U.S. Department of the Interior
U.S. Geological Survey

Techniques for Estimating Peak-Flow
Magnitude and Frequency Relations
for South Dakota Streams

By Steven K. Sando

Water-Resources Investigations Report 98-4055

Prepared in cooperation with the South Dakota Department of Transportation



U.S. DEPARTMENT OF THE INTERIOR
BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY
Thomas J. Casadevall, Acting Director

The use of firm, trade, and brand names in this report is for identification purposes
only and does not constitute endorsement by the U.S. Geological Survey.

United States Government Printing Office: 1998

For addtional information write to: Copies of this report can be purchased
from:

District Chief U.S. Geological Survey

U.S. Geological Survey Branch of Information Services

1608 Mt. View Rd. Box 25286

Rapid City, SD 57702 Denver, CO 80225-0046



CONTENTS

AADSITACT ...ttt ettt ettt et ettt s bt e bt e bt et e bt et e e bt e eh et e bt e eh b e et e e eh bt et e e bt e e bt e e bt e eat e e eb e e eabeeabeeebeeabeesateenbeesaeean 1
TITOAUCLION ..ttt ettt ettt et e s bt e eat e bt e e abe e bt esa b e et e e bt e e ab e e bt e sabeesbbeeabeeabeeeaseeabeesabeebeenaeean 1
PUIPOSE QN SCOPE ...ttt ettt at e st e e bt e e a e e bt e et e et e e s be e eabe e be e s bt ebeesat e e baesaaesabes 2
ACKNOWIEAZIMENES .c..eteiiiiiiieiieiite ettt ettt s bt et e bt st e bt e s at e e bt e ea bt eab e e e st e eabeesheeeabeebeesabeeabeesaseenbaesaaenabes 2
PIEVIOUS STUAIES ...ttt ettt et e s bt e e at e e b e e e st e e bt e sateeabeesbtesabe e bt esabeesbtesabeenbaesaneeabeenes 2
General description Of STUAY AIEA ........cc.ciiiiiiiiiiiiiieieie ettt 4
Basin and climatic CRATACIETISTICS. .. ..eettirtiirterie ettt ettt ettt e et e e sb e et e bt e e bt e bt e sabeesbtesabeesbaesaseeabeesabeenbeenaeean 5
Analysis of generalized SKEW COBTTICIENT .......eouiiiiiiiiiiiii ettt ettt st e b e saee s 5
Peak-flow magnitude and frequency relations for gaging StAIONS. .........coccevuiriiriiiriiiiiiieeee e 9
Peak-flow magnitude and frequency relations for ungaged sites on ungaged Streams ..............oceeerieninieneneenieniesenene 9
Development Of regression EQUALIONS. ........ccueouteueriieiertieeente ettt e st ettt et e st e et e ae st esaesaeessesaeesaeeanesseeanesseennesseens 9
Limitations on use of the regression EQUALIONS ...........cciiviiriiiiiiiiiieeieeee ettt 18
Weighted peak-flow magnitude and frequency relations for gaging Stations............cc.cecueeiieieriiiieneneene e 20
Peak-flow magnitude and frequency relations for ungaged sites near a gaging station on the same stream........................ 20
Examples of estimating peak-flow magnitudes for selected frequencies for ungaged sites and for gaging stations............ 21
Regression equations to compute peak-flow magnitudes for selected frequencies for ungaged
SItES ON UNZAZEA SITCAIILS ...euveetiiiuieetieeittette ettt et e stte et e sbteeateeabeesate et eesbe e s be e bt esbee e bt esbeesabeeaseeabeesaneenseenneens 21
Weighted peak-flow magnitudes for selected frequencies for gaging Stations..........coceevveereerieeesiieniienieeneenieeeeeae 22
Peak-flow magnitudes for selected frequencies for an ungaged site near a gaging station on the
SAIMNE SEICAIN ..e.uveeueeeeuieetteriteesttesuteettesuteeateesheeeabeeabeesabeeaseesateeabeenbeesabeessteeateeabaeeabeeabeesbteeabeeabaeeaseeabeesaneenbeenaeean 22
Peak-flow magnitudes for selected frequencies for an ungaged site between two gaging stations on
THE SAIME SIIAIML ... ettt ettt ettt sttt esb e st e s bt e eabeeab e e sabeeabeesb b e eabeeebeesabeenbeesateenbeesneesares 22
Data needs for improving regional peak-flow frequency analySes ............ccccooieiiiiiiiiiiiiiiiiicee e 23
SUIMIINIATY ..ttt ettt ettt ettt e e bt e ea et e bt e sab e e bt e bt e e bt e bt e sab e e st e sat e e bt e e s be et et sabeeabeesateemb e e bt e sabe e bt esateesbaesaneeabeesanesabeenns 24
RETEIEIICES CILEA. ... .eiueieiiieiieee ettt e b e ettt st e bt e s bt e e bt e sb e e eb et s ab e e bt e sateesbeesabeebeesabeeabeesabeeabeenseean 24
Supplemental INFOTMALION .......ciiuiiriieiiet ettt ettt et sa e bt e s at e eabe e s st e sateesbeesbtesat e e bt eenteeabeesasesabeeabeesaneeseens 27
PLATE
1. Map showing hydrologic subregions for which peak-flow regression equations were developed................... In pocket
ILLUSTRATIONS
1. Map showing locations of gaging stations and main physiographic divisions of South Dakota.........c...cccceeeeenennee. 3
2. Boxplots showing statistical distributions of peak-flow magnitudes for selected frequencies
calculated using three methods for estimating generalized skew coefficient..........cc.ccoeeeriiiiiiiiiininniiniincncee, 10
3. Map showing hydrologic subregions determined for the regional peak-flow frequency
ANAlysis fOr SOULh DAKOTA ......coiiiiiiiiiiiie ettt et et st e b e st e bt e st e bt e st e e beesnee s 13
4. Boxplots showing statistical distributions of contributing drainage area and main-channel
slope for gaging stations in subregions B, C, and D ..........cocccoiiiiiiiiiiiiiiieeteetee e 15
5. Map showing isolines of equal values of precipitation intensity index for
SOULN DAKOTA. ...ttt ettt sttt e sh et e b e b e st e e s bt e et e e bt e eabeesbt e s bt e bt esabeenbeesuteeabaesanesabee e 19

Contents ]l



TABLES

v

Selected basin and climatic characteristics used in the South Dakota regional peak-flow

TTEQUENICY ANALYSIS ..eevieiiieiieeieeit ettt ettt ettt ettt e e e bt e e bt e bt e s st e e bt e sateeabeesubeeabe e b eessbeeabeesateenbeesaseenbeesasennee 6
Summary statistics for results of methods for estimating generalized skew coefficients in South Dakota............... 8
Descriptions of hydrologic subregions determined for the regional peak-flow magnitude and

frequency analysis for SOUth DaKOTa ......cc.coviiiiiiiiiiiieieee ettt sttt et st e bt e sae e s b e saeesaee 12
Regional regression equations for South Dakota that relate peak flow magnitude for selected

recurrence intervals to selected basin and climatic CharaCteriStiCs ..........cocueverreererieniriieneneeeeeee e 16
Ranges of basin and climatic characteristics used to develop the regional regression equations.... 20
Selected basin and climatic characteristics and peak flows for selected recurrence intervals for

gaging stations used in the generalized skew coefficient and regression analyses .......c...ccecveeveerierneeneenieenieenieennne 29
Variance-covariance matrix for regression parameter estimates for each T-year regression

model for the seven hydroloZiC SUDTEZIONS. ....cc.uiiriiiriiiiiirieeie ettt ettt sttt st e st e st e saaesaneenne 44
Contents



Techniques for Estimating Peak-Flow Magnitude and
Frequency Relations for South Dakota Streams

By Steven K. Sando

ABSTRACT

A generalized skew coefficient analysis was
completed for South Dakota to test the validity of
using the generalized skew coefficient map in
Bulletin 17B of the 1982 United States Water
Resources Council, “Guidelines for Determining
Flood Flow Frequency.” Results of the analysis
indicate that the Bulletin 17B generalized skew
coefficient map generally provides adequate
generalized skew coefficients for estimating peak-
flow magnitudes and frequencies for South Dakota
gaging stations.

Peak-flow records through 1994 for 197
continuous- and partial-record streamflow-gaging
stations that had 10 or more years of unregulated
systematic record were used in a generalized least-
squares regression analysis that relates peak flows
for selected recurrence intervals to selected basin
characteristics. Peak-flow equations were
developed for recurrence intervals of 2, 5, 10, 25,
50, 100, and 500 years for seven hydrologic sub-
regions in South Dakota. The peak-flow equations
are applicable to natural-flow streams that have
drainage areas less than or equal to 1,000 square
miles. The standard error of estimate for the seven
hydrologic subregions ranges from 22 to
110 percent for the 100-year peak-flow equations.

Weighted peak flows for various frequen-
cies based on gaging-station data and the regional
regression equations are provided for each gaging
station. Examples are given for (1) determining
peak-flow magnitudes and frequencies for

ungaged sites on ungaged streams; (2) deter-
mining weighted peak-flow magnitudes and fre-
quencies for gaging stations; and (3) using the
drainage-area ratio method for determining peak-
flow magnitudes and frequencies for ungaged sites
near a gaging station on the same stream and
ungaged sites between two gaging stations on the
same stream.

INTRODUCTION

The magnitude and frequency of peak flows are
essential parameters for designing engineering struc-
tures (such as bridges, levees, and culverts), land-use
planning, establishing rates for flood insurance, and
developing emergency evacuation plans for flood-
prone areas. Accurate estimates of peak-flow magni-
tude for various frequencies (recurrence intervals) are
necessary for effective structural design and planning
purposes. Underestimates of peak-flow magnitudes
may result in disruption of service, costly maintenance,
and loss of life, while overestimates may result in
excessive construction costs. Design and planning
activities often require peak-flow magnitude and
frequency information at locations where no or inade-
quate peak-flow data have been collected. Therefore,
methods are needed to provide accurate estimates of
peak-flow magnitude for various recurrence intervals,
such as 2, 5, 10, 25, 50, 100, and 500 years, at ungaged
sites. The U.S. Geological Survey (USGS) conducted
a study in cooperation with the South Dakota
Department of Transportation to develop techniques
for estimating peak-flow magnitudes and frequencies
at ungaged sites.

Introduction 1



Peak-flow data collected at continuous-record
and crest-stage gages over a period of years are used to
estimate peak-flow magnitudes and frequencies at
gaged sites. Peak-flow frequencies at gaged sites com-
monly are determined by fitting a probability distribu-
tion function to the series of annual peak flows. All
Federal agencies and many State agencies and local
consultants use the log-Pearson Type III distribution
when determining peak-flow magnitude and frequency
relations for gaging stations and follow the procedures
described in Bulletin 17B, “Guidelines for Determin-
ing Flood Flow Frequency” (United States Water
Resources Council, 1982; hereinafter referred to as
Bulletin 17B). The procedures described in
Bulletin 17B were used to determine peak-flow
frequencies in this report.

The network of continuous-record and crest-
stage gages operated by the USGS in South Dakota
provide regional peak-flow information that can be
used to estimate peak-flow relations at ungaged sites.
Peak-flow frequencies at ungaged sites on ungaged
streams commonly are estimated from equations
developed using regression procedures that relate peak-
flow magnitudes for various frequencies at gaging sta-
tions to basin and climatic characteristics. Peak-flow
frequencies at ungaged sites on gaged streams can be
estimated using logarithm-proportional drainage-area
relations applied to nearby gaged sites.

Purpose and Scope

The purposes of this report are (1) to present the
results of an analysis of the validity of using the gener-
alized skew coefficient map from Bulletin 17B for
South Dakota; (2) to publish peak-flow magnitudes for
selected recurrence intervals from 2 to 500 years for
gaging stations with 10 or more years of generally
unregulated systematic record; (3) to present regres-
sion equations for estimating peak-flow magnitude and
frequency relations for ungaged sites on ungaged
unregulated streams that have drainage areas of
1,000 miZ (square miles) or less; (4) to present a proce-
dure for computing peak-flow magnitude and
frequency relations for ungaged sites near gaging
stations on gaged streams; and (5) to discuss data needs
for improving future regional peak-flow frequency
analyses in South Dakota.

The generalized skew coefficient and regression
analyses were based on data for 197 continuous- and
partial-record streamflow gaging stations that had 10 or

more years of generally unregulated systematic record.
Of these stations, 156 are in South Dakota, 6 are in
Towa, 15 are in Minnesota, 6 are in Montana, 5 are in
Nebraska, and 9 are in North Dakota. The locations of
the 197 gaging stations are shown in figure 1. Fitting
of the log-Pearson Type III distribution using the pro-
cedure described in Bulletin 17B was used to compute
peak-flow magnitude and frequency relations for the
197 gaging stations. The generalized least-squares
(GLS) regression technique (Tasker and Stedinger,
1989) was used to develop equations that can be used
to estimate peak-flow magnitude and frequency rela-
tions for ungaged sites and to compute weighted peak-
flow magnitude and frequency relations for the 197
stations. A drainage-area ratio method was developed
to estimate peak-flow magnitude and frequency rela-
tions for ungaged sites near gaging stations on gaged
streams.

The gaging-station data used in the regression
analyses generally reflect unregulated conditions and
do not reflect substantial influences from man’s activi-
ties such as impoundment or urbanization. Peak flows
at sites that are substantially influenced by impound-
ment can be estimated by (1) peak-flow magnitude and
frequency analysis on gaging-station data at the site of
interest that includes impoundment effects; or
(2) estimation of peak flows upstream from the
impoundment and application of routing techniques to
estimate peak flows at locations downstream from the
impoundment. Peak flows at sites that are substantially
influenced by urbanization can be estimated using
techniques presented in Sauer and others (1983).

Acknowledgments
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based. Also, the author appreciates the assistance of
the many Federal, State, and local agencies that finan-
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Previous Studies

McCabe and Crosby (1959) used all data avail-
able through 1955 and completed a study of the magni-
tude and frequency of peak flows in North Dakota and
South Dakota. Patterson (1966) used data through
1961 and Patterson and Gamble (1968) used data
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through 1963 to complete parts of a series of reports on
the magnitude and frequency of peak flows in the
United States. However, the report by Patterson and
Gamble (1968) contained little information on peak-
flow magnitudes and frequencies for small drainage
basins in South Dakota. Larimer (1970) included a
limited analysis of magnitude and frequency of peak
flows when he evaluated the streamflow-data program
for South Dakota, and concluded that a comprehensive
study of peak-flow magnitude and frequency in South
Dakota was needed. Becker (1974) used data available
through 1971 from 162 gaging stations in South Dakota
and adjacent states with drainage areas up to 9,000 mi®
to investigate peak-flow magnitude and frequency rela-
tions. Regression equations for estimating peak-flow
magnitude for various frequencies at ungaged sites
were developed for two regions in South Dakota (east-
ern region and western region, separated by the western
boundary of the James River Basin). Becker (1980)
used data available through about 1979 from 123 gag-
ing stations in South Dakota and adjacent states with
drainage areas up to about 150 mi to investigate peak-
flow magnitude and frequency relations. Becker’s
1980 report focused on smaller drainage basins and
developed regression equations applicable to the entire
State for estimating peak-flow magnitudes for selected
frequencies at ungaged sites. Benson and others (1985)
presented peak-flow magnitude and frequency for 111
gaged sites based on data available through 1983.
Hoffman and others (1986) presented peak-flow mag-
nitude and frequency for 185 gaged sites based on data
available through 1985. Burr and Korkow (1996) pre-
sented peak-flow magnitude and frequency for 250
gaged sites based on data available through 1994.

General Description of Study Area

The landscape of South Dakota is diverse, with
areas of flat prairies, extensive plains, rugged badlands,
and the scenic Black Hills. Land-surface elevations
range from 7,242 ft (feet) above sea level! at Harney
Peak in the Black Hills to about 1,000 ft near Big Stone
Lake in the northeast corner of the State. A prominent
geographic feature of South Dakota is the Missouri

'n this report, "sea level" refers to the National Geodetic Ver-
tical Datum of 1929 (NGVD of 1929)—a geodetic datum derived
from a general adjustment of the first-order level nets of both the
United States and Canada, formerly called Sea Level Datum of
1929.

River, which bisects the State. The Missouri River
drains the entire State, with the exception of a small
area in the northeast corner that drains into the
Minnesota River or the Red River of the North. There
are two major physiographic divisions in South
Dakota: the Great Plains and the Central Lowland
(fig. 1). The border between the two divisions is the
eastern boundary of the Coteau du Missouri. Part of the
Sand Hills of Nebraska extends into south-central
South Dakota, and the Black Hills are located in
southwest South Dakota.

The Great Plains physiographic division is char-
acterized by undulating uplands dissected by stream
valleys, sizable flood plains along the larger streams,
occasional bluffs and buttes, and areas of badlands
(U.S. Geological Survey, 1975). The topography of
the Great Plains results from the erosion of easily
erodible sedimentary rock. The Great Plains generally
isunglaciated, and has well-developed natural drainage
systems that form major streams typically flowing west
to east. The primary streams draining the Great Plains
include the Grand, Moreau, Cheyenne, Bad, and White
Rivers. Badlands are most prominent in the White
River Basin, but areas typically referred to as “breaks”
that have substantial relief commonly occur along or
near many of the larger stream channels in western
South Dakota. A notable feature within the Great
Plains is the Coteau du Missouri, which is the part of
the Great Plains that lies east of the Missouri River. It
is a hummocky area over which glacial stagnation
occurred.

The Central Lowland in eastern South Dakota is
an area profoundly influenced by the most recent glaci-
ation. Natural drainage systems in the Central Low-
land generally are poorly developed, and numerous
lakes and wetlands occur. Typically, major streams in
eastern South Dakota flow from north to south. Major
streams draining the Central Lowland include the
James, Vermillion, Big Sioux, and Little Minnesota
Rivers. The Central Lowland primarily consists of the
Minnesota River-Red River Lowland, the Coteau des
Prairies, the James River Lowland, the Lake Dakota
Plain, the James River Highlands, and the Southern
Plateaus (Flint, 1955). The low-lying areas of the
Minnesota River-Red River Lowland and the James
River Lowland are characterized by very flat slopes.
The Coteau des Prairies is a massive highland that
stands between the Minnesota-Red River Lowland and
the James River Lowland. It is drained by the Big
Sioux River.

4 Techniques for Estimating Peak-Flow Magnitude and Frequency Relations for South Dakota Streams



The Sand Hills of Nebraska extend into a small
part of south-central South Dakota. Surficial deposits
in the Sand Hills region of South Dakota are composed
primarily of alluvial terrace and wind-blown sand
deposits, all of Quaternary age. The soils in the area
have large infiltration capacities atypical of most of
South Dakota. The topography of the area primarily
consists of ridges and rolling hills formed by erosion of
the surface. The Little White and the Keya Paha Rivers
are the primary streams draining the Sand Hills region
of South Dakota.

The Black Hills are a dome-shaped easternmost
uplift of the Wyoming Rocky Mountains. The Black
Hills generally consist of metamorphosed and intensely
folded sedimentary rocks that rise several hundred feet
above the surrounding plains. The topography of the
Black Hills is characterized by sharp relief and steep
slopes. Stream infiltration to, and resurgent springs
discharging from, karstic limestone greatly affect base
flow of many of the streams draining the Black Hills.
Primary streams draining the Black Hills include
Spearfish, Whitewood, Elk, Boxelder, Rapid, Spring,
Battle, French, and Beaver Creeks, and the Fall River.

Precipitation and runoff rates in South Dakota
differ annually and with season and location. The
normal annual precipitation in South Dakota ranges
from about 14 in. in the northwest to about 24 in. in the
higher elevations of the Black Hills and in the southeast
(accessed on the Internet July 3, 1997, at http://
www.abs.sdstate.edu/ae/weather/weather.htm). About
70 percent of annual precipitation occurs during the
growing season (May through October) and local high-
intensity thunderstorms are common. Winter precipi-
tation is small and generally occurs as snow. The
average annual runoff ranges from about 0.2 in. in the
north-central and extreme southwest to about 2 in. in
parts of the Black Hills (Benson, 1986). A large per-
centage of runoff occurs as a result of snowmelt and
rainfall in the spring and early summer.

Peak flows in South Dakota result from both
rainfall and snowmelt. No study has been conducted
by the USGS to investigate the proportion or relative
magnitude of peak flows in South Dakota that occur as
a result of snowmelt versus rainfall. A cursory exami-
nation of annual peak flows for gaging stations that
were used in this regional peak-flow analysis indicated
that rainfall-only peaks account for about 65 percent of
Central Lowland annual peaks, 85 percent of Great
Plains annual peaks, 70 percent of Sand Hills annual
peaks, and 90 percent of Black Hills annual peaks. No

attempt to separate rainfall-only from snowmelt-
influenced annual peak flows was made for this study
because of the difficulty in distinguishing between the
two types of peaks.

BASIN AND CLIMATIC
CHARACTERISTICS

Selected basin and climatic characteristics were
used in the analysis of generalized skew coefficients
and in the development of regression equations for esti-
mating peak-flow magnitudes for various frequencies
for ungaged sites. Basin and climatic characteristics
used in these analyses were obtained from the USGS
National Water Data Storage and Retrieval System
(WATSTORE; Dempster, 1983). The characteristics
were chosen based on results from previous regional
peak-flow frequency studies and the availability of
existing data. Methods for determining basin and
climatic characteristics are discussed in more detail in
Benson (1962) and Benson and Carter (1973). Many of
the values of climatic characteristics included in this
study were determined using older publications of what
is now the National Weather Service. These data were
checked with more recent climatic data to determine
whether patterns in climatic variability were well rep-
resented by the older data. Although magnitudes of
climatic variables sometimes changed substantially
when the older publications were compared to recent
data, it was determined that the relative variability in
the spatial distributions of those variables remained
fairly similar. Therefore, the older climatic data were
determined to be appropriate for use in this study. The
basin and climatic characteristics included in the study
are presented in table 1.

ANALYSIS OF GENERALIZED SKEW
COEFFICIENT

The Bulletin 17B log-Pearson Type III method
requires calculation of a skew coefficient of the logs of
the peak flows for a given site. The skew coefficient
can be sensitive to extreme events and difficult to accu-
rately estimate at sites with relatively short periods of
record. To improve estimates of skew coefficients,
Bulletin 17B recommends weighting the station skew
with a generalized skew coefficient developed from
many long-term stations in an area. The generalized
skew coefficient for a site can be estimated using the

Analysis of Generalized Skew Coefficient 5



nationwide map of skew coefficient isolines (lines of
equal skew coefficients) presented in Bulletin 17B or
by using one of three methods described in

Bulletin 17B to estimate generalized skew coefficient
with data from at least 20 long-term stations located in
the area of interest. For the generalized skew coeffi-
cient analysis in South Dakota, 106 stations in and near
South Dakota that generally are well distributed and
with at least 25 years of record through water year 1994
were used.

The nationwide map of generalized skew coeffi-
cients presented in Bulletin 17B was developed in the
early 1970’ using data from 2,972 gaging stations in
the United States with at least 25 years of record. A
visual examination of the nationwide skew map
indicates that in the northern Great Plains there was a
relative paucity of data used to develop the map; only

Table 1.

about 20 of the 2,972 stations used to develop the map
were in South Dakota. The nationwide mean-squared
error of the Bulletin 17B generalized skew coefficient
map was reported to be about 0.302. However, using
data from the 106 stations used in the South Dakota
analysis of generalized skew coefficient, the mean-
squared error of the Bulletin 17B nationwide skew map
values relative to the station skews was calculated to be
0.484, which is considerably larger than the overall
mean-squared error originally calculated for the nation-
wide skew map.

There is substantial variability in skew coeffi-
cients in South Dakota as evidenced by the steep gradi-
ent in the skew coefficient isolines for South Dakota on
the nationwide map. The generalized skew coefficient
isolines generally intersect the State northwest to
southeast and range from +0.6 in the southwest part of

Selected basin and climatic characteristics used in the South Dakota regional peak-flow frequency analysis

Basin characteristic

Description

Drainage area (A)
Contributing drainage area (CA)

Slope (S)

Total drainage area, in square miles, including non-contributing areas.
Drainage area, in square miles, that contributes to surface runoff.

Main-channel slope, in feet per mile, measured at points 10 and 85 percent of

stream length upstream from gage.

Length

Elevation (E)

Stream length, in miles, measured along channel from gage to basin divide.

Mean basin elevation, in feet above mean sea level, measured from topographic

maps by transparent grid sampling method.

Percent storage

Area of lakes, ponds, and swamps in percent of contributing drainage area,

measured by the grid sampling method.

Percent forest

Forested area, in percent of contributing drainage area, measured by the grid

sampling method.

Soil-infiltration index (SII)

Soil-infiltration index, in inches; a relative measure of potential infiltration (soil-

water storage), from Natural Resources Conservation Service.

Gaging-station latitude
Gaging-station longitude
Mean annual precipitation

Precipitation intensity index (PII)

Latitude of stream-gaging station, in decimal degrees.
Longitude of stream-gaging station, in decimal degrees.
Mean annual precipitation, in inches, from U.S. Weather Bureau (1959a).

24-hour precipitation intensity, in inches, with a recurrence interval of 2 years

(estimated from U.S. Weather Bureau, 1961) minus 1.5.

March 15 snow-cover water equivalent of 2-year
recurrence interval

Mean minimum January temperature

Maximum water equivalent, in inches, of snow cover as of March 15 with a
recurrence interval of 2 years (estimated from U.S. Weather Bureau, 1964).

Mean minimum January temperature, in degrees Fahrenheit, from U.S. Weather

Bureau (1959a).

Mean annual lake evaporation

Mean annual lake evaporation, in inches, from U.S. Weather Bureau (1959b).

6 Techniques for Estimating Peak-Flow Magnitude and Frequency Relations for South Dakota Streams



the State to -0.4 in the northeast part of the State. The
orientation of the isolines generally corresponds to
large hydrologic and physiographic differences across
South Dakota. For example, the steep forested Black
Hills occur in the southwest part of the State. East and
north of the Black Hills, the unglaciated Great Plains,
with generally well-developed drainage systems,
extends to about the Missouri River. The glaciated
Missouri Coteau and Central Lowlands with poorly
developed natural drainage systems, flat slopes, and
numerous lakes and wetlands are east of the Missouri
River. The large variability in hydrology and physiog-
raphy across South Dakota probably contributes to the
relatively large variability in skew coefficients. The
small number of South Dakota gages used to develop
the nationwide skew coefficient map may not have
been adequate to define generalized skew coefficient in
South Dakota.

Bulletin 17B recommends the use of generalized
skew coefficients developed from detailed studies
using pooled information from nearby long-term
stations instead of generalized skew coefficients taken
from the nationwide map. Three methods for estimat-
ing generalized skew coefficients are described in
Bulletin 17B: (1) plotting station skew coefficients on
a map and drawing lines of equal values;

(2) developing regression equations that relate station
skew coefficients to selected basin and climatic charac-
teristics; and (3) averaging station skew coefficients
within a region (or subregions) of interest.

Sampling error, primarily due to differences in
record length, introduces a bias into skew coefficient
estimates. Tasker and Stedinger (1986) presented a bias
correction factor (1+6/n; where n = number of years of
record) to adjust for the effect of different record
lengths on skew estimates. This correction factor was
applied to all station skew coefficients prior to the
generalized skew analysis.

Station skews for 106 long-term gages used in
the South Dakota regional analysis were plotted near
the centroid of each respective drainage basin and the
resulting map was visually examined for spatial
patterns that could be used to draw isolines. Skew
coefficients tended to be higher for stations around the
Black Hills and in the Little White River Basin, and
lower for stations in the eastern part of the State. How-
ever, the patterns were not consistent; often there was
large variability in skew coefficients between stations
in arelatively small area. It was determined that devel-

opment of isolines would be very difficult and there-
fore this method was not further pursued.

Regression analysis was performed to determine
whether generalized skew coefficients could be accu-
rately estimated using selected basin and climatic char-
acteristics. Initially, station skew coefficients were
plotted versus individual basin and climatic character-
istics and a correlation analysis was performed to iden-
tify potential candidate variables. Eight basin and
climatic characteristics (elevation, percent forested
area, soil-infiltration index, gaging-station latitude,
gaging-station longitude, mean minimum January
temperature, maximum water equivalent of snow cover
as of March 15 with a recurrence interval of 2 years,
and mean annual lake evaporation) were significantly
(0=0.05) correlated with the station skew coefficient.
All-possible-subsets and stepwise-regression proce-
dures were then performed and the best one-variable up
to the best seven-variable models were selected based
on Mallow’s Cp (Helsel and Hirsch, 1992). From the
all-possible-subsets and stepwise-regression results,
the most influential explanatory variables were exam-
ined for final model selection. Finally, several regres-
sions were performed using the most influential
explanatory variables, and the best-fit model was
selected based on the PRESS statistic (Helsel and
Hirsch, 1992). The best-fit model is

G = 1.52[log SII]+ 1.04[log E]—4.52 (1)

where
G = station skew coefficient;
SII = soil-infiltration index; and
E = elevation.

The two explanatory variables in the best-fit model
(soil-infiltration index and elevation) showed a weak
(r-squared equal 0.20; mean-squared error equal 0.428)
but significant relation with the skew coefficient.

The relation between the soil-infiltration index
and the skew coefficient was positive and intuitively
reasonable. A large soil-infiltration index results in
greater infiltration and smaller runoff for many storm
events. Thus, basins with a larger soil-infiltration
index may have a larger number of annual peak flows
concentrated at the lower end of the distribution. How-
ever, very large or intense storm events will exceed the
soil-infiltration capacity and generate large runoff
events. These characteristics could yield a peak-flow
distribution with a positive skew.

The relation between elevation and skew coeffi-
cientis less obvious. Itis possible that elevation serves
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as a surrogate variable and represents the influence of
several physiographic and hydrologic variables.
Elevation generally is largest in the southwest part of
South Dakota and decreases moving east and north
across the State. This distribution generally corre-
sponds to variability in physiography in the State
moving from the Black Hills in the southwest, across
the unglaciated Great Plains to the glaciated Coteau du
Missouri and Central Lowland. The mean-squared
error for the best-fit regression equation of 0.428 is
relatively high for an estimating equation, but it is
slightly better than the mean-squared error of 0.484 of
the nationwide map for the 106 stations used in the
South Dakota generalized skew analysis.

For the third method of estimating generalized
skews, the State was divided into four subregions
generally based on the boundaries of the Central
Lowland, Great Plains, Sand Hills, and Black Hills
shown in figure 1, and station skews for gaging stations
within each subregion were averaged. Subregions
were selected based on regional boundary definitions
from previous studies, reasonably similar hydrology,
and an attempt to satisfy the minimum requirement of
20 gaging stations per subregion recommended in
Bulletin 17B. This minimum requirement was relaxed
for the Black Hills influenced and the Sand Hills
influenced subregions because hydrologic consider-
ations warranted defining these two areas as separate
subregions.

Comparison of results of different methods for
estimating generalized skew are presented in table 2.
Examination of the mean-squared errors indicates the
regression and subregion-averaging methods provided

slightly better fits than the Bulletin 17B nationwide
map for some regions, and slightly worse fits for oth-
ers. None of the generalized skew methods was consis-
tently and clearly better than the others.

To determine how the different skew methods
might affect peak-flow estimates, peak-flow magni-
tudes for selected frequencies were calculated for
various groupings of stations used in the regional
regression analyses using generalized skews deter-
mined from the Bulletin 17B nationwide map and by
using the regression and subregion averaging methods
(fig. 2). The results of this comparison indicated that
differences between the peak-flow estimates resulting
from the three different generalized skew methods
tended to be small; generally, mean differences
between the peak-flow estimates using the three
methods were less than 10 percent. The Bulletin 17B
nationwide map generally resulted in more positive
skew estimates, and therefore, slightly larger peak-flow
estimates for larger recurrence intervals. Thus, peak-
flow estimates using the generalized skew from the
Bulletin 17B nationwide map may, on average, provide
more conservative peak-flow estimates for engineering
design applications. Based on ease of use, generally
small differences in resulting peak-flow estimates,
appropriateness for design applications, and promotion
of consistency in peak-flow estimates made by
different agencies and across state boundaries, the
Bulletin 17B national generalized skew map is con-
sidered to provide the best generalized skew estimates
for sites in South Dakota.

Table 2. Summary statistics for results of methods for estimating generalized skew coefficients in South Dakota

Mean-
Mean- squared error
Mean-
squarederror Mean skew of
Mean skew squarederror Mean skew . . .
R R of regression  estimate subregion
. . Number Mean estimate of estimate . R .
Gaging station - - . - equation using averaging
of station using Bulletin 17B using . ; .
group . . d predicted subregion predicted
stations skew Bulletin 177B  map value regression -
. X value averaging value
map relative to equation . .
. relative to method relative to
station skew . .
station skew station
skew
All stations 106 -0.283 -0.059 0.484 -0.288 0.419 -0.283 0.403
Central Lowlands 48 -0.422 -0.330 0.290 -0.443 0.311 -0.422 0.289
Great Plains 37 -0.496 0.088 0.271 -0.381 0.326 -0.496 0.293
Sand Hills influenced 7 0.301 0.510 0.132 -0.112 0.121 0.301 0.113
Black Hills influenced 14 0.461 0.194 1.360 0.405 1.178 0.461 1.342
8 Techniques for Estimating Peak-Flow Magnitude and Frequency Relations for South Dakota Streams



PEAK-FLOW MAGNITUDE AND
FREQUENCY RELATIONS FOR
GAGING STATIONS

Peak-flow magnitudes and frequencies for 197
gaging stations on streams that have drainage areas less
than or equal to 1,000 mi? and with periods of unregu-
lated systematic record of at least 10 years were calcu-
lated using Bulletin 17B procedures and are listed in
table 6 in the Supplemental Information section at the
end of this report. The peak-flow magnitudes and
frequencies presented in table 6 are identical to those
presented in Burr and Korkow (1996) except for the
following: (1) Gaging station 06402000, Fall River at
Hot Springs, SD, had part of its systematic record influ-
enced by regulation. For this study, the earlier, unreg-
ulated part of the systematic record for that station was
used, whereas Burr and Korkow (1996) reported peak-
flow magnitudes and frequencies for the later, regu-
lated part of the systematic record. (2) Gaging station
06453255, Choteau Creek near Avon, SD, had the 1984
peak annual flow revised in the USGS peak flow data
base after publication of Burr and Korkow (1996). For
this study, peak flow magnitudes and frequencies for
station 06453255 are based on the systematic record
that incorporates the revised 1984 peak. (3) Gaging
station 06354860, Spring Creek near Herreid, SD, had
the 1987 peak annual flow added to the USGS peak
flow data base after publication of Burr and Korkow
(1996). For this study, peak flow magnitudes and
frequencies for station 06354860 are based on the
systematic that incorporates the 1987 peak.

PEAK-FLOW MAGNITUDE AND
FREQUENCY RELATIONS FOR
UNGAGED SITES ON UNGAGED
STREAMS

The procedure for determining peak-flow
frequencies at an ungaged site depends on whether the
site is an ungaged site on an ungaged stream or is
located near a gaging station on the same stream. For
ungaged sites on ungaged streams, the regional regres-
sion equations developed during this study that relate
peak flow for selected recurrence intervals to basin and
climatic characteristics should be used. For an
ungaged site near a gaging station on the same stream,
adrainage-area ratio method should be used to estimate
the T-year peak flow (where T indicates the selected
recurrence interval). The procedure for estimating
T-year peak flows for ungaged sites near a gaging
station on the same stream is described in the section of

this report Peak-Flow Magnitude and Frequency
Relations for Ungaged Sites near a Gaging Station on
the Same Stream.

Development of Regression Equations

Equations that relate peak-flow values for
selected recurrence intervals to basin characteristics
were developed using a generalized least-squares
(GLS) regression procedure (Tasker and Stedinger,
1989) instead of using the more conventional ordinary
least-squares (OLS) regression procedure. Two
assumptions of OLS regression that commonly are vio-
lated in regional regression analyses are that annual
peak flows have constant variance and are independent
from site to site. The constant variance assumption
typically is violated because the variance is somewhat
dependent on the length and timing of the systematic
record, which often varies between stations. The inde-
pendence assumption commonly is violated due to
cross correlation between concurrent peak flows for
different stations. The GLS regression procedure takes
into consideration the time-sampling error in the peak-
flow series and the cross correlation between sites, and
thus overcomes the violation of assumptions that is
inherent when applying OLS regression to regional
streamflow studies. The GLS regression procedure
also provides better estimates of the predictive
accuracy of peak-flow values that are computed by the
regression equations and almost unbiased estimates of
the variance of the underlying regression model error
(Stedinger and Tasker, 1985).

The basic regression model using the GLS
procedure can be represented by the following linear
equation:

Y=xB+u (2)
where
Y = (nx 1) vector of T-year peak-flow events
(dependent variable);

X = (n x p) matrix of basin and climatic charac-
teristics (explanatory variables);
B = (p x 1) vector to be estimated (regression
coefficients); and
u = (n x 1) random vector (errors).
The best linear unbiased estimator (b) of the parameter

vector B for the T-year event (Stedinger and Tasker,
1985) is

b= AT AT 3)

where
A = the unknown covariance (weighting) matrix.

Peak-Flow Magnitude and Frequency Relations for Ungaged Sites on Ungaged Streams 9
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Figure 2. Statistical distributions of peak-flow magnitudes for selected frequencies calculated using three methods for
estimating generalized skew coefficient.
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Further details on the GLS procedure and the
methods used to determine the unknown matrix are
discussed in Stedinger and Tasker (1985) and in Tasker
and Stedinger (1989). The computer program
GLSNET (G.D. Tasker, written commun., 1997; based
on Tasker and Stedinger, 1989) was used to develop the
T-year peak-flow regional regression equations for
South Dakota.

Both dependent and explanatory variables were
transformed to base-10 logarithms prior to all analyses
to linearize the relation between dependent and explan-
atory variables and to normalize the distributions of
residual errors. An iterative process was used to define
subregional boundaries and select explanatory vari-
ables for the final GLS regression models. Initially,
four subregions corresponding to those used for the
generalized skew analysis were selected. Candidate
variables for inclusion in the GLS regression models
for these subregions were determined based on: plots
of T-year peak flows versus basin and climatic charac-
teristics; correlations of T-year peak flows with basin
and climatic characteristics; all-possible-subsets OLS
regressions of T-year peak flows as dependent vari-
ables versus basin and climatic characteristics as
explanatory variables; and individual OLS regressions
performed using the most influential explanatory vari-
ables to select a best-fit OLS regression model. Selec-
tion of the best-fit OLS regression models was based
on (1) minimizing Mallow’s Cp and the PRESS statis-
tic (Helsel and Hirsch, 1992); and (2) passing of diag-
nostic checks to test for outliers, high-influence values,
and multicollinearity between explanatory variables.
The best-fit OLS regression model sets were then run

using GLS regression. Residual errors of the GLS
regressions were examined for spatial variability to
evaluate whether subregional boundaries had been
appropriately defined. Analysis of covariance
(ANCOVA) was also performed to test for significant
differences in the intercepts and explanatory variable
coefficients between subregions. If the spatial variabil-
ity in the residual errors and/or the ANCOVA indicated
that subregional boundaries were inappropriately
defined, the subregional boundaries were redefined to
more appropriately fit the data; the OLS regression/
GLS regression sequence was repeated until no further
improvements in the GLS regression models could be
made. Final GLS regression models also were selected
based on (1) minimizing the model and sampling
errors; (2) minimizing PRESS/n, an estimate of the
mean prediction error sum of squares that indicates
model performance when estimating peak-flow fre-
quencies for ungaged sites (Gilroy and Tasker, 1990);
(3) hydrologic reasonableness of the selected explana-
tory variables and the signs and magnitudes of their
coefficients; and (4) physiographic and hydrologic
reasonableness of the subregional boundary defini-
tions. After multiple iterations of redefining sub-
regional boundaries, performing the OLS/GLS regres-
sion sequence, and evaluating the residual errors, seven
hydrologic subregions in South Dakota were defined
(table 3 and fig. 3). A large-scale map (pl. 1) showing
subregional boundaries, and locations of towns, major
roads, county boundaries, and major streams is pre-
sented at the end of this report to aid in properly deter-
mining the subregion associated with a given basin.

Table 3. Descriptions of hydrologic subregions determined for the regional peak-flow magnitude and frequency analysis for

South Dakota

Subregion Description

A Minnesota-Red River Lowland, Coteau des Prairies, and eastern part of the Southern Plateaus physical divisions of
Flint (1955).

B Lake Dakota Plain, James River Lowland and Highlands, and Coteau du Missouri physical divisions of Flint (1955);
part of the Coteau du Missouri in central South Dakota that has topography typical of Great Plains “breaks” sites
was excluded from this subregion.

C Great Plains physiographic division of Fenneman (1946), excluding the Sand Hills influenced area in south-central
South Dakota, and areas with topography typical of “breaks” sites, primarily in the Cheyenne, Bad, and White
River basins.

D Includes areas in the Great Plains physiographic division of Fenneman (1946) with topography typical of “breaks”
sites.

Generally corresponds to the Sand Hills physical division of Flint (1955).
F Generally corresponds to the northeast exterior part of the Black Hills physical division of Flint (1955).

Generally corresponds to the southwest interior part of the Black Hills physical division of Flint (1955).

12 Techniques for Estimating Peak-Flow Magnitude and Frequency Relations for South Dakota Streams
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Subregion D is interspersed throughout
subregion C. In developing the regression equations, it
quickly became apparent that there were several sites
located throughout the Great Plains of western South
Dakota that yielded exceptionally large residuals when
grouped with other sites in the Great Plains division.
Examination of a shaded relief map revealed that these
sites generally were located in areas of sharp relief, typ-
ically referred to as “breaks,” and generally had larger
main-channel slopes than most of the Great Plains sites
and sites in subregion B (fig. 4). Therefore, a separate
subregion (D) was developed primarily based on iden-
tifying the sharp relief areas in the Great Plains that
were apparent on a shaded relief map. However, the
distinction between subregions C and D is not discrete,
as evidenced by the overlap in the statistical distribu-
tions of slopes (fig. 4). Some areas defined within sub-
region C appear somewhat similar topographically to
areas of subregion D, especially in the upstream most
part of the Cheyenne River Basin in Custer and Fall
River Counties, and in the downstream part of the
White River Basin east of the Little White River chan-
nel and south of the White River channel. Some of the
sites in these areas appear to drain topography with
moderate to fairly high relief, and yet they did not
exhibit the same peak-flow frequency characteristics as
the sites identified in subregion D. This may be due to
local geologic influences or unrepresentative periods of
record at these sites. The fact that the gaging station
network is not very dense in the Bad and White River
Basins also made it difficult to confidently define the
boundary between subregions C and D in some areas.
When estimating peak-flow frequencies in subregions
C and D, users of the regression equations should pay
particular attention to specific characteristics of the
ungaged site relative to the characteristics for the gag-
ing stations used to develop the regression equations
for subregions C and D. Although the ranges in main-
channel slopes for gaging stations in subregions C and
D overlap (fig. 4), sites with main-channel slopes
greater than about 60 ft/mi (feet per mile) generally are
much more commonly found in subregion D than in
subregion C. Conversely, sites with main-channel
slopes less than about 60 ft/mi are much more com-
monly found in subregion C than in subregion D. Con-
tributing drainage areas for gaging stations in
subregion D tend to be small, with 75 percent of the
stations having drainage areas less than 15 mi’ (fig. 4).
Although the largest contributing drainage areas for
stations in subregion D exceed 100 mi’, users should

use extreme caution when applying the equations for
subregion D to contributing drainage areas greater than
15 mi? because unusually large peak-flow estimates
will result. Users should carefully examine the topo-
graphic characteristics of a given ungaged site, and the
basin characteristics and peak-flow frequency relations
for nearby or topographically similar gaging stations
when selecting appropriate regression equations for a
specific ungaged location in subregion C or D.

Regression equations for recurrence intervals of
2,5,10, 25, 50, 100, and 500 years were developed for
hydrologic subregions A through G (table 4). The
regional regression equations and the associated stan-
dard errors of estimate, standard errors of prediction,
and equivalent years of record for the equations are
listed in table 4. The standard error of estimate is an
estimate of the square root of the mean-squared error in
the GLS regression model that cannot be changed by
collecting additional data. A procedure described by
Hardison (1971) was used to convert the standard error
of estimate to percent. The standard errors of estimate
of the regression equations are a measure of the fit of
the observed data to the regression model with the
effects of time-sampling error in the observed values
removed. They do not reflect the actual prediction
errors made when using the models to predict T-year
peak flows at ungaged sites. One must include the
effect of estimating the regression coefficients from
sample data (sampling mean-squared error) in order to
estimate the standard error of a prediction. The average
standard error of prediction is the square root of the
sum of the average sampling error variance and the
average model error variance. It is a measure of the
average accuracy with which the regression model can
estimate the T-year peak flow at an ungaged site.

The average equivalent years of record indicates
the average number of years of streamflow record that
provides an estimate equal in accuracy to the average
standard error of prediction. The average standard
error of prediction and associated average equivalent
years of record reflect the prediction capabilities of the
regression equations averaged for all of the sites used
to develop the equations. The standard error of predic-
tion for a specific site may vary considerably from the
average standard error of prediction based on the basin
characteristics of the specific site relative to the overall
distribution of basin characteristics for all sites used to
develop the equations. The variance-covariance matrix
for the regression parameter estimates can be used to
estimate the standard error of prediction, prediction
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3,000

2,000 —

1,000
500

200
100
50

20
10

0.5

0.2
0.1
0.05

CONTRIBUTING DRAINAGE AREA, IN SQUARE MILES
o

0.02
0.01

1,000
700

500
400

300
200

100
70

50
40

30
20

MAIN-CHANNEL SLOPE, IN FEET PER MILE

NN W hol N O

Figure 4

I I
48 1
= 43 - .
17 —
I I I I ]
C [ [ I ]
= 17 7
- 48 E
- 43 ]
i 47  Number of gaging stations 5
F Maximum ]
C 75th percentile ]
L 50th percentile .
o1 25th percentile N
C Minimum ]
[ I I I ]
Subregion Subregion Subregion
B C D

. Statistical distributions of contributing drainage area and main-channel slope for gaging stations in subregions B,
C, and D.

Peak-Flow Magnitude and Frequency Relations for Ungaged Sites on Ungaged Streams

15



Table 4. Regional regression equations for South Dakota that relate peak flow magnitude for selected recurrence intervals to
selected basin and climatic characteristics

[CA, contributing drainage area, in square miles; S, main-channel slope, in feet per mile; PII, precipitation intensity index]

Number of Standard Average Average
Recurrence N standard N
. . stations error of equivalent
interval Equation . . error of
used in estimate - years of record
(years) analysis (percent) prediction (years)
y P (percent) y
Subregion A
2 0 = 309 CA9d13 ppo-14 55 55 59 45
5 0 = 85.5 CA® pyp545 55 50 54 6.1
10 Q = 137 cA%310 ppp512 55 50 54 7.8
25 0 = 218 cA%S13 py*80 55 51 56 9.8
50 0 = 287 cA%S!7 pypt62 55 53 58 11.0
100 0 = 362 cA%32! prptAT 55 55 61 11.9
500 0 = 553 cA%3! ppt2? 55 62 69 13.0
Subregion B
2 = 18.6 CA04? pyt10 43 60 67 5.4
5 = 51.6 CA0>08 py0-835 43 57 64 7.1
10 = 86.8 CA040 pp0764 43 59 67 8.7
25 Q = 148 cA%384 py0730 43 62 72 10.6
50 0 = 206 CcA%006 pr0.728 43 65 76 11.6
100 0 = 275 cA%6% py0.742 43 69 81 12.4
500 0 = 480 cA%661 pyO81l 43 78 93 13.6
Subregion C
2 = 25.0 CA%>% 48 104 108 1.8
5 0 = 72.5 CA®S78 48 65 67 438
10 = 125 CAY9S7 48 55 58 8.3
25 0 = 207 CAYS73 46 50 53 12.0
50 0 = 286 CA%S70 46 50 53 14.9
100 = 379 CA0566 46 51 55 16.5
500 0 = 664 CAY0 46 61 65 16.6
Subregion D
2 = 78.5 CA®37 17 98 109 2.3
5 Q = 230 CA%3 17 54 61 7.4
10 Q = 395 cA%31 17 37 44 17.9
25 0 = 676 CA%® 17 26 34 39.1
50 0 = 944 CAY0%7 17 22 33 525
100 = 1,270 cA0-663 17 22 34 59.2
500 0 = 2,300 cA%73? 17 27 41 575
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Table 4. Regional regression equations for South Dakota that relate peak flow magnitude for selected recurrence intervals to
selected basin and climatic characteristics—Continued

[CA, contributing drainage area, in square miles; S, main-channel slope, in feet per mile; PII, precipitation intensity index]

Number of Standard Average Average
Recurrence N standard .
. . stations error of equivalent
interval Equation . . error of
used in estimate - years of record
(years) analysis (percent) prediction (years)
y P (percent) y
Subregion E
2 0 = 12.1 CA%» 10 38 44 43
5 0 = 18.9 ca%oll 10 23 28 16.0
10 Q0 = 22.6 CAY03 10 20 26 27.0
25 0 = 27.0 CA®702 10 23 30 30.2
50 0 = 303 CA®737 10 28 36 274
100 0 = 33.6 cA%7® 10 34 42 242
500 Q = 41.4 cA%340 10 49 60 18.5
Subregion F
2 0 = 0.937 CALO76 50447 17 93 107 2.6
5 0 = 0.591 cA%779 §0-745 17 71 83 6.0
10 0 = 0471 cAD832 50907 17 61 73 10.5
25 0 = 0.406 CAQ888 g1.06 17 53 66 18.4
50 0 = 0.381 CA%925 gl16 17 50 64 24.6
100 0 = 0.352 CA09%0 g1.25 17 49 64 294
500 0 = 0243 CAMO* g147 17 58 78 31.2
Subregion G
2 Q = 3.46 cA%60 7 41 51 3.9
5 0 = 7.70 CA®6 7 58 71 3.2
10 = 11.3 CcAY%073 7 70 87 3.2
25 = 16.5 CA®704 7 86 108 33
50 = 21.0 cA?73! 7 98 126 33
100 = 25.8 CA®7? 7 110 144 34
500 Q = 38.5 CAO826 7 141 193 35
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intervals, and equivalent years of record for a specific
ungaged site (Hodge and Tasker, 1995). The variance-
covariance matrix for the regression parameters of the
equations in table 4 are presented in table 7 in the
Supplemental Information section. A computer pro-
gram that calculates the predicted values for each
quantile, the standard error of prediction, prediction
intervals, and equivalent years of record for a specific
ungaged site is available upon request from the USGS
in Rapid City, South Dakota.

For subregions A and B, the explanatory vari-
ables are contributing drainage area and precipitation
intensity index, which is defined as the 2-year, 24-hour
precipitation intensity (U.S. Weather Bureau, 1961), in
inches, minus 1.5. A map showing isolines for the pre-
cipitation intensity index is presented in figure 5. The
regression equations were developed using precipita-
tion intensity index values from figure 5, and therefore,
only values from figure 5 should be used for input to
the regression equations. More recently developed
local precipitation intensity data would not be
appropriate for use in the regression equations.

For subregions C, D, E, and G, contributing
drainage area was the only significant explanatory
variable in the regression equations. For subregion F,
contributing drainage area and main-channel slope
were the explanatory variables.

Standard errors of estimate for subregion G
tended to be much higher than the other subregions,
especially for recurrence intervals greater than
25 years. Generally, peak flows in the Black Hills are
highly variable and difficult to regionalize. The delin-
eation of subregions F and G was based on the general
observation that peaks in the interior part of the Black
Hills generally were not as large or variable as those in
the exterior part where high-intensity spring and sum-
mer storms are more common. The large standard
errors of estimate in subregion G, which are in part due
to the small number of sites (7), indicate that variation
in peak flows throughout the Black Hills is too com-
plex to be effectively described by the delineation of
two subregions. Other definitions of subregional
boundaries in the Black Hills were investigated but did
not improve model results. Also, application of design
probability theory (Riggs, 1968) was investigated as an
alternative approach for regionalizing peak-flow mag-
nitudes and frequencies in the Black Hills interior area,
but the large variability in peak-flow characteristics
also yielded substantial uncertainties in the results of
that approach. Users of the regression equations for

subregion G should be aware of the large standard
errors of estimate for larger recurrence interval
equations and of the fact that these equations were
developed using data from only seven gaging stations.
Accordingly, peak-flow magnitude and frequency data
from nearby gaging stations should be examined and
used as a guide to determine whether the use of regres-
sion equations for subregion G is appropriate.

Estimation of peak-flow magnitudes and
frequencies for streams draining the Black Hills is fur-
ther complicated by the fact that some of those streams
cross outcrops of fractured limestone bedrock. Large
losses in streamflow can occur where streams cross
these outcrops. Caution should be used in applying the
regression equations for subregions F and G to
ungaged locations that are immediately downstream
from limestone bedrock outcrops. This is especially
true for estimates of peak flows with smaller recurrence
intervals.

The regression equations developed for sub-
regions A through G may be used to determine peak
flows for ungaged sites on ungaged streams. Examples
of the use of the regional regression equations to com-
pute peak-flow values for ungaged sites on ungaged
streams are given in the section Examples of Estimat-
ing Peak-Flow Magnitudes for Selected Frequencies
for Ungaged Sites and for Gaging Stations.

Limitations on Use of the Regression
Equations

The following limitations should be considered
when using the regression equations to compute peak-
flow frequencies for South Dakota streams: (1) The
equations apply to streams that are located in rural
watersheds and should not be applied to watersheds
substantially affected by urbanization (peak flows at
sites substantially affected by urbanization can be esti-
mated using techniques presented in Sauer and others,
1983); (2) the equations should not be used where
dams, flood-detention structures, and other manmade
works exist that significantly affect the annual peak
flows; and (3) the equations generally should be used
only for streams that have drainage areas of less than or
equal to 1,000 mi? and for streams that have drainage
areas and basin and climatic characteristics that are
within the range of characteristics used to develop the
regression equations. The ranges of the characteristics
for the gaging stations used to develop the regression
equations are given in table 5. Although gaging
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stations with contributing drainage areas up to 137 mi®
were used to develop equations for subregion D, much
caution should be used when applying these equations
to bas%ns with contributing drainage areas greater than
15 mi~.

Table 5. Ranges of basin and climatic characteristics used
to develop the regional regression equations

[--, not applicable]

Contributing Precipitation = Main-channel

Subregion drainage a_rea in_tensity slope )
(square miles) index (feet per mile)
(cA) (P (s
A 0.14 - 983 0.79 - 1.30 -
B 0.22 - 670 0.60-1.21 -
C 0.06 - 904 - -
D 0.11 - 137 - -
E 10.0 - 760 - -
F 0.63 - 920 - 29.6 - 460
G 3.81-105 - -

WEIGHTED PEAK-FLOW MAGNITUDE
AND FREQUENCY RELATIONS FOR
GAGING STATIONS

A weighting procedure can be used to combine
peak-flow magnitude and frequency information from
the regional regression equations with magnitude and
frequency information from the systematic record for
gaging stations. Weighted peak-flow magnitudes for
various frequencies were calculated for the 197 gaging
stations used in the regional analysis using the follow-
ing equation developed from principles discussed in
Bulletin 17B (G.D. Tasker, written commun., 1997):

Oy = ”QT;:ZZ Qrz @)
where
O7w = weighted peak flow, in cubic feet per second,
for recurrence interval of T years;
n = number of years of station data used to com-
pute Ors;
QOrg = station peak flow, in cubic feet per second,
for recurrence interval of T years;
en = equivalent years of record for Qr; and
O7r = peak flow, in cubic feet per second, for
recurrence interval of T years from regional

regression equation (as discussed in the
section Development of Regression
Equations) that relates peak flow to basin
characteristics.

The equivalent years of record, en, is a measure
of the accuracy of prediction in terms of the number of
years of record that is required for each gaging station
to achieve results of equal accuracy to that of the
regional regression equation. A further explanation on
how the equivalent years of record is calculated is
given by Hardison (1971). Weighted peak-flow mag-
nitudes and frequencies for the 197 gaging stations
used in the regional analysis are included in table 6.
The weighted peak-flow magnitudes generally should
provide better estimates than the station peak-flow
magnitudes because they take into account additional
regional information developed from the regional
analysis and reduce the time-sampling error associated
with short periods of record.

PEAK-FLOW MAGNITUDE AND
FREQUENCY RELATIONS FOR
UNGAGED SITES NEAR A GAGING
STATION ON THE SAME STREAM

The following equation can be used to determine
T-year peak-flow values for an ungaged site located
near a gaging station on the same stream. Generally,
this equation should be used when the contributing
drainage area for the ungaged site is from 75 to 150 per-
cent of the contributing drainage area for the gaged site
(otherwise, the regional regression equations discussed
earlier in this report should be used):

QT(u) = QTW(g)(CAu/CAg)X 5)

where
QT(M )= peak flow, in cubic feet per second, for the
ungaged site for a recurrence interval of
T years;

Orwy(e) = Weighted peak flow, in cubic feet per second,
for the gaging station for a recurrence
interval of T years;

CA,, = contributing drainage area, in square miles,
for the ungaged site;
CA, = contributing drainage area, in square miles,
for the gaging station;
x = mean exponent for the appropriate hydro-
logic region; for subregion A, the mean
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exponent is 0.529; B, 0.615; C, 0.569; D,
0.545; E, 0.691; F, 0.654; and G, 0.689.

The peak flow, Q7). is the weighted peak-
flow value in table 6 that was determined using proce-
dures discussed in the section Weighted Peak-Flow
Magnitude and Frequency Relations for Gaging Sta-
tions. The mean exponent, x, was determined by
regressing the dependent variable (logarithm of T-year
peak flow) on the independent variable (logarithm of
contributing drainage area) for 2-, 5-, 10-, 25-, 50-,
100-, and 500-year recurrence intervals. The mean
exponent for the seven recurrence intervals was then
computed for each hydrologic subregion. Values of the
mean exponent (x) for each subregion are presented
above.

EXAMPLES OF ESTIMATING PEAK-FLOW
MAGNITUDES FOR SELECTED FRE-
QUENCIES FOR UNGAGED SITES AND
FOR GAGING STATIONS

Examples are presented for estimating peak-flow
magnitudes for selected frequencies for ungaged sites
and for gaging stations. The examples presented
include (1) using the regional regression equations for
ungaged sites on ungaged streams; (2) computing
weighted peak-flow magnitudes for gaging stations;
(3) computing peak-flow magnitudes for an ungaged
site near a gaging station on the same stream; and
(4) computing peak-flow magnitudes for an ungaged
site between two gaging stations on the same stream.

Regression Equations to Compute
Peak-Flow Magnitudes for Selected
Frequencies for Ungaged Sites on
Ungaged Streams

Depending on the location of the ungaged site
and its relation to the hydrologic subregion boundaries,
one of two procedures can be used to compute peak-
flow values. Procedure 1 should be used when the
stream drainage area is within a single subregion.
Procedure 2 should be used when the stream drainage
area is part of more than one subregion.

Use procedure 1 to determine the 100-year peak
flow for an ungaged site on Mosquito Creek near
Marty, SD. The site is located in subregion B (fig. 3).

The basin characteristics that were determined from a
USGS 7.5-minute topographic map and figure 5 are

CA = 9.2 mi2, and
PII = 0.98 (fig. 5).

The indicated peak flow for a recurrence interval of
100 years, based on the appropriate equation from
table 4, is

Q00 = 275(9.2)0625(0.98)0742 = 1, 080 ft3/s.

Procedure 2 is similar to procedure 1 except
T-year regional regression equations would be solved
for each of the associated subregions and the results
would be averaged or apportioned according to the
fraction of the contributing drainage area that is in each
subregion. Use procedure 2 to determine the 100-year
peak flow for an ungaged site on Willow Creek at
Highway 34 about 7 mi west of Pierre, S. Dak. The
site is located partly in subregion C and partly in
subregion D (fig. 3). The basin characteristics that
were determined from a USGS 7.5-minute topographic
map are

CA = 86.5 mi?,
Contributing drainage area in subregion
C = 66.9 mi%, and
Contributing drainage area in subregion
D = 19.6 mi°.
The total contributing drainage area is used to calculate
peak flow for a recurrence interval of 100 years using
the 100-year regression equations for both subregion C
and D. The results of those calculations are then
averaged by weighting according to the proportion of
the drainage area in each subregion.

The indicated peak flow for a recurrence interval

of 100 years for subregion C is

Q100 = 379(86.5)0.566 = 4,730 ft3/s.

The indicated peak flow for a recurrence interval of
100 years for subregion D is

Q100 = 1,270(86.5)0663 = 24,400 ft3/s.

The results of the two equations are then averaged
according to the proportion of the drainage area in each
subregion:

_ 66.9 19.6) _ )
Qo = 4, 730(86.5)+24, 400(86_5) =9, 190 ft3/s.
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Weighted Peak-Flow Magnitudes
for Selected Frequencies for
Gaging Stations

The procedure used to determine the weighted
peak flow (eq. 4) for the 100-year recurrence interval
for station 06477400, Firesteel Creek tributary near
Wessington Springs, SD (table 6, site 144), is shown in
the following example.

Station 06477400:
n =12 years,
Ors =92 ft¥/s,
CA = 0.22 mi?, and
PII =0.91 (from fig. 5).

The gaging station is located in subregion B, and
the 100-year equation from table 4 is

Q.0 = 275 CAY5P[[0742;  thus,

Org = Qo = 275(0.22)0635(0.91)0742 = 100 ft'/s.

The average equivalent years of record, en, for
subregion B for the 100-year equation is 12.4 years
(table 4). Using equation 4,

Oy = (12(92) + 12.4(100))/(12 + 12.4) = 96 ft3/s.

Peak-Flow Magnitudes for Selected
Frequencies for an Ungaged Site near
a Gaging Station on the Same Stream

The following is an example of how to use the
drainage-area ratio method (eq. 5) to determine peak
flow for an ungaged site near a gaging station on the
same stream. To estimate the 100-year peak flow for an
ungaged site on Oak Creek near Mahto, locate the site
on figure 3. The site is located upstream from a gaging
station on the same stream (station 06354882, Oak
Creek near Wakpala, SD, site 29). Contributing drain-
age area (CA,) for the ungaged site is 269 mi’, and the
contributing drainage area (CA ) for the gaging station
(table 6, site 29) is 356 mi’ Both the ungaged site and
the gaging station are located in subregion C (fig. 3).
Determine if the drainage-area ratio (CAu/CAg) is
between 0.75 and 1.5:

CA,/CA, = 269/356 = 0.76,

which meets the drainage-area ratio guideline. Thus,
the following relation (eq. 5) is used:

Q100w = Qoo (CAJCA)

where
Q100(g)= 10,300 ft3/s, the weighted peak flow for the
gaging station (table 6);
CA,, =269 mi?;
CAg =356 miz; and
x =0.569 (from page 21).

Therefore,

Qo0 = 10,300(269/356)05 = 8, 780 ft'/s.

Peak-Flow Magnitudes for Selected
Frequencies for an Ungaged Site
Between Two Gaging Stations on
the Same Stream

An ungaged site for which a peak-flow calcula-
tion is desired sometimes may be between two gaging
stations on the same stream. If the contributing drain-
age area for the ungaged site is within 75 to 150 percent
of the contributing drainage area for both of the gaging
stations, the drainage-area ratio method (eq. 5) should
be applied to determine peak flow for the ungaged site
(Qryu)) using data from each of the gaging stations.
The resulting two peak-flow values then are averaged
in logarithm units. The peak flow (O1yu)) also can be
determined by interpolating in logarithm units between
the gaging stations.

The following examples illustrate how to use
equation 5 and interpolation to determine a 100-year
peak flow for an ungaged site that is between two
gaging stations on the same stream. The gaging
stations are station 06447500, Little White River near
Martin, SD (table 6, site 111), and station 06449100,
Little White River near Vetal, SD (table 6, site 113).
Contributing drainage area (CA,,) for the ungaged site
is 325 mi, contributing dralnage area (CA,) for gaging
station 06447500 is 230 miZ, and contrlbutmg drainage
area (CA,) for gaging station 06449100 is 415 mi.
The drainage basins for the ungaged site and the gaging
stations mostly are located in subregion E (fig. 3).

Determine if the drainage-area ratio (CA,/CA,)

for the ungaged site relative to each gaging station is
between 0.75 and 1.50:
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1. Station 06447500:
CA, =230 mi?,
CA,, = 325 mi?,
CA,/CAg = 325/230 = 1.41.

2. Station 06449100:
CA, =415 mi%,
CA,, = 325 mi%,
CA,/CA, =325/415=0.78.

The drainage-area ratio guideline has been met
for both situations. Thus equation 5 is applied for the
ungaged site using data from both gaging stations, and
the results are averaged in logarithm units.

1. Station 06447500:
Q100(g) = 2,110 ft3/s, weighted peak flow for
the gaging station (table 6),
Q1000 = 2,110 (325/230)°%°1 = 2,680 ft's.

2. Station 06449100
Q100(g) = 3,500 ft3/s
Q10000 = 3.500 (325/415)*91 = 2,960 ft'/s.

The logarithmic average is

[log(2, 680)42rlog(2, 960)] _ (3.428;—3.471) _ 3450

Q100 = antilog (3.450) = 2, 820 ft3/s .

The peak flow for the ungaged site determined by inter-
polation between the two gaging stations is shown
below:

log CAg4a9100 — log CA
10gQ100(u) = IOngOO(06449lOO)_|: B . ]

[logQ 100(06449100) — log Q100(06447500)]

log(415) — log (325)
log(415) —10g(230)]

[log(3, 500) — log(2, 110)]

10201000 = log(3, 500) - [

2,618 - 2.512
1020 000) = 3.544-[m](3.544—3.324) = 3.453

Qoo = antilog(3.453) = 2, 840 ft¥/s.

X
log CAgeas9100 — 108 CA ggas7500

DATA NEEDS FOR IMPROVING
REGIONAL PEAK-FLOW
FREQUENCY ANALYSES

Future peak-flow frequency studies for South
Dakota could be improved if additional gaging stations
were established or if previously discontinued gaging
stations were re-established on natural-flow streams,
especially for sites on streams with drainage areas of
less than 100 mi%. Most of the gaging stations operated
during 1994 are on streams with contributing drainage
areas greater than 100 mi” and their primary purpose is
not to define natural variations in hydrologic character-
istics. In addition, determination of basin and climatic
characteristics using GIS coverages may be useful.

A description of the history of the streamflow-
data program for South Dakota appears in Larimer
(1970). During 1956-80, many crest-stage gages were
operated to define peak-flow frequencies on streams
with small drainage areas (Becker, 1974, 1980). How-
ever, following the completion of Becker’s studies, the
number of gaging stations in smaller basins has
decreased. In Burr and Korkow (1996), peak-flow
frequencies were reported for 234 gaging stations;
however, 105 of those stations were still in operation in
1994. Of these stations, many were on regulated
streams or on streams with drainage areas greater that
1,000 mi”. Thus, only about 50 of the stations still in
operation in 1994 were appropriate for developing
regional regression equations for use in estimating
peak-flow values for unregulated streams, and only 10
of those gaging stations were located in basins with
drainage areas less than 10 mi’. The emphasis in the
streamflow-gaging network has moved away from col-
lecting data to define regional variation in natural
hydrologic characteristics and instead focuses on pro-
viding streamflow information at sites that are of par-
ticular interest to the agencies that cooperatively
participate in funding the stations. Operation of addi-
tional stations would help to adequately define regional
variation in natural hydrologic characteristics. There is
particular importance for additional stations in
(1) smaller basins (less than 100 miz) throughout the
State; (2) subbasins in the Bad and White River Basins
to more confidently define boundaries between sub-
regions C and D; and (3) basins in the southwest corner
of the State to more confidently define boundaries
between subregions C, D, F, and G. The pertinent
streamflow-gaging data could be obtained by operating
continuous-record gaging stations and (or) crest-stage
gages for at least 25 years, an adequate record length
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for estimating the 100-year peak flow. The GLS proce-
dure could be used to perform a network analysis that
would yield a relation between the effect of adding or
deleting stations to an operating budget. The GLS pro-
cedure also would relate the standard error (at site or
regional) to record length in order to reduce the stan-
dard error (at site or regional) to a certain level, and
would be beneficial in determining specific gaging
locations that would be most useful for a regional
analysis.

Recently, there have been significant advances in
development of GIS coverages with information on
basin and climatic characteristics. This type of infor-
mation may be readily available to most users of the
regional regression equations. Use of GIS coverages
may provide a more accurate and convenient method of
estimating the basin and climatic characteristics that
are used in the regional analysis.

SUMMARY

A generalized skew coefficient analysis was
completed for South Dakota to test the validity of using
the generalized skew coefficient map in Bulletin 17B.
The generalized skew coefficients for South Dakota in
Bulletin 17B were evaluated for applicability by com-
paring them to generalized skew coefficients deter-
mined by the three recommended methods: (1) lines of
equal skew coefficient drawn on a Statewide map;

(2) regression equations that relate skew coefficient to
selected basin and climatic characteristics; and (3)
mean values of skew coefficient within subregions of
interest. Data for 106 gaging stations with 25 or more
years of unregulated systematic record were used in the
generalized skew analysis. Results of the analysis indi-
cate that the Bulletin 17B generalized skew coefficient
map generally provides adequate generalized skew
coefficients for estimating peak-flow magnitudes and
frequencies for South Dakota gaging stations.

Peak-flow records through 1994 for 197
continuous- and partial-record streamflow-gaging
stations that had 10 or more years of unregulated sys-
tematic record were used in a generalized least-squares
regression analysis that relates peak flows for selected
recurrence intervals to selected basin and climatic char-
acteristics. Peak-flow equations were developed for
recurrence intervals of 2, 5, 10, 25, 50, 100, and
500 years for seven hydrologic subregions in South
Dakota. The peak-flow equations are applicable to
natural-flow streams that have drainage areas less than

or equal to 1,000 mi?. Basin and climatic characteris-
tics in the final regression equations included contrib-
uting drainage area, main-channel slope, and
precipitation intensity index. The standard error of
estimate for the seven hydrologic subregions ranges
from 22 to 110 percent for the 100-year peak-flow
equations. Weighted peak flows for various frequen-
cies based on gaging-station data and the regional
regression equations are provided for each gaging
station. The weighted peak flows generally should
provide better peak-flow frequency estimates than the
station peak flows because they include additional
regional information developed from the regional
analysis and reduce the time-sampling error associated
with short periods of record.

Examples are given for (1) determining peak-
flow magnitudes and frequencies for ungaged sites on
ungaged streams using the regional regression equa-
tions; (2) determining weighted peak-flow magnitudes
and frequencies for gaging stations; and (3) using the
drainage-area ratio method for determining peak-flow
magnitudes and frequencies for ungaged sites near a
gaging station on the same stream and ungaged sites
between two gaging stations on the same stream.
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Table 7. Variance-covariance matrix for regression parameter estimates for each T-year regression model for the seven
hydrologic subregions

[Values are in scientific notation: for example, 0.68769E-02 is 0.0068769; CA, contributing drainage area; S, main-channel slope; PII, precipitation intensity
index]

Subregion A

Constant CA PIl
T = 2 years
Constant 0.68769E-02 -0.16198E-02 -0.21442E-01
CA -0.16198E-02 0.87333E-03 0.28902E-02
PII -0.21442E-01 0.28902E-02 0.52743
T =5 years
Constant 0.63054E-02 -0.14452E-02 -0.20868E-01
CA -0.14452E-02 0.78520E-03 0.27294E-02
PII -0.20868E-01 0.27294E-02 0.50984
T = 10 years
Constant 0.68640E-02 -0.15458E-02 -0.23502E-01
CA -0.15458E-02 0.83389E-03 0.29955E-02
PII -0.23502E-01 0.29955E-02 0.57237
T = 25 years
Constant 0.79853E-02 -0.17710E-02 -0.28155E-01
CA -0.17710E-02 0.94728E-03 0.35058E-02
PII -0.28155E-01 0.35058E-02 0.68360
T = 50 years
Constant 0.89585E-02 -0.19731E-02 -0.32058E-01
CA -0.19731E-02 0.10515E-02 0.39487E-02
PII -0.32058E-01 0.39487E-02 0.77735
T = 100 years
Constant 0.99849E-02 -0.21905E-02 -0.36126E-01
CA -0.21905E-02 0.11656E-02 0.44199E-02
PIL -0.36126E-01 0.44199E-02 0.87558
T = 500 years
Constant 0.12475E-01 -0.27339E-02 -0.45907E-01
CA -0.27339E-02 0.14586E-02 0.55857E-02
PII -0.45907E-01 0.55857E-02 1.1145

Subregion B

Constant CA PIl
T = 2 years
Constant 0.97046E-02 -0.18183E-02 0.20194E-01
CA -0.18183E-02 0.18393E-02 0.21085E-02
PII 0.20194E-01 0.21085E-02 0.46789
T = 5 years
Constant 0.10132E-01 -0.17864E-02 0.24156E-01
CA -0.17864E-02 0.17698E-02 0.21779E-02
PII 0.24156E-01 0.21779E-02 0.50255

44 Techniques for Estimating Peak-Flow Magnitude and Frequency Relations for South Dakota Streams



Table 7. Variance-covariance matrix for regression parameter estimates for each T-year regression model for the seven
hydrologic subregions—Continued

[Values are in scientific notation: for example, 0.68769E-02 is 0.0068769; CA, contributing drainage area; S, main-channel slope; PII, precipitation intensity
index]

Subregion B—Continued

Constant CA PIl
T = 10 years
Constant 0.11653E-01 -0.19762E-02 0.30102E-01
CA -0.19762E-02 0.19588E-02 0.25515E-02
PII 0.30102E-01 0.25515E-02 0.60190
T = 25 years
Constant 0.14114E-01 -0.22993E-02 0.39073E-01
CA -0.22993E-02 0.22910E-02 0.31646E-02
PII 0.39073E-01 0.31646E-02 0.75867
T = 50 years
Constant 0.16142E-01 -0.25750E-02 0.46279E-01
CA -0.25750E-02 0.25730E-02 0.36637E-02
PII 0.46279E-01 0.36637E-02 0.88580
T = 100 years
Constant 0.18258E-01 -0.28728E-02 0.53714E-01
CA -0.28728E-02 0.28731E-02 0.41734E-02
PIL 0.53714E-01 0.41734E-02 1.0170
T = 500 years
Constant 0.23417E-01 -0.36469E-02 0.71629E-01
CA -0.36469E-02 0.36277E-02 0.53568E-02
PII 0.71629E-01 0.53568E-02 1.3316
Subregion C
Constant CA
T = 2 years
Constant 0.68065E-02 -0.24101E-02
CA -0.24101E-02 0.22782E-02
T = Syears
Constant 0.45483E-02 -0.14776E-02
CA -0.14776E-02 0.12715E-02
T = 10 years
Constant 0.43483E-02 -0.13643E-02
CA -0.13643E-02 0.11129E-02
T = 25 years
Constant 0.45612E-02 -0.14028E-02
CA -0.14028E-02 0.11009E-02
T = 50 years
Constant 0.49763E-02 -0.15285E-02
CA -0.15285E-02 0.11744E-02
T = 100 years
Constant 0.55617E-02 -0.17174E-02
CA -0.17174E-02 0.13068E-02
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Table 7. Variance-covariance matrix for regression parameter estimates for each T-year regression model for the seven
hydrologic subregions—Continued

[Values are in scientific notation: for example, 0.68769E-02 is 0.0068769; CA, contributing drainage area; S, main-channel slope; PII, precipitation intensity
index]

Subregion C—Continued

Constant CA
T = 500 years
Constant 0.74181E-02 -0.23408E-02
CA -0.23408E-02 0.17831E-02

Subregion D

Constant CA
T = 2 years
Constant 0.12725E-01 -0.38418E-02
CA -0.38418E-02 0.90802E-02
T = 5 years
Constant 0.78878E-02 -0.20247E-02
CA -0.20247E-02 0.44877E-02
T = 10 years
Constant 0.69124E-02 -0.15004E-02
CA -0.15004E-02 0.32253E-02
T = 25 years
Constant 0.72686E-02 -0.13485E-02
CA -0.13485E-02 0.28818E-02
T = 50 years
Constant 0.81335E-02 -0.14344E-02
CA -0.14344E-02 0.30871E-02
T = 100 years
Constant 0.92650E-02 -0.16137E-02
CA -0.16137E-02 0.35191E-02
T = 500 years
Constant 0.12467E-01 -0.22320E-02
CA -0.22320E-02 0.50689E-02

Subregion E

Constant CA
T = 2 years
Constant 0.44470E-01 -0.17960E-01
CA -0.17960E-01 0.79426E-02
T = Syears
Constant 0.24250E-01 -0.94078E-02
CA -0.94078E-02 0.41332E-02
T = 10 years
Constant 0.23753E-01 -0.90233E-02
CA -0.90233E-02 0.39552E-02
T = 25 years
Constant 0.32052E-01 -0.12235E-01
CA -0.12235E-01 0.53946E-02
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Table 7. Variance-covariance matrix for regression parameter estimates for each T-year regression model for the seven
hydrologic subregions—Continued

[Values are in scientific notation: for example, 0.68769E-02 is 0.0068769; CA, contributing drainage area; S, main-channel slope; PII, precipitation intensity
index]

Subregion E—Continued

Constant CA
T = 50 years
Constant 0.42905E-01 -0.16564E-01
CA -0.16564E-01 0.73413E-02
T = 100 years
Constant 0.56825E-01 -0.22166E-01
CA -0.22166E-01 0.98632E-02
T = 500 years
Constant 0.99045E-01 -0.39284E-01
CA -0.39284E-01 0.17577E-01

Subregion F

Constant CA S
T = 2 years
Constant 1.3679 -0.14878 -0.58496
CA -0.14878 0.22743E-01 0.58388E-01
S -0.58496 0.58388E-01 0.25701
T = 5 years
Constant 1.0719 -0.11800 -0.45580
CA -0.11800 0.18015E-01 0.46077E-01
S -0.45580 0.46077E-01 0.19949
T = 10 years
Constant 1.0040 -0.11093 -0.42578
CA -0.11093 0.16914E-01 0.43186E-01
S -0.42578 0.43186E-01 0.18612
T = 25 years
Constant 0.99388 -0.10962 -0.42113
CA -0.10962 0.16754E-01 0.42534E-01
S -0.42113 0.42534E-01 0.18428
T = 50 years
Constant 1.0326 -0.11345 -0.43788
CA -0.11345 0.17424E-01 0.43927E-01
S -0.43788 0.43927E-01 0.19201
T = 100 years
Constant 1.1196 -0.12250 -0.47542
CA -0.12250 0.18903E-01 0.47361E-01
S -0.47542 0.47361E-01 0.20893
T = 500 years
Constant 1.5673 -0.17023 -0.66769
CA -0.17023 0.26269E-01 0.65872E-01
S -0.66769 0.65872E-01 0.29432
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Table 7. Variance-covariance matrix for regression parameter estimates for each T-year regression model for the seven
hydrologic subregions—Continued

[Values are in scientific notation: for example, 0.68769E-02 is 0.0068769; CA, contributing drainage area; S, main-channel slope; PII, precipitation intensity
index]

Subregion G

Constant CA
T = 2 years
Constant 0.35164E-01 -0.23705E-01
CA -0.23705E-01 0.20166E-01
T = Syears
Constant 0.57278E-01 -0.39555E-01
CA -0.39555E-01 0.34593E-01
T = 10 years
Constant 0.77569E-01 -0.53978E-01
CA -0.53978E-01 0.47602E-01
T = 25 years
Constant 0.10650 -0.74548E-01
CA -0.74548E-01 0.66166E-01
T = 50 years
Constant 0.12951 -0.90927E-01
CA -0.90927E-01 0.80978E-01
T = 100 years
Constant 0.15331 -0.10791
CA -0.10791 0.96362E-01
T = 500 years
Constant 0.21138 -0.14944
CA -0.14944 0.13413
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