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October 24, 1995, Suisun Bay, CalifOrNia...........covieiieiiiieecese ettt st esre e e sne e 216
V1. Harmonic analysis results from sea-level measurements, Station WICK, April 30 through October 31, 1995,
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CONVERSION FACTORS, ABBREVIATIONS, ACRONYMS, DATA-COLLECTION STATIONS,
SYMBOLS, AND JULIAN DATE CALENDAR

Multiply By To obtain
centimeter (cm) 0.3937 inch
centimeter per second (cm/s) 0.3937 inch per second
cubic meter per second (m%s)  35.31 cubic foot per second
decibar (dbar) 1.0197 meters of water (at 4°C)
kilometer (km) 0.6214 mile
sguare kilometer (kmz) 0.3861 sguare mile
meter (M) 3.281 foot
meter per second (m/s) 3.281 foot per second
meter per second squared (m/s%) 3.281 foot per second squared
millibar (mbar) 0.0145 pounds per square inch
millimeter (mm) 0.03937 inch
sguare meter (m2) 10.76 sguare foot

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:
%F=(1.8x°C) + 32
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Abbreviations and Acronyms:

deg,

deg. C
deg. T,

E

Hz

kHz,
mg/L
mS/CM, mS/cm,
mmhos/cm,
um
uS/cm
ppt,

cfs,

cms,
ADCP,
BIN,

CT,

CTD,
CTDO,
DAY FLOW,
DWR,
ETM,

EZ,

FTU,

IEP,
MLLW,
OBS

RDI
RMS,
SC,

Sl

SSC

SSF
UNESCO
USBR,
USGS,

degrees

degrees Celcius

degreestrue

equilibrium argument

hertz

kilohertz

milligram per liter

millisiemens per centimeter

millimhos per centimeter

micrometer

microsiemens per centimeter

parts per thousand

cubic feet per second

cubic meter per second

Acoustic Doppler Current Profiler

adepth cell from an ADCP

conductivity-temperature
conductivity-temperature-depth
conductivity-temperature-depth-optical backscatter
California Department of Water Resources delta outflow
California Department of Water Resources

estuarine turbidity maximum

entrapment zone

formazine turbidity unit

Interagency Ecological Program for the San Francisco Bay Estuary
mean lower low water

optical backscatteranced sensor

R.D. Instruments, Inc.

root-mean-squared

specific conductance

(System International) International System of Weights and Measures
suspended-solids concentration

suspended-solids flux

United Nations Educational, Scientific, and Cultural Organization
U.S. Bureau of Reclamation

U.S. Geological Survey

Data-collection stations:

BEN BULLS

GC GDOL
MID MOTH
Tidal symbols:
I K1
m2 N2

CARQ MET CUT GARN GARNW

GS HC HDOL HS MAL MART

RYER RYERE SPOON WICK

K2 L2 Ml M2 M4 M k3 MU2
Nu, np 0, P Q1 S T2

u2

V2
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Vertical Datum

Sealevel: Inthisreport, “sealevel” refersto the National Geodetic Vertical Datum of 1929 (NGVD of 1929),
a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and
Canada, formerly called Sea Level Datum of 1929.

All depthsin thisreport are referenced to mean lower low water (MLLW). For the purpose of thisreport, the
difference between MLLW and sea level is assumed to be 1.0 m within Suisun Bay.

Sdlinitiesin thisreport are presented without (practical salinity) units because salinity isaconductivity ratio;
therefore, it has no physical units.
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Julion Date Calendar

For nonleap years

Day Dec Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Day

1 -30 1 32 60 91 121 152 182 213 244 274 305 335 1

2 -29 2 33 61 92 122 153 183 214 245 275 306 336 2

3 -28 3 34 62 93 123 154 184 215 246 276 307 337 3

4 -27 4 35 63 94 124 155 185 216 247 277 308 338 4

5 -26 5 36 64 95 125 156 186 217 248 278 309 339 5

6 -25 6 37 65 96 126 157 187 218 249 279 310 340 6

7 -24 7 38 66 97 127 158 188 219 250 280 311 341 7

8 -23 8 39 67 98 128 159 189 220 251 281 312 342 8

9 -22 9 40 68 99 129 160 190 221 252 282 313 343 9
10 -21 10 41 69 100 130 161 191 222 253 283 314 344 10
11 -20 11 42 70 101 131 162 192 223 254 284 315 345 11
12 -19 12 43 71 102 132 163 193 224 255 285 316 346 12
13 -18 13 44 72 103 133 164 194 225 256 286 317 347 13
14 -17 14 45 73 104 134 165 195 226 257 287 318 348 14
15 -16 15 46 74 105 135 166 196 227 258 288 319 349 15
16 -15 16 47 75 106 136 167 197 228 259 289 320 350 16
17 -14 17 48 76 107 137 168 198 229 260 290 321 351 17
18 -13 18 49 7 108 138 169 199 230 261 291 322 352 18
19 -12 19 50 78 109 139 170 200 231 262 292 323 353 19
20 -11 20 51 79 110 140 171 201 232 263 293 324 354 20
21 -10 21 52 80 111 141 172 202 233 264 294 325 355 21
22 -9 22 53 81 112 142 173 203 234 265 295 326 356 22
23 -8 23 54 82 113 143 174 204 235 266 296 327 357 23
24 -7 24 55 83 114 144 175 205 236 267 297 328 358 24
25 -6 25 56 84 115 145 176 206 237 268 298 329 359 25
26 -5 26 57 85 116 146 177 207 238 269 299 330 360 26
27 -4 27 58 86 117 147 178 208 239 270 300 331 361 27
28 -3 28 59 87 118 148 179 209 240 271 301 332 362 28
29 -2 29 88 119 149 180 210 241 272 302 333 363 29
30 -1 30 89 120 150 181 211 242 273 303 334 364 30
31 31 90 151 212 243 304 365 31
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Julion Date Calendar—Continued

For leap years

Day Dec Jan
1 -30 1
2 -29 2
3 -28 3
4 -27 4
5 -26 5
6 -25 6
7 -24 7
8 -23 8
9 -22 9

10 -21 10
11 -20 11
12 -19 12
13 -18 13
14 -17 14
15 -16 15
16 -15 16
17 -14 17
18 -13 18
19 -12 19
20 -11 20
21 -10 21
22 -9 22
23 -8 23
24 -7 24
25 -6 25
26 -5 26
27 -4 27
28 -3 28
29 -2 29
30 -1 30
31 31

Feb
32
33

35
36

37

38

39

41

&R &S

46

47

49
50
51

52
53

55
56

57
58
59
60

Mar Apr May June July Aug Sept Oct Nov Dec Day
61 92 122 153 183 214 245 275 306 336 1
62 93 123 154 184 215 246 276 307 337 2
63 94 124 155 185 216 247 277 308 338 3
64 95 125 156 186 217 248 278 309 339 4
65 96 126 157 187 218 249 279 310 340 5
66 97 127 158 188 219 250 280 311 341 6
67 98 128 159 189 220 251 281 312 342 7
68 99 129 160 190 221 252 282 313 343 8
69 100 130 161 191 222 253 283 314 344 9
70 101 131 162 192 223 254 284 315 345 10
71 102 132 163 193 224 255 285 316 346 11
72 103 133 164 194 225 256 286 317 347 12
73 104 134 165 195 226 257 287 318 348 13
74 105 135 166 196 227 258 288 319 349 14
75 106 136 167 197 228 259 289 320 350 15
76 107 137 168 198 229 260 290 321 351 16
77 108 138 169 199 230 261 291 322 352 17
78 109 139 170 200 231 262 292 323 353 18
79 110 140 171 201 232 263 293 324 354 19
80 111 141 172 202 233 264 294 325 355 20
81 112 142 173 203 234 265 295 326 356 21
82 113 143 174 204 235 266 296 327 357 22
83 114 144 175 205 236 267 297 328 358 23
84 115 145 176 206 237 268 298 329 359 24
85 116 146 177 207 238 269 299 330 360 25
86 117 147 178 208 239 270 300 331 361 26
87 118 148 179 209 240 271 301 332 362 27
88 119 149 180 210 241 272 302 333 363 28
89 120 150 181 211 242 273 303 334 364 29
90 121 151 182 212 243 274 304 335 365 30
91 152 213 244 305 366 31
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Hydrodynamic and Suspended-Solids Concentration
Measurements in Suisun Bay, California, 1995

By Jay |. Cuetara, Jon R. Burau, and David H. Schoellhamer
ABSTRACT

Sealevel, current velocity, water temperature, salinity (computed from conductivity and
temperature), and suspended-solidsdata collected in Suisun Bay, California, from May 30, 1995,
through October 27, 1995, by the U.S. Geological Survey are documented in thisreport. Data
were collected concurrently at 21 sites. Various parameters were measured at each site.

Vel ocity-profile datawere collected at 6 sites, single-point velocity measurements were made at
9 sites, salinity data were collected at 20 sites, and suspended-solids concentrations were
measured at 10 sites. Sea-level and velocity dataare presented in three forms; harmonic analysis
results; time-series plots (sealevel, current speed, and current direction versustime); and time-
seriesplots of low-pass-filtered time series. Temperature, salinity, and suspended-solidsdataare
presented as plots of raw and low-pass-filtered time series.

Thevelocity and salinity data presented in thisreport document aperiod when the residual
current patterns and salt field were transitioning from a freshwater-infl ow-dominated condition
towards a quas steady-state summer condition when density-driven circulation and tidal
nonlinearities became relatively more important as long-term transport mechanisms.
Sacramento—San Joagquin River Delta outflow was high prior to and during this study, so the
tidally averaged salinities were abnormally low for thistime of year. For example, thetidally
averaged salinities varied from 0-12 at Martinez, the western border of Suisun Bay, to a
maximum of 2 at Mallard Island, the eastern border of Suisun Bay.

Even though salinities increased overall in Suisun Bay during the study period, the near-
bed residual currents primarily were directed seaward. Therefore, salinity intrusion through
Suisun Bay towardsthe Delta primarily was accomplished in the absence of thetidally averaged,
two-layer flow known as gravitational circulation where, by definition, the net currents are
landward at the bed. The Folsom Dam spillway gate failure on July 17, 1995, was analyzed to
determine the effect on the hydrodynamics of Suisun Bay. The peak flow of the American River
reached roughly 1,000 cubic meters per second asaresult of thefailure, whichisrelatively small.
Thiswas roughly 15 percent of the approximate 7,000 cubic meters per second tidal flows that
occur daily in Suisun Bay and was likely attenuated greatly. Based on analysis of tidally
averaged near-bed salinity and depth-averaged currents after the failure, the effect was
essentially nonexistent and is indistinguishable from the natural variability.

INTRODUCTION

The data described in this report were collected in cooperation with the California Department of
Water Resources (DWR) and the U.S. Bureau of Reclamation (USBR) as part of ongoing research by the
U.S. Geological Survey (USGS) into the hydrodynamics of the San Francisco Bay estuary (fig. 1). These
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Figure 1. San Francisco Bay Estuary, California.
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data were collected as part of the Interagency Ecological Program (IEP) sponsored interdisciplinary
entrapment zone (EZ) study (Kimmerer, 1998) and USGS Place-Based Program. Other agencies
involved in the |EP include the California Department of Fish and Game and the U.S. Fish and Wildlife
Service. The USGS conducts awide range of research and monitoring activitiesin the San Francisco
Bay estuary (Cloern and others, 1995). Research includes many disciplines, including climate change
(Peterson and others, 1995), hydrodynamics (Smith and others, 1995), sediment transport (Schoellhamer
and others, 1997), phytoplankton dynamics (Cloern and Jassby, 1995), toxic contamination (Luomaand
others, 1993; Kuivilaand Foe, 1995), and exotic species (Nichols and others, 1990). For an updated list
of USGS publications, see the Access USGS web site at http://sfbay.wr.usgs.gov/access/pubs.html.

Purpose and Scope

Thisreport documents hydrodynamic and suspended-solids concentration (SSC) data collected in
Suisun Bay (fig. 1) from May 30, 1995, through October 27, 1995, through plots and harmonic analysis
results. Five distinct types of datawere collected and analyzed; (1) sea-level data measured with a
pressure sensor at depth or asurface float; (2) vel ocity data consisting of magnitude and direction, either
at asingle point or equally spaced pointsin the vertical, depending on the depth at each location; (3)
water-temperature data, (4) salinity data cal culated from measured values of conductivity and
temperature; and (5) suspended-solids data collected with optical backscatterance sensors (OBS).
Additionally, hydrologic and meteorological data are presented. The hydrologic data consists of the
Sacramento—San Joaquin Delta outflow, and the meteorol ogical data include measured values of
barometric pressure, wind speed and direction, air temperature, and visible light.

The principal objectivefor collecting these datawasto measure the spatial and temporal variability
in the residua currents, salinity, and SSC in the channels of Suisun Bay. Acoustic Doppler current
profilers (ADCPs) were deployed in the channels to vertically define the velocity structure. In order to
estimate salinity and sediment fluxes, conductivity-temperature-depth-optical backscatterance (CTDO)
sensorswere deployed adjacent to the vel ocity measuring instruments, where possible. Station locations
are shown in figure 2; their respective latitudes, longitudes, and deployment dates are given in table 1.
The instrument specifications are presented in table 2.

122°15' 121°53'
T []

Instrument Descriptions
O Conductivity, Temperature, Depth, Optical backscatterance sensor (CTDO)
A Conductivity, Temperature, Depth (CTD)
O Conductivity, Temperature (CT) N =1
38°10'f 4 Single Point Velocity
B Velocity Profile (Acoustic Doppler Current Profiler)
t Top Sensor
b Bottom Sensor
> > GboLO ¢
Site Location
] .
Suisun Bay
« e
DEPTH MORE THAN 2.5 METERS .
Grizzly Bay
0 5 KILOMETERS [ )
} I s ® HDOL O ¢
Q . soov T e
@ a )
q ~ b Honker Bay
® @ Chipps 1.
Benicia
.
. .

Figure 2. Data-collection locations and station names, Suisun Bay, California.
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Table 1. Data-collection instrument locations and deployment periods

[MLLW, mean lower low water; m, meters; na, not applicable; v, velocity sensor; s, salinity sensor; p, pressure sensor or sealevel sensor; o,

optical backscatterance sensor; nb, narrow-band acoustic Doppler current profiler; bb, broad-band acoustic Doppler current profiler]

4

Depth Sensor Deployment
Station Name Position (MLLW In depth period
meters) (meters) (Julian Days)
BEN (nb, s, p) 38°02'37" 186 m +2.1m, +10.0 m, and +17.7 m 5/20/95 (140) —
10/31/95 (304)
122°07'25"
BULLS (bb, s, p) 38°02'54" 123 m +5.5mand +11.5m 6/01/95 (152) —
10/23/9 5(296)
122°06'01"
CARQ (s, p) 38°02'35" 175m +9.3mand +17.0 m 6/05/95 (156) —
11/01/95 (305)
122°10'31"
CUT (nb, s, p, 0) 38°05'24" 83m +3.1mand+7.5m 7/07/95 (188) —
10/23/95 (296)
122°00'20"
GARN () 38°05'44" 6.1m +14mand +5.3m 7/05/95 (186) —
10/22/95 (295)
122°01'32"
GARNW (v, s, p, 0) 38°06'23" 24m +1.8m(v) and +1.7 m 9/18/95 (261) —
10/23/95 (296)
122°02'53"
GC (v, s p, 0) 38°07'12" 14m +0.8 m (v) and +0.7 m 7/04/95 (185) —
8/18/95 (230)
122°01'34"
GDOL (v, s, p, 0) 38°07'01" 1.7m +1.1m(v) and +1.0 m 7/06/95 (187) —
9/18/95 (261)
122°02'26"
GS(v, s, p, 0) 38°06'28" 12m +0.6 m (v) and +0.5 m 7/06/95 (187) —
9/18/95 (261)
122°01'22"
HC (v, s, p, 0) 38°04'26" 09m +0.3m (v) and +0.2 m 7/09/95 (190) —
10/24/95 (297)
121°55'45"
HDOL (v, s, p, 0) 38°04'25" 19m +1.5m (v) and +1.5m 7/06/95 (187) —
9/18/95 (261)
121°57'27"
HS (v, s, p, 0) 38°03'28" 11m +0.5m (v) and +0.4 m 7/07/95 (188) —
9/18/95 (261)
121°55'59"
MAL (bb, s, p) 38°02'33" 164 m +15.4m 5/30/95 (150) —
10/27/95 (300)
121°54'59"
MART (s, p) 38°01'40" 80m +1.0mand +7.5m 7/06/95 (187) —
11/16/95 (320)
122°08'22"
MET 38°03'10" na na 5/01/95 (121) —
11/01/95 (305)
121°56'10"

Hydrodynamic and Suspended-Solids Concentration Measurements in Suisun Bay, California, 1995



Table 1. Data-collection instrument locations and deployment periods—Continued

Depth Sensor Deployment
Station Name Position (MLLW n depth period
meters) (meters) (Julian Days)
MID (bb, s, p) 38°03'42" 85m +0.8mand+7.7m 6/01/95 (152) —
10/23/95 (296)
122°00'03"
MQOTH (v, s, p, 0) 38°05'29" 89m +8.3m(v) and +8.2 m 9/18/95 (261) —
10/23/95 (296)
122°04'30"
RYER (9 38°04'45" 62m  +54m 7/07/95 (188) —
8/18/95 (230)
122°02'11"
RYERE (nb, s, p) 38°04/28" 53m +4.5m 6/01/95 (152) —
8/18/95 (230)
122°01'16"
SPOON (v, s, p, 0) 38°04'15" 24m +1.5m(v) and +1.6 m 9/18/95 (261) —
10/24/95 (297)
121°54'42"
WICK (s) 38°03/30”  153m  +0.3mand+12.6m 4/30/95 (120) —
10/31/95 (304)
122°14'24"

Table 2. Specifications for instruments used in Suisun Bay, California

[Sdlinitiesin this report are presented in practical salinity units, which isaconductivity ratio; therefore, it has no physical units (Millero, 1993);
°C, degrees Celsius; m, meter; mS/cm, millisiemens per centimeter at 25°C; mm, millimdter; dbar, decibar; cm/s, centimeters per second; FS, full
scale; CT, conductivity-temperature; CTD, conductivity-temperature-depth sensor; OBS, optical backscatternce sensor; ADCP, acoustic Doppler

current profiler; FTU, formazin turbidity unit]

Range Accuracy Resolution
Seabird: Seacat CT
Temperature -5-35°C +/- 0.01 +/- 0.001
Conductivity 0-70 mS/cm +/- 0.001 +/- 0.0001
Ocean Sensors: 0s200 CTD
Temperature -2-35°C 0.01 percent FS 0.001 percent FS
Conductivity 0.5-65 mS/cm 0.02 percent FS 0.001 percent
Salinity 1-45 0.03 percent FS 0.001 percent
Pressure 0-50 dbar 0.50 percent FS 0.005 percent
D & A: Optical Backscatterance Sensor (OBS-3)
Turbidity 0.02-2,000 FTU 2.0 percent FS 0.001 FTU
Interocean Systems: $4 Current Meter
Current Speed 0-350 cm/s 2.0 percent FS 0.2cm/s
Direction 0-360 degrees +/- 2 degrees 0.5 degrees
Pressure 0-70m +/- 0.15 percent 4 mm
EG & G: Veocity Meter
Temperature -2-35°C 0.05°C 0.01°C
Pressure 0-999.9 dbar 0.5 percent 0.2 dbar
Velocity 0-360 cm/s 3 percent 0.1cm/s
Heading 0-360 degrees +/- 5.0 degrees 1.0 degrees
RD InstrumentsADCP: Broad Band and Narrow Band
Velocity +/- 1,000 cm/s <1cm/s 0.1 cm/s
Heading 0-360 degrees 2 degrees 02 degrees
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The dataiin this report are organized by location (fig. 2) and primarily presented as time-series
plots. Harmonic analysis results characterize the tidal motions, and |ow-pass-filtered data characterize
theresidual (tidally averaged) motions. Additional characteristics of thetidal velocities, such astheroot-
mean-square (RMS) speed, tidal form number, principal current direction, and spring-tide maximum and
neap-tide minimum vel ocities al so are presented.

Study Area

Geographic Setting

Suisun Bay isroughly 25 kilometers (km) long, has a surface area of approximately 94 square
kilometers (km?), amean depth of 4.3 meters (m), and bottom topography characterized by anetwork of
deep channels separated by a series of islands.  The channels are bounded to the north and east by two
large shallow regions, known as Grizzly and Honker Bays (fig. 2), that are thought to play an important
role in maintaining salinities throughout the northern reach during late summer through early winter
(Fischer, 1976).

Tides

Because of its complex bathymetry and brackish water, the hydrodynamics of Suisun Bay are
among the most complicated in San Francisco Bay (Walters and Gartner, 1985). The tides propagate
through the channels of Suisun Bay as progressive waves where the water level and tidal currents are
roughly in phase. For example, at Station BULLS (fig. 2), the currents lead the phase of the water level
by about 10 minutes (harmonic analysis results, appen. C). That is, the currents reach their peak ebb/
flood magnitudes roughly 10 minutes before low/high water, respectively. The currents|eading the water
level aretypical of frictionally dominated systems such as San Francisco Bay (Officer, 1976). However,
thetidal signal in the vicinity of the shallows of Grizzly and Honker Bays is more like a standing wave,
dueto friction and shorelinereflection (Burau and Cheng, 1988). In apure standing wave, thewater level
and currents are 90 degrees out of phase. One expects standing wave behavior when the resonant
frequency of an enclosed basin closely approximates the frequency of thetidal forcing. The resonant
period of Grizzly and Honker Bays are on the order of 7, .. ~ 1 hour, where the resonant period,

7 AL

res /\/g_['] ’

is estimated by a quarter wave resonator (g ~9.81m/s? isgravity and H isdepth; H istakento be~1.5
m, L isthe length of the basin, which, for Grizzly and Honker Bays istaken to be L ~4 km) (Pond and
Pickard, 1983). Because the resonant periods for Grizzly and Honker Bays are much shorter

(~1 hour) than the period of thetidal forcing (~12 hours), one expects only partial standing wave
behavior in these small sub-bays. Thisisconfirmed at Station GC (fig. 2) where the water level and
currents are approximately 35 degrees out of phase (harmonic analysis results, appen. |). The phase
relation between the water level and currentsisimportant in the transport of salt, sediment, and biotain
tidally dominated systems. Stokes drift is an upstream residual current that can occur in progressive
wave systemslike San Francisco Bay’s northern reach (Burau and others, 1998). Stokesdrift, which can
be large when the water level and tidal currents are roughly in phase, can contribute significantly to
transport into and out of shallow regions, such as Grizzly and Honker Bays, because thetidal rangeisa
significant fraction of the mean depth.
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Currents

Owing to Suisun Bay’s complex bathymetry, the timing, magnitude, and direction of the tidal
currents vary significantly throughout Suisun Bay. An example of the spatial variability of the currents
generated by a numerical model is shown in figure 3. The magnitude of tidal currents usually vary in
direct proportion to the water depth (slower inthe shoals); orientation isgenerally directed parallel to the
prevailing bathymetry contours (Cheng and Gartner, 1984b). Thetidal currentsin the channels are on
the order of 100 centimeters per second (cm/s) whereasthetidal currentsin the shallows are on the order
of 50 cm/s or less.

As compared to the tidal currents, the residual (tidally averaged) currents usually are an order of
magnitude smaller (for example, ~10 cm/sin the channels). Theseresidual currents are affected by Delta
outflow (hydrology) and atmospheric forcing (meteorological). At times, these factors have asignificant
influence on theresidual circulation patterns (Walters and Gartner, 1985). Therefore, the hydrologic and
meteorological conditions during the study period are discussed in the following sections.

Hydrologic Conditions

The Sacramento—San Joaguin Delta provides most of the freshwater that flows into Suisun Bay
(Jassby and others, 1995). Inwinter and spring, thisfreshwater input can significantly ater thetidal and
residual circulation in Suisun Bay. For example, the residual currentsthat are typically on the order of
10 cm/s during summer can increase to more than 60 cm/s from the influx of freshwater during
uncontrolled runoff eventsinwinter. Moreover, freshwater flowsinwinter or early spring can advect salt
seaward of Suisun Bay, effectively removing density-driven circulation from this area during these
events.

A A2 7 2 -7
Grizzly Bay
2

-
> > A oA

Eastern Suisun Bay
tidal velocities N

Velocity Scale - 1 meter per second
0, 2-meter depth contours shown

- -

Honker Bay

Schematic not to scale

Figure 3. Numerical model simulation of depth-averaged tidal current velocities in Suisun Bay, California, during ebb current (Cheng and
others, 1993).
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Compared to the 1993 and 1994 water years, the 1995 water year was characterized by high flows
with three distinct discharge peaks in excess of 5,000 cubic meters per second (m>/s) (fig. 4). The
relatively high Delta outflows “pushed” salinity seaward of Suisun Bay beginning about Julian day 70.
Salinity returned to the western part of Suisun Bay at Bulls Head around Julian day 145. Figure 4D
provides adetailed time series of the Delta outflow that entered Suisun Bay during the study period. This
record shows the effect on Delta outflow caused by the gate failure at Folsom Dam on the American
River.
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Figure 4. Delta outflow (DAYFLOW) estimates (California Department of Water Resources, 1986) for A, 1995;
B, 1994; C, 1993; and D, during the time when instruments were deployed in Suisun Bay, California.
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Meteorological Conditions

Changes in meteorology also can affect the hydrodynamics of Suisun Bay through changesin
atmospheric pressure and wind. For example, atmospheric pressure can create residual currentsin
Suisun Bay by significantly raising or lowering sealevel (Walters and Gartner, 1985). Figure 5 shows
barometric pressure, wind direction, wind speed, air temperature, and visible light measured during the
study at Station Channel Marker 27 in Suisun Bay (fig. 2). Based on data shown in figure 5, the
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Figure 5. A, barometric pressure; B, wind direction; C, wind speed; D, air temperature; and E, visible light at
Station Channel Marker 27 in Suisun Bay, California, May 12, 1995, through November 6, 1995. By
convention, wind direction is reported as the direction the wind is coming from (for example, westerly winds
have a direction of 270 degrees).
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meteorological conditions during the 1995 study were characterized by relatively constant barometric
pressures and intermittent westerly windsthat varied from 0—10 meters per second (m/s). Wind stresson
the water surface can produce a current that flows in the direction of the wind at the surface and flows
opposite thewind direction at depth in the channels (Fischer and others, 1979; Hunter and Hearn, 1987).
Wind direction is reported as the direction from which the wind is coming (westerly winds have a
direction of 270 degrees). Winds in Suisun Bay are characterized by prevailing westerly and
southwesterly windsin late spring, summer, and early autumn and by more intermittent southerly winds
in winter (Gartner and Cheng, 1983).

Sediment

Sediments are an important component of the San Francisco Bay estuarine system. Bottom
sediments provide habitat for benthic organisms and are areservoir of nutrients that contribute to the
maintenance of estuarine productivity (Hammond and others, 1985). Potentially toxic substances, such
as metals and pesticides, adsorb to sediment particles (Kuwabara and others, 1989; Domagalski and
Kuivila, 1993; Flegal and others, 1996). Benthic organisms can ingest these substances and introduce
them into the food web (Luoma and others, 1985; Brown and Luoma, 1995; Luoma, 1996).

The transport and fate of suspended sediments are important factors in determining the transport
and fate of constituents adsorbed on the sediments. In Suisun Bay, the maximum concentration of
suspended sediment usually marks the position of the turbidity maximum, which isacrucial ecological
region in which suspended sediments, nutrients, phytoplankton, zooplankton, larvae, and juvenile fish
accumulate (Peterson and others, 1975; Arthur and Ball, 1979; Kimmerer, 1992; Jassby and Powell,
1994; Schoellhamer and Burau, 1998; Schoellhamer 2001).

Suspended sediments limit the availability of light in San Francisco Bay, which, in turn, limits
photosynthesis and primary photosynthetic carbon production (Cole and Cloern, 1987; Cloern, 1987,
1996). Suspended sediments also deposit in ports and shipping channel's, which then must be dredged to
maintain navigation (U.S. Environmental Protection Agency, 1992). Largetidal velocities, spring tides,
and wind wavesin shallow water all are capable of resuspending bottom sediments (Powell and others,
1989; Schoellhamer, 1996).

Discharge from the Delta contains 83—86 percent of the fluvial sedimentsthat enter San Francisco
Bay (Porterfield, 1980). Bottom sedimentsin Suisun Bay are composed mostly of siltsand claysin
shallow water and silts and sands in deeper water (Conomos and Peterson, 1977). An annual cycle of
deposition and resuspension begins with large influx of sediment during winter, primarily from the
Central Valley (Goodwin and Denton, 1991; Oltmann and others, 1999). Much of this new sediment
depositsin San Pablo and Suisun Bays. Stronger westerly winds during spring and summer cause wind-
wave resuspension of bottom sediment in these shallow waters and increase SSC (Ruhl and
Schoellhamer, 1999). The ability of wind to increase SSC is greatest early in the spring, when
unconsolidated fine sediments easily can be resuspended. As the fine sediments are winnowed from the
bed, however, the remaining sediments become progressively coarser and |ess erodible (Conomos and
Peterson, 1977; Krone, 1979; Nichols and Thompson, 1985; Ruhl and Schoellhamer, 1999).
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FINDINGS

This report describes and documents hydrodynamic and SSC data collected in Suisun Bay from
May 30 through October 27, 1995. In this section, we discuss the general spatial and temporal patterns
observed in the hydrodynamic data organized by timescale, beginning with the tidal timescale and
followed by theresidual, or tidally averaged, timescale. Thetidal and residua timescale sectionsinclude
discussions on current and salinity characteristics. In addition, findings derived from the SSC data are
summarized.

Tidal Timescale Variability

Currents

Thetidal currents often are best characterized using results from harmonic analysis. Harmonic
analysis summary sheets are provided in the appendices for sea-level and tidal-current data. The spatial
variability in thetidal currents are summarized in figures 6 and 7 as the spring tidal current maximum
and neap tidal current minimum in vector form and the RM S current speed, numerically. Figure 6 shows
the near-surfacetidal currentsin the channels measured using ADCPs and figure 7 shows the currentsin
the shallows using single-point velocity measurements. The directions of the current vectorsin these
figuresare oriented using the principal direction of thetidal current ellipse at each location. The principal
direction for each station is determined from harmonic analysis and presented in the appendices.

Figure 6 shows that the tidal currents dissipate as the tide wave propagates landward through
Suisun Bay; the RMS currents are roughly 70 cm/s on Suisun Bay’s western boundary compared to
60 cm/s on its eastern boundary at Mallard Island. Moreover, the RMStidal currents are significantly
lessthrough the northern channel s (~50 cm/s). Based on harmonic analysis, the magnitude of spring tidal
currents are roughly twice those of the neap tidal currents. Finally, thetidal currentsin the shallows are
significantly less than in the channels (compare figs. 6 and 7). Thetidal current ellipsesin shallow
regions also are less eccentric than those in channels because the currents in the shallows are less
bathymetrically constrained (compare the major and minor axes of thetidal current ellipsesto the
harmonic analysis results for velacity in the appendices).

Salinity

Salinities and salinity stratification in Suisun Bay vary significantly at tidal timescales, as shown
in atypical example from Suisun Cutoff, Station CUT (fig. 8). (Salinitiesreported here are according to
the practical salinity scale and, therefore, have no units. However, sea water, which contains about
35 parts per thousand dissolved solids, is represented by 35 on the practical salinity scale.) In this
example, near-bed salinities vary from 2.5 to 7 throughout the tidal cycle and salinity stratification
changes from vertically well mixed (no top-to-bottom salinity difference) to significantly stratified with
top-to-bottom differences on the order of 2. In advection-dominated systems such as Suisun Bay, the
tidal timescale salinity variations principally are aresult of the strong tidal currents and a persi stent,
though seasonally variable, horizontal salinity gradient typically on the order of 0.5 km™. Inthis
example, salinities vary by roughly 5 throughout the tidal cycle, however the degree to which salinities
vary over atidal cycle can change depending on the strength of the horizontal salinity gradient, which
itself variesat tidal, fortnightly, and seasonal timescales. For example, large changesin salinity at afixed
site are expected when the horizontal salinity gradient islocally large. Moreover, because advection
dominates salt transport, salinities reach their peak at high water slack, and are lowest during low water
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dack, asis shown in figure 8. Finaly, salinity stratification in the low salinity zone (0-10) usualy is
greatest during flood tides and least during ebb tides (fig. 8).

Residual Timescale Variability

Currents

Asatypica example of velocity profiles measured in the ship channel of Suisun Bay (fig. 1), time-
series of the longitudinal and transverse residual currents at Station BULLS (fig. 2) are presented in
figure 9. Thelarge vertical shearsin figure 9, especially at sectionsA and B, show that the velocity
profilesat Station BULL S are clearly affected by the presence of salinity. The example profilesgivenin
figure 10 do not resemble alog profile typical of water surface slope-driven flows, nor do they resemble
the residual current profilestypical of gravitationa circulation (Hansen and Rattray, 1965). The shapes
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Figure 6. Near-surface tidal currents obtained from harmonic analysis of acoustic Doppler current profiler measurements in
Suisun Bay, California, (the lengths of the vectors at each location corresponds to magnitude). The spring tidal current maximum
is estimated by (M, + S,) + (07 + K;) and the neap tidal current minimum is not less than (M, - S,) + (0 - K;) where M, and S, are
amplitudes of the principal lunar and solar semidiurnal partial tides, respectively, and 0; and K, are amplitudes of the principal
lunar and Luni-solar diurnal partial tides, respectively (Cheng and Gartner, 1984a). The number associated with each current
vector is the root-mean-squared (RMS) current speed, in centimeters per second (cm/s).

12 Hydrodynamic and Suspended-Solids Concentration Measurements in Suisun Bay, California, 1995




of residual current profiles measured in Suisun Bay’s ship channel are, therefore, a combination of these
two archetypes.

To show that the lack of upstream near-bed Eulerian residual currents was a consistent feature
throughout Suisun Bay during this study, the tidally averaged bottom currents obtained from all of the
ADCPs deployed during 1995 are shown in figure 11. Positive (flood-directed) near-bed currents are
indicative of gravitational circulation, which was prevalent during this study in Carquinez Straits,
represented by Station BEN (fig. 11B, BEN). The near-bed residual currents were, for the most part,
directed seaward (negative) in Suisun Bay except for afew brief periods during neap tidesin Suisun
Cutoff (fig. 11C, CUT) and for a brief period (~10 days) at the end of the record at Station MID (which
also occurred during aneap tide). Since the near-bed residual currents are, for the most part, directed
seaward, the residual currents cannot contribute to upstream accumulations of suspended sediment and
biota, as suggested in the classic conceptual model of estuarine turbidity maxima formation (ETM)
offered by Authur and Ball (1979).
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Figure 7. Near-bed tidal currents obtained from harmonic analysis of single-point-velocity measurements in Suisun Bay, California, (the lengths
of the vectors at each location corresponds to magnitude). The spring tidal current maximum is estimated by (M, + S,) + (04 + K;) and the neap
tidal current minimum is not less than (M, - Sy) + (01 - K;) where M, and S, are amplitudes of the principal lunar and solar semidiurnal partial
tides, respectively, and 0, and K; are amplitudes of the principal lunar and Luni-solar diurnal partial tides, respectively (Cheng and Gartner,
1984a). The number associated with each current vector is the root-mean-squared (RMS) current speed, in centimeters per second (cm/s).
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Salinity

Subtidal salinity variability in Suisun Bay primarily depends on Delta outflow and density-driven
circulation. Density-driven circulation depends on tide-induced vertical mixing which, in turn, varies
with the spring/neap cycle.

Delta outflow accounts for most of the seasonal variability in salinity. During the large winter
uncontrolled runoff events (fig. 4D) Suisun Bay can be completely fresh. At the other extreme, following
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Figure 9. Longitudinal and transverse residual currents at Station BULLS in Suisun Bay, California, June 1,
1995, through September 19, 1995. Tidal current speed at the velocity measurement location (BIN) 19 is shown
in the top panel for reference. The velocity measurement at BIN 1is located 1.9 meters off the bed. The
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figure 10.
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periods of prolonged low Delta outflows that typically occur in late fall and early winter, salinitiesin
Suisun Bay can be relatively high (approximately 20 at Suisun Bay’s eastern end). During the study, at
Station CUT, for example, thetidally filtered salinity (fig. 12D) varied inversely with Delta outflow (fig.
12A). Comparing figures 12A and 12D, one can see that as Delta outflows subsided from Julian day 200
to 235, tidally filtered salinitiesincreased. Conversely, when Deltaouflow gradually increased from 300
to 700 m3/s beginning on day 230, salinitiesat Station CUT decreased. And finally, when outflows began
to subside again near Julian day 270, salinities began to increase.

X103 Weak neap tide Weak n?ap tide Weak neap tide
|
o 5%, T T T T T T T T T
zZ
3 | | |
ow
zZo | |
= % 1.0 —
ga | |
[}
S | |
Sk
o 05 -
s | |
Q
Q |
3 o0 ! ! ! ! ! ! I I I
I I I
20 100
E B ! ! ! ! ! TT T DAYS FROMJANUARYT ! ! ! ! T !
a .
w
w -
o
n
s ]
Z
w -
o
x -
p}
o -
-
g -
x
<

CENTIMETERS PER SECOND CENTIMETERS PER SECOND
N
S
T
|

RMS CURRENT SPEED, INO

w
o

|
}

- - = = Near surfaced | | -
Near bed |

SALINITY

A O P N W N O O N

SALINITY STRATIFICATION
N

| |
0
200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300

DAYS FROM JANUARY 1, 1995

Figure 12. Time-series plot of Station CUT (fig. 2), Suisun Bay, California; A, DAYFLOW
(California Department of Water Resources, 1986); B, depth-averaged along-channel (axial)
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in this report are presented without units because salinity is a conductivity ratio; therefore, it
has no physical units (Millero, 1993).
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At fortnightly timescales, salinity and salinity stratification varied significantly with the spring/
neap cycle. Spring tides are characterized by large tidal ranges and strong tidal currents, whereas neap
tides have small tidal ranges and weak current speeds. The energy inthetidal currents can be quantified
by the RMS current speed that is plotted in figure 12C. High RMS current speeds are associated with
spring tides; low RM S current speeds with neap tides. Asisshown in figure 12D, the tidally averaged
salinities episodically peak at Station CUT during weak neap tides (for example, troughsin the RMS
current speed). Moreover, during neap tides, when the tidally averaged salinity is increasing, dramatic
spikesin salinity stratification also occur (fig. 12E). Although the magnitudes of variability inthetidally
averaged salinity and salinity stratification vary from site to site, these basic trends are consistently
observed throughout Suisun Bay.

Affect of Folsom Dam Spillway Gate Failure on Suisun Bay Hydrodynamics

Based on analysis of tidally averaged near-bed salinity and depth-averaged currentsin the
channels, the hydrodynamics of Suisun Bay were affected minimally by the Folsom Dam spillway gate
failure (July 17, 1995; Julian day 198). The effect of gate failure is detectable only in Suisun Bay at the
tidally averaged timescale. Even though the flows in the American River reached a peak discharge of
roughly 1,000 m3/s as aresult of the failure, this peak is relatively small [roughly 15 percent of the
approximately 7,000 m3/stidal flows that occur daily in the channels of Suisun Bay (Smith and others,
1995)] and the discharge from the failure likely was attenuated greatly when it reached Suisun Bay.

Anincrease in seaward (negative) flow at Mallard Island following the gate failure (fig. 13)
possibly could be attributed to its occurrence. However, thisincreaseis on the order of the longer-term
natural variability in the residual currents at Malard Island. At the stations seaward of Mallard Island
[CUT (fig. 13C) and BULLS (fig. 13D)] the effect of the gate failure on the depth-averaged residual
currents essentially is nonexistent. Moreover, the response of the tidally averaged near-bed salinitiesto
the gate failure is indistinguishable from the natural variability (fig. 14). Salinity datafrom the eastern
stations (CUT, MAL, and RY ER) could not be used to assess the effect of the gate failure because these
stations were completely fresh following the gate failure. Interestingly, thetidally averaged salinities at
stationsBULL S and MART increase slightly following the gate failure. If the gate failure had an effect,
it would havelowered salinitiesin Suisun Bay by increasing the supply of freshwater into the eastern end
of Suisun Bay. Theincreasein thetidally averaged near-bed salinities at these stations likely resulted
from increased density driven circulation that occurred because of the neap tidal conditions during the
time of the gate failure. Neap tides occur at the minimain the RM S depth-averaged current speed (fig.
14C).

Sediment Transport

The hydrodynamic and SSC data have been used to study sediment transport in Honker Bay and
Spoonbill Creek, salt and sediment transport in Suisun Cutoff, and an estuarine turbidity maximum
(ETM) between the Reserve Fleet Channel and Suisun Cutoff. These findings are summarized bel ow.

Warner and others (1997) determined that Spoonbill Creek at the back of Honker Bay actsas a
sediment transport pathway. Significant increases in suspended-solids flux (SSF) occurred during
periods of sustained winds directed along the axis of Honker Bay (westerly winds). The wind induced
surface shear stressincreases SSF out of Honker Bay through Spoonbill Creek through the combination
of two effects: (1) wind-wave resuspension of bed sediments el evates SSC within Honker Bay, and at the
sametime, (2) higher water level at the eastern end of Honker Bay relative to the Sacramento River
creates a net barotropic pressure gradient across Spoonbill Creek which drives aresidual advective SSF
from Honker Bay through Spoonbill Creek into the Sacramento River. The residual dispersive flux was
also out of Honker Bay into the Sacramento River because the tidal excursion in Spoonbill Creek
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(approximately 4 km and approaches 6 km) ismuch longer than Spoonbill Creek itself (3 km). Therefore,
high SSC water advected from Honker Bay into the Sacramento River through Spoonbill Creek on the
ebb tide does not return on the following flood tide which creates the dispersive SSF. The total SSF was
aways out of Honker Bay during Fall 1995 suggesting that the relatively high metals and pesticide
concentrations observed in Honker Bay are not advected through Spoonbill Creek into Honker Bay
during this time of year.
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Data from Suisun Cutoff shows that gravitational circulation transports salt and sediment
differently (Schoellhamer and Burau, 1998). Landward pulses that develop along the bottom at the
beginning of flood tides during weaker neap tides greatly increase the residual landward salt flux. SSC,
however, issmallest during these neap tides and greatest during spring tides. During neap tides, when the
landward pulses occur, relatively little suspended solids are available to be transported by the pul ses.
During spring tides, SSC isgreater during floodtide than ebbtide, so thetidally-averaged flux of sediment
islandward. Landward transport of sediment occurs during spring tides when gravitational circulationis
weakest; thus, gravitationa circulation does not necessarily cause "entrapment" in Suisun Bay.

Bottom topography enhances salinity stratification, gravitational circulation, and ETM formation
seaward of sills (Jay and Musiak, 1994; Schoellhamer, 2001). The sill between the Reserve Fleet
Channel and Suisun Cutoff supports the formation of an ETM (Schoellhamer, 2001). Two topographic
featuresthat place an upstream limit on gravitational circulation at the sill are adecreasein MLLW depth
from 9-5 min the landward direction at the sill and constriction of the channel in Suisun Cutoff (Burau
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(fig. 2) in Suisun Bay, California. Vertical dashed line indicates time of gate failure. Salinities in this report are presented
without units because salinity is a conductivity ratio; therefore, it has no physical units (Millero, 1993).
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and others, 1998). Thistopographic control traps particlesinthe Reserve Fleet Channel. Tidally averaged
SSC awayswas greater in the Reserve Fleet Channel than in Suisun Cutoff as salinity returned to Suisun
Bay in 1995.

SUMMARY

Hydrodynamic and suspended-solids concentration measurements were made by the U.S.
Geological Survey in Suisun Bay, California, between May 30, 1995, and October 27, 1995. The data
are presented in time-series form where the tidal timescale characteristics are reflected in raw data plots
and in harmonic analysis results. The tidally averaged variationsin the data are captured in plots of the
low-pass filtered data. These data document a period of transition from a freshwater-inflow-dominated
condition towards a quasi steady-state summer condition when density-driven circulation and tidal
nonlinearities become relatively important as long-term transport mechanisms. Even though salinities
increased overall in Suisun Bay during the study period, the near-bed residual currents were directed
primarily seaward, indicating that salinity intrusion was accomplished in the absence of gravitational
circulation.

During this study, the Folsom Dam spillway failed, allowing the analysis of the hydrodynamic
effectsin Suisun Bay. Based on the tidally averaged near-bed salinity and depth-averaged currents after
the failure, the effect was essentially nonexistent and was indistinguishable from the natural variability.
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