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Major Points:

¢ % Indirect discharge measurements can aid a wide

variety of interpretative studies.

2 Flexibility and versatility are required so as to be
responsive to both the variety of questions and
the variety of field situations.

”’-a, z |In some environments, critical flow constraints
* lead to robust and easily obtained discharge
estimates.
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' Indirects and Flood Geomorphology

2 Channel structure and morphology
.z Alluvial fan processes

2 Cataclysmic flood hydrology, hydraulics, and
&  geomorphology

# = Martian landscape development
*_' # Depositional environments of stratigraphic
A seqguences
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\~ Wallula Gap...results
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Columbia River Gorge
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| (=6-10 floods)
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Critical Flow...profile
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Critical Flow...important attributes

i - = Maximum possible discharge for a given specific
| energy.

% Flow solely a function of cross-section geometry.
ﬁl 2 Applies to any free-surface gravitationally driven
= flow of constant density, regardless of rheology.
. = Energy waves do not translate through critical

. flow transitions.
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Moraine-dammed lakes have breached




X resulting in 11 debris flows...

% petween 1933 and 1970

¢ = from lake releases as large as 1 million cubic meters
2 that traveled up to 10 km

% with peak discharges as great as 500 m3/s

2 With peak discharges which increased and decreased
over short distances in conjunction with erosion and
deposition




Debris flow
Indirects...

2 \elocity-area estimates
2 Critical flow estimates
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Critical-flow estimates

PLAN VIEW PROFILE
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=7 = Survey single section
at choke point or drop-
off.

2 Survey elevation of
highest debris In
upstream ponded
reach (relative to
critical flow section).




1 In the office...

Q = Afgd)tiz A

=/ < Construct critical flow
rating curve for the
surveyed section.

2 Relate surveyed
maximum stage to the
energy surface at the
critical flow section.
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1 In the office...

Q = Afgd)tiz A

=/ < Construct critical flow
rating curve for the
surveyed section.

2 Relate surveyed
maximum stage to the
energy surface at the
critical flow section.
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Assumptions and potential errors...
...related to hydraulic conditions

22 Flow was critical.

= Minimal energy loss between site of maximum
stage evidence and control section.

% = One-dimensional flow (3<=1).




Assumptions and potential errors...
...related to hydraulic conditions

> < Flow was critical.
Regardless, estimate Is firm maximum.
Tested by assessing downstream flow.

= = Minimal energy loss between site of maximum
stage evidence and control section.

¢ = One-dimensional flow ($<=1).
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.\ Assumptions and potential errors...
...related to hydraulic conditions

22 Flow was critical.

= Minimal energy loss between site of maximum
stage evidence and control section.

Energy loss equivalent to 0.5(v4/2g) results in 32
percent overestimate of discharge.

i = One-dimensional flow (3<=1).
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.\ Assumptions and potential errors...
...related to hydraulic conditions

22 Flow was critical.

= Minimal energy loss between site of maximum
stage evidence and control section.

% = One-dimensional flow (3<=1).
; f <=2, discharge overestimated by 54 percent.

f 3<=1.5, discharge overestimated by 24
nercent.

Can be assessed by subdividing cross section.




1. Assumptions and potential errors...
...related to field conditions

2 Slgnificant velocity in approach area such that
; highwater evidence Is lower than energy surface.
& = Maximum preserved stage evidence is lower

£ than actual maximum water surface.
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.\ Assumptions and potential errors...

...related to field conditions

2 Slgnificant velocity in approach area such that

nwater evidence Is lower than energy surface.

nstream velocity is 50 percent of the control

section velocity, discharge will be

.. underestimated by less than 12 percent.

»; = Maximum preserved stage evidence is lower
t than actual maximum water surface.



1. Assumptions and potential errors...
...related to field conditions

2 Slgnificant velocity in approach area such that
highwater evidence is lower than energy surface.

? £ = Maximum preserved stage evidence Is lower
#  than actual maximum water surface.

If the highest surveyed evidence under-
represents actual maximum stages by 25
percent (of the total flow specific energy), the
discharge will be underestimated by 35 percent.
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.\ Assumptions and potential errors...
..summary

z Assumptions and uncertainties pertaining to
: hydraulic conditions can result in discharge
overestimation by as much as about 50 percent.

¥ = Reasonable uncertainties resulting from typical
field conditions can result in discharge under-
estimation by as much as about 35 percent.



~ An application...1942 White Branch
Debris Flow
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1942 White Branch Debris Flow
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{~ 1942 White Branch Debris Flow
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Major Points:

¢ % Indirect discharge measurements can aid a wide

variety of interpretative studies.

2 Flexibility and versatility are required so as to be
responsive to both the variety of questions and
the variety of field situations.

”’-a, z |In some environments, critical flow constraints
* lead to robust and easily obtained discharge
estimates.



