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ABSTRACT

Kirby, W.H., 1987. Linear error analysis of slope-area discharge determinations. In: W.H. Kirby,
S.-Q. Hua and L.R. Beard (Editors), Analysis of Extraordinary Flood Events. J. Hydrol., 96:
125-138.

The slope-area method can be used to calculate peak flood discharges when current-meter
measurements are not possible. This calculation depends on several quantities, such as water-
surface fall, that are subject to large measurement errors. Other critical quantities, such as
Manning’s n, are not even amenable to direct measurement but can only be estimated. Finally,
scour and fill may cause gross discrepancies between the observed condition of the channel and the
hydraulic conditions during the flood peak.

The effects of these potential errors on the accuracy of the computed discharge have been
estimated by statistical error analysis using a Taylor-series approximation of the discharge for-
mula and the well-known formula for the variance of a sum of correlated random variates. The
resultant error variance of the computed discharge is a weighted sum of covariances of the various
observational errors. The weights depend on the hydraulic and geometric configuration of the

channel.

The mathematical analysis confirms the rule of thumb that relative errors in computed dis-
charge increase rapidly when velocity heads exceed the water-surface fall, when the flow field is
expanding and when lateral velocity variation (alpha) is large. It also confirms the extreme
importance of accurately assessing the presence of scour or fill.

INTRODUCTION

The slope-area method frequently is used to determine peak flood discharges
when direct (current-meter) measurements cannot be obtained. The accuracy
of slope-area determinations is of concern because such measurements often
are the principal basis for extension of stage-discharge ratings into the flood-
stage regime. Although examination of the hydraulic equations of the slope-
area method does reveal important factors influencing the accuracy of the
measurement, more precise quantitative error estimates are desired. This paper
presents a statistical error analysis that shows how errors in the individual
measured or estimated variables propagate through the slope-area equations to
affect the computed discharge.



126

h 1 s T
Yo oL f h  High-water
_T s ’7’/ =XV ..._he mark .
hw : Th (HWM) HWM
__V1 9]\[ \vd
ho TT—v=Q/A

h1

Datum

Fig. 1. Definition sketch for slope-area formula.

HYDRAULIC FORMULAS

The slope-area computations, like other applications of classical open-chan-
nel hydraulics, are based on the principles of conservation of matter (continu-
ity equation) and conservation of energy (Bernoulli equation). Although the
passage of a flood hydrograph involves unsteady flow, it is assumed that
quasi-steady conditions prevail at the instant of occurrence of the peak flow at
any point and that the high-water marks traced out by the flood crest define the
water-surface elevations and slopes (Henderson, 1966, p. 376). The hydraulic
principles and computational procedures of the slope-area method are des-
cribed by Dalrymple and Benson (1967). General techniques of high-water mark
identification and field data collection are described by Benson and Dalrymple
(1967).

Figure 1 shows generalized profile and cross-section views of a slope-area
channel reach. The channel is assumed to be nonuniform, so the water-surface
profile, energy grade line and channel bed are nonparallel. The energy equa-
tion may be written between sections 0 and 1 as follows:

hy + hy, = hy + h, + h¢ + h, 1)

in which A, and h, are the elevations of the water surface at sections 0 and 1,
h,, and h, are the velocity heads, A, is the head loss due to boundary friction
and A, is the head loss due to expansion or contraction of the flow field. The
water-surface elevations h, and h, are defined by high-water marks observed in
the field; the other terms can be expressed in terms of the (unknown) discharge
Q.
The friction-loss term A, is the central term in the slope-area computation.
To evaluate this term, the U.S. Geological Survey uses Manning’s formula as
follows:

Q = ~ARMSI® - KS}* @)

in which c is a dimensional constant (equal to 1 when lengths are measured in
meters and equal to 1.486 when lengths are in feet), n is Manning’s roughness
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coefficient, A is cross-sectional area, R is hydraulic radius (4/P, ratio of area
to wetted perimeter) and S;is the friction slope (h;/L,, ratio of friction head loss
to reach length L,). K = (¢/n)AR*® is called the conveyance of the cross
section. Methods for determining n-values on the basis of field observations are
described in several sources (Chow, 1959; Benson and Dalrymple, 1967; Barnes,
1967; Arcement and Schneider, 1984).

Manning’s formula was developed for so-called unit channels, of generally
trapezoidal, rectangular, or semicircular cross-sectional shape, in which the
entire cross section constitutes a single compact uniform-flow field. Natural
stream channels, in contrast, often have compound cross sections with marked-
ly variable flow depths and Manning’s roughness values.

Manning’s formula is applied to compound cross sections by subdividing
them into unit subchannels or subareas. Subdivision is performed in such a way
that each subarea is a compact shape with approximately uniform depth,
roughness and flow velocity, and with negligible interactions with adjacent
subareas. The conveyance of the compound channel is the sum of the subarea
conveyances. Manning’s formula for the compound section then is:

Q = (ZK)S" (3)

in which the K; are the subarea conveyances. Guidance on subdivision is
provided by Benson and Dalrymple (1967) and by Davidian (1984).

In natural stream channels, conveyance commonly varies with distance
along the channel. If the conveyance varies linearly between cross sections and
if Manning’s equation defines the friction slope at each intermediate point,
then integration along the channel yields the result:

hf = Q2L1/K0K1 (4)

in which K and K, are the total conveyances of the cross sections at the ends
of the reach. Thus, the effective conveyance of a reach with linearly varying
conveyance is the geometric mean of the end-section conveyances.

The velocity head at a cross section is given by:

h, = aV%2g = a(Q/A)/2g (5)

in which V = Q/A is the mean velocity in the cross section, g is the accelera-
tion of gravity and « is a velocity-head coefficient that expresses the effect of
cross-sectional nonuniformity on the kinetic energy flux. In the absence of
site-specific information on velocity distributions, the Geological Survey as-
sumes that « = 1 for unsubdivided unit cross sections. For compound sections,
an approximate velocity distribution is obtained by applying Manning’s for-
mula independently to each subarea, with the result:

= Y(K}ADIK[AY) (6)

in which the K; are subarea conveyances.
Finally, energy losses caused by increased eddying and turbulence in ex-
panding or contracting flows must be considered. These losses are poorly
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understood and there is no unanimity on how they should be computed (Hen-
derson, 1966, p. 237; Benson and Dalrymple, 1967). The treatment of expansions
is particularly questionable and such reaches should be avoided if possible
when selecting slope-area measurement sites. The Geological Survey expresses
these losses in terms of change in velocity head as:

he = kl (hvl - hvo) (7)
in which:
-k = -0.5, ifh, < h, (expanding)
kl = . i (8)
kK = 0, if h, > h,, (contracting)

(Benson and Dalrymple, 1967). By referring to the definition of velocity head,
the criterion for expanding and contracting reaches may be expressed in terms
of the ratio (A,/Va;)/(A,//%), which is greater than 1 for expanding reaches
and less than 1 for contracting ones.

The energy equation now may be written in terms of the water-surface fall
and the (unknown) discharge as follows:

_ Qle Q[ X '

in which K, and K, are the (total) conveyances of cross sections 0 and 1. In
practice, several cross sections are used to get an improved representation of
the geometry and hydraulics of the reach. Equation (9) can be applied to each
of the subreaches i = 1, 2, ..., M. The discharge @ is the same in each sub-
reach. The total water-surface fall A, is the sum of the subreach falls. The
resulting equation can be solved for @ as follows:

“12
Q = ﬁ:[ZLi/KiKi-l + Z(l + k) (% - %)/2g] (10)

in which K; and K _, are the (total) conveyances of cross sections i and 1 — 1.
The first summation on the right-hand side of this equation represents the
effects of boundary friction (Manning’s equation) whereas the second summa-
tion represents all of the velocity-variation (nonuniformity) effects. The slope-
area method is intended for use when the friction term is the dominant one.

SOURCES OF ERROR

Applications of the slope-area method are subject to two general types of
errors: observational errors and theoretical errors. Observational errors in-
clude all discrepancies between the true values of all variables and the corre-
sponding measured, estimated, or assumed values actually used in the com-
putation. Such errors include surveying errors, errors in determining water-
surface profile slopes from scattered and inconsistent high-water marks, and
misestimates of Manning’s n. Theoretical errors include effects of all applica-
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tions of the slope-area model to flows that are not governed by that model. Such
flows include mudflows (as opposed to water floods) and flows with excessive
expansions or contractions. Jarrett (1987, this volume) has described and
evaluated a number of potential theoretical and observational errors in slope-
area applications. This paper considers only the effects of observational errors.
Any error estimates resulting from this study therefore must be considered as
lower bounds, predicted on a proper correspondence between the slope-area
theory and the hydraulic conditions in the field.

ERROR ANALYSIS OF DISCHARGE FORMULA

For purposes of error analysis, it is convenient to use eqn. (10) to express the
discharge @ as a function of 3 + 4(M + 1) + M variables, as follows:

Q = f(hkaoklyaﬂy-'-naMsAO:---’AM:
I)o,...,PM,no,...,nM,Ll,...,LM) (Il)

in which the conveyances K; have been expressed in terms of the corresponding
A;, P, and n;. When M = 2 (three-section formula), @ is a function of 17
variables. It is assumed that the mathematical form of the function f is correct
(no theoretical error) and that the only errors are observational. If the errors
are small enough, their effects on @ can be adequately represented by a
first-order Taylor series with coefficients 0Q/dx evaluated at the observed
values of the independent variables. Then the variance of the discharge error
AQ can be expressed in terms of the dQ)/dx and the variances and covariances
of the independent variables (Benjamin and Cornell, 1970, p. 180ff). Fortunate-
ly, most of the covariance terms are zero. The result is as follows:

. 2
var AQ = (g-}?) var Ah, + (gg) var Ak

aQ 2 ’ M aQ 2
+ (E{) var Ak’ + .,»;) (6_oc,) var Ao,

+ i}zfo (%?:) var AA; + 'zo (gg) var AP,
+ ii (E’a—%) var An; + Z (gg) var AL,

M-1 M
+ 23 Y 9Q 29 cov(An;, An;)
i=0 j= 1+1a a
M-1 M 5Q 5Q
2 X X 7404
0Q 0Q
2 Z 5P 5A

cov(AA;, AA))

+

cov(AA;, AP) (12)
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Fig. 2. Definition sketch for cross-section geometry.

The partial derivatives and the variances and covariances of the input-variable
errors now have to be determined.

ERROR ANALYSIS OF CROSS-SECTION PROPERTIES

Figure 2 defines the various measurements and relationships that are used
to determine the geometry of slope-area cross sections. Scour and fill are
sources of potentially severe errors (Benson and Dalrymple, 1967). In this
analysis it is assumed that scour or fill might have occurred after the high-
water marks were made and that the effect is to make the flow depth manifested
by post-flood evidence different from the true low depth at the time of the peak
flow. The scour (if any occurs) is assumed to be of constant depth throughout
any one cross section but to vary from section to section; scour depths may be
correlated between sections (Jarrett, 1987, this volume). Fill is treated as
negative scour.

Under these assumptions, the flow depth at any point in the cross section is
d; = r;, —y — 8, where r; is a rod reading, y is an equivalent measurement
down to the water surface (as defined by high-water marks) and s is the scour
depth. The cross-sectional area and wetted perimeter are:

A = g: b(ri + r,_)|2 — by — bs (13)

i=1

N
P = Y [b]+ (ri—ri_ )" (14)
i=1
where b; is the transverse distance between ground pointsi — 1 and i, N + 1
is the number of ground points and b = Ib, is the total top width.
The effects of measurement errors on the computed cross-sectional area can
be determined as follows:
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N 2 N 2
var AA = ) (gg) var Ab, + Y (Z—A) var Ar;
P=1 i

i=1 i

2A\* oA\’
+ (E) var Ay + (_E) var As (15)

where it is assumed that the b, r, y and s measurement errors are statistically
uncorrelated. The partial derivatives are:

0Aldb; = (ri+ri_)2—-y—-s = d=A/b
dAfor; = (b; + b;_,)/2 ~ b/N ‘ (16)
0Alcy = 0Alds = -b

Note that it has been assumed that the ground points are approximately
equally spaced and that the depth at all points is approximately equal to the
mean depth. This kind of uniformity assumption will be made throughout the
remainder of the paper in order to make the error equations more readily
understandable. For the same reason, measurement errors in r;, y and s are
expressed in terms of relative errors ¢, ¢, and ¢, referenced to mean depth
d = A/b. The error in b, is expressed in terms of relative error &, referenced to
b/N, the average spacing of ground points. Values of ¢, and ¢, are distinguished
because the measurements of ground points and of high-water marks are done
with different techniques and different accuracy. Making the indicated sub-
stitutions yields:

, _ var AA & &

— = byt 2 2
€% Ve N+N+£h &, 17

in which &, is the relative standard error of the cross-sectional area.
The covariance of area errors at cross sections j and m can be shown to be:

A, 04,
28, S,

where it is assumed that all geometric variables except scour depth are in-
dependent between cross sections. It is further assumed that scour consists of
a (random) reach-wide general scour plus independent random variations from
section to section. Thus the scour error variance at each section is var
AS; = var AS" + var AS”, where AS denotes the reach-wide general scour
error and AS” denotes the independent random component, which is identically
distributed at all sections. It can be shown that cov(AS;, AS,)) = var AS'. In
terms of correlation coefficients:

cov(AS;, AS,)) var AS’
Pas = = - " (19)
Jvar AS; \/var AS, var AS’ + var AS

which is constant for all cross-section pairs. Substituting partial derivatives
and error estimates yields:

cov(AA;, AA,) = cov(AS;, AS,) ' (18)
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cov(AA;, AA,) = bpeld = p, Al (20)

in which pA, is the assumed section-to-section correlation between scour-depth
errors and &2 = var AS/d. Channel widths, depths and areas have been assumed
sufficiently uniform from section to section to be approximated by a single
value.

In similar fashion, the errors in wetted perimeter can be shown to have:

N /oP\? N 0P\?
var AP = i; (6_2),) var Ab; + ;ﬂ (Ef—;) var Ar, (21)
0A 0P
cov(AP, AA) = Z 3, var Ab; Z %gvar Ar; (22)
i=1 ab ri

It is assumed that the channel cross section is relatively wide, shallow and
uniform. Then the wetted perimeter approximately equals the top width
(P = B), dPJob; ~ 1 and 6P/dr; = 0. Carrying out the indicated substitutions:

var AP/P? = ¢ =~ §|N (23)
cov(AP, AA)JAP =~ & =~ ¢IN (24)

PARTIAL DERIVATIVES OF THE DISCHARGE FORMULA

As noted above, the slope-area discharge formula is a function of 3 + 4
(M + 1) + M variables, where M is the number of subreaches. For M = 2
(“3-section formula™) there are 17 variables. The partial derivatives of  with
respect to all these variables have to be evaluated and properly summed. This
task is mathematically straightforward but clerically cumbersome.

To keep the work under control, additional notation is needed. Define, for
subreachesi = 1,..., M:

L. L;n;n, PZI"PW3
GI: — ! ——3 V- 1 25)
KK . & AT AT, (
o o
H = (1+k - T (26)
( ) (Az A,zk 1)

The discharge eqn. (10) then becomes:

M M -1z

Q=\/h_w(>:Gi+ZH.-) (27)
i=1 i=1

The derivative of @ with respect to h, now can be seen to be:

Q 1Q

W = 2k (28)
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For the other variables:

Q 1Q‘~‘(azci 6>:H,-)

x = " 3n\ex T Tia (29)

Many of the derivatives involve terms of the form (G; + G;, ,); othersinvolve

only G, or only G. To enable all of these terms to be represented in a uniform
fashion, define:

G = Gy., = Hy = Hy, , = Oky = ky,y = —1 (30)

Finally, to improve the understandability of the error equations, let each
independent variable that varies from section to section be approximated by a
single value that is constant throughout the reach. (This approximation is used
only in evaluating the errors, not in calculating the discharge.) Under this
approximation, terms of the form (G, + G, ,) can be expressed as Glu;, + u;.,),
where G is constant for all sections and v, is defined by:

Uy = Uyr = Quy = (.0 = uy =1 (31)

To illustrate the procedure, the derivative of @ with respect to the area of
section i can be computed as follows:

Q 1615 &
A §h—wzli‘3‘(Gz+ Gi 1) + 2k kHI)EA_?]

Note that @G, = h, is the friction loss in subreach i and that Qo [28A = h,

is the velocity head. Under the uniformity approximation, h, = hi/M and
h, = h,. Then:

0Q 1Q[51 h h,
A §Xi|:§ﬂh—w(ui+ui+l)+2(ki_ki+1)h_w] (32)

where the u; terms are needed for proper handling of the casesi = 0Oandi = M.
In similar fashion the other partial derivatives can be evaluated as follows:

g% - _%;%Ai[}%(u‘ + u;,,) : (34)
g—g - ~%§%%%(u,—+ui“) (35)
%f‘; - —%g(ki—kiﬂ ”:— (36)
Q

1
& = 3 QAR A, (37)
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R 1 .

- 3 QY AR b (38)

where TAh, represents the sum of negative velocity-head changes:

_ ¥ Q| a4y |

= L2547 o
x ifx <0

[x]” = , (40)
0 ifx>0

and TAh! represents the similar sum of positive velocity-head changes.

EVALUATION OF THE DISCHARGE ERROR

The variance of the discharge error now can be computed by substituting the
partial derivatives of @ and the variances and covariances of the measurement
errors into egn. (12). The error in estimation of Manning's n is assumed to
follow a uniform-correlation model, similar to that for scour, egn. (19). Thus,
cov(An;, An;) = pa.ern;n;, where g, is the relative standard error of Manning’s
n and p,, is the correlation between n-errors at different cross sections. Varian-
ces and covariances of area and wetted-perimeter errors are given in eqns.
(17)~(24). Making the indicated substitutions and carrying out straightforward
though laborious algebraic manipulations yields the final result:
varAQ 1, 1,¢

a2 it T3y

1

2] — ——
E?— 2 _5_ ZM—-E kM"—kl
(5 9)| (o) - Sov

M
Y k- kmf]

1 - 537 M

Ep2| 1o 2M ky — R 2 _ 2

i=0
+ var Ak % Y2 (ZAhR, [h,)* + var AR’ % Y2 (ZAR [h,)

1

M 2M

1 - —
1
+ SEZV’Z iZO (k; — ki+1)2 + Eid’z[ﬁhn + (1 - pAn)T]
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2 2] — —
5 M 5 . ky — k
+ g {pm(gcﬁ) + (1 - Pm)[(g ¢) T 5(1)1,0—'"—]‘—4—

M
+ Yt Y (k- ke+1)2]} (41)

in which:
¢ = hih, (42)
v = h,/h, ' (43)

This formula represents simply a weighted sum of the various measurement-
error variances, with the weights depending on the geometric and hydraulic
configuration of the reach. For convenience of reference, it may be written in
the form:

g = va‘é?Q - Yée, (44)

in which the summation runs over all error sources x, and in which it is
understood that:

& = var Ak (45)
& = var Ak’ (46)
In addition, it will be convehient to write:

& = & + &N (47)

in which g; is the relative standard error of the hydraulic mean depth.

Inspection of the terms of eqn. (41) indicates that discharge error variance
increases rapidly as i (ratio of velocity head to water-surface fall) and ¢ (ratio
of friction head to water-surface fall) become large. The terms involving ZAh, ,
TAh,, and the ZAk? all increase, and cause increasing discharge errors, as
longitudinal nonuniformity increases. These results confirm the rules of thumb
(Dalrymple and Benson, 1967) that relative errors in computed discharge in-
crease rapidly when the velocity head exceeds the water-surface fall, when the
friction loss exceeds the water-surface fall (expanding reaches) and when
lateral velocity variation (alpha) is large.

NUMERICAL EXAMPLES

To illustrate the use of the above results, two numerical examples are given.
The geometric and hydraulic details of these examples are taken from actual
measurements described by Barnes (1967). The various measurement-error
estimates, on the other hand, are purely hypothetical, so the computed dis-
charge error variances should not be interpreted as evaluations of the specific
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TABLE 1

Approximate hydraulic and geometric properties of sample reaches (after Barnes, 1967)

Columbia (p. 30)

Oconee (P. 106)

n, Manning’s n 0.030 0.041
@, peak discharge (m3s~!') 28,300 90
M, number of subreaches 3 4
L, reach length (m) 1,280 475
h,,, water-surface fall (m) 0.338 0.247
A, area (m?) 8,350 90
b, width (m) 490 35
d, mean depth (m) 174 2.6
R, hydraulic radius (m) 16.8 24
V, mean velocity (m/s) 3.35 0.98
h,, velocity head (m) 0.572 0.049
hyy = hy, (m) +0.034 +0.007
h,, expansion loss (m) 0.017 0.003
hy, friction head (m) 0.286 0.237
¢ = hi/h, 0.85 0.96
¥ = h,Jh, 1.70 0.20
ky — k -0.5 0.0
Sk, — ki, ) 1.5 2.5
ZAh} |h, 0.12 0.26
ZAh; [h, —-0.06 -0.12
TABLE 2
Evaluation of error-variance components
Columbia Oconee

x £, c, c el c, c, &

(104 (107%)
h, 0.10 0.25 25.0 0.25 25.0
d 0.02 5.29 21.1 0.661 2.6
b 0.01 0.48 0.5 0.03 0.03
L 0.01 0.06 0.06 0.06 0.06
4 0.10 0.011 1.1 0.0007 0.07
k 0.10 0.003 0.3 0.0001 0.01
o 0.10 1.10 110 0.025 2.5
n 0.10 0.45 45 0.562 56.2
Pan 0.50
s 0.10 3.66 366 1.610 161.0
Pas 0.50
(var AQ)/Q (107%) 569 247
(std. dev. AQ)/Q (%) 24 16
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TABLE 3

Sensitivity analysis

X &y £q (%)
Columbia Oconee

- : - 24 ’ 16
h, 0.05 23 15
o 0.05 22 15
n 0.05 23 14
(a2, n) (0.05, 0.05) 21 ’ 14
s 0.056 17 11
M+ 1 - 24 16
Pan =0 - 23 15
Pa = 1 - 20 18
Pas = 0 - 27 12

measurements; the results are presented only to illustrate the method of com-
putation and the influences of various factors.

The two examples presented are the flood of May 31, 1948, on the Columbia
River at the Dalles, Oregon (Barnes, 1967, p. 30), and the flood of May 27, 1959,
on the Middle Oconee River, near Athens, Georgia (Barnes, 1967, p. 106). The
general geometric and hydraulic properties of the reaches are summarized in
Table 1. The Columbia has much the higher velocities and the Middle Oconee
has the greater predominance of friction loss. Both reaches are well within the
subcritical flow regime.

Table 2 shows the various error sources and their contributions to the total
error-variance of the computed discharge. The numerical values of the stan-
dard errors in the ¢ column are intended only as reasonable hypothetical
values; they are not intended as specific evaluations of the technique or acc-
uracy of the two example measurements. The coefficients ¢, depend on the
geometric and hydraulic configuration of the reach. They can be calculated
from eqn. (41) and the information given in Table 1. Note the substantial
differences in the coefficients for d, b and «. These differences seem to be due
primarily to the large differences in mean velocity and to a lesser extent to
differences in degree of nonuniformity. In both examples the channels are
reasonably uniform, so the influences of the uncertainties in the expansion-
and contraction-loss coefficients are minimal. The dominance of the scour term
in both examples is significant.

The influence coefficient ¢, having been computed, a sensitivity analysis on
the error estimates can be performed. Table 3 shows the results of changing one
error-factor at a time in eqn. (41) while leaving all other terms at the values
stated in Table 2. The line labeled M + 1 was computed by interpolating one
additional hypothetical cross section into each of the measurement reaches.
This result indicates that there is little benefit in interpolation additional cross
sections into a uniform reach solely to increase the value of M. This analysis
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1s unable, however, to determine the consequences of omitting cross sections
that might be necessary to define the flow geometry of the reach, so it would
be prudent to use as many cross sections as appeared necessary. Finally, it
appears that the most significant improvements in discharge accuracy can be
obtained by reducing uncertainty in the scour term; as long as scour uncer-
tainty exists, improvements in measuring other factors seem to be of limited
benefit.
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