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PREFACE 

The series of manuals on techniques describes procedures for planning and 
executing specialized work in water-resources investigations. The material is 
grouped under major headings called books and further subdivided into sections 
and chapters; section A of Book 4 is on statistical analysis. 

The unit of publication, the chapter, is limited to a narrow field of subject 
matter. This format permits flexibility in revision and publication as the need 
arises. 

Provisional drafts of chapters are distributed to field offices of the U.S. 
Geological Survey for their use. These drafts are subject to revision because of 
experience in use or because of advancement in knowledge, techniques, or 
equipment. After the technique described in a chapter is sufficiently developed, 
the chapter is published and is sold by the U.S. Geological Survey Books and 
Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225 (au- 
thorized agent, of Superintendent of Documents, Government Printing Office). 
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FREQUENCY CURVES 

By H. C. Riggs 

Abstract 

This manual describes graphical and mathematical 
procedures for preparing frequency curves from sam- 
ples of hydrologic data. It also discusses the theory 
of frequency curves, compares advantages of graphical 
and mathematical fitting, suggests methods of describ- 
ing graphically defined frequency curves analytically, 
and emphasizes the correct interpretations of a fre- 
quency curve. 

Introduction 

A frequency curve relates magnitude of a 
variable to frequency of occurrence. The curve 
is an estimate of the cumulative distribution 
of the population of that variable and is pre- 
pared from a sample of data. 

Frequency curves have many uses in hydrol- 
ogy. Flood-frequency curves are widely used in 
the design of bridge openings, channel capaci- 
ties, and roadbed elevations; for flood-plain 
zoning; and in studies of economics of flood- 
protection works. Frequency curves of annual 
low flows are used in design of industrial and 
domestic water-supply systems, classification of 
streams as to their potential for waste dilution, 
definition of the probable amount of water 
available for supplemental irrigation, and main- 
tenance of certain channel discharges as re- 
quired by agreement or by law. Frequency 
curves of annual mean flows are sometimes 
used in studies of the carryover of annual 
storage (Beard, 1964). 

Frequency curves also provide a means of 
classifying data for use in subsequent analyses. 
For example, Benson (1962a) used intensity of 
rainfall for a given frequency in his regional 
flood-frequency analysis for New England, and 
Riggs (1953) used a frequency curve of runoff 
in excess of assured flow in a forecasting prob- 
lem. Many other applications have been and 

B can be made. 

Cumulative Distributions 

Book 4, chapter Al of the series of Techniques 
of Water-Resources Investigations (Riggs, 1967) 
describes the relation of a frequency distribu- 
tion or probability density curve to its cumu- 
lative form. A more detailed examination of 
this relation helps in understanding the cumu- 
lative distribution, or frequency curve. We 
begin with the two normal distributions shown 
in figure 1. Their cumulative forms can be ex- 
pressed as straight lines by use of the special 
abscissa scale which is derived from the charac- 
teristics of the normal distribution. Both dis- 
tributions have the same median value, 20, and 
these medians plot at 0.5 probability on the 
cumulative graph. The variability of a distri- 
bution is indicated by the slope of the cumu- 
lative distribution; that is, the greater the 
variability, the greater the slope. The standard 
deviation is half the difference between magni- 
tudes at probabilities of 0.16 and 0.84 (Dixon 
and Massey, 1957, table A-4). 

Many frequency distributions are nonsym- 
metrical. For such distributions, the mean, 
median, and mode have different values which 
consequently correspond to different probabili- 
ties on the cumulative graph. A nonsymmetrical 
distribution is classified as skewed. Skewness 
may be shown graphically as right or left; it 
may be described mathematically by a number, 
either positive or negative. Two skewed distri- 
butions and a symmetrical distribution are 
shown in figure 2, which also shows the corre- 
sponding cumulative distributions (frequency 
curves). 

For a normal, or any symmetrical, distribu- 
tion the mean and median are the same value. 
Thus, the value corresponding to the proba- 
bility of 0.5 on the cumulative frequency curve 
is the mean as well as the median for such 

1 
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Figure l.- Two normal distributions and their cumulative forms. 

0 I I I I I 
10 15 20 30 0.9 0.8 0.7 0.5 03 02 0.1 

MAGNITUDE PROBABILITY THAT A RANDOMLY DRAWN INDIVIDUAL 

A. Right skewed WILL EXCEED THE INDICATED MAGNITUDE 

8 Normal 
C. Left skewed 

Figure I.-Normal and skewed distributions ond their cumulative forms on a normal-probability plot. 

distributions. The relative positions of the 
mean, median, and mode for skewed distri- 
butions are shown in figure 3. Only the median 
value can be determined from the cumulative 
plot. The position of the mean with respect to 
the median on the cumulative plot depends on 
the degree of skewness, the direction of skew- 
ness, and the direction in which the frequency 
distribution is cumulated. For example, the 
mean of a particular right (positive)-skewed 
distribution will be exceeded 43 percent of the 
time; but 57 percent of the time it will not be 
exceeded. Thus, if the distribution is cumulated 

from the high end, the mean is to the right of 
the median; if cumulated from the low end, 
the mean is to the left of the median. These 
relations are reversed for a left-skewed distri- 
bution. Figure 4 illustrates the relations. The 
probability scales of the two plots of figure 4 
are different. Each is designed for the particular 
distribution plotted. 

Frequency curves of a time series commonly 
relate magnitude to recurrence interval or re- 
turn period instead of to probability of exceed- 
ence or nonexceedence. Recurrence interval is 
the average length of time between exceeden- 
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Figure S.-Relative positions of the mean, median, and 
mode for right-skewed (upper) and left-skewed 
(lower) distributions. 

ces, or nonexceedences, of a particular magni- 
tude. It is also defined as the reciprocal of the 
probability of exceedence (Gumbel, 1954a; 
Langbein, 1960, p. 48:. Recurrence intervals 
of hydrologic events are usually stated in years 
and thus are reciprocals of probabilities of ex- 
ceedence in one year. Further discussion of the 
meaning of recurrence interval is given in the 
section on “Interpretation of frequency curves.” 

Distributions Used in Hydrology 

Hydrologists have long sought one theoretical 
distribution that would describe flood events. 
If there were such a universal distribution, the 
observed distributions of flood events at various 
sites would differ only in the parameters in that 
universal distribution, and in sampling error. 
Basin characteristics influence the distribution 
of floods, so that it seems unlikely that any one 
theoretical distribution would be generally ap- 
plicable. It is well established that the distri- 
butions of annual minimum flows are highly 
dependent on basin characteristics (Riggs 1965). 

A sample of only 20 or 30 items may define 

- 0.5 
PROBABILITY OF EXCEEDANCE (A) 

OR NONEXCEEDANCE (8) 

I 
f--------- 0.5 

PROBABILITY OF EXCEEDANCE (A) 
OR NONEXCEEDANCE (8) 

Figure A.-Frequency curves showing effect of direction 
of skew and direction of cumulation on position of 
the mean with respect to the median. 

a frequency curve which differs greatly from 
the population frequency curve. Thus, fre- 
quency curves based on small samples may 
appear very dissimilar, and yet the correspond- 
ing population frequency curves may be 
similar. 

As a consequence of the variability of char- 
acteristics from basin to basin and of the 
sampling variability in time, several theoreti- 
cal distributions are used in hydrology. Char- 
acteristics of the more common ones are 
described below. In addition, graphically de- 
fined distributions (those having no known 
underlying formula) are wide1.y used. 

Normal Distribution 

The equation of the normal probability 
density curve is 

.f(X)=(l/&) t?-(x-r)2’*~2, 
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where f(X) is the probability-density function, 
X is the event described, and the parameters 
of the distribution are the mean, cc, and the 
variance, a2 (commonly reported as u, the 
standard deviation). The density curve is bell 
shaped and symmetrical; therefore the mean 
and median are the same. Values of X corre- 
sponding to various cumulative probabilities 
are tabulated in most statistics texts. Normal 
probability plotting paper, available commer- 
cially, is designed so that any cumulative 
normal distribution plots as a straight line on 
it. The range of the normal distribution is 
from minus to plus infinity. 

Lognormal distribution 

Lognormal distribution is a normal distribu- 
tion of In X (Naperian logarithm of X). In 
terms of X, it is a three-parameter distribution 
having a range from zero to plus infinity. The 
statistical parameters of X are given by Chow 
(1964). In practice, X is plotted on common- 
logarithmic probability paper, and the parame- 
ters given by Chow using Napierian logarithms 
do not apply. The lognormal distribution can 
be treated simply as a normal distribution of 
logarithms, or in a complex manner as a skewed 
distribution of the untransformed data. 

Type I extreme-value distribution 
(Gumbel) 

Type I extreme-value distribution, the first 
asymptotic distribution (Gumbel, 1958), has 
two parameters, but it has a fixed skew of 
1.139 and therefore is not symmetrical about 
the mean. Use of this distribution for annual 
floods was proposed by Gumbel (1941). Powell 
(1943) prepared the plotting paper based on 
this distribution ; the Geological Survey Form 
9-179a is a slight modification of Powell’s plot. 
The mean of the distribution occurs at the 
2.33-year recurrence interval when the distribu- 
tion is cumulated from the upper end. Chow 
(1954) shows by his table 3 that for practical 
purposes the extreme-value law is but a special 
case of the log-probability law. 

Type Ill extreme-value distribution 

Type III extreme-value distribution is also 

called the Weibull distribution after the man 
who first used it in analysis of strength of 
materials. Gumbel (1954b) has applied it to 
drought-frequency analysis. The distribution 
has three parameters, a lower limit (which may 
be zero or a finite value greater than zero), a 
characteristic value which has a recurrence in- 
terval of 1.58 years, and a parameter which 
defines skewness. 

Pearson Type II I distribution 

The Pearson Type III distribution is a flex- 
ible distribution in three parameters with a 
limited range in the left direction and unlim- 
ited range to the right. Plotting paper is not 
available for this distribution because skewness 
varies. This distribution is commonly fitted to 
the logarithms of flood magnitudes rather than 
to the magnitudes themselves because this re- 
sults in a smaller skew. The Pearson Type III 
distribution having zero skew is identical to 
the normal distribution. 

The gamma distributions, sometimes used in 
hydrology, are in effect the Type III curves of 
Pearson (Mood, 1950, p. 118). 

Graphically defined distributions 

Distributions defined by graphical means may 
conform to some theoretical distribution but 
ordinarily do not. 

Mathematical Curve/ Fitting 

Normal distribution 

Compute mean and standard deviation of 
sample. Using these, the detailed characteris- 
tics of the distribution can be extracted from 
a table of the cumulative normal distribution. 
For example, suppose the mean and standard 
deviation are computed as 100 and 20, respec- 
tively. We assume that these sample parame- 
ters, Iy and S, are equal to their respective 
population parameters, p and u. Then the mag- 
nitude of the variable at selected levels, call 
it X,, , can be computed from cc and u; and the 
probabilities that a random value of X will be 
less than these values of X, are taken from 
table A-l, page 382, Dixon and Massey (1957). 
In this table, “area” is equivalent to proba- 
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bility. The last two columns of the following 
table are computed. : 

RWlllTClIlW 
X. P(X<Xj P(X>X.) interval of 

exceedme+ 

#I-z.ou= 60 
p-1.5u= 70 
r-l.Ou= 60 
c- .Bo= 64 
/d- .5.T= 90 

/A- .2r= 96 
p -100 

IA+ .2r=104 
r-l- .5.7=110 
r+ .30=11f3 

0.02 0.93 1.02 

:% ; :Z 
1.08 

.21 .79 :::; 

.31 1 .69 1.45 

.42 .53 1.72 
.I0 .50 
:E .42 .31 g 

.79 .21 4.76 

#+l.Oo=120 .a4 
~+l.su=130 .93 
r+2.0u=140 93 

:i; 
6.25 

14.4 
.02 50.0 

If the sample is drawn from a time series of 
annual values, the computed recurrence inter- 
val is in years. The same results could have 
been obtained from a plot on normal probability 
paper. The mean is plotted at 0.5 probability, 
the standard devic+,ion is plotted plus and minus 
from the mean at probabilities of 0.16 and 0.84, 
respectively, a straight line is drawn through 
the plotted points, and probabilities at selected 
levels are read from the line. 

Three-parameter distributions 

Compute mean, x, standard deviation, S, 
and skew coefficient, C,, by the following 
equations: 

x=r.XtN 

,,~cx*-(cx)*l~ 
N-l 

c J’J2CF--3NcxCXW~CX~3, 
I N(N--I) (N-2),9 

where X is the magnitude of an event, and 
N is the number of events in the sample. These 
sample parameters are treated as though they 
were the population parameters in fitting a 
distribution. These parameters could be sub- 
stituted in the formula for the distribution to 
be used, but the distribution cannot be inte- 
grated directly. Therefore, the relation between 
magnitude and probability of exceedence (or 
nonexceedence) is commonly determined from 
a table of frequency factors for the chosen 
distribution and from the general formula 

x=F+m, 

where X is the variable, x is the mean of the 
sample, S is the standard deviation of the 
sample, and K is the frequency factor. For 
example, in the table under the section on 
“Normal distribution,” the coefficients of u in 
the first column are frequency factors, K, for 
the normal distribution. 

Frequency factors for the lognormal distri- 
bution are given by Chow (1964, p. 8-26). 
Recurrence interval is the reciprocal of the 
probability given in the table. A table by Hazen 
(1930) has been widely used, but it was devel- 
oped empirically and contains some values 
which differ from the theoretical ones. Chow’s 
table shows a definite theoretical relation be- 
tween the coefficient of variation, C,, defined as 

and the coefficient of skew, C,. Values of CO 
and C, computed from a sample will rarely be 
related according to theory because the coefli- 
cient of skew computed from a few items is 
notably unreliable. If C, and C, define a much 
different relation than prescribed by theory, 
the lognormal distribution may provide poor 
fit to the data. Matalas and Benson (personal 
commun., 1964) show the standard error of the 
skew coe%icient for N from 4 to 100. 

Frequency factors for the Pearson Type III 
distribution, adapted from a table by Beard 
(1962), are given in table 1. Chow (1964) shows 

Table 1 .-Frequency factors for Pearson Type III distributions 

\From Beard, 19621 

0 
Recurrence hterml (years) 

100 20 10 3.33 2 1.43 1.11 1.05 

1.0 3.03 1.37 1.34 0.38 -0.16 -0.61 -1.12 -1.31 

:i i:: 1.79 1.33 1.34 1.33 .42 -.13 

:: 2:43 2 62 1.74 1.69 1.30 1.32 :s .51 -.03 I: 2 

-.60 --.58 -1.16 -1.19 -1.38 -1.45 

-.55 -.I57 -1.22 -1.1 -1.61 -1.53 

0.0 2.33 1.64 
E 

.52 
“:E 

-.52 -1.28 -1.64 
-.2 2.18 1.56 

1:22 
:E -.51 -1.30 -1.69 

--.I 2.03 1.51 :Z -.43 -1.32 -1.74 
-. : ::fi 1.45 1.19 :iFl -.45 -1.88 -1.79 
-. 1.33 1.16 .13 --.42 -1.84 -1.33 

-1.0 1.59 1.81 1.12 .61 .16 -.83 -1.34 -1.67 

the plotted relation of K to recurrence interval, 
T, for the Pearson Type III distribution for 5 
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values of C,. Matalas (1963) describes the math- 
ematical fitting process without use of a table 
of frequency factors. The computer program 
entitled “Revised Flood Statistics” is available 
for fitting a Pearson Type III curve to data. 

An example of fitting a Pearson Type III 
curve by use of computed parameters and a 
table of frequency factors is given with the 
example of graphical fitting under the section 
of that name. 

Type I extreme-value distribution 

(Gumbel) 

This is a %parameter distribution having a 
constant skew of 1.139. The parameters are 

and 
U=X-;*/a 

l/a =s/u*, 

where u is the mode, l/a is a scale parameter, 
x and S are the sample mean and standard 
deviation respectively, and & and UN are func- 
tions of N,the number of items in the sample. 
Values of y,,? and UN for N from 8 to 1,000 are 
tabulated by Gumbel (1958, p. 228). Part of 
Gumbel’s table is given in table 2. 

The mean and standard deviation of the 
Sample are computed, jjN and aN are read from 

the table, u and l/a are computed from the 
above formulas, and the straight line 

X=&-y/a is determined. 

This straight line is plotted on Powell- 
Gumbel probability paper using the (‘reduced 
variate y” scale. The Geo!ogical Survey Form 
9-179a, flood data plot, does not have a re- 
duced variate scale (but the recurrence interval 
is related to the reduced variate). On 9-179a 
plot the mean, x, at the 2.3%year recurrence 
interval and use the approximate relation 
y=ln T to locate another point on the straight 
line. 

Following is a sample computation for annual 
floods on Columbia River near The Dalles, 
oreg., for 1858-1946. See U.S. Geological Sur- 
vey Water-Supply Paper 1080, page, 337, for 
data. 

Mean flood is 606,200 cfs=z 

Standard deviation, S=d(CX--Nz’)/N-1 
=175,200. 

From table 2 for N=89, 

YN=.!%~ 
(TN= 1.20, 

then 
1/c~=S/u~=175,200/1.20=146,000, 

and 

=606,200-(0.558)(146,000)=524,700. 

The equation of the straight line is 

X=u+y/ar=524,700+146,OOOy. 

The relation y=ln T may be used to define 
plotting points for large recurrence intervals. 

y=ln T=2.303 log T. 

For T=50 years, y=3.91, 

and 

x=524,700+ 146,000(3.91)= 1,096,OOO cfs. 

Table I.--Means and standard deviations of reduced 
extremes 

[Extracted from a more complete table by Oumbell 

N BN ON 

10 0.4952 0.9497 
ii .5128 1.021 

3”: .5362 : 5Z 1:112 : .E 

35 .5403 1.128 

t E : “5::: 1.141 1.152 

:i .5485 .5521 1.161 1.175 

ii8 .5548 1.185 1.194 

1”o: : .5600 Ebb 1.201 1.206 
200 .5672 1.236 
500 .5724 1.259 

1,000 .5745 1.269 

The line is defined on the graph of figure 5 
by the points 

and 
x=606,200 cfs at 2.33 years 

1,096,OOO cfs at 50 years. 

The plotted points for the period 1858-1948 
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are shown to indicate the fit of the computed 
line. 

Type I I I extreme-value distribution 
Examples of fitting this type of distribution 

to low-flow data are given by Gumbel (1954b). 

Graphical Fitting 

Graphical fitting requires no assumption as 
to the type or characteristics of the distribu- 
tion. In the graphical method, each individual 
in the sample is assigned a probability or re- 
currence interval. Then magnitudes of the in- 
dividuals are plotted against probabilities or 
recurrence intervals, and a line is drawn to 
properly interpret the points. 

Assignment of probabilities is by means of 
a plotting-position formula. Various formulas 
may be used, each based on a different assump- 
tion as to the characteristics of the sample. 
Langbein (1960) relates the better-known plot- 
ting-position formulas to their underlying as- 
sumptions. Benson (1962b) compares the re- 

sults of using various plotting positions on the 
economics of engineering planning. The Geo- 
logical Survey uses the formula 

T= l/p= (n+ 1)/m, 

where T is recurrence interval in years, p is 
probability of an exceedence in any one year, 
n is the number of items in the sample, and 
m is the order number of the individual in the 
sample array (Dalrymple, 1960). Upper case 
symbols, P, N, and M are often used alterna- 
tively. The sample data may be arrayed- 
arranged in order of magnitude-beginning 
with the largest as No. 1, or with the smallest 
as No. 1, according to whether the frequency 
curve is to describe the probability of exceed- 
ence or of nonexceedence. A distribution curve 
can be cumulated from either end, and in the 
graphical method this effect is accomplished 
by selecting the direction in which the data 
are arrayed. 

The next step is plotting magnitude against 
recurrence interval (or probability) on a graph. 
If arithmetic coordinates are used, an S-curve 

RECURRENCE INTERVAL, IN YEARS 

Figure 5.-Gumbel frequency curve of annual floods on Columbia River near The Dalles, Oreg., showing agreement with the 
plotted points. 
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usually results. It is difllcult to define such a 
curve by the few observations; it is customary, 
therefore, to use a graph sheet having the ab- 
scissa graduated in such a way that a particular 
theoretical frequency curve will plot as a 
straight line. Such graph sheets are available 
for the normal, lognormal, and Gumbel Type 
I distributions. It is possible to prepare such 
a scale for any two-parameter distribution. 

Although sets of data of the same type may 
not appear to lie on straight lines on a parti- 
cular plotting paper, the lines of good fit usually 
are only slightly curved in one direction. Such 
lines may be more confidently defined from 
the plotted points than sharply curved lines. 
An additional advantage of the probability 
graph appears when a straight line is a reason- 
able interpretation of the plotted points; then 
the straight line is a frequency curve of the 
theoretical type on which the plotting paper 
is based. A discussion of normal-probability 
paper is given by Dixon and Massey (1957, 
p. 55-57). It should be clearly understood that 
a frequency curve is not necessarily normal 
just because the points are plotted on normal- 
probability paper (or has a Gumbel distribu- 
tion because the points are plotted on Gumbel 
probability paper); only when the frequency 
curve is a straight line is this true. 

The mean of a normal distribution corre- 
sponds to the 0.5 probability or to the a-year 
recurrence interval. But a curved line on 
normal-probability paper represents a skewed 
distribution whose mean is not at 2-year re- 
currence interval. The effect of skew on the 
relation of mean to recurrence interval is easily 
demonstrated by use of the Gumbel Type I 
distribution which has a fixed positive skew. 
As used for flood analyses, the mean occurs at 
2.33-year recurrence interval. But if the same 
Gumbel distribution is used to represent the 
frequency of floods less than, the positions of 
the mean and median are reversed, and the 
mean plots at about 1.59 years. This effect is 
shown by figures 3 and 4. The discharge cor- 
responding to the 2.33-year recurrence interval 
as obtained from a curved line on Gumbel 
probability paper is not the mean. It can, how- 
ever, be used as a characteristic discharge as 
could the 2-year value or any other near the 
central part of the distribution. 

Example of graphical fitting 

The annual discharges for the years 19 15-50 
inclusive in table 3, column 2, can be used to 
define a frequency curve. The curve can be 
cumulated from the high end or from the low 
end, depending on whether the data are arrayed 
from the high end or from the low end. Both 
arrays are given in table 3. , 

Table 3.-Computation of plotting position 
. . 

water 
Year 

Order nun- Plotting or&r num- PlottiI& 
Q her, m; high- position ber m; low- position 

e.st es No. 1 (n+l)/m eat as No. 1 (n+l)/m, 

1915 

:; 
18 
19 

1920 
21 

z 
24 

1.09 
3.37 
1.95 
2.31 
2.86 

2.00 
11.2 

7.40 
2.18 
1.76 

11.2 
1.43 
2.06 
1.76 
l.b4 

1.95 
1.09 
1.16 
1.86 
2.31 

1.19 
1.03 

18.6 

::fi 

6 

:i 
6 

6.16 
37.0 

1.06 

::3 

1.12 4 
1.43 4.11 2 

$3”; 
1:32 

% :: 2.18 1.19 

4.62 

::E 

::Zi 

2:: 
2.85 
9.25 
6.30 

37.0 36 1.03 

1.23 

% 
5: 30 

18.5 

4.11 
3.70 
2.86 
4.62 
2.65 

:+ 
1:Sl 
1.12 
1.23 

Arraying 20 or 25 items, that’ is, arranging 
them in order of magnitude, and ,assigning 
order numbers, can be done readily by obser- 
vation. For a larger number of items, various 
schemes may be used. One method is to write 
each item and its year of occurrence on a card, 
then arrange the cards in order of magnitude, 
number the cards, and transfer the order num- 
bers to the table of items. Another method 
utilizes transparent plastic strips, one for each 
period of record used. Each strip has a cali- 
brated length equal to the abscissa scale on 
Geological Survey Form 9-179a or 9-179b. On 
the strip are marked the plotting positions for 
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l the particular n, identified by order number. 

Thus, it is unnecessary to compute plotting 
positions by this procedure, and plott,ing can 
be done rapidly. Most attractive of all is a 
machine program developed by the U.S. Bureau 
of Public Roads; this program produces the 
probability graph with the points plotted on it. 

The plotting positions given in table 3 are 
estimated recurrence intervals; probabilities 
would be their reciprocals; n is the number 
of items (1950-1915-l-1=36), and m is the 
order number. Plotting positions may be com- 
puted by slide rule or read from a table pre- 
pared for the purpose. 

based on the Gumbel Type I distribution. 
Figures 6 and 7 show plots of the data from 
table 3. Flood data are usually plotted on Form 
9-179a, and minimum-flow data on Form 
9-179b. The points are averaged by eye in dram- 
ing the lines, with the extreme points given 
less weight than the others because their recur- 
rence intervals are not so well defined. 

Interpretation of the curves would be as 
f0110\vs : 
On figure 6 the discharge defined by the curve 
at lo-year recurrence interval would be ex- 
ceeded as an annual maximum at intervals 
averaging 10 years in length. Conversely, figure 
7 indicates that the discharge at intervals 
averaging 10 years in length will be less than 
the curve value corresponding to the lo-year 
recurrence interval. Further interpretation of 
a frequency curve is given on page 12. 

D 

B 

Discharge is plotted against recurrence in- 
terval on Geological Survey Form 9-179a or 
9-179b. The former has an arithmetic ordinate 
scale, and the latter a logarithmic ordinate 
scale. The abscissa scales are alike and are 

I I ’ I11111111 II I I I 
I 

I IllI/ I II I Illlll I I 
. I 

200 I 

1.01 1.1 1.2 2 3 5 10 20 30 50 100 200 
RECURRENCE INTERVAL, IN YEARS 

I 
600 

Figure 6.-Frequency curve based on data from table 3, assuming that data are annual maximums. 
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6000 
5000 

4000 

20 

10- 
1.01 11 12 2 3 5 10 20 30 50 100 

RECURRENCE INTERVAL, IN YEARS 

Figure i’.-Frequency curve based on data from table 3, assuming that data are annual minimums. 

For comparison with the graphical curve of defined by the data of table 3 is computed as 
gure 6, the theoretical Pearson Type III curve follows : 

Mean=&CQ/N=12,486/36=347 

variance=s2=CQ2-(CQ)2/N 
N-l 

z4,542,500-155,900,196/36=6055 
35 

Standard deviation=S=77.8 

Coefficient of skew= C,= N2F,Q3-3NcQ~Q2+2(CQ)3 
N(N-1) (N-2)S3 

=(36)‘(1,738,665,756)-3(36) (12,486) (4,542,500)+2(12,486)3 
(36) (35) (34) (6055) (77.8) c c*=1.04. 
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A simpler definition of C: is the ratio of the 
third moment about the mean to the 312 Dower 
of the second moment about the mean; that is 

which, for this example, gives C,=O.94 if S is 
not adjusted by the factor N/N-l. The differ- 
ence between results of the two formulas for 
C, will increase as N decreases. 

Plotting pbsitions are computed by 

Q=&+KS, 
where & and S are as computed above, and K 
is obtained from table 1 for various recurrence 
intervals at a C, of 1.0. For example, for the 
20-year recurrence interval, 

&=347+ 1.87(77.8) =492. 

It can be seen from table 1 that the frequency 
factor is little affected by changes of a tenth or 
so in the coefficient of skew; therefore, a simple 
method of computing C, should be adequate. 
The theoretical Pearson Type III curve defined 
by the data is plotted on figure 6. 

Computation of the’ coefficient of skew re- 
quires cubing the individual values, which is 
time consuming on a desk computer. Theoret- 
ical fitting, therefore, is most easily done on 
a digital computer. 

Use OF historical data 

The graphical method of defining a frequency 
curve is readily adaptable to inclusion of cer- 
tain historical data. Essentially, an estimate of 
the recurrence interval of each historical event 
is made on the basis of available information, 
and the event plotted at this recurrence inter- 
val. Occasionally, the historical information 
may indicate the need to modify the recurrence 
interval of a flood within the period of record. 
Dalrymple (1960, p. 16-18) describes the 
procedure. 

Comparison OF Mathematical and 

Graphicat Fitting 

Mathematical fitting has the following ad- 

B vantages : 

1. For the same theoretical distribution, every 
analyst using a given set of data would 
get the same answer. 

2. Fitting can be done by electronic computer. 
3. The result can be completely described by 

a few parameters. 
Mathematical fitting has the following dis- 

advantages : 
1. Selection of the theoretical distribution is 

arbitrary. 
2. No one theoretical distribution will fit all 

data of one type such as flood peaks. 
3. Characteristics of a set of data tend to be 

obscured if they are not plotted; however, 
plotting can be done separately. 

4. No objective method is available for incor- 
porating historical information in the 
computation. 

Graphical fitting provides the following ad- 
vantages : 
1. The procedure is simple and can be done 

quickly. 
2. No assumption as to the particular form of 

the distribution need be made. 
3. Relation of the curve to the points is readily 

seen. 
4. Historical data may be included. 

Graphical fitting has the following dis- 
advantages : 
1. Even though the same plotting position 

formula is used, different analysts will 
draw somewhat different frequency curves. 

2. The result cannot be described by two or 
three parameters. 

The above comparisons of mathematically 
and graphically fit,ted frequency curves are 
based on statistical considerations. If there 
were one underlying distribution for a parti- 
cular streamflow characteristic, such as annual 
flood peaks, then fitting that distribution 
mathematically to all sets of annual flood- 
peak data would be desirable. Under that con- 
dition it is assumed that the type of population 
distribution is known, and the sample is used 
to estimate the parameters. Among several 
basins of equal size the differences in computed 
parameters would be due to sampling errors 
only. But basins are not only not the same size, they 
differ also in their flood-generating character- 
istics and, consequently, would have different 
population frequency distributions. Thus, the 



12 TECHNIQUES OF WATER-RESOURCES INVESTIQATIONS

variability among a group of annual flood-peak
frequency curves is due to sampling error and
differences in basin characteristics ; any advan-
tage of mathematical fitting is reduced because
physical characteristics may produce a fre-
quency curve that is unlike any theoretical
one. The large influence of basin characteristics
on the shape of certain low-flow frequency
curves is described by Riggs (1965) . Likewise,
a flood-frequency curve for a stream draining
a basin composed of a humid mountainous
part and a semiarid lowland part would be
a composite having an irregular shape not
closely represented by any theoretical frequency
distribution .

Describing Frequency Curves
It is sometimes desired t,:, characterize fre-

quency curves by means of numerical indexes
for comparing several curves or for use in hy-
drologic analyses . Tine mean or median is a
commonly used index of central tendency .
Variability is usually described by the coeffi-
cient of variation . C,=SIX, which is the
standard deviation divided by tile mean, and
thus is dimensionless
The mathematical fitting process provides

value" ~d the mean and standard deviation .
If a three-paratneter distribution is fitted, the
coefficient of skew is also computed . These
three parameters completely describe the
distribution .
The moan and standard deviation of graphi-

cally fitted frequency curves are readily ob-
tained from the graph if the frequency curve
u a straight line on noanal or lognormal
probability paper,
The usual graphically fitted frequency curve

is not a straight line on tile plotting paper
used ; consequently, tile mean is not at a known
probability or recurrence interval, the standard
deviation cannot be accurately determined, and
the curvature indicates the existence of skew.
necc . For such curve, it is customary- to use
the median flow as the characteristic of central
tendency The Lane-Lei (Lane and Lei, 1950)
variability index may be used to describe the
variability . The Lane-Lei index is an approxi-
mation ,d the standard deviation and is com-
puted as follows from a plot on lognormal

probability paper .

1 . Values of discharge at 10 percent intervals
from 5 to 95 percent fire read front the
curve (a probability scale rather than a
recurrence interval scale is used) .

2 . The logarithms of these values are found .
3 . The standard deviation of tile logarithms

VE (log \ ('logX)'lN-- 1 is the varia-
bility index -

A coefficient of variation can also be defined
as tile variability index divided by the median .

It is not customary to estimate the skevrness
of a graphical frequency curve because skew-
ness is of little use in characterizing such a
curve .
More specific comparisons of frequency

curves can be made by considering magni-
tudes at particular probability levels or re-
currence intervals . The mean is such a one,
of course . Others commonly used are the annual
mi ninnum flow at 2-year recurrence interval and
flood peaks at many recurrence intervals
(Benson, 1962x) .

Interpretation of Frequency Curves

A frequency curse based ~,n random
geneous data is an estimate ,d the cumulative
probability distribution of tile population from
which the sample was drawn The following
interpretation: of the frequent' curve require
the assumption that the curve is a good repre-
sentation of the population distribution .

Referring to tile graphical curve of figure 6,
the recurrence interval of 5(10 cfs is 16 years .
This means that the annual na\imunt will ex-
ceed 500 cfs at intervals averaging 16 years in
length, or that tile probability of tile annual
maximum exceeding 5x1 cfs in any one year
is 1 , 16

Front figure 7 tile recurrence interval of 250
cfs is 13 years . Thus, tile annual minimum dis-
charge will be less than 250 cfs at intervals
averaging 13 years in length, and the proba-
bility that the minimum discharge in any one
year will be less than 250 cfs is 1,13-
Many interpretations of frequency curves in

hydrology have been stated in terms of tile
probability "of equaling or exceeding" a se-
lected value . Most variables in hydrology-,



notably streaunflow, are continuous---but re-
ported as discrete-and the theoretical proba-
bility of occurrence of any particular value in
s continucnls distribution is zero . Therefore it
seems desirable to use only "of exceeding."
The interpretations of frequency curves given

above YYill not answer questions such as the
probability of an event of 10-year recurrence
interval being exceeded in a 10-year period .
Intuitively, one might expect that probability
to be 0.5, but it is not. The correct probability
can be computed as follows . Since the probe-
bility of exceeding the 10-year event in 1 year
is 0 .1, the probability of not exceeding it in
1 year is 0.9 . Then, the probability of not ex-
ceeding it in 10 yeah is, by the multiplicative
law of probabilities

(0.9)'0=0.35,

slid the probability of one or more events ex-
ceeding the 10-year event in 10 years is 0.65 .
A more complete interpretation of a fre-

quency curve is given by Riggs (1961) who
also proposed in that reference, that the fre-
quency curve be used as a basis for a family
of curves giving the probability of events ex-
ceeding certain magnitudes in given periods of
years (design periods) . Figure S shows a flood-
frequency curve and the design-probability
curves computed from it .

It should be noted that the above discussion
dues not apply to frequency curves based on
the Beard (1943'1 method of computing plotting
positions . For such curves the n-year event has
a probability of 0.5 of not being exceeded in it

years . See f.angbein (1960) for a further dis-
cussion of Beard's plotting position .
Although frequency curves are used as though

they were accurate representations of the popu-
lation distribution, we know that they may not
be . Benson (1960) sampled from a known dis-
tribution and shoes-ed a wide range in shape
and position of frequency curves defined by
different samples of the same size . Another
way of assessing the reliability of a frequency
curve is by computing the confidence limits .
Chow (1964, p . b 31) describes a method . These
computations indicate that the frequency curve
is most reliable in the vicinity of the mean .

In comparing frequency curves for two dif-
ferent streams, the analyst should keep in mind
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Figure B .-Design-prolwbility curves (lower graph) and

the frequency curve on which they are based (upper

graph).

that the curves may differ because of chance
or because of the effects of different basin char-
acteristics, or both . The population distribution
of a flow characteristic of one stream may be
considerably different from the population dis-
tribution of that characteristic for another
stream . Riggs (1965) discusses some basin char-
acteristics which influence the shape of the
frequency curve of annual minimum flows,

Special Cumulative Frequency
Curves

Frequency curves are often useful for defin-
ing the distribution of events even though the
events are not entirely independent of each
other (that is, they are serially correlated), in
which case the probability interpretation must
be somewhat modified and cannot be precisely
stated .
An example of a frequency curve based on

serially correlated data is that of the annual
minimum flows of South Fork Obion River,
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Figure 9.-Frequency curve of annual minimum flows and plot showing serial correlation, South Fork Obion River near 
Greenfield, Tenn. 

Tenn., in figure 9. Also in figure 9 is shown 
the first-order serial correlation between the 
annual minimums. The existence of this serial 
correlation should warn the analyst that inter- 
pretations of the frequency curve in the usual 
way will be subject to more than the usual 
uncertainty. 

The frequency distribution of daily mean dis- 
charges of a stream, plotted on a log normal 
graph, is called a duration curve (Searcy 1959). 
Daily mean discharges are not only serially 
correlated, they are nonhomogeneous because 
of the yearly cycle in streamflow which pro- 
duces different means and ranges of discharge 
at different times of the year. Thus, the dura- 
tion curve cannot be interpreted as a proba- 
bility curve, but it is useful as a description 
of the distribution of daily means that has 
occurred and may be expected to recur over 
a period of several years. The duration curve 
also has other uses because its shape and posi- 
tion are defined by basin characteristics. 

Although the annual flood series is commonly 
used for frequency analysis, the partial-duration, 

series is also used. This series is made up of all 
floods above an arbitrary base regardless of 
their time sequence. Such a series is not a true 
statistical series and cannot be treated rigor- 
ously. Use of the term “recurrence interval” 
with the partial-duration series introduces dif- 
ficulties if the series includes more floods than 
years. The partial-duration flood-frequency 
curve is useful in studying the frequency 
of inundation. Dalrymple (1960) describes cur: 
rent practice. Riggs and Thomas (1965) discuss 
the interpretation and use of the method. 

Frequency curves of mean discharge for 
periods longer than 1 year have been used 
in storage analyses (Stall and Neill, 1961; 
Stall, 1964). Such curves must be interpreted 
carefully; the recurrence interval in years of 
an event that extends over a period of more 
than 1 year is hard to visualize except for the 
No. 1 item in the array. 

The foregoing special frequency curves pro- 
vide some information on probability of ex- 
ceedence of an individual event, although this 
probability may not be estimated directly or 
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precisely. Another type of frequency curve is 
prepared merely to describe the distribution 
of events by size; probability does not enter 
into the problem because the distribution of 
future events is not of interest. A well-known 
curve of this type is one showing the distribu- 
tion of particle sizes of a soil or sediment sample. 
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