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1. Groundwater levels rise following El Niño years
2. This suggests that floods may contribute more than 

baseflows to groundwater recharge in the Southwest
3. Simulation modeling aids in supporting this premise
4. Documentation of spatial and temporal patterns of 

streamflow in ephemeral streams is lacking for calibration 
of streamflow simulation models



The Southwest is composed almost entirely arid or semi-arid 
resulting in intermittent and ephemerals streamflows, 
except for a few notable rivers like the Rio Grande.



Definition of Semiarid:  Definition of Semiarid:  
Only half of the residents ride camelsOnly half of the residents ride camels

Rillito Creek, AZ  near the confluence with the Santa Cruz 



The use heat as a tracer to understand streamflow
patterns is particularly well-suited for the Southwest 
because:

1. The Southwest possesses strong temperature 
variations

2. Temperature measurements are particularly robust 
measurements, which is a necessary requirement in 
the flashy environments of the Southwest
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• Installed with NM 
District Geoprobe

• Continuous core 
collected at each nest
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1. Heat can be used to look at spatial and 
temporal patterns of streamflow

2. Heat can be used to determine streambed 
infiltration and transmission loss

3. These streamflow and channel loss 
characteristics aid in simulation modeling



Simulation of Streamflows in large Simulation of Streamflows in large 
ephemeral stream channelsephemeral stream channels



Abo Arroyo from 30,000 feet



Abo Arroyo from 30,000 feet Abo Arroyo ground zero
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Project Goals

Develop techniques for field data collection in large 
ephemeral streams 

� presence/absence of streamflow

� duration of streamflow                                                 

Model surfacewater and groundwater interactions

� match/calibrate with collected data

� predictive



Field Sites

Isleta Arroyo

Amargosa River

Abo Arroyo



Comparison of Sites

Wide shallow 
channel from Beatty, 
NV to Death Valley

Winter
Frontal 
storms

1 m40 kmAmargosa 
River

Wide, deep channel 
from mtns to Rio 

Grande

Summer 
monsoon
season

4 m30 kmAbo 
Arroyo

Monitored pump test 
outflow, sent into 
small dry arroyo

3 weeks 
in 2000
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Surface temperature probes –
presence or absence of 
streamflow

Recording Streamgages 
and Crest-Stage Gages

Precipitation Gages

Cross-Sections

Ring Infiltrometers 

Subsurface thermocouple 
nests – Infiltration rates



Realistic cross-sections

1-D channel flow – shallow water equations

Heterogeneity

Upstream hydrograph, downstream stage BC                        

Potential Problems

� groundwater and surfacewater      � initially dry channel

� steep rising limb of hydrograph

Model Criteria



Irrigation Models
Surface/groundwater 

interactions

Groundwater
All Transmission Loss & 

ET

Dam Break
Sudden Shocks

Surfacewater
Saint-Venant Eqns

Large Ephemeral 
Streams



FLDWAV
� Developed by the National Weather Service (D.L. 
Fread & J.M Lewis), 1998 - updated in 2000

(replaces DWOPER and DAMBRK)

� Fortran, finite-difference

� Flood routing model – complete 1-D Saint-Venant 
equations for unsteady flow (dynamic-
implicit/explicit, diffusion, level-pool).

internal boundaries – dams (breaches), bridges, 
ponds

lateral inflow/outflow – multiple  interconnected 
waterways, levee overtopping

Kalman filter estimator for updating real-time 
predictions of flow

cross-sectional interpolation



Saint-Venant equations with additional terms for 
expansion/contractions, channel sinuosity, wind 
resistance and non-Newtonian flow

Continuity:

Momentum:

FLDWAV - Equations
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Volumetric Losses

Loss (q) not dependant on head – user specified 
parameters

Assumes that loss is proportional with the local 
flowrate
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Event Simulation
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Abo Arroyo Cross-
Sections
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In Progress:

Simulations – Matching with Data

�Abo Arroyo      � Amargosa River     � Isleta Arroyo

Addition of spatially variable enhanced Loss Function

Analysis of spatially and temporally varying streamflow 
patterns and losses

Predictive Use for these and other SWGWR sites and 
other large ephemeral streams



Simulating streamflow and transmission losses 
for Intermittent Streams



Battle Mountain, NV.Battle Mountain, NV.
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• changes on GW storage don’t effect
seepage rate

• Ignore wetting-for now

• Gravity seepage



Staggered finite difference approximations 

-Stage calculated at nodes

-Flow calculated between nodes 
(Mckee, 97)-reduces non-linearity



Comparison between measured stream-flow
to simulated stream-flow accounting for 
Seepage loss.
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1. The relative contribution of floods compared 
with inter-flood streamflows may vary 
geographically throughout the Southwest

2. Field measurements coupled with simulation 
models designed to predict streamflow and 
transmission-loss patterns will aid in quantifying 
the relative contributions of these two distinct 
flow patterns in the Southwest


