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0 SECTION (P)--PRINCIPLES OF GROUND-WATER FLOW AND STORAGE 

The keystone of this section and the entire course is Darcy's law, which 
provides the basis for quantitative analysis of ground-water flow, The final 
outcome of this section, after establishing the necessary supporting 
relationships, is a simplified development of the ground-water flow equation. 

Darcy's Law 

Assignments 

*Study Fetter (1988), p. 75-85, 123-131; Freeze and Cherry (1979), Darcy's 
law--p. 15-18, 34-35, 72.-73; physical content of permeability--p. 26-30; 
Darcy velocity and average linear velocity--p. 69-71; or Todd (1980), p. 
64-74. _ I 

*Work Exercise (2-1)--Darcy's law. 

*Define the following terms, using the glossary in Fetter (1988), an 
unabridged dictionary, or other available sources--steady state, unsteady 
state, transient, equilibrium, nonequilibrium. 

*Study Note (2-1)--Dimensionality of a ground-water flow field. 

The importance of Darcy's law to ground-water hydrology cannot be 
overstated; it provides the basis for quantitative analysis of ground-water 
flow. Several important points related to Darcy's law that are covered in 
Fetter (1988) are emphasized below. 

(1) The physical content of hydraulic conductivity. The reason for the 
statement by some writers that hydraulic conductivity is a coefficient of 
proportionality in Darcy's experiment is demonstrated in the first part of 
Exercise (2-l). Theory and experiment indicate that the coefficient of 
hydraulic conductivity represents the combined properties of both the flowing 
fluid (ground water) and the porous medium. The physical content of hydraulic 
conductivity is developed in connection with equations (4-8) and (4-9) in 
Fetter (1988). The term "intrinsic permeability" designates the parameter 
that describes only the properties of the porous medium, irrespective of the 
flowing fluid. Explicit use of fluid properties and intrinsic permeability 
instead of hydraulic conductivity is required in analyzing density-dependent 
flows (for example, movement of water with variable density in fresh ground 
water-salty ground water problems) or flows that involve more than one phase 
or more than one fluid, as occurs in the unsaturated zone, in petroleum 
reservoirs, and in many situations that involve contaminated ground water. 

(2) The Darcy velocity (or specific discharge) and the average linear 
velocity. The Darcy velocity (equation (5-24) in Fetter, 1988) is an apparent 
average velocity that is derived directly from Darcy's law. The average 
linear velocity (equation (5-25), the Darcy velocity divided by the porosity 
(n), is a better approximation of the actual average velocity of flow in the 
openings within the solid earth material. In most practical problems, 
particularly those involving movement of contaminants, the average linear 
velocity is applicable. 
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(3) Dimensionality of flow fields. Flow patterns in real ground-water 
systems are inherently three dimensional. Often, hydrologists analyze 
ground-water flow patterns in two or even one dimension. The purpose of Note 
(2-l) is to introduce the concept of flow system dimensionality. The 
hydrologist must differentiate between the actual ground-water flow patterns 
that occur in a real ground-water system and what is assumed about these flow 
patterns as an approximation in order to simplify their quantitative 
analysis. 

Exercise (2-l) --Darcy ‘s Law 

The purpose of this exercise is to develop an increased familiarity with 
Darcy's experiment and to practice using Darcy's law in some typical 
problems. 

A sketch of a laboratory seepage system is shown in figure 2-l. The 
"seepage system" may be thought of as a steady flow of water through the 
square prism of fine sand. The system input is the volume of water flowing 
through any cross-section of the sand prism per unit of time (Q). The system 
response is the hydraulic gradient in the sand prism, defined as the 
difference in head (Ah) between the two piezometers divided by the distance 
between them (1). The water input may be changed by adjusting the control 
valve. This water input, which equals the discharge from the system, is 
measured at the downstream end of the experimental apparatus. 

The results of a series of hypothetical experiments on this flow system 
are listed in table 2-l. For each experiment, Q is changed by adjusting the 
control valve, and both Q and Ah are measured. The most convenient way to 
consider these data is to make a graphical plot. We will assume that we 
already know, based on previous experiments, that Q is proportional to A, the 
cross-sectional area of the sand prism. In other words, if all other 
experimental conditions are the same, doubling the prism cross-sectional area 
A will double Q. In our experiments A equals 1.21 ftz. 

Complete the entries in table 2-l and make a plot of Ah/l (y-axis) 
against Q/A (x-axis) on the worksheet provided (fig. 2-2). After you have 
prepared the graph, answer the following questions: 

(1) 

(2) 

(3) 

(4) 

How would you describe or characterize the relationship between the two 
variables Ah/ 1 and Q/A? 

Assuming that we are dealing with a linear relationship, write an equation 
for this relationship between the two variables. The first step is to 
recall the basic form of a linear equation in terms of x and y. 

Make a graphical determination of the slope of the "experimental" curve 
(in this case, straight line). 

Express the relationship in (2) in terms of Q; that is, Q = ?. This is a 
form of Darcy's law that we see frequently, except that the slope of the 
"experimental" curve is in the denominator. 
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Figure 2-l. --Sketch of laboratory seepage system. 

Table 8-l. --Data from hypothetical experiments with the laboratory seepage 
system 

Q1 
Test (cubic feet bh QIA 

number per day) (feet) Ah/ 1 (feet/day) 

1 2.2 0.11 

2 3.3 . 17 

3 4.6 .23 

4 5.4 .26 

5 6.7 .34 

6 7.3 .38 

7 7.9 .40 

1 Q is steady flow through sand prism, Ah is head difference between 
two piezometers; 1 is distance between two piezometers; A is constant 
cross-sectional area of sand prism (fig. 2-l). 

39 



n 

. .++‘:.. 

.-.. :.:.A. 
. . . . 

.,*..>.f..:‘. 

.;..;.;.+. 
. . . . 

. . . 

. .:..:s.+-.>. 

. . 
..e..... ;.. 

. . . . 
.<..:.:-.:. 

.;-.;.;.;.. 
. . . * 

. . 

..:..:..;..:.. 

. . . . 
.-...-.-... 

. . 

.; _.... :..:‘. 

: : 
. . . . , .,.. :.. 

, . . . 

. -1. .I..<. .:_, 
. . 

.:..1..--.* 
. . . 

.; ..C. !..:” 

.:..I.;.:.. 
. . . : 

.+.;..;..;.. 

.--v.. z-2.. 
. . . . 

_>..c .,.. *.. 
. 

.;-.;.;.;.. 
. . . . 

. .;. .:. . . . . .:. 
,.___ 5.:.1. 

. . . . 
. , . . . . . _ . . . 

. . : : ,.;..; ., . . . . . 

. . . . 

..;..i.; .-.-. 

.a.... c-2.. 
. . . . 

. . _ . , . , -0. . 

* * * : 
-;..;.; .,-. 

. . . . 

. . . 

..:..:..i-.:-. 

.:..‘..;..L. 
. . . . 

.,.e,. 1-e.. 

: : : : 
.\..,.. .-.-. 

. . . . 
. . 

-.:--:..i-,-. 

.:..5.:.,. 
. . . . 

‘:.-~.:-“... 

.;..;.;..:-. 
. . . 

.+:..; . . . . . 

. . . 
v..w.... -. 

. . . . 

..:-:-.;. +. 

. ..‘... ._.. 
. . . . 

-<..>.:..;. 
-;.-;.;..:.. . . . . 
. . 

. ‘..‘-{. -1.. 

.:..,.:.:.. 
. . . * 

.a .-.. , . . . . . 

: : : : 
-.. ..,....... 

. . . . 

. . 

. .I--:.. .:. .:. . 

.:..:. :. .,. 
. . . 

.I -... a..... 

: : : . 
es . . . . . . . :.. 

. . . . 

: . . . ,-...- >..T..>. 
. . 

.; . . . . . . . ,. 
. . . 

-2.. >.<..‘.’ 

-.-w ;-; . . . . . 
. . . , 

. . . . 

. . . . 
.-<.-\a: . . . . . 
,-;.-:-:.-:-. 

. . . . 

. . 
t+.+.~.~ 
I.:..: . . . . ,. 

. . . . 
1-d ._._,._.., 

. : : : 
, - ;. . , . . . . . . 

. . . . 

: * -.; ..:.. j-+. 
.: . . . . . . 2. 

. . . . 
. . . ..~‘~~..‘. 
-;..;.;.e:-. 

. . . . 
. 

-.I..:. . <. .:_. 

. . . . . . . ..‘L. 
. . . . 

-,-‘:.!..~. 

. . . . ;.;..:.. 
. . . 

. 

MODEL THROUGHFLOW 
69 MODEL CROSS-SECTIONAL AREA A ’ IN FEET PER DAY 

Figure b-2. --Worksheet for plotting data from hypothetical experiments with 
the laboratory seepage system. 
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(5) If we express Darcy's law in the form Q = K*dh/L*A or Q = K*i*A, where K 
is the hydraulic conductivity of the sand, what is the numerical value of 
K in this "experiment"? 

(6) On the sketch of the laboratory seepage system describe the conditions of 
head and flow at the boundaries of the sand prism (upstream end, 
downstream end, and walls of prism); that is, describe the BOUNDARY 
CONDITIONS of the sand prism. Also sketch some typical streamlines and 
equipotential lines within the sand prism. 

(7) Solve problems 6 and 7, p. 159 in Applied Hydrogeology.by C. W. Fetter 
(1988). Make a sketch of the stated problem, and write the appropriate 
formulas before performing numerical calculations. 

Note (2-l). --Dimensionality of a Ground-Water Flow Field 

Ground-water velocity at a point in a ground-water flow field is a 
vector; that is, it possesses both magnitude and direction. In general, the 
magnitude and direction of the velocity vector is a function of location in 
the flow field. 

Several examples of velocity fields, in which velocity vectors are drawn 
at selected points in the flow field, are shown in figure 2-3. Also shown in 
figure 2-3 are x and y Cartesian coordinate axes. These axes are mutually 
perpendicular and located in the plane of the figure. The third dimension is 
represented conceptually by the z coordinate axis (not shown) which is 
oriented perpendicular to the plane of the figure. In figure 2-3(A) all the 
velocity vectors are parallel to one another, equal in magnitude, and oriented 
parallel to the x coordinate axis. In figure 2-3(B) the same conditions apply 
except that the velocity vectors are not equal in magnitude. 

In both figures 2-3(A) and 2-3(B) we assume that the illustrated velocity 
vectors, which are drawn parallel to the x coordinate axis, are replicated 
exactly in the y and z coordinate directions. In other words, in this special 
situation, if the velocity vectors are known or defined by an equation at all 
points in the x coordinate direction, the velocity vectors are also-known at 
any point in the x-y plane, the x-z plane, and the y-z plane. Thus, in this 
special situation, the velocity distribution in the ground-water flow field is 
completely described if it is defined only in the x coordinate direction, or, 
more formally, velocity (v) = f(x). Such a velocity field is termed 
"one-dimensional." 

Examples of two-dimensional velocity fields are shown in figures 2-3(C) 
and 2-3(D). Again, in these examples we assume that the velocity field is 
replicated exactly perpendicular to the plane of the figures in the z 
coordinate direction. In these cases, because velocity varies from point to 
point in the two-dimensional x-y plane, two coordinates in the plane are 
required to specify the velocity field, or v = f(x,y). Similarly, the concept 
of flow-field dimensionality is extended to three dimensions; that is, 
velocity varies from point to point in three-dimensional x-y-z space, or v = 
f(X,Y,Z) l 
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Figure 2-3. --Examples of ground-water flow fields depicted by velocity vectors 
at selected points: (A) and (B) are one-dimensional flow fields; 
(C) and (0) are two-dimensional flow fields. 
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In the Darcy experiment the earth material in the prism in which flow and 
head differences are measured is assumed to be isotropic and homogeneous. 
This assumption, together with measured linear head drops in the prism, result 
in equally spaced head contours (potential lines) and streamlines that are 
perpendicular to them as shown in figure 2-4. This pattern of potential lines 
and streamlines represents a flow field in which the velocity vectors are 
parallel and equal everywhere in the prism as in figure 2-3(A). Therefore, 
the flow in an ideal Darcy prism is an example of one-dimensional flow. 

The Darcy prism in figure 2-4 is not horizontal as is the prism in figure 
2-3. If the same hydraulic conditions at the boundaries of the prism are 
maintained during the experiment, the results of a Darcy experiment are 
independent of the orientation of the sand prism--that is, the prism can be 
horizontal, vertical, or tipped at any intermediate angle. This is one of the 
conclusions drawn by Fetter (1988) in his discussion of figure 5.3 on page 57. 

In real ground-water systems , ground-water flow fields are always 
three-dimensional. However, in order to simplify problem analysis, we often 
assume as an approximation that the flow field is two-dimensional, or 
sometimes even one-dimensional. Problem solutions of acceptable accuracy 
sometimes can be obtained by using such simplifying assumptions regarding the 
flow field; however, in other situations the results obtained by employing 
such simplifications may be grossly in error. 

Transmissivity 

Assignments 

*Study Fetter (1988), p. 105, 108-111; Freeze and Cherry (1979), p. 30-34, 
59-62; or Todd (1980), p. 69, 78-81. 

*Work Exercise (2-2) --Transmissivity and equivalent vertical hydraulic 
conductivity in a layered sequence. 

Transmissivity is a convenient composite variable that applies only to 
horizontal or nearly horizontal hydrogeologic units. In order to analyze 
vertical ground-water flow, we must use values of hydraulic conductivity that 
are appropriate to the vertical direction. Exercise (2-2) provides practice 
in the use of formulas (4-16), (4-17), (4-22), and (4-23) in Fetter (1988). 
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Figure Z-4. --Idealized flow pattern in a Darcy prism, ABCD, composed of 
homogeneous, porous earth material. 
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Exercise (2-2)--Transmissivity and Equivqlent Vp-tical Hydraulic Conductivity 
in a Layered Sequence 

The definitions of transmissivity and equivalent vertical hydraulic 
conductivity and the relevant formulas for their calculation can be found in 
any standard textbook on ground-water hydrology (see Fetter, 1988, p. 105, 
110, 111). 

The four horizontal beds described in the table below are assumed to be 
isotropic and homogeneous (not a generally realistic assumption for a field 
situation). 

(1) 

(2) 

(3) 

Calculate the equivalent horizontal hydraulic conductivity (K,) and the 
transmissivity (T) for the four layers. 

Calculate the equivalent vertical hydraulic conductivity (K,) for the four 
layers. 

In these calculations (a) what bed or beds exert the greatest control on 
the equivalent horizontal hydraulic conductivity and transmissivity, and 
(b) what bed or beds exert the greatest control on the equivalent vertical 
hydraulic conductivity? 

Bed 
number 

1 

2 

3 

Bed thickness Bed hydraulic conductivity (K) 
(feet) (feet/day) 

25 10 

30 100 

20 0.001 

4 50 50 

Aquifers, Confining Layers, Unconfined and ‘Confined Flow 

Assipnment 

*Study Fetter (1988), p. 101-105; Free29 and Cherry (1979), p. 47-49; or 
Todd (1980), p. 25-26, 37-45. 

The physical mechanisms by which ground-water storage in saturated 
aquifers or parts of aquifers is increased or decreased (described in the next 
section of the outline) are determined by the hydraulic conditions under which 
the ground water occurs. In nature, ground water in the saturated zone occurs 
in unconfined aquifers and confined aquifers. The upper bounding surface of 
an unconfined aquifer is a water table, which is overlain by an unsaturated 
zone and is subject to atmospheric pressure , whereas confined aquifers are 
overlain and underlain by confining beds. A confining bed has a relatively 
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low hydraulic conductivity compared to that of the adjacent aquifer. Ratios 
of hydraulic conductivity generally are at least 1,000 (aquifer) to 1 0 
(confining bed), and commonly are much larger. In addition, the head at the 
top of the confined aquifer always is higher than the bottom of the overlying 
confining bed. This means that the entire thickness of the confined aquifer 
is fully saturated. 

Ground-Water Storage 

Assignments 

*Study Fetter (1988), p. 73-76, 105-107; Freeze and Cherry (1979), p. 51-62; 
or Todd (1980), p. 36-37, 45-46. 

*Study Note (2-2) --Ground-water storage. 

*Work Exercise (2-3)--Specific yield. 

Hydraulic parameters for earth materials may be divided into (a) 
transmitting parameters and (b) storage parameters. We already have 
encountered the principal transmitting parameters, hydraulic conductivity (K) 
or intrinsic permeability (k), and transmissivity (T). In this section the 
principal storage parameters, storage coefficient (S), specific storage (S,), 
and specific yield (Sy), are introduced. 

The physical mechanisms involved in unconfined storage and confined 
storage are different. A change in storage in an unconfined aquifer involves 
a physical dewatering of the earth materials; that is, earth materials that 
previously were saturated become unsaturated. When a change in storage takes 
place in a confined aquifer, the earth materials in the confined aquifer 
remain saturated. 

Note (2-2). --Ground-Water Storage, by Gordon D. Bennett’ . 

Originally it was thought that a porous medium acted only as a 
conduit-- in other words, that it simply transmitted water according to Darcy's 
law. Approximately 50 years ago, hydrologists recognized that a porous medium 
could also act as a storage reservoir-- that water could be accumulated in an 
aquifer, retained for a certain time, and then released. 

In problems of steady-state ground-water flow, the inflow to a unit 
volume of aquifer always balances the outflow. When inflow equals outflow in 
this manner, no water is accumulating in the system, and storage need not be 
considered. In general, however, inflow and outflow are not in balance. The 

1 U.S. Geological Survey, Reston, Virginia. 
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general equation for systems in which storage is a factor is termed the 
equation of continuity, and may be written as follows: 

Inflow - Outflow = Rate of accumulation. (1) 

Steady-state flow refers to the special case where the rate of accumulation 
is zero. 

The general equation indicated above could be applied to a water tank 
which is being filled at a rate Q1, and drained simultaneously at a rate Qs. 
The rate of accumulation in the tank (fig. 2-5) is Q1 -Qg. Negative 
accumulation, or depletion, occurs if $ exceeds Q1. If, for example, water 
is flowing in at 5 cubic feet per second , and flowing out at 6 cubic feet per 
second, the volume of water in the tank will diminish at a rate of 1 cubic 
foot per second; and if the area of the bottom of the tank is 10 square feet, 
the water level in the tank will fall at a rate of 0.1 feet per second. In a 
tank, therefore, the factor that relates the rate of change of water level to 
the rate of accumulation of fluid is simply the base area of the tank, A. If 
V is the volume of water in the tank and h is the water level, then 

v = Ah, (2) 

and if we add a volume of water AV to the tank, 
increment Ah such that 

the water level rises by an 

Av = AAh. (3) 

Now suppose a length of time At is required to add the volume of water 
Av. Dividing the above equation by this time interval At gives 

Av = A Ah 
-- 
At A; 

(4) 

Av 
where -- is the rate at which water is added to the tank which may be 

At 
expressed, for example, in cubic feet per second; and 

Ah 
-- is the rate at which the water level rises in the tank--expressed, 
At 

for example, in feet per second. 

dV 
In the customary notation of differential calculus, we would use -- in 

dt 
Av 

place of -- for the rate at which fluid is added to the tank, or taken into 
At 

dh Ah 
storage; and -- in place of -- for the rate at which the fluid level rises in 

dt At 
the tank. 
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Figure 8-5. --Inflow to and outflow from a tank. 
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dh dV 
When -- is zero, -- must also be zero, and inflow must equal outflow. 

dt dt 
Because h is not changing with time, the system is said to be at equilibrium, 

dh 
or to be in the steady state. When -- differs from zero, inflow and outflow 

dt 
are out of balance; accumulation or depletion is occurring, and the system 
is described as nonequilibrium. 

The mechanism of storage in an unconfined aquifer is essentially similar 
to that of storage in an open tank. Consider a prism (as shown in fig. 2-6) 
through an unconfined aquifer which is bounded below by an impervious layer. 
Let the base area of the prism be A, and the porosity be n. If the prism is 
saturated to a height h above the base, the volume of water contained in the 

dh 
prism is (n A h); and if the water level is falling at a rate --, the volume 

dt 
of water in the prism is decreasing at a rate , 

dV d dh 
-- = -- (n A h) = n A --, 
dt dt dt 

(5) 

assuming that the sand is fully drained as the water level falls. 

In general, however, a certain fraction of the water is retained in the 
pores by capillary forces as the water level falls. When the water level is 
lowered a distance Ah, therefore, the volume of water removed will not be 
nAAh, but rather an.AAh, where a is the percentage of the water, expressed as 
a fraction, that can'be drained by gravity. The fraction that is retained by 
capillary forces is (1-a). In this case, then, 

AV = anA4h (6) ‘11 

is the volume of water removed and 

dV dh 
-- = anA -- (7) 
dt dt 

is the volumetric rate of removal of water from the prism. The quantity an is 
called the specific yield' or storage coefficient of the aquifer, and is 
usually denoted as S. Using this notation, the expression for 
of water that must be removed to achieve a drop in water level 

Av = Stih. 

1 The specific yield of an unconfined aquifer is often denoted by Sy or S.Y. 
The storage coefficient S and specific yield Sy of an unconfined aquifer are 
approximately equivalent (see Fetter, 1988, p. 107, eqn. 4-20). The storage 
coefficient S is used to describe storage properties of both unconfined and 
confined aquifers. 

AV, the volume 
of Ah, is 

(8) 
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Figure Z-6. --Reference prism in an unconfined aquifer bounded 
below by an impervious layer. 
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Therefore, - Av 

ii 
= SA (9) 

or, expressed as a derivative, 
dV 
me = SA (10) 
dh 

Storage coefficient, for the unconfined case, therefore is given by the 
equation 

1 dV 
s = - l --. 

(11) 

A dh 

This equation states that storage coefficient is the volume of water released 
per unit decline in head per unit surface area of aquifer. The expression 
given previously for the volumetric rate of removal of water from the prism 
was 

dV dh 
-- = anA -- (12) 
dt dt 

or, in terms of storage coefficient, 

dV dh 
em = SA -- . 
dt dt 

(13) 

The same result can be obtained from the general rules that govern 
derivatives, as follows: 

dV dV dh dh 
-- = - - . - - = SA --. (14) 
dt dh dt dt 

In the given prism through the unconfined aquifer, therefore, it is not 
necessary for inflow to equal outflow. If the inflow to the prism exceeds 
outflow, water will accumulate in the prism at a rate equal to the difference 
in flow, and a rise in water level with time will be observed. If outflow 
exceeds inflow, water is being depleted within the prism, and a fall of water 
level with time will be observed. Thus, any record of water level versus time 
in an aquifer is essentially a record of water taken into storage or released 
from storage in the vicinity of the recording station. 

The property of storage is observed in confined aquifers as well as in 
unconfined aquifers. The mechanism of confined storage depends, at least in 
part, on compression and expansion of the water itself and of the porous 
framework of the aquifer; for this reason confined storage sometimes is 
referred to as "compressive storage." In this discussion we do not attempt to 
analyze of the mechanisms of confined storage, but concentrate instead on 
developing a mathematical description of its effects that is suitable for 
hydrologic calculations. In order to describe the effects of confined 
storage, we will consider an imaginary experiment. 
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Cons ider a vertical prism of unit cross-sectional area, cut from a 
horizonta 1 confined aquifer and extending the full thickness of the aquifer 
(fig. 2-7 1. Assume that water is pumped into the prism through a pipe and 
that the sides of the prism are sealed so that all of the water that is pumped 
in must accumulate in storage within the prism. Assume that the prism is 
saturated to begin with, and that as additional water is pumped in, the 
pressure within the prism, as measured by the height of water in the measuring 
piezometer, increases. Assume further that the pressure increase is observed 
to occur in the following way: a constant incremental change (or increase), 
Ah, occurs in the water level in the piezometer tube for each constant 
incremental change (or increase), AV, in fluid volume injected into the prism. 
Thus, if the total injected volume, V, is plotted against the water level in 

dV Av 
the piezometer, the graph will be a straight line with slope -- = --. 

dh Ah 

Finally, assume that the following is observed: if the cross-sectional 
area of the prism is doubled, twice as much water must be injected in order to 
produce the increase in water level Ah; if the area is tripled, three times as 
much water must be injected in order to produce the incremental increase 
Ah; and so on. Thus, if the area of the prism is allowed to vary, the 

dV dV/dh 
quantity -- will not be the same in each case, but the quantity -e-w- will be 

dh A 
the same, where A is the base area of the prism. This latter quantity, then, 
is a constant, independent of the area of the prism under consideration, as 
well as of V and h. It is presumably a function only of the properties of the 
aquifer material and the thickness of the aquifer. If the aquifer is 

dV/dh 
homogeneous and of uniform thickness, the quantity ----- will have the same 

A 

value for any prism through the aquifer, and may be considered to be a 
constant for the aquifer. It is denoted as the storage coefficient, S--that 

dV/dh 
is, s = -----. 

A 

Figure 2-8 illustrates the relation between V, h, and the cross-sectional 
area A for the prism of aquifer we have considered. For any given base area, 
the ratio of the increment of injected water to the resulting head increment 

Av 
is a constant, --. Thus, a plot of V against h will have a constant slope. 

Ah 
However, if the base area is varied, the slope of the graph must vary 
proportionately. Thus, if we are given three prisms for which 

(15) 
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Figure 2-7. -- Vertical prism in a confined aquifer bounded 
above and below by confining material and 
laterally by walls that are hydraulically 
$ed. (Modified from Bennett, 1976, p. 
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Figure 2-8. --Relation between volume of water injected into 
a prism of earth material that extends the 
full thickness of a confined aquifer and head 
in the prism for different values of prism 
base area. 
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0 we will observe that 

4 1 Avz 1 Av3 
--- = - --- = - --- 
Ah1 2 Ah, 3 Ah, 

(16) 

as indicated in figure 4. Therefore, 

dV 
1 NV, > 1 (Av2) 1 (Av,) -- 
-- ----- = -- ----- = -- ----- = dh = S. 
Al AhI A2 Ah, 4 Ah, -- 

A 

(17) 

Storage coefficient in the confined case is similar to that in the 
unconfined case in that it, is the volume of water taken into*storage per unit 
increase in head per unit surface area of aquifer, or the volume released from 
storage per unit decline in head per unit surface area of aquifer. Storage 
coefficient in a confined aquifer is thus a measure of the capacity of the 
aquifer to absorb water under pressure, and to release water in response to 
pressure drop, where pressure is measured in feet of water. If head is 

dh 
observed to be increasing at a rate -- in the prism of aquifer under 

dt 
consideration, water is being taken into storage in the prism at a volumetric 

dV 
rate -- where 

dt 
dV dV dh dh 
-- = mm WV = S A --. (18) 
dt dh dt dt 

Although the definition of confined storage coefficient by the equation 

1 dV 
S =- -- (19) 

A dh 

gives no information about the reasons for storage, it describes accurately 
the effects of storage, and is therefore an adequate definition for the 
purpose of engineering calculations. As in the case of an unconfined aquifer, 

dh 
if head in the given prism of confined aquifer is increasing at the rate --, 

dt 
dV 

water is being taken into storage in the prism at a rate -- where 
dt 

dV dV dh dh 
-- = -- -- = S A --. 
dt dh dt dt 

(20) 

55 



In either the unconfined or the confined case, therefore, the equation 

dV 
Inflow - Outflow = Rate of Accumulation, -- 

dt 

0 
(21) 

becomes 
dh 

Inflow - Outflow = S A -- (22) 
dt 

dh 
when applied to a prism of aquifer that has a base area A. If -- = 0, inflow 

dt 
to the prism equals outflow. 

Exercise (2-3)--Specific Yield 

A rectangular prism whose base is a square with sides equal to 1.5 ft and 
height equal to 6 ft is filled with fine sand whose pores are saturated with 
water. The porosity (n) of the sand equals 34 percent. The prism is drained 
by opening a drainage hole in the bottom and 2.43 ft8 of water is collected. 
Calculate the following quantities: 

total volume of prism 

volume of sand grains in prism 

total volume of water in prism before drainage 

volume of water drained by gravity 2.43 fta 

volume of water retained in prism (not drained by gravity) 

specific yield 

specific retention 

(1) Assuming the value of specific yield determined above, what volume of 
water, in ftS, is lost from ground-water storage per miz for an average 
1-ft decline in the water table? 

Express this volume as a rate for 1 day in ftaIsec. 

Express this volume as depth of water in inches over the mi*. 

(2) Assuming the value of specific yield determined above, a volume of water 
added as recharge at the water table that is equal to (a) 1 in. and (b) 
4.8 in. per unit area would represent what average change in 
ground-water levels, expressed In feet? 
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Ground-Water Flow Equation 

Assipnments 

*Study Fetter (1988), p. 131-136; Freeze and Cherry (1979), p. 63-66, 
174-178, 531-533; or Todd (1980), p. 99-101. 

*Study Note (Z-3) --Ground-water flow equation. 

*Define the following terms by referring to any available mathematics text 
that covers differential equations--independent variable, dependent 
variable, order, degree, linear, nonlinear. 

A differential equation that describes or "governs" ground-water flow 
under a particular set of physical circumstances may be regarded as a kind of 
mathematical model. In ground-water flow equations head generally is the 
dependent variable. If the flow equation is solved, either analytically or 
numerically, values of head can be calculated as a function of position in 
space in the ground-water reservoir (coordinates x, y, and z) and time (t). 
The differential equation provides a general rule that describes how head must 
vary in the neighborhood of any and all points within the flow domain 
(ground-water flow system). Numerical algorithms that are amenable to 
solution by digital computers (for example, the finite-difference 
approximation of a differential equation) may be developed directly from the 
differential equation. 

The ground-water flow equation developed in Note (2-3) is widely 
applicable. Note that the steady-state form of this equation represents the 
mathematical combination of (a) the equation of continuity and (b) Darcy's 
law. 

Note (2-3) .--Ground-Water Flow Equation--A Simplified Development, 

by Thomas E. Reilly’ 

The following development of the ground-water flow equation is simplified 
in that it (1) employs an intuitive and physical rather than a mathematical 
approach and (2) implicitly makes the assumption that the flowing fluid 
(water) is incompressible. This assumption will be discussed further during 
the course of the presentation. 

The continuity principle often is expressed by the "hydrologic equation" 
as: 

Inflow (of water) = Outflow (of water) * A Storage (of water) (1) 

(The symbol A (delta) means "change in". ) The units of (l), because we are 
dealing with liquid water, are La/T, the same units as discharge Q. 

l U.S. Geological Survey, Reston, Virginia 
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Let us first consider the steady-state form of (1) in relation to a 
hypothetical rectangular block of aquifer material (fig. 2-9). The 
steady-state form of (1) 

Inflow = Outflow (2) 

may be written 

Inflow - Outflow = 0, 

or expressed equivalently in different words: 
Quantity (of water) in (to block) - Quantity (of water) out (from block) = 0. 

Let us define flow into the block as positive and out of the block as 
negative. Then, with reference to figure 2-9 the previous equation may be 
written: 

QXleft + Qyfront + Q'top + QXright + Qyback + Qzbottom = ' (3) 

Let: AQX = QXleft + QXright = Quantity of flow gained or lost in the 
x direction 

'Qy = QYfront + Qyback = Quantity of flow gained or lost in the 
y direction; and 

llQz = QZtop + Qzbottom = Quantity of flow gained or lost in the 
z direction. 

Then: 

AQX + Aqy + AQZ = o. (4) 

Equation (4), which is expressed in terms of gains or losses in flow in 
the three coordinate directions relative to the aquifer block rather than 
absolute flow magnitudes at the faces of the block, is a convenient form of 
the steady-state continuity equation (2) and (3) for our purposes. 

Equation (4) is specific in that we are dealing with the flow of water 
relative to a block of aquifer material. However, it is too general and, 
therefore, useless in practical applications unless we have a specific rule 
for calculating Qyfron and so forth in (3) or AQX, and so forth in 
(4). The rule that 

, Qzto , 
re ates ( ) specifically to ground-water flow is Darcy's E t 

law. Relative to the block of aquifer material in figure 2-9, Darcy's law may 
be written: 
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Ah 
Qx = Kx Ay AZ -- 

Ax 

Ah 
Qy = KY Ax AZ -- 

AY 
(5) 

Ah 
Qz = K, Ax Ay -- 

AZ 

where K,, K , and K are values of hydraulic conductivity in the respective 
,coordinate xirectio&, and Ah is the change in head between respective pairs 
of block centers.'l We assume that the hydraulic conductivity remains constant 
within the aquifer block in each coordinate direction. Expressed more 
formally, we assume that the aquifer block is anisotropic and homogeneous with 
respect to hydraulic conductivity. Note that Darcy's law in equation (5) 
calculates the flowacross each of the six block faces in the three coordinate 
directions x, y, and z and does not calculate the change in flow, AQX, AQy, or 
AQZ in each of the three coordinate directions as expressed in equation 4. 

Ah 
For example, the first equation in (5) Qx = K, Ay AZ -- would be used to 

Ax 
calculate Qxl 

f 
ft and Qxright, and AQX is the algebraic sum of these two 

across-face lows, as expressed in equation (4). 

Substituting equations (5) into (4) and dividing all terms by Ax Ay AZ we 
obtain: 

Ah Ah Ah 
A(K, By AZ -- ) 

Ax 
A(K~ AX AZ --) 

AY 
A,(K~ AX Ay --) 

AZ 
--------_---_-- + -_---_-------- + -------------- = 0 

or 
Ax Ay AZ Ax by AZ 

If we take the limit of this equation as the 
smaller and smaller (Ax, Ay, and AZ approach 
of partial derivatives 

Ax Ay AZ 

(6) 

block of aquifer material becomes 
zero), we may write (6) in terms 

2 Here and in the immediately succeeding discussion, reference is made to the 
six aquifer blocks and heads at their respective centers that are located 
adjacent to the six faces of the reference block of the aquifer depicted in 
figure 2-9. 
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0 This equation is related to the widely utilized Laplace equationa but differs 
from it in that this equation accounts for differences in hydraulic 
conductivity in the three coordinate directions (Kx, KY, and K,). 

Let us now add storage to the basic steady-state flow equations (2), (4), 
(61, and (7). With reference to equation (4), we can write: 

AV 
A@ + AQY + AQX = -- (8) 

At 

as a fotim of equation (1) which includes changes in storage. The right-hand 
side of (8) symbolizes that the volume of water in our hypothetical block of 
aquifer material (V) (fig. 2-9) changes (AV) during a specified time interval 

Av 
(At). This symbolic representation of a rate of change in storage -- is 

At 
general and non-specific in the sense that it could represent types and 
configurations of flow other than ground-water flow. Our problem now is to 

Av 
obtain an expression equivalent to -- that relates specifically to 

At 
ground-water flow--that is, to our (or any) block of aquifer material. 

At this point review (if necessary) the previous note on ground-water 
storage by G. D. Bennett, which provides a physical discussion of the 
following required relationships: 

Av = S A Ah = S Ax Ay Ah (9) 

and 

Av Ah 
-- = s Ax Ay -- (10) 
At At 

a Laplace's equation, a second-order partial-differential equation that is 
used in diverse fields of science, may be written as a three-dimensional 
ground-water flow equation in the form 

or 
a2h a2h a2h 
m-e + m-s + -mm = 0. 
ax2 ay2 a22 

Because hydraulic conductivity K does not appear in this equation 
explicitly, it must be constant in all dlrections. In other words, this 
equation implies that the flow medium is isotropic and homogeneous with 
respect to hydraulic conductivity. 
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where S is the storage coefficient (dimensionless) and Ah is the change in 
head as measured in a tightly cased well (piezometer) in the block of aquifer 
material during the time interval At. 

In reviewing the discussion leading to equations (9) and (10) in the note 
on storage by Bennett, we recall that the storage coefficient S is defined 
with reference to a vertical prism of earth material that extends completely 
through any given aquifer. Thus, the storage coefficient S is a storage 
parameter that relates to representations of ground-water flow systems in 
which the entire aquifer thickness is treated as .a single unit or layer.4 The 
appropriate storage parameter for more fully three-dimensional flow is the 
coefficient of specific storage S,. This coefficient is equivalent to S/b 
where b is the aquifer thickness. Thus, specific storage represents the 
volume of water released from or taken into storage per unit volume (instead 
of "per unit area" as for storage coefficient S) of the porous medium per unit 
change in head. Specific storage S, has units of L-l. 

We see from the preceeding definition that specific storage S, is a 
storage parameter that relates to a unit volume of aquifer material; that is,' 
a unit area of aquifer in the xy plane times a unit thickness of aquifer. . 
Thus, in equations (9) and (lo), we can express S, relative to the original 
reference block of aquifer material with dimensions of Ax, by, and As, as 
s,Az. Therefore, we can express equation (10) as 

Av Ah 
a- = s,AzAxAy --. (loa) 
At At 

To add storage to the continuity equation that describes the flow through 
a block of aquifer material , we substitute Darcy's law and equation (10a) into 
the transient continuity equation (8), which becomes 

A (Kx AyAz ;;) + A (KY AxAz :” Ay ) + A (KZ AXAY ;;) 
Ah 

= s,AzAxAy --. (11) 
At 

By dividing all terms in (11) by AxAyAz, we obtain 

(KY ii) + ;; (KZ ;;) = S, !!!. (12) 

Taking the limit of this equation (Ax, Ay, AZ, and At approach zero), we may 
write equation (12) in terms of partial derivatives: 

ah a ah 
+ ,; (Ks %fi = S, ii. (13) 

4 As a result of its definition, the storage coefficient S is generally used 
in flow equations that represent two-dimensional nearly horizontal -flows. 
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Equation (13) is a widely applicable form of a transient, three-dimensional 
ground-water flow equation. One- and two-dimensional simplifications of this 
equation can be found in most ground-water texts. 

To review, a steady-state form of the ground-water flow equation always 
involves the combination of two rules or principles: 

(1) a statement of the continuity principle in the form of an 
equation which is appropriate to the problem we are trying to solve, 
and 

(2) Darcy's law, which provides a specific rule for calculating the 
system flux; in our case this flux involves the flow of liquid water 
through porous earth materials. 

If our problem is a transient one, we must add a storage term to the 
equation, which represents a change in the dependent variable (in our problems 
h or head) as a function of time. In the preceeding development this storage 
term was represented in equation (10): 

Av Ah 
-- = s Ax Ay --. 
At At 

In more formal developments of the ground-water flow equation the 
continuity equation is written in terms of mass flux instead of volume flux. 
Instead of equation (2) relative to our block of aquifer material 

Quantity of water in - Quantity of water out = 0, (2) 

we express the continuity equation in more general terms as: 

Mass of fluid in - Mass of fluid out = 0. (14) 

More specific to our problem, the steady-state continuity equation that 
involves fluid mass is expressed in terms of p (fluid density) and the fluid 
velocity components vx, v Y' and va as: 

0 (PV,) 0 (PV,) Npv,) ’ 
------ + ---s-- + ----em = 0. 

8X BY 62 
(15) 

Note that (pv) has the units of mass flux, M/I?T. 

Writing Darcy's law in the form 

ah 
vX = Kx -- (16) 

i3X 

for one coordinate direction and substituting (16) in the first term of (15) 
we obtain 
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a ah 
-- 
8X 

( /I K, -- 1 = 0. 
ax 

Assuming that p is constant we can write 

(17) 

(18) 

which is exactly the same as the first term in (7). This last discussion 
indicates that our simplified approach to developing the flow equation 
involved the implicit assumption that the fluid density remains constant 
throughout the flow field. This is equivalent to the assumption that liquid 
water is incompressible. Physically meaningful solutions to many practical 
problems in ground-water hydrology employ this assumption. 
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