33. 2196 30. 9170 28.6145 26.3119 24,0093 21.7067 10.4041 17.1015 14.7989 12,4964 10.1938  7.8914 55907  3.3069 1.

33,1731 30. 8705 28. 5679 26.2653 23.9628 21.6602 19.3576 17.0550 14.7524 12.4498 10.1473  7.8449 55443  3.2614  1.144
33. 1286 30. 8261 28. 5235 26.2209 23.9183 21.6157 19.3131 17.0108 14.7080 12.4054 10.1028  7.8004 54998  3.2179 1,

33. 0861 30. 7835 28, 4809 26.1783 23.8758 21.5732 19.2706 16.9680 14.6654 12,3628 10.0603  7.7579 5.4575  3.1763  1.0762
33.0453 30.7427 28. 4401 26,1375 23.8349 21.5323 19.2208 16,9272 14.6246 12.3220 10.0194 7.7172  5.4167 3.1365  1.0443
33. 0060 30.7035 28. 4009 26.0983 23.7957 21.4931 19.1905 16.8880 14.5854 12.2828  9.9802 7.6779  6.3776  3.0983  1.0139
32. 9683 30. 6657 28. 3631 26.0606 23.75%0 21.4554 19.1628 16.8502 14.5476 12.2450  9.9425  7.6401 5.3400  3.0615 . 9849
32,9319 30. 6294 28,3268 26.0242 23.7216 21.4190 19.1164 16.8138 14.5113 12.2087  9.9061 7.6038  5.3037  3.0261 . 9573
32. 8968 30. 5943 282017 25.9891 23.6865 21.3839 10.0813 16.7788 14.4762 12,1736  9.8710  7.5687  5.2687  2.9920 . 9309

32. 8629 30. 5604 28. 2578 25.9552 23.6526 21.3500 19.0474 16.7449 14.4423 12,1397 9.8371  7.5348  5.2340  2.9591 . 9057
32. 8302 30. 5276 28.2250 25.9224 23.6198 21.3172 19.0146 16.7121 14.4095 12.1069  9.8043  7.5020 5.2022  2.9273 . 8815
32,7984 30. 4958 28,1932 25.8907 23.5880 21.2855 18.9820 16.6803 14.3777 12.0751  9.7726  7.4703 51706  2.8965 . 8583
32.7676 30. 4651 28.1625 25.8509 23.5573 21.2547 18.0521 16.6495 14.3470 12,0444 0.7418  7.4305 51390  2.8668 . 8361
32.7378 30. 4352 28.1326 25.8300 23.5274 21.2249 18.9223 16.6197 14.3171 12,0145 9.7120  7.4097 5.1102  2.8379 .8147
32.7088 30. 4062 28.1036 25.8010 23.4985 21.1050 18.8933 16,5907 14.2881 11.9855  ©.6830  7.3807 5.0813  2.8099 L7942
32. 6806 30. 3780 28.0755 25.7720 23.4703 21.1677 18.8651 16.5625 14.2599 11.9574 9.6548  7.3526  5.0532  2.7827 L7745
32. 6532 30. 3506 28.0481 25.7455 23.4420 21.1403 18.8377 16.5351 14.2325 11.9300 9.6274  7.3252  5.0259  2.7563 . 7554
32. 6266 30. 3240 28,0214 25.7188 23.4162 21.1136 18.8110 16.5085 14.2059 11.9033  9.6007  7.2085  4.9993  2.7306 L7371
32. 6006 30. 2980 27. 9954 25,6928 23.3902 21.0877 18.7851 16.4825 14.1799 11.8773 0.5748 7.2725 4.9735  2.7056 L7194

32.5753 30. 2727 27.9701 25.6675 23.3640 21.0623 18.7508 16.4572 14.1546 11.8520 0.5405  7.2472  4.9482  2.6813 . 7024
32. 5506 30. 2480 27. 9454 25.6428 23.3402 21.0376 18.7351 16.4325 14.12909 11.8273 9.5248  7.2225 4.9236  2.6576 . 6859
32. 5265 30. 2239 27.9213 25.6187 23.3161 21.0136 18.7110 18.4084 14.1058 11.8032  9.5007  7.1985 4.8907  2.6344 . 6700
32. 5029 30. 2004 27.8978 25.5952 23.2926 20.9000 18.6874 16,3884 14.0823 11.7797 9.4771 7.1749  4.8762  2.6119 . 6546
32. 4800 30.1774 27.8748 25.5722 23.2696 20.9670 18.6644 16.3619 14.0593 11.7567  9.4541  7.1520  4.8533  2.5809 . 6397
32. 4575 30.1549 27,8523 25,5497 23.2471 20.9446 18.6420 16.3394 14.0368 11.7342 9.4317 7.1205 4.8310 2 5684 . 6253
32,4355 30. 1329 27.8303 25,5277 23.2252 20.9226 18,6200 16.3174 14.0148 11.7122 9.4097 7.1075  4.8091 2.5474 .6114
32. 4140 30.1114 27,8088 25.5062 23.2037 20.9011 18.5985 16.2050 13.9933 11.6007  0.3882  7.0860 4.7877 25268 . 5979
32. 3929 30. 0904 27.7878 25.4852 23.1826 20.8800 18.5774 16.2748 13.9723 11.6697 9.3671  7.0650  4.7667 2 5068 . 5848
32.3723 30. 0697 27.7672 25,4646 23.1620 20.8504 18.5668 16.2542 13.9516 11.6491  9.3465 7.0444  4.7462  2.4871 . 56721
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27.1816
27.1703

27.1592
27. 1481
27.1372
27. 1264
27.1157
27.1051
27.0946
27.0843
27.0740
27.0639
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15.6574
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15.6352
15. 6243

13. 7491
13.7326
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13, 6846
13. 6691
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« in the manner that s is related to r%:. This is shown graphically
in figure 24. Therefore, if values of the drawdown s are plotted against
r*ft, or 1/t if only one observation well is used, on logarithmic tracing
paper to the same scale as the type curve, the curve of observed data
will be similar to the type curve. The data curve may then be super-
posed on the type curve, the coordinate axes of the two curves being
held parallel, and translated to a position which represents the best
fit of the field data to the type curve. An arbitrary point is selected
anywhere on the overlapping portion of the sheets and the coordinates
of this common point an hoth sheets are recarded. It is often conveni-
ent to select a point whose coordinates are both 1. These data are
then used with equations 9 and 10 to solve for 7" and S.
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FIGURE 24.~-Relation of W(x) and u to & and r3/t.

A type curve on logarithmic coordinate paper of W(u) versus 1/u,
the reciprocal of the argument, could have been plotted. Values of
the drawdown (or recovery), s, would then have been plotted versus
t, or t/r* and superposed on the type curve in the manner outlined
above. This method eliminates the necessity for computing 1/t values
for the values of s.

MODIFIED RONEQUILIBRIUM FORMULA

It was recognized by Jacob (1950) that in the series of equation 7
the sum of the terms beyond log. is not significant when % becomes
small. The value of % decreases as the time, ¢, increases and as r
decreases. Therefore, for large values of ¢ and reasonably small
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values of 7, the terms beyond log.u in equation 7 may be neglected.
When r is large, ¢ must be very large before the terms beyond log.u in
equation 7 can be neglected. Thus the Theis equation in its abbrevi-
ated or modified nondimensional form is written as

o— (10 4Tt
4T\ 825

Q 1, 22T
=5 T8 25

0.5772)

which is obviously identical with equation 3. In the usual Survey
units, then, this equation will be identical with equation 4, all terms
being as previously defined.

In applying equation 4 to measurements of the drawdown or
recovery of water level in a particular observation well, the distance
r will be constant, and it follows that

at time ¢, S1=26;Q (logwo"i?' ;

at time ¢y, 82=26;‘Q (logloO'STh);

r’s
and the change in drawdown or recovery from time #; to ¢, is

264
8= Q(I 1ot
Rewriting this equation in form suitable for direct solution of T,
there follows

T=264Q(logm tg/t,)’ (11)

82— 81

where Q and 7' are as previously defined, ¢; and ¢, are two selected
times, in any convenient units, since pumping started or stopped, and
s; and s, are the respective drawdowns or recoveries at the noted
times, in feet.

The most convenient procedure for application of equation 11 is
to plot the observed data for each well on the semilogarithmic coor-
dinate paper, plotting values of ¢ on the logarithmic scale and values
of s on the arithmetic scale. After the value of w becomes small
(generally less than 0.01) and the value of time, ¢, becomes great,
the observed data should fall on a straight line. From this straight
line make an arbitrary choice of ¢, and ¢, and record the corresponding
values of s; and s,. Equation 11 can then be solved for 7. For
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convenience, ¢, and £, are usually chosen one log cycle apart, because
then

t
loglo t_j=

and equation 11 reduces to

2640Q

T= As

) (12)

where As is the change, in feet, in the drawdown or recovery over one
log cycle of time.

The coefficient of storage also can be determined from the same
semilog plot of the observed data. When s=0, equation 3 becomes

Q. 2.25Tt
s=0=g7 log: =g

Solving for the coefficient of storage, S, the equation in its final form
becomes

S=2'252T t (13)
r
or, in the usual Survey units,
§=03T%, (14)

where S, T, and r are as previously defined and ¢, is the time intercept,
in days, where the plotted straight line intersects the zero-drawdown
axis. If any other units were used for the time, ¢, on the semilog plot,
then obviously ¢, must be converted to days before using equation 14.
Lohman (1957) has described a simple method for determining &
using the data region of the straight-line plot without extrapolating
to the zero-drawdown axis.

THEIS RECOVERY FORMULA

A useful corollary to the nonequilibrium formula was devised by
Theis (1935) for the analysis of the recovery of a pumped well. If
a8 well is pumped, or allowed to flow, for a known period of time and
then shut down and allowed to recover, the residual drawdown at
any instant will be the same as if the discharge of the well had been
continued but a recharge well with the same flow had been introduced
at the same point at the instant the discharge stopped. The residual
drawdown at any time during the recovery period is the difference
between the observed water level and the nonpumping water level
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extrapolated from the observed trend prior to the pumping period,
The residual drawdown, s/, at any instant will then be

© -y ® —-u
s'=114'60|: f ¢ gu— "——du] (15)
T 1.873s170 U 187728700 U

where @, T, S, and r are as previously defined, ¢ is the time since
pumping started, and ¢ is the time since pumping stopped. The
quantity 1.8772S/Tt’ will be small when ¢’ ceases to be small because
r is very small and therefore the value of the integral will be given
closely by the first two terms of the infinite series of equation 7,
Equation 15 can therefore be written, in modified form, in the usual
Survey units, as

264 t
s/QlogIO’t_i (16)

T=

The above formula is similar in form to, and is based on the same
assumptions as, the modified nonequilibrium formula developed by
Jacob, and it permits the computation of the coefficient of trans-
missibility of an aquifer from the observation of the rate of recovery
of water level in a pumped well, or in a nearby observation well
where 7 is sufficiently small to meet the above assumptions.

The Theis recovery formula is applied in much the same manner as
the modified nonequilibrium formula. The most convenient pro-
cedure is to plot the residual drawdown, s’, against ¢/t on semilogarith-
mic coordinate paper, s’ being plotted on the arithmetic scale and
t/t’ on the logarithmic scale. After the value of ¢’ becomes sufficiently
large, the observed data should fall on a straight line. The slope of
this line gives the value of the quantity log;, (¢/t')/s’ in equation 16.
For convenience, the value of ¢/t’ is usually chosen over one log cycle
because its logarithm is then unity and equation 16 then reduces to

264 Q

I= As’

an

where As’ is the change in residual drawdown, in feet, per log cycle of
time. It is not possible to determine the coefficient of storage from
the observation of the rate of recovery of a pumped well unless the
effective radius, r, which is usually difficult to determine, is known.
The Theis recovery formula should be used with caution in areas
where it is suspected that boundary conditions exist. If a geologic
boundary has been intercepted by the cone of depression during pump-
ing, it may be reflected in the rate of recovery of the pumped well, and
the value of T’ determined by using the Theis recovery formula could
bein error. With reasonableare the recovery in an observation well
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can be used, of course, to determine both transmissibility and storage,
whether or not boundaries are present.

APPLICABILITY OF METHODS TO ARTESIAN AND WATER-TABLE AQUIFERS

The methods previously discussed have been used successfully for
many years in determining aquifer constants and in predicting the
performance of both water-table and artesian aquifers. The deriva-
tions of the equations are based, in part, on the assumptions that the
coefficient of transmissibility is constant at all times and places and
that water is released from storage instantaneously with decline in
head. It should be recognized, however, that these and many other
idealizations are necessary before mathematical models can be used
to analyze the physical phenomena associated with ground-water
movement. Thus the hydrologist cannot blindly select a model, turn
a crank, and accept the answers. He must devote considerable time
and thought to judging how closely his real aquifer resembles the ideal.
If enough data are available he will always find that no ideal aquifer,
of the type postulated in the theory, could reproduce the data obtained
in an actual pumping test. He should understand that the dispersion
of the data is a measure of how far his aquifer departs from the ideal.
Therefore, he must plan his test procedures so that they will conform
as closely as possible to the theory and thus give results that can
safely be applied to his aquifer. He must be prepared to find out,
however, that his aquifer is too complex to permit a clear evaluation of
its coefficients of transmissibility and storage. He must not tell
himself or the reader that ‘“‘the coefficient of storage changed” during
the test but must realize that he got different values when he tried to
apply his data, inconsistently, to an ideal theoretical aquifer.

Thus there is little justification for the premise that the storage
coefficient of a water-table aquifer varies with the time of pumping,
inasmuch as such anomalous data are merely the results of trying to
apply a two-dimensional flow formula to a three-dimensional problem.
The nonequilibrium formula was derived on the basis of strictly radial
flow in an infinite aquifer and its application to situations where
vertical-flow components occur is not justified except under certain
limiting conditions. As the time of pumping becomes large, however,
the rate of water-level decline decreases rapidly so that eventually the
effect of vertical-flow components in water-table aquifers are mini-
mized.

If the drawdowns are large compared to the initial depth of flow,
it is necessary to adjust the observed drawdown in a pumping test of a
water-table aquifer before the nonequilibrium formula is applied.
According to Jacob (1944, p. 4) if the observed drawdowns are
adjusted (reduced) by the factor §?/2m, where s is the observed draw-



THEORY OF AQUIFER TESTS 103

down and m is the initial depth of flow, the value of T will correspond
to equivalent confined flow of uniform depth, and the value of S will
more closely approximate the true value. He adds that when the
drawdowns are adjusted the nonequilibrium formula can be used with
fair assurance even when the dewatering is as much as 25 percent of
the initial depth of flow.

Where the discharging well only partially penetrates the aquifer it
may also be necessary to adjust the observed drawdowns. Procedures
for accomplishing this have been described by Jacob (1945).

INSTANTANEOUS DISCHARGE OR RECHARGE
“BAILER" METHOD

Skibitzke (1958) has developed a method for determining the
coefficient of transmissibility from the recovery of the water level in a
well that has been bailed. At any given point on the recovery curve
the following equation applies:

|4
/=4WT—'] 18)
where
s’ =residual drawdown,
V=volume of water removed in one bailer cycle,
T=coefficient of transmissibility,
S=coefficient of storage,
t=Ilength of time since the bailer was removed,
ro=effective radius of the well.

The effective radius, r,, of the well is very small in comparison to
the extent of the aquifer. As r, is small, the term in brackets in
equation 18 approaches unity as ¢ increases. Therefore for large
values of 7, equation 18 may be modified and rewritten, in consistent
units, as

|4 |4
4xTt 12.57Tt

8= 19
where s/, T, and ¢ have units and significance as previously defined,
and where V represents the volume of water, in gallons, removed
during one bailer cycle. If the residual drawdown is observed at
some time after completion of n bailer cycles then the following
expression applies:

’ Vl V2 V3 V
8 1257T[ +uta T t,,]’ (20)

where the subscripts merely identify each cycle of events in sequence.
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Thus V; represents the volume of water removed during the third
bailer cycle and ¢; is the elapsed time from the instant that water
was removed from storage to the instant at which the observation
of residual drawdown was made.

If approximately the same volume of water is removed by the
bailer during each cycle, then equation 20 becomes

=1z 57Tl:“+ nth +"'E]' @1

The “bailer’” method is thus applied to a single observation of the
residual drawdown after the time since bailing stopped becomes large.
The transmissibility is computed by substituting in equation 21 the
observed residual drawdown, the volume of water V considered to be
the average amount removed by the bailer in each cycle, and the
summation of the reciprocal of the elapsed time, in days, between
the time each bailer of water was removed from the well and the time
of observation of residual drawdown.

“SLUG"” METHOD

Ferris and Knowles (1954) discuss a convenient method for esti-
mating the coefficient of transmissibility, under certain conditions.
This is done by injecting a given quantity or ‘“slug’” of water into a
well. Their equation for determining the coefficient of transmissi-
bility is the same as the equation derived by Skibitzke for the bailer
method, inasmuch as the effects of injecting a slug of water into a
well are identical, except for sign, with the effects of bailing out
a slug of water. Thus equation 19 has direct application, only s’
now represents residual head, in feet, at the time ¢, in days, following
injection of V gallons of water.

As used in the field, this method requires the sudden injection of a
known volume of water into a well and the collection thereafter of
a rapid series of water-level observations to define the decay of the
head that was built up in the well. An arithmetic plot of residual
head values versus the reciprocals of the times of observation should
produce a straight line whose slope, appropriately substituted in
equation 19, permits computation of the transmissibility.

Suggested equipment for use in injecting a slug of water into a
well, and for making the rapid series of water-level observations
required immediately thereafter, is shown schematically in figure 25.

The duration of a “slug’ test is very short, hence the estimated
transmissibility determined from the test will be representative only
of the water-bearing material close to the well. Serious errors will
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\-——Rope or wire

/Cover plate with fixed "eye

Drum or barrel
of known volume

/Gusket secured to cover plate

Block drum up
above well casinqto\a

provide for escope of air

'—Flange and nipple making
watertight connection
with bottom of drum

Land Surface

/// W/

Well casing ~—= 5|

A. APPARATUS FOR MAKING "SLUG " TEST

?// "Eye" for ottaching steel tape

<— 1" —

Pipe ->4

Lead filler ———>=

i, G

Shallow depression in the lead

B.PLAN FOR PERCUSSION INSTRUMENT FOR RAP|D
MEASUREMENT OF WATER LEVELS

F1oURk 26.—8uggested equipment for & ‘‘slug” test.

be introduced upless the observation well is fully developed and
completely penetrates the aquifer. Use of the “slug” test should
probably be restricted to artesian aquifers of small to moderate
transmissibility (less than 50,000 gallons per day per foot).
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CONSTANT HEAD WITHOUT VERTICAL LEAKAGE

Controlled pumping tests have proved to be an effective tool in
determining the coefficients of storage and transmissibility. In the
wusual test the discharge rate of the pumped well is held constant,
whereas the drawdown varies with time. The resulting data are
analyzed graphically as previously described. Jacob and Lohman
(1952) derived a formula for determining the coefficients of storage
and transmissibility from a test in which the discharge varies with
time and the drawdown is held constant. The formula, based on
the assumptions that the aquifer is of infinite areal extent, and that
the coefficients of transmissibility and storage are constant at all
times and all places, is developed from the analogy between the hydro-
logic conditions in an aquifer and the thermal conditions in an
equivalent thermal system. The formula is written as

Q=2rTs,G(e), (22)
where
G=12 L — I:§+ tan-* g:((j))] de (23)
and
Tt
a=r—;§—s' (24)

Using the customary Survey units, equations 22 and 24 are rewritten
in the form

. Ts,G(a)

and
0.134 Tt
a= TS (26)

where Q, T, and ¢ have the units and meaning previously defined and
where

sp,=constant drawdown, in feet, in the discharging well,
r,=effective radius, in feet, of the discharging well.

The terms Jy(z) and Yo(2) are Bessel functions of zero order of the
first and second kinds respectively.

The integration required in equation 23 cannot be accomplished
directly so it is necessary to replace the integral with a summation and
solve it by numerical methods. In this fashion values of G(a) for
values of « from 10~4 to 10'2, have been tabulated by Jacob and Loh-
man, (1952), and are given herewith in table 3. The term G(a) is
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here designated as the ‘‘well function of «, constant-head situation.”
This table is used in the same manner as table 2, which gives values
of W(u) versus u.

It is seen from equations 25 and 26 that if Q can be measured for
several values of ¢ and if the constant drawdown, s,, and the effective
radius, 7y, are known, S and 7 can be determined. It is not possible
to determine S and 7T directly, however, since T occurs both in the
argument of the function and as a multiplier of G(a). A convenient
graphical method, similar to that used in solving the nonequilibrium
formula, makes it possible to obtain a simple solution.

The first step in this method is the plotting of a type curve on loga-
rithmic coordinate paper. From table 3, values of G(a) were plotted
against the argument o to form the type curve shown in figure 26.
It is shown in several segments in order that the entire type curve
may be plotted on a sheet of convenient size.

Rearranging equations 25 and 26 there follows:

Ts,
=559 G(@)
or
Ts,,
log Q=[log2—29]+ log G(a), @7
and
t=r—"’2§— a
0.137
or
log t=[log Of;;“;}log o (28)

If the drawdown, sy, is held constant, the bracketed parts of equations
27 and 28 are constant for any given test and log G(a) is related to
log « in the same manner that log @ is related to log ¢. (Note the
similarity in form between equations 27 and 28 and equations 9a and
10a.) Therefore if values of the discharge, @, are plotted against cor-
responding values of time, ¢, on logarithmic tracing paper to the same
scale as the type curve, the curve of observed data will be similar to
the type curve. The data curve may then be superposed on the type
curve, the coordinated axes of the two curves being held parallel, and
translated to a position that represents the best fit of the data to the
type curve. An arbitrary point is selected on the overlapping portion
of the sheets and the coordinates of this common point on both sheets
are used with equations 25 and 26 to solve for Tand S. This graphical
solution is similar to that used with the Theis nonequilibrium formula.
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TaBLE 3.—Values of G(a) for values of a between 10-* and 10%
{From Jacob and Lohman, 1952, p. 561]

10~ 10 10 101 1 10 108 10
1., 56.9 18.34 6.13 2.249 0. 985 0.534 0.346 0. 251
2. 40.4 13.11 4.47 1.718 . 803 . 461 .31 .232
3. 3.1 10.79 3.74 1.477 719 .427 .204
4. 28.7 9. 41 3.30 1.333 667 . 405 . 283 215
5... 26.7 8.47 3.00 1.234 830 .389 274 210
6... 23.5 7.7 2.78 1.160 802 .3717 . 268 2068
7. 21.8 7.2 2.60 1,103 580 . 367 . 263 203
8. 2.4 6.7 2.48 1.057 562 . 350 . 258
9. 10.3 6.43 2.35 1.018 547 . 352 254 198
10.. 18.3 6.13 2.25 .985 534 . 346 251 106
104 108 100 107 10 100 1010 104
... 0.1964 0.1608 0.1360 0.1177 0.1037 0. 0927 0. 0.0764
2. 1841 1524 .1131 .1002 . 0899 0814
3. 1777 1479 1266 .1108 . 0982 . 0883 0801 0733
4... 1 1449 1244 .1089 . 00868 .0872 0792 0728
5% 1701 1426 1227 .1078 . 0058 . 0864 0785 0
6... 1675 1408 1213 .1068 . 0050 0857 0779 0716
Taeae 1654 1393 1 . 1057 . 0043 0851 0774 0712
8.... 1636 1380 1192 .1049 . 0037 0846 0770 0700
9... 1621 1360 1184 3! . 0032 0767 0708
10.. 1608 1360 un .1037 . 0927 0838 0764 0704

Jacob and Lohman (1952) showed that for large values of ¢, the
function G(a) can be replaced by 2/W(u), and it has already been
shown (see discussion, p. 99) that the approximate form of W(u) is
given by 2.30 logy, (2.257¢%/Sr,?). Making this substitution for G(a)
in equation 22, there follows

47T's,/2.30
lOglo (2.25Tt/7'w2S)

or, rearranging terms,

%’=§TQ log %2+i—qu, log 2—'25,51'- (29)
It should be evident from the form of equation 29, that if arithmetic
values of the variable s,/Q are plotted against logarithmic values of
the variable ¢/r,? the points will define a straight line. The slope of
this line, in equation 29, is the prefix of the variable term log (¢/r,?).
In other words,

PRI _ A9 _2.30
Slope of straight-line plot= ATog (ijrd)— 4aT
Once the slope of the graph is determined, therefore, the coefficient of
transmissibility may be computed from the relation

__2.30Adog t/r.")

T=="4rAGulQ) (30)
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If the slope is measured over one log cycle then the term A log (¢/r,?)
equals unity and equation 30 is further simplified to the form

2.30
) 1)
The coefficient of storage could then be found by substituting in
equation 29 the computed value of T and the coordinates of any con-
venient point on the straight-line plot. However, the computation is
greatly simplified by noting that for the point where the straight-line
plot intersects the logarithmic time axis (that is, where s,/Q=0),
equation 29 becomes

S=2.25T(t/r.)e. (32)

In the usual Survey units, equations 31 and 32 are written

264
T_A(sw/Q) (33)
and
S8=0.3T(t/r?). (34)

Thus equations 33 and 34 are applied through the simple device of
a semilogarithmic plot where values of s,/Q are plotted on the arith-
metic scale against corresponding values of t/r,2 on the logarithmic
scale.

The methods that have been outlined in this section are useful in
determining the coefficient of transmissibility but should be used with
caution in determining the coefficient of storage because it is often
difficult to determine the effective radius of the pumped well.

CONSTANT DISCHARGE WITH VERTICAL LEAKAGE
“LEAKY AQUIFER” FORMULA

A problem of practical interest is that of an elastic artesian aquifer
that is replenished by vertical leakage through overlying or underly-
ing semipermeable confining beds. In most places the confining beds
only impede or retard the movement of ground water rather than
prevent it. It is often true that this retardation of ground-water
movement is sufficient so that the Theis equation (which assumes
impermeable confining beds) can be applied. Nevertheless there will
be occasions when departure of the test data from the predictions of
the Theis equation will require investigation of the ability of the
confining beds to transmit water.

As an example of the magnitude of flow through material of low
permeability, consider a semipermeable confining bed, 50 feet thick,
consisting of silty clay that has a permeability of 0.2 gallon per day
per square foot. Such a material is listed by Wenzel (1942, p. 13,
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lab. no. 2,278) as including about 49 percent (by weight) clay and
about 45 percent silt. Assume that the confining bed is saturated
and that in some manner there is established and maintained a head
differential of 25 feet between the top and bottom surfaces of the bed.
The rate of percolation, related to this head differential, through the
confining bed is computed from the previously given (see p. 73) variant
of Darcy’s law,
Q.=P'IA,
where, in this example,

@a=discharge in gallons per day through specified area of confining
bed,
P’=vertical permeability of confining bed=0.2 gallon per day per
square foot,
I=hydraulic gradient imposed on confining bed=25/50=0.5 foot
per foot.
A=specified area of confining bed through which percolation occurs.

Thus, through a confining-bed area of one square foot,
24=0.2X0.5X1=0.1 gallon per day,
or, through a confining-bed area of one square mile,
Qa=0.2X0.5X 5,280 X 5,280=2,800,000 gallons per day.

It is known that the cone of depression created by pumping a well
in an artesian aquifer grows rapidly and thus in a relatively short
time encompasses a large area. As shown by the above computations,
the total amount of vertical seepage through confining beds may be
quite large, even though the permeability of these formations is
relatively small. If the confining bed in turn is overlain by an aqui-
fer of appreciable storage and transmitting capacity, the radius of the
cone of influence developed by a well pumping from the artesian aqui-
fer will be determined by the hydrologic regimen of the artesian
aquifer, the confining bed, and the leakage-source aquifer.

The first detailed analysis and solution of the leaky-aquifer problem
was developed by DeGlee ! (1930) and later supplemented by Stegge-
wentz and Van Nes (1939).

In these analyses, assumptions related to the physical flow system
are: (a) the artesian aquifer is bounded above or below by a semi-
permeable confining bed, (b) the aquifer, when pumped is supplied by
leakage through the confining bed, the leakage being proportional to
the drawdown, and (c) the aquifer and confining bed are independently
homogeneous and isotropic. It is also assumed that the water level
in the aquifer supplying water to the semipermeable bed is maintained

t Glee, G. J. de, 1930, over grondwaterstroomingen bei wateronttrekking door mittel van putten [On
ground-water currents through draining by means of wells]: Delft {Netherlands] Tech. Hogeschool thesis.
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at or very near static level through the interval of pumping. The
solution developed is for the steady-state condition, wherein it is
assumed that the drawdown is zero at r= o,

Jacob (1946) also analyzed this problem, verifying the solution
for steady flow and also developing a solution for the transient state.
His final steady-state equation, in nondimensional form, for the draw-
down in an infinite artesian aquifer has the form

s=5 s Ko(2) 35)

or, in the usual Survey units,

1) 40} @)
where
br
and
a=yT/S

b=yP jm'S

T=coefficient of transmissibility of the artesian aquifer in gallons
per day per foot,
P’ =coefficient of vertical permeability of the semipermeable con-
fining bed, in gallons per day per square foot,
S=coeflicient of storage of the artesian aquifer,
@Q=rate of withdrawal by the pumped well, in gallons per minute,
m’=thickness of the semipermeable confining bed, in feet,
r=distance from the pumped well to the observation well, in feet,
s=drawdown in the observation well, in feet.

The symbol Ky(z) is a notation widely but not universally used to
identify the modified Bessel function of the second kind of the zero
order. In order to avoid any misunderstanding of its present usage
it is identified as follows:

Ky(z)=—[0.5772+1og, (2/2)]1,(x)
+ (/1) %(z/2)*+(1/2)*(2/2)* (1 +1/2)
+(1/302(2/2) A +1/2+1/3+ ..., (38)



THEORY OF AQUIFER TESTS 113
where
[(x)=1+&/2*/(1)Y? +(x/2)*/21)* +(x/2)*/(3!)*+ . . . . (39)

The notation Iy(z) is used to represent the modified Bessel function
of the first kind of zero order. Values of the function Ky(z) over
the range of interest for most ground-water problems are given in
table 4.

Equations 36 and 37 may be rewritten in the following form:

log s=log [—2%),—62 +log Ko(x) (40)

log r=log l:%]-{—log z (41)

The bracketed portions of equations 40 and 41 include all the terms
that have been assumed constant in the derivation. It follows then
that the variable s is related to r in the same manner that K,(z) is
related to 2. Thus the form of equations 40 and 41 once again sug-
gests the same convenient method of graphical solution that has
already been described for resolving the Theis formula. A type curve
for use in solving equations 36 and 37 is prepared by plotting on
logarithmic graph paper the values given in table 4. In figure 27
curve AA is in part a duplication of the lower part of curve BB and
in part an extension of that curve into the next lower log cycle.

The solution of equations 36 and 37 thus requires plotting the field
observations of s and r, at some particular time ¢, on logarithmic
graph paper, using the same size of logarithmic scale adopted for the
type curve. The data curve is superposed on the type curve, the
coordinate axes of the two curves being held parallel, and translated
to the position that represents the best fit of the field data to the type
curve. When the match position is found, the amount of shift or
translation from the s scale to the Ky (z) scale is measured by the
bracketed term of equation 40, and the translation between the r
scale and the x scale is represented by the bracketed member of
equation 41. An arbitrary point is selected on the data curve and the
coordinates of this common point on both the data curve and the
type curve are recorded. These coordinates, when substituted in
equations 36 and 37, permit computation of the coefficient of trans-
missibility, 7', of the artesian bed, and the value of z, which has
inherent in it the coefficient of vertical permeability of the leaky con-
fining bed.
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TABLE 4.—Values of Ky(x), the modified Bessel function of the second kind of zero
order, for values of x between 10~2 and 9.9
[Data for splottin“gktype curve (fig. 27) used {n solving equations 36 and 37. Values of Ko(z) in the interval

en from tables in Commerce Dept. (1952, p. 36-60). Values of Ko(z) in the interval
1 05:59 9 taken from Gray, Mathews, and MacRobert (1931, p. 313-315))]

N T=N(109) |z=N(10"1) | z=N(10-7) N z=N(10% | z=N(10-1) | z=N(10-?)
1.0 0. 4210 2.4271 14,7212 5.5 0. 002139 . 8466
11 . 3856 5.6 . 001018
1.2 . 3185 5.7 . 001721
1.3 . 2782 5.8 . 001544
1.4 . 2437 5.9 . 001386
1.5 . 2138 2.0300 6.0 . 001244 L7778 2.9320
1.6 . 1880 6.1 001117
1.7 1655 6.2 001003
1.8 1459 6.3 0008001
19 1288 6.4 0008083
2.0 L1139 1.7527 4.0285 8.5 . 0007259 L7159
2.1 . 1008 6.6 .0006520
2.2 08927 6.7 . 0005857
2.3 07914 6.8 .0005262
2.4 07022 6.9 . 0004728
2.5 . 08235 1, 5415 7.0 . 0004248 . 8605 2.7798
2.6 05540 7.1 0003817
2.7 . 04926 7.2 0003431
2.8 . 04382 7.3 0003084
2.9 03901 7.4 0002772
3.0 . 03474 1.3725 38.8235 7.5 . 0002492 .6106
3.1 . 03095 7.8 . 0002240
3.2 02759 7.7 . 0002014
3.3 02461 7.8 .0001811
3.4 02108 7.9 . 0001629
3.5 . 01960 1.2327 8.0 . 0001465 . 5653 2.6475
3.8 01750 8.1 .0001317
3.7 01563 8.2 . 0001185
3.8 01397 8.3 . 0001066
3.9 01248 8.4 . 00009588
4.0 .01118 11145 3.3365 8.5 .00008626 . 5242
4.1 009980 8.6 . 00007761
4.2 008927 8.7 . 00006983
4.3 007988 8.8 . 00006283
4.4 007149 8.9 . 00005654
4.5 1.0129 0.0 . 00005088 . 4867 2. 5310
4.6 005730 0.1 . 00004579
4.7 005132 9.2 .00004121
4.8 004597 0.3 . 00003710
4.9 004119 0.4 . 00003339
5.0 . 003691 . 9244 3.1142 8.5 . 000030068 . 4624
5.1 .003308 9.6 . 00002708
5.2 . 002966 9.7 . 00002436
5.3 . 002659 9.8 . 00002193
5.4 . 002385 9.9 . 00001975

1When z=0, Ko(z) = .

In application it is not possible to determine either a or b from field
observation of steady flow, but their ratio can be determined from the
definition of z:

r=r(bja)=r E%%S:--r\/P’/Tm’- (42)

The vertical permeability of the leaky bed can thus be determined
from equation 42 if the bed thickness, m’, is known. However, S,
the coefficient of storage for the artesian aquifer cannot be determined
as it is removed from the b/a ratio by cancellation. Hantush (1955)
has designated the ratio P’/m’ as the “leakage coefficient,” and
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Hantush and Jacob (1955) have described in considerable detail their
development of equations for the nonsteady-state solution to the
foregoing problem.

The preceding discussion has stipulated that equations 36, 37,
and 42 are properly applied only to steady-state conditions. This
means that enough time must have elapsed for the drawdown to have
stabilized throughout the region for which the plot of s versus ris to
bemade. Themanner in which the drawdown stabilizes at observation
points at selected distances from the discharging well is shown on a
semilogarithmic plot by Hantush and Jacob (1955, fig. 1). In effect
their plot shows individual time-drawdown curves because values of
drawdown divided by a constant are plotted against values of the
logarithm of time multiplied by a constant. Of special interest is
the fact that for all the curves, regardless of the represented distance
from the discharging well, the drawdown stabilizes or levels off at
the same value of time.

Assuming, therefore, that the requirement of stabilized drawdown
has been met, an important feature of the logarithmic type curve
(fig. 27) should be recognized. Note that the curve is drawn only for
values of z greater than 0.01. Thus the matching of a logarithmic
plot of s versus 7 against the leaky-aquifer type curve is appropriate
only if the observed data and computed results can be shown to
yield values of z (which is directly related to r) that are greater than
0.01. Actually the critical value of z is about 0.03, as can be demon-
strated in the following manner.

In the tables of the Bessel functions (U.S. Department of Commerce,
1952) the following relation applies for small values of x:

K(z)=Eo(2) +Fy(x) logy (z).

The tables show that for values of z ranging from 0 to about 0.03
the values of Ey(z) and Fy(z) are 0.116 and —2.303 respectively.
Substituting these equivalents in the above relation yields

K,(x)=0.116—2.303 log,, (x),

which, by substitution from equation 37 and conversion to the natural
logarithm, becomes

K,(x)=0.116—log, (br/a).

If equation 35 is rewritten in terms of the difference in drawdown
between two points at radii 7, and », (where 7,>>7,) on the cone of
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depression, and the foregoing relation for Ky(z) substituted therein,
there follows the expression

a

e @ ( _ 9’:1)_( — er)
$1— 875 0.116—log, P 0.116—log, »
or
e @ T2
S8 27T log, 7‘1,

which is the familiar Thiem equilibrium formula previously presented
in the form of equation 1. The conclusion to be drawn is that in the
region z<0.03 a logarithmic plot of s versus r exhibits only the effects
of radial flow through the aquifer toward the discharging well; the
leakage effects are not significant enough to influence the shape of the
curve. Although the leaky-aquifer type curve could be extended
readily into this region of low z values, its curvature is insensitive to
leakage and is too slight to permit a matching that wonld be definitive
of the z value needed for computing the leakage coefficient.

The nature of the abbreviated relation for K,(z), presented in the
preceding discussion, suggests a simple means for analyzing the steady-
state drawdown data within the region £z<{0.03. Rewriting equation
35 in terms of this special relation for X,(z) produces

s=§§_—)T [0.116—log, (br/a)],

or, in the usual Survey units and the common logarithm,

br

<) (43)

T

Recognizing that s and r are the only variables in equation 43, ob-
viously a semilogarithmic plot of s versus log r produces a straight
line. If 7y is the intercept of this straight line at the zero-drawdown
axis, appropriate substitution in equation 43 yields

log,, 70116
a 2.303

or
b 1.12

= (43a)
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The analysis of steady-state test data for a leaky aquifer can thus
be summarized in the following three simple procedures:

1. Select for plotting only the drawdown data which are within
the region where drawdowns have levelled off.

2. Use equations 36, 37, and 42 with a logarithmic plot of s versus r,
matched to the leaky-aquifer type curve (fig. 27), only if the ob-
served data and resulting computations produce values of x greater
than 0.03.

3. Use equations 2, 4, and 43a with a-semilogarithmic plot of s versus
log r if the data and resulting computations produce values of z
less than 0.03.

The earliest observations of drawdown in each observation well,
when s is small, should conform to the Theis nonequilibrium type
curve for the infinite (nonleaky) aquifer if the rate of leakage from the
confining bed is comparatively small. The coeflicient of storage for
the artesian aquifer can be determined under these conditions from
the earliest observations of drawdown (Jacob, 1946, p. 204). The
computed coefficient of transmissibility should be checked by com-
paring the value obtained from matching the earliest data to the
nonequilibrium type curve with the value obtained by matching the
later data to the steady-state leaky-aquifer type curve. If consistency
of the T values is not obtained, then the leakage may be causing too
much deviation at the smaller values of ¢ to permit application of the
Theis nonequilibrium formula.

VARIABLE DISCHARGE WITHOUT VERTICAL LEAKAGE
By R. W. STALLMAN
CONTINUOUSLY VARYING DISCHARGE

The rate at which water is pumped from a well or well field com-
monly varies with time in response to seasonal changes in demand.
For instance, the pumping rate, as shown by records of daily or
monthly discharge, is often found to be varying continuously. Where
this element of variability is recognized in ground-water problems, the
analytical methods that are described in the preceding sections of this
report are not applicable without some modification or approximation.
Exact equations could perhaps be developed for the case of continu-
ously varying discharge, but the cost of analysis, in terms of time and
effort, would likely be prohibitive considering that a separate and
specific solution would be required for each problem. It is considered
more expedient, therefore, to utilize the existing analytical methods,
rendering them applicable to the field situation by introducing toler-
able approximations of the field conditions. As an example, con-
sider a situation where the pumping rate in a well (which may also
represent a well field) tapping an artesian aquifer varies continuously
with time in the manner indicated by the smooth curve shown in
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